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Functional Thermodynamics of Maxwellian Ratchets:
Constructing and Deconstructing Patterns,
Randomizing and Derandomizing Behaviors

Alexandra M. Jurgens∗ and James P. Crutchfield†
Complexity Sciences Center and Physics Department,
University of California, Davis, California 95616

(Dated: June 1, 2020)

Maxwellian ratchets are autonomous, finite-state thermodynamic engines that implement input-
output informational transformations. Previous studies of these “demons” focused on how they exploit
environmental resources to generate work: They randomize ordered inputs, leveraging increased
Shannon entropy to transfer energy from a thermal reservoir to a work reservoir while respecting
both Liouvillian state-space dynamics and the Second Law. However, to date, correctly determining
such functional thermodynamic operating regimes was restricted to a very few engines for which
correlations among their information-bearing degrees of freedom could be calculated exactly and
in closed form—a highly restricted set. Additionally, a key second dimension of ratchet behavior
was largely ignored—ratchets do not merely change the randomness of environmental inputs, their
operation constructs and deconstructs patterns. To address both dimensions, we adapt recent results
from dynamical-systems and ergodic theories that efficiently and accurately calculate the entropy
rates and the rate of statistical complexity divergence of general hidden Markov processes. In concert
with the Information Processing Second Law, these methods accurately determine thermodynamic
operating regimes for finite-state Maxwellian demons with arbitrary numbers of states and transitions.
In addition, they facilitate analyzing structure versus randomness trade-offs that a given engine
makes. The result is a greatly enhanced perspective on the information processing capabilities of
information engines. As an application, we give a thorough-going analysis of the Mandal-Jarzynski
ratchet, demonstrating that it has an uncountably-infinite effective state space.

Keywords: Nonequilibrium thermodynamics, Information Processing Second Law, Kolmogorov-Sinai entropy,
Shannon entropy rate, causal states, mixed states, ergodicity, contraction maps, place-dependent iterated
function systems

I. INTRODUCTION

In 1867, James Clerk Maxwell introduced a thought
experiment designed to challenge the Second Law of Ther-
modynamics [1, 2]; what Lord Kelvin later came to call
“Maxwell’s Demon”. Exploiting the fact that the Second
Law holds only on average—i.e., the thermodynamic en-
tropy 〈S〉 cannot decrease over repeated transformations—
the experiment conjured an imaginary, intelligent being
capable of detecting and then harvesting negative entropy
fluctuations to do work. The paradox that Maxwell put
forward is that by using its “intelligence” this being ap-
parently violates the Second Law of Thermodynamics.
Maxwell’s challenge was the first indication that the Sec-
ond Law must take into account information processing.
A century and a half later, many now appreciate that
this is critical to future progress in the molecular and
nanoscale sciences and engineering.

The puzzle’s solution came from recognizing that the
“very observant” and “neat-fingered” Demon must manipu-
late memory to perform its detection and control task and,
critically, that such information processing comes at a cost
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[3, 4]. To operate, the Demon’s intelligence has thermody-
namic consequences. This is summarized by Landauer’s
Principle: “any logically irreversible manipulation of in-
formation ... must be accompanied by a corresponding
entropy increase in non-information-bearing degrees of
freedom of the information-processing apparatus or its
environment” [5]. This recasts the Demon as a type
of engine—an information engine that uses correlations
in an information reservoir to leverage thermodynamic
fluctuations in a heat reservoir to do useful work.

This class of information engines—Maxwellian
demons and their generalized ratchets—has been sub-
ject to extensive study [6–9]. However, previous de-
terminations of their thermodynamic functionality were
stymied by the difficulty of accurately calculating the en-
tropic change in what Landauer identified as the system’s
“information-bearing degrees of freedom”.

Consider a Maxwellian ratchet designed to read an
infinite input tape, perform a computation and thermo-
dynamic transformation, and write to an infinite output
tape, as depicted in Fig. 1. The relevant entropic change
then is quantified by the difference in the Kolmogorov-
Sinai entropies of the inputs to the ratchet (hµ) and of
the outputs to the information reservoir (h′µ) [7]. How-
ever, in general, this calculation ranges from very difficult
to intractable when the processes generating the input
and output information have temporal correlations. And,
more troubling, this problem is generic in the space of
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finite-state ratchets. When driving a ratchet with uncor-
related input, even simple memoryful ratchets produce
output processes with temporal correlations. Fundamen-
tal progress was halted since determining thermodynamic
functionality in the most general case—temporally corre-
lated input driving a memoryful ratchet—was intractable.
Attempts to circumvent these problems either heavily
restricted thermodynamic-controller architecture [7], in-
voked approximations that misclassified thermodynamic
functioning, or flatly violated the Second Law [6]. It
appears that—and this is one practical consequence of
the results reported in the following—a number of recent
analyses of information-engine efficiency and functioning
must be revisited and corrected. Our contribution is that
the latter is now possible.

Re-examining a well-known information ratchet,
we introduce techniques to accurately measure the
Kolmogorov-Sinai-Shannon entropy of temporally cor-
related processes in general. We show that, via the Infor-
mation Processing Second Law [7], this allows accurately
determining the functional thermodynamics of arbitrary
finite-state ratchets. Notably, the net result is a shift in
perspective. To guarantee that the output information
could be studied analytically, previous successful efforts
designed ratchet structure—the states and transitions—
in accord with a given input’s correlational structure
[8]. One consequence is that follow-on efforts adopted
a fixed input-output-centric view of information engines.
Here, following the example of the earliest discussions
of information ratchets [6], the new methods shift the
focus back to the engine itself, setting its design and then
exploring all possible input-dependent thermodynamic
functionalities.

The approach has appeal beyond mere narrative and
historical symmetry. The shift in focus reveals a second
dimension to ratchet functionality. The change in entropy
rate ∆hµ = h′µ − hµ monitors the degree to which the
ratchet transforms a process’ informational content, but
it does not address how this comes about. To do this
requires investigating the change in structure from the
input process to the output process. These structural
changes were previously proved to be deeply relevant to
engine thermodynamic efficiency and an engine’s ability
to meet the work production bounds set by Landauer’s
Principle [10]. Their impact is nontrivial. For example, we
will show that forcing a Maxwellian ratchet to perfectly
generate or erase structure requires divergent memory
resources.

To reach this conclusion, the next section briefly re-
views information engines and ratchets, including their
energetics, structure, and informatics. This, then, allows
us to highlight the calculational intractability for generic
thermodynamic ratchets. To be concrete, we recall one
of the first ratchets and review how its thermodynamic
functionality—engine, eraser, or dud—is determined. Us-
ing new methods from ergodic theory and dynamical
systems that determine randomness generation and mem-
ory use (recounted in the Supplementary Materials), we

Stochastic controller
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B C

Thermal
Reservoir

Work
Reservoir

XNX 0
N�1X 0

N�2X 0
N�3

. . . XN+1 XN+2 XN+3 . . .

Ratchet State = RN

Output Input

Time

Q W

FIG. 1. Information engine as a finite-state ratchet (controller)
connected to a thermal reservoir, a work reservoir, and an
information reservoir (depicted as tape whose storage cells
may be read or written).

then re-analyze the original ratchet, showing that previ-
ous analyses misidentified its thermodynamic functioning.
This is illustrated for its operation in several distinctly-
correlated environments. We then explore the structural
dimension of ratchet functionality, demonstrating that
the engine/eraser/dud classification does not uniquely
describe ratchet information processing for a given input.
To remedy this, in conjunction with the previous func-
tional classification which can now be exactly carried out,
we introduce structure-randomness trade-offs in engine
operation, highlighting the multi-dimensional nature of
ratchet information processing.

II. INFORMATION ENGINES

The information engines of interest consist of a finite-
state stochastic controller or ratchet that interacts with a
thermal reservoir, a work reservoir, and an information
reservoir. These are connected as shown in Fig. 1 and are
embedded in a thermal environment at constant temper-
ature T . The information reservoir takes the form of an
input tape, which stores a binary-symbol string. Its state
is described by the random variable X0:∞ = X0X1 . . . .
We restrict to binary input and output alphabets, so
that each XN realizes an element xn ∈ X = {0, 1}. The
ratchet operates in continuous time; the controller state
at time t = Nτ is represented by the random variable RN ,
which realizes an element r ∈ R—the ratchet’s discrete,
finite state space.

At each step, XN couples to the ratchet controller for
an interaction of duration τ . During this time, thermal
fluctuations continuously drive transitions in the coupled
state space R × X of the ratchet and the current tape
symbol. After the interaction interval, the ratchet is
in a potentially different state RN+1, and the symbol
XN has been transduced into an output symbol X ′N =
x′N ∈ X , which is written to the tape. The strings of
possible output symbols are expressed by the random
variable X ′0:∞ = X ′0X

′
1 . . . . The tape moves forward, and

the next input symbol XN+1 begins its interaction with
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the ratchet, which now starts in state RN+1. The joint
transitions between states of the ratchet and bit have
energetic consequences, capturing energy flows between
the thermal and work reservoirs.

A. Energetics

These information engines are autonomous and tran-
sitions in the coupled ratchet-symbol system are driven
by fluctuations in the thermal reservoir. Recently, Ref.
[8] introduced a general formalism for determining the
energetics of such information engines. First, noting that
the ratchet-symbol system obeys detailed balance, transi-
tions over the joint ratchet-symbol state space R×X is
described by a Markov chain M , where every transition
with positive probability—denoted:

MrN⊗xN→rN+1⊗x′
N

=
Pr(RN+1 = rN+1, X

′
N = x′N |RN = rN , XN = xN )

—must have a reverse transition with positive probability.
Energy changes associated with an internal-state transi-
tion are then determined by the forward-reverse transition
probability ratio:

∆ErN⊗xN→rN+1⊗x′
N

= kBT ln
MrN+1⊗x′

N
→rN⊗xN

MrN⊗xN→rN+1⊗x′
N

.

Assuming that all energy exchanges with the heat reservoir
occur during the ratchet-symbol interaction interval τ and
that all energy exchanges with the work reservoir occur
between interaction intervals, the average asymptotic
work is:

〈W 〉 =
∑

r,r′∈R,x,x′∈X
πr⊗xMr⊗x→r′⊗x′∆Er⊗x→r′⊗x′ ,

(1)

where πr⊗x is the asymptotic distribution over the joint
state of the ratchet-symbol system at the beginning of an
interaction interval.

B. Structure

To discuss the computational structure of information
engines, we first cast the input and output strings in terms
of the hidden Markov Models (HMMs) that generate
them.

Definition 1. A finite-state edge-labeled hidden Markov
model (HMM) consists of:

1. A finite set of states S = {σ1, ..., σN},
2. A finite alphabet A of k symbols x ∈ A, and

3. A set of N by N symbol-labeled transition matrices
T (x), x ∈ A: T (x)

ij = Pr(σj , x|σi). The correspond-
ing overall state-to-state transitions are described
by the row-stochastic matrix T =

∑
x∈A T

(x).

This information-ratchet representation allows us to
consider the internal states S of the input machine (HMM)
as well as the internal states S ′ of the output machine
(HMM). The latter are the joint states of the input process
and the ratchet: S ′ = S ×R.

When the string of inputs or outputs can be generated
by an HMM with only a single internal state, they are
memoryless, since they can store no information from the
past. The random variables generated by the associated
HMM are independent and identically distributed (IID).
When there is more than a single state, in contrast, the
associated process is memoryful and the random variables
generated may be correlated in time.

Similarly, we cast the ratchet controller as a trans-
ducer that maps from input sequences to distributions
over output sequences.

Definition 2. A finite-state edge-labeled transducer con-
sists of:

1. A finite set of states R = {R1, ..., RN ′},
2. A finite input alphabet A of k symbols x ∈ A,
3. A finite output alphabet A′ of k′ symbols x′ ∈ A′,

and,
4. A set of N ′ by N ′ input-output symbol-labeled tran-

sition matrices T (x,x′), x, x′ ∈ A×A′:

T
(x,x′)
ij = Pr(rj , x′|ri, x) .

The transducer formulation allows us to calculate
the output HMM in terms of the ratchet and the input
machine. The exact method is given in Appendix B 1. As
with the input machine, a ratchet is memoryless when
it possesses only one internal state, and memoryful oth-
erwise. A key feature of a ratchet we focus on here is
its ability to alter temporal correlations by altering the
structure of an input process. If memoryless (IID) in-
put is fed to a memoryful ratchet, generally the output
will be memoryful, since this guarantees the state space
dimension of the output |R′| = |S × R| > 1. Figure 2
graphically illustrates the composition of various input
process HMMs with the ratchet transducer we analyze in
detail shortly.

C. Informatics

Following Landauer, extensions of the Second Law of
Thermodynamics were proposed to bound the thermody-
namic costs of information processing by an information
engine. Reference [6] employed a bound that compares



4

Input Machine Transducer Output Machine
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0|0 0|1 1|0 1|1

0|0
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1|1
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0|0
0|1
1|0
1|1

0|0
0|1
1|0
1|1

0|0
0|1
1|0
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For each transition:
Pr(X ′ = x′, X = x) = f(X,X ′, RN , RN+1, ε, τ) > 0

FIG. 2. Composing the Mandal-Jarzynski transducer (center, yellow) with a Hidden Markov model (left, green) that describes
the process on the input tape gives an output Hidden Markov model (right, purple) that describes the process written to the
output tape. Hidden Markov model (HMM) states R are depicted as circles. Directed edges between states represent possible
transitions on an observed symbol x. HMM edges are labeled x : Pr(x′, RN+1|RN ). Transducers are similarly depicted by circular
states with directed edges representing possible transitions on pairs of input symbols x and output symbols x′. Transducer
transitions are specified by x′|x : Pr(x′, RN+1|x′, RN ). Left: Input HMMs discussed here, from top to bottom, a (memoryless)
Biased Coin, a Period-2 Process, and the Golden Mean Process. Center: The Mandal-Jarzynski ratchet, represented by a
three-state transducer. Probabilities are not shown on edge labels for conciseness, but are nonzero for all transitions and all
combinations of input-output symbol pairs (x, x′). Each edge probability is a function—denoted by f(. . .)—of the previous
state RN , the next state RN+1, the input symbol x, and the output symbol x′. See Section IV and Appendix B for further
details. Right: Output HMMs resulting in the Mandal-Jarzynski transducer composed with the corresponding input HMM on
left. Edge labels are left off for conciseness, but each transition label represents a positive probability of observing a 0 or a 1.

the Shannon entropy of single input and single output
symbols. Recall that the Shannon entropy H1 for a single
random variable X realizing values x ∈ X is:

H1[X] = −
∑
x∈X

Pr(X = x) log2 Pr(X = x) . (2)

This Shannon entropy quantifies the randomness of the
single random variable X averaged over time. That is,
H1[X] answers the question of how uncertain it is that
any particular xN will be 0, 1, . . . , or k − 1.

Comparing the single-symbol Shannon entropy in the
input string to that in the output string quantifies how
the ratchet transforms randomness in individual symbols.
This difference captures one aspect of the ratchet’s in-
formation processing. And, it was proposed as an upper
bound on the asymptotic work done 〈W 〉 [6]:

〈W 〉
?
≤ kBT∆H1 , (3)

where H1 = H1[X] is the entropy averaged over the input
tape, H ′1 = H1[X ′] is that averaged over the output,
and ∆H1 = H ′1 −H1 is the change in the single-symbol
statistics produced by the ratchet’s operation.

Note, however, that while the H1s track the average
information in any single instance of Xt or X ′t, they
do not account for temporal correlations within input
sequences or within output sequences. This is key, as
information ratchets change more than the statistical bias
in an individual symbol, they alter temporal correlations
in symbol strings. These altered correlations are related
to the fact that the ratchet induces structural change in
its input. Recognizing this is central to bounding the
thermodynamic costs of the ratchet’s interaction with the
input process.

To properly address how correlations affect costs,
we calculate a process’ intrinsic randomness when all
temporal correlations are taken into account, as measured
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by the entropy rate [11]:

hµ = lim
`→∞

H(`)
`

, (4)

where H(`) = H[Pr(X0:`−1)] is the Shannon entropy for
length-` symbol blocks.

Replacing the input and output Shannon entropies
in Eq. (3) with their respective entropy rates gives the
Information Processing Second Law (IPSL) [7]:

〈W 〉 ≤ kBT ln 2
(
h′µ − hµ

)
= kBT ln 2 ∆hµ . (5)

The IPSL correctly expresses the upper bound on work,
taking into account the presence of temporal correlations
in input and output processes.

The importance of Eq. (5) cannot be overstated—any
memoryful ratchet induces temporal correlations in its
output, even for IID input. Using Eq. (3) in the IID
case typically overestimates the upper limit on available
work. Additionally, temporal correlations in the input
are known to be a thermodynamic resource [12]. In fact,
suitably designed ratchets can leverage such correlation to
do useful work. Thus, inappropriately applying Eq. (3) in
these cases often results in claims that violate the Second
Law. In short, Eq. (5) generalizes Landauer’s Principle
to the case of correlated environments and finite-state
memoryful ratchets that generate correlated outputs.

Unfortunately, due to the difficulty of accurately
calculating the entropy rate for most processes, previous
treatments of information ratchets were restricted to use
either Eq. (3) or finite-length approximations to Eq. (5).
Here, we make use of a novel solution that removes this
restriction and gives accurate calculations of entropy rates
for processes generated by general HMMs.

III. ENTROPY RATE OF HMMS

Properly determining the entropy rate of processes
generated by HMMs is a longstanding challenge, one
known since the 1950s [13]. Its recent resolution required
introducing new concepts from ergodic theory and dynam-
ical systems [14]. We now turn to briefly discuss these
and the new analysis tools that follow from them. (The
Supplementary Materials give a more detailed exegesis.)

A. ε-Machines

First, though, we need to more carefully consider the
hidden Markov models that we use to represent stochastic
processes. We briefly recall two important HMM classes.

Definition 3. A unifilar HMM (uHMM) is an HMM
such that for each state σk ∈ S and each symbol x ∈ A

there is at most one outgoing edge from state σk labeled
with symbol x.

This seemingly-minor structural property means that
the states are predictive: current state and symbol exactly
predict the next state. This has important consequences
for calculating the statistical and informational properties
of the process that an HMM generates. If an HMM
is unifilar, we may directly calculate the entropy of its
generated process via the closed-form expression:

hµ = −
∑
σ∈S

Pr(σ)
∑

σ′∈S,x∈A
T

(x)
σσ′ log2 T

(x)
σσ′ . (6)

In contrast, if an HMM is nonunifilar, its states are not
predictive and there is no closed form for the generated
process’ entropy rate.

Definition 4. An ε-machine is a uHMM with probabilis-
tically distinct states: For each pair of distinct states
σk, σj ∈ S there exists some finite word w = x0:`−1 such
that:

Pr(X0:` = w|S0 = σk) 6= Pr(X0:` = w|S0 = σj) .

As a consequence, a process’ ε-machine is its
optimally-predictive model [15]. Moreover, a process’
ε-machine is minimal and unique. This means that we
can quantify the amount of structural memory a process
effectively uses by counting the number of states in its
ε-machine or by calculating its stored information. The
latter is the statistical complexity Cµ, which is the Shan-
non entropy of the asymptotic probability distribution
over states:

Cµ = H[Pr(S)]

= −
∑
σ∈S

Pr(σ) log2 Pr(σ) . (7)

So, knowing a process’ ε-machine is powerful, as it pro-
vides closed-form expressions for both a process’ intrinsic
randomness and its structural memory [16], two important
thermodynamic resources.

That said, even if a ratchet’s input is generated by a
finite ε-machine, the output process will not be. In gen-
eral, the output process generator (Fig. 2, right column)
will be a nonunifilar HMM. This precludes a direct calcu-
lation of the entropy rate of a ratchet’s output process.
And so, when determining thermodynamic function, it
appears that a key constituent (h′µ) is inaccessible. Note,
too, that nonunifilarity precludes determining the out-
put process’ memory C

′

µ and, failing that, one cannot
accurately analyze the changes in structure effected by a
ratchet.
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B

A C

0

1

ε ∈ (−1, 1)⊗
τ ∈ (0,∞)

A

B C

Pr(X ′ = x′, X = x) = f(X,X ′, RN , RN+1, ε, τ) > 0

FIG. 3. Ratchet schematic adapted from the original Mandal-Jarzynski construction, showing how the dial-and-symbol system
is transformed into a three state transducer upon selection of a specific ε—determining the energetics of flipping a bit—and
τ—determining the interaction interval. For almost every value of ε and τ every state-to-state transition has positive probability
for every input-output symbol combination.

B. Mixed-State Presentation

Despite there being no closed-form expression for
the entropy rate of the process generated by a finite
nonunifilar HMM, there is a way to unifilarize HMMs,
introduced by Blackwell [13], using mixed states. A mixed
state is the answer to the question: “given that one
knows the HMM structure (states and transitions) and
has observed a particular sequence, what is the best guess
of the internal state probabilities?” More formally, an
N -state HMM’s mixed states are conditional probability
distributions η(x−`:0) = Pr(R0|X−`:0 = x−`:0) over the
HMM’s internal states R, given all sequences x−`:0 ∈ A`,
` = 0, 1, 2, . . ..

The collection of mixed states over all of a process’
allowed sequences, i.e., `→∞, induces a (Blackwell) mea-
sure µ on the state distribution Pr(R) (N−1)-dimensional
simplex R. The mixed states together with the mixed-
state transition dynamic (see SM Appendix A 3) give an
HMM’s mixed-state presentation (MSP).

The MSP is unifilar by construction. However, in
the typical case, this improvement comes at a heavy cost—
the set of mixed states is uncountably infinite. This
renders the complexity-measure expressions Eq. (6) and
Eq. (7) unusable. Blackwell provided a formal replacement
for Eq. (6)’s entropy-rate expression [13]. This is an
integral expression for the entropy rate over the invariant
Blackwell measure µ(η) in the mixed-state simplex R:

hBµ = −
∫

R
dµ(η)

∑
x∈A

Pr(x|η) log2 Pr(x|η) . (8)

Recently, Ref. [14] introduced a constructive ap-
proach to evaluate this integral by establishing contrac-
tivity of the simplex maps—the substochastic transition
matrices of Def. 1—by showing that the mixed-state pro-
cess is ergodic. Given this, rather than integrate over the
measure µ(η) as required by Blackwell’s Eq. (8), we can
then time-average over the series η0, η1, . . . , ηt of iterated

mixed states to obtain the entropy rate:

ĥBµ = − lim
`→∞

1
`

∑̀
t=0

∑
x∈A

Pr(x|η`) log2 Pr(x|η`) , (9)

where Pr(x|η`) = η(x0:`)·T (x) ·1, x0:` is the first ` symbols
of an arbitrarily long sequence x0:∞ generated by the
mixed-state process, and 1 is a column-vector of all 1s.
(See SM Appendix A 3.) Applying Eq. (9) in the present
setting means we can now calculate the entropy rate
of output processes for arbitrary ratchets and arbitrary
inputs.

Characterizing a nonunifilar HMM’s structure is
slightly more delicate. Due to the generic uncountabil-
ity of predictive states for nonunfilar HMMs, Cµ of the
set of mixed states diverges. To characterize the diver-
gent memory resource cost of predicting processes with
uncountably infinite mixed states, we track the rate of
divergence of Cµ—the statistical complexity dimension dµ
of the Blackwell measure µ on R [17]:

dµ = lim
ε→0
−Hε[R]

log2 ε
, (10)

where Hε[Q] is the Shannon entropy of a continuous-
valued random variable Q, coarse-grained at size ε, and
R is the random variable associated with the mixed states
η ∈ R. SM Appendix A3 develops an upper bound on
this that can be accurately determined from the measured
process’ entropy rate ĥBµ (Eq. (9)) and the mixed-state
process’ Lyapunov characteristic exponent spectrum Λ.
As discussed in SM A5, this upper bound is a close
approximation to dµ for broad classes of HMMs, but may
be a strict inequality for others.

In this way, the functional thermodynamics of finite-
state Maxwellian ratchets can be accurately determined
and systematically explored.
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IV. MANDAL-JARZYNSKI INFORMATION
RATCHET

To demonstrate the descriptive power of these
dynamical-thermodynamic results on ratchet entropy, di-
mension, mixed states, and function, we apply them
to a well-known example of an information engine—the
Mandal-Jarzynski ratchet [6]; hereafter, the ratchet. Al-
though initially introduced without reference to HMMs
and transducers, following Ref. [7] we translate the origi-
nal ratchet model into the HMM-transducer formalism
outlined in Section II. In these terms, the ratchet is a three-
state, fully connected transducer, designed such that only
transitions that flip an incoming symbol are energetically
consequential. As shown in Fig. 3, the ratchet’s transition
probabilities are parametrized by τ ∈ [0,∞)—duration
of the ratchet-symbol interaction—and ε ∈ (−1, 1)—the
weight parameter. For a given τ and ε, the Mandal-
Jarzynski model may be written down as the three-state
transducer shown in the center column Fig. 2. See SM
Appendix B for how to calculate the transducer, which is
based on a rate-transition matrix, and SM Appendix B 1
for the input-transducer composition method.

Any interaction interval in which the input symbol is
unchanged is energetically neutral. Therefore, we measure
the average work done by the ratchet by the difference
in the probability of reading a 1 on the input tape cell
versus writing a 1 to the output tape cell:

〈W 〉 = kBT w (Pr(X ′ = 1)− Pr(X = 1)) ,

where w(ε) = log((1 + ε)/(1 − ε)). When ε = 0, flips
0 → 1 and 1 → 0 are both energetically neutral; when
ε → ±1, symbol flips in one direction are energetically
favored over the other. Note that this computation finds
the same asymptotic work production as Eq. (1); recalled
here as an aid to intuition.

Reference [6]’s initial analysis considered only uncor-
related inputs. That is, their input machine was a single-
state HMM—a biased coin, with bias δ = Pr(0)− Pr(1).
To identify their ratchet’s thermodynamic functionality,
the work bound was approximated via Eq. (3)—that is,
assuming tape symbols were statistically independent.
However, the ratchet is memoryful (due to its three inter-
nal states) and, therefore, in general induces correlations
in its output, even for uncorrelated inputs. Since the
single-symbol entropy only upper-bounds the true Shan-
non entropy rate—hµ ≤ H1—Eq. (3) is suspect when used
to identify actual thermodynamic functioning. Using new
results here, the following shows that, while approximately
correct for uncorrelated input, the single-symbol entropy
bound is violated for correlated input. Its incorrect use
mischaracterizes thermodynamic functioning and can lead
to violations of the Second Law.

In addition, our new methods give insight into how
the ratchet processes structural information. Due to
its inherent nonunifilarity, even when driven by a finite-
state ε-machine, the ratchet produces nonunifilar output

machines that generate processes with an uncountably-
infinite set of mixed states, as Fig. 4 shows. Moreover, the
figure also demonstrates that as ratchet parameters vary
the mixed-state sets have strikingly different structure.

Previous interpretations of ratchet thermodynamic
functioning were limited to considering only transforma-
tions of randomness; i.e., for given ratchet parameters and
input, what is the sign and magnitude of kBT ln 2 ∆hµ
and how does this affect 〈W 〉? Such questions ignore
the key second dimension of information processing il-
lustrated so vividly by Fig. 4. That is, given the same
ratchet, parameters, and input, what is the sign and mag-
nitude of ∆Cµ and ∆dµ? Does the ratchet construct new
patterns in its output (∆Cµ > 0 or ∆dµ > 0) or decon-
struct patterns passed to it from the input (∆Cµ < 0 or
∆dµ < 0)? How do these then affect 〈W 〉? Answering
structural questions requires a more thorough taxonomy
of thermodynamic functionality than the original engine/-
dud/eraser categories.

V. RANDOMIZING AND DERANDOMIZING
BEHAVIORS

The ratchet’s previously-identified thermodynamic
functions engine, eraser, and dud were identified by com-
paring the sign and magnitude of kBT ln 2 ∆hµ to the
asymptotic work production. As such, there are three
physically possible orderings:

• Engine: 0 < 〈W 〉 ≤ kBT ln 2 ∆hµ;
• Eraser: 〈W 〉 ≤ kBT ln 2 ∆hµ < 0; and
• Dud: 〈W 〉 ≤ 0 ≤ kBT ln 2 ∆hµ.

A ratchet randomizing inputs (∆hµ > 0) can operate
as an engine, if it is leveraging the change in entropy
rate to do useful work. It may also act as a dud, if the
randomization produces no useful work or, worse, if the
ratchet is using work. A ratchet derandomizing inputs
(∆hµ < 0) is termed an “eraser” and can only derandomize
up to 〈W 〉/kBT ln 2 bits using 〈W 〉 joules of work. The
ordering kBT ln 2 ∆hµ < 〈W 〉 < 0 would imply that the
ratchet is derandomizing beyond the physical limitations
of Landauer’s principle.

As noted already, Ref. [6] originally identified these
functionalities using the entropy-change approximation
∆H1 rather than the exact change ∆hµ introduced by Ref.
[7]. As previously shown, driving a memoryful ratchet
with a memoryful input violates Eq. (3) [12]. In all
other cases, Eq. (3) is valid, but may mischaracterize the
functional thermodynamic regimes. A natural question,
therefore, is how much difference does using the correct
entropy rate make in identifying function? To see this,
we now compare ∆hµ and ∆H1.

There are three possibilities. First, ∆H(1) = ∆hµ.
In this case, a ratchet does not change the presence of
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FIG. 4. Mixed states η ∈ R of the output process generated by the ratchet driven with memoryless input (Fig. 2(top row))
plotted on the 2-simplex. Corner labels give the mixed-state probability distributions η = (Pr(A⊗D),Pr(B ⊗D),Pr(C ⊗D)).
Mixed states at the simplex corners correspond to the HMM being in exactly one of its states, while mixed states in the simplex
interior are mixtures of the possible HMM states, with η =

(
1
3 ,

1
3 ,

1
3

)
lying at the center. (Left) Ratchet parameters δ = −0.98,

ε = 0.01, and τ = 0.1. (Right) Ratchet parameters δ = 0.4, ε = 0.5, and τ = 0.1. Insets: Detail of the mixed-state sets, magnified
by amount indicated in upper right corner.

temporal correlations. This occurs when a memoryless
ratchet is driven by memoryless input.

Second, ∆H(1) > ∆hµ. Here, a ratchet reduces the
presence of temporal correlations, which occurs when a
memoryless ratchet has been driven by memoryful input.
In this regime, the difference in single-symbol entropy
is a tighter bound on the correlation change than the
difference in entropy rate. Critical to this case, though,
recall that our goal is not a tight bound, but rather an
accurate measurement of the gap between information
processing and asymptotic work. The upshot is that using
Eq. (3) in this case may mischaracterize thermodynamic
functionality.

Finally, ∆H(1) < ∆hµ, which occurs when a memo-
ryful ratchet is driven by memoryless input. In this case,
the ratchet increases temporal correlations in the output,
so that the difference in entropy rates is a tighter bound
on the asymptotic work production. This is the scenario
in the first treatment of the Mandel-Jarzynski ratchet
[6]. Note that when a memoryful ratchet is driven with
memoryful input, the most generic case, all orderings of
∆hµ and ∆H(1) are possible.

Let’s now turn to consider in detail how the ratchet
operates in three distinct environments: Memoryless, pe-
riodic, and memoryful inputs. This gives more direct
insight into the ratchet’s transformational capabilities.

A. Memoryless Input

When the ratchet is driven with a memoryless input,
as in the original analysis, Eq. (3) is valid, but IPSL
always offers a tighter or equal bound on work produc-
tion than the single-symbol entropy approximation. This
holds since the input is memoryless, while the three-state
output machine is memoryful and nonunifilar for almost
every parameter setting. As such, one cannot calculate
the entropy rate h′µ in closed form. However, the new tech-
niques above can determine the mixed-state presentations
of the output HMMs and this gives accurate numerical
calculation of both the single-symbol and the IPSL work
bounds.

This all being said, for most parameter values of the
Mandal-Jarzynski ratchet, in practice we find that ∆hµ ≈
∆H1. In other words, when driven with a memoryless
input, the ratchet’s functional thermodynamic regions are
not significantly changed when identified via the single-
symbol entropy—a minor quantitative difference without
a functional distinction. (See Fig. S1 for a comparison
of the functional thermodynamic regions found by each
bound.) Exploring output-machine MSPs shows this
arises from the ratchet’s transition topology. As shown in
the middle column of Fig. 2, the ratchet’s transducer is
fully connected, and all transitions to any other state on
any combination of symbols are possible. Therefore, it is
impossible to be certain about which state the ratchet is
in; or, indeed, to even be sure which states the ratchet is
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FIG. 5. Asymptotic work production 〈W 〉, single-symbol ∆H1 bound, and Kolmogorov-Sinai-Shannon ∆hµ bound when ratchet
is driven by period-2 memoryful input. Since the input has no parameters, the parameter sweeps only over ε with τ = 10.

not in. Graphically, this is represented by the fact that
the output-machine mixed states η always lie deep in the
simplex R’s interior, as illustrated in Fig. 4 (Right).

Mixed states lying at R’s center correspond to an
equal belief in each of the output HMM’s three states:
A⊗D, B ⊗D, and C ⊗D. While those on R’s border
indicate certainty of not being in at least one state. Since
the probability distribution over the next symbol is a con-
tinuous function over the mixed states (see Appendix A 3),
the diameter of the mixed-state set is a rough measure
of the presence of temporal correlations in the ratchet’s
behavior. To explicitly illustrate this, the mixed states for
two example output processes generated by the ratchet
are shown in Fig. 4. On the left, the mixed states are
spread out, indicating that at the selected parameters,
the ratchet induces stronger temporal correlations than
in the next example (right). There, all mixed states lie
very close together and very near the simplex center. The
mixed-state set has very small diameter. For most pa-
rameter values, one finds that the mixed states of the
memoryless-driven ratchet’s output process cluster closely
in the middle of the simplex. (See Fig. S2 for a broader
survey of ratchet MSPs for memoryless input.) So, by giv-
ing insight into the mixed states of the output process, our
new techniques rather directly explain why ∆hµ ≈ ∆H1.

B. Periodic Input

Now, consider driving the ratchet with a periodic
input. The Period-2 Process, shown in the middle row
of Fig. 2, is memoryful, with two internal states. So, it
now is possible that Eq. (3) is violated. Since H1 = 1 and
hµ = 0, the presence of temporal correlations in the input
is maximized. Noting this, and the near-memoryless be-
havior of the ratchet as discussed in Section VA, we can
see that for almost all parameters, the ratchet decreases
the presence of temporal correlations in transforming
the input process to the output. The periodically-driven
ratchet output HMMs have six states and are nonunifilar
for nearly all parameter values; see Fig. 2 (middle, last

column). And so, we must calculate the these machine’s
mixed-state presentations to estimate h′µ. Comparing
Eq. (3) and Eq. (5) in Fig. 5 to the asymptotic work pro-
duction shows that Eq. (3) is not violated. As predicted
above, it is a tighter bound on 〈W 〉 than Eq. (5).

Although it may seem desirable to use the tighter
bound, the single-symbol and entropy rate bounds iden-
tify the ratchet’s thermodynamic functioning differently:
Since 〈W 〉 ≤ kBT ln 2 ∆H1 ≤ 0 for all values of ε, the
single-symbol entropy bound classifies the ratchet as an
eraser, dissipating work to reduce the randomness in the
input. However, when considering temporal correlations,
we see that the ratchet is in plain fact a dud—∆hµ > 0.
That is, the ratchet dissipates work while increasing the
tape’s intrinsic randomness. This marked mischaracteri-
zation of thermodynamic function by the single-symbol
entropy highlights an important lesson: Bounding the
asymptotic work production as tightly as possible is not
the same as correctly identifying the functional thermody-
namics. As Ref. [10] recently showed, rather than merely
a bound, Eq. (5) is meaningful only when comparing
kBT ln 2 ∆hµ to 〈W 〉. The difference in the two quanti-
fies the amount of work the ratchet can do, if it were an
optimal, globally-integrated information processor. This
shows that even when it may appear to outperform Eq. (5),
in general Eq. (3) cannot serve as a reliable bound on
asymptotic work production. We return to this in our
final example, where applying Eq. (3) implies a violation
the Second Law.

C. Memoryful Input

Finally, let’s drive the ratchet with a mixed-
complexity memoryful process—partly regular, partly
stochastic—the Golden Mean Process. As depicted in
Fig. 2 (bottom row), this two-state HMM generates a fam-
ily of processes parametrized by s ∈ [0, 1]. When s = 1,
the process is period-2. Decreasing s lets the process emit
multiple 1s in a row. This increases in probability until
at s = 0, where the process emits only 1s. The driven
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FIG. 6. Functional thermodynamic regions of the ratchet driven with the Golden Mean Process as a function of parameters
ε ∈ [−1, 1] and s ∈ [−1, 1] with τ = 1. (Left) Purported functionality identified via by single-symbol entropy bound Eq. (3).
(Right) Correct functionality identified via the entropy-rate bound IPSL Eq. (5).

ratchet’s output HMMs have six states and are nonunifi-
lar for nearly all parameter values; see Fig. 2(bottom,
last column). So, again, we must calculate mixed-state
presentations to get h′µ and identify functionality.

In Fig. 6, we apply both Eq. (3) and Eq. (5) for
the same set of ratchet parameters. For both, we find
asymmetry in the functional thermodynamic regions with
respect to ε, in contrast to the highly symmetric regions
found for memoryless input, shown in Fig. S1. This
is due to the asymmetry in input. In fact, it is not
possible for the Golden Mean Process to produce strings
biased towards 0. Thermodynamically, for ε > 0, the
ratchet is not able to extract work. When applying the
single-symbol bound, as shown on the left in Fig. 6, the
bound reports large regions of eraser behavior. And, most
importantly, between the engine and lower eraser region
lies a region where we see that Eq. (3) implies

〈W 〉 > kBT ln 2 ∆H1 , (11)

a violation of the Second Law!
Of course, when we apply Eq. (5) in Fig. 6 (Right),

the violation region disappears, to be correctly identified
as duds. Additionally, the large region of eraser func-
tionality in Fig. 6 (Left) shrinks significantly in Fig. 6
(Right). Figure 6 (Left)’s regions have been mischarac-
terized similar to the case discussed in Section VB. It is
more subtle here, though, since hµ > 0. However, the
fundamental problem is the same—by considering only
the single-symbol entropy, it appears that the ratchet per-
forms work to make the input less random, since ∆H1 < 0.
In fact, the output is more intrinsically random than the

input, and the ratchet dissipates work uselessly. In the
violation region on the left, the ratchet is identified as not
dissipating sufficient work to reduce the randomness as
much as ∆H1 implies it must be. This leads to the Second
Law violation. This contradiction is resolved when we
take into account that the input’s intrinsic randomness
was actually much lower than its single-symbol entropy.
And so, the apparent decrease in randomness was in fact
an increase.

It is already known that Eq. (3) may be violated in
cases of a memoryful ratchet driven by memoryful input.
However, the Mandal-Jarzynski ratchet was not designed
to find such a violation, as has been done previously [8].
Rather, we find that driving a simple transition-rate based
ratchet with a mixed-complexity process creates regions
of violation when applying Eq. (3). Since such ratchets
are common in application, and any such ratchet will be
highly stochastic by nature, for reasons further discussed
in Appendix B, we conclude that Eq. (3) is not suitable
to be broadly applied. On the positive side, we see that
the dynamical-systems techniques introduced here apply
broadly, giving consistent and accurate characterizations
stochastic-control information engines.

VI. CONSTRUCTING AND
DECONSTRUCTING PATTERNS

Up to this point, we monitored how the ratchet
changed the amount of intrinsic randomness present in
a symbol sequence and leveraged this to do useful work.
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FIG. 7. After passing through the information engine, the input process, which has some initial hµ and dµ, is transformed into
an output process with a potentially different h′µ and d′µ. By carefully selecting input, an information engine can be induced to
act as a randomizer (∆hµ > 0) or derandomizer (∆hµ < 0) and a pattern constructor (∆dµ > 0) or deconstructor (∆dµ < 0).
We show here that all four regions of the ∆hµ–∆dµ plane are accessible to the Mandal-Jarzynski ratchet by carefully selecting
parameters and input. The two insets on the left show the uncountable set of mixed states of an input process that the ratchet
transduces to an IID output. The insets on the right show two uncountably-infinite-state output processes produced by running
the Mandal-Jarzynski ratchet on a biased coin. The parameters, clockwise from top right: δinput = −0.98, ε = 0.01, τ = 0.1;
δinput = 0.3, ε = 0.5, τ = 0.1; δoutput = 0.8, ε = −0.96, τ = 0.75; δoutput = 0.0, ε = 0.9, τ = 0.9.

When information ratchets are memoryful, they can al-
ter not only the statistical bias of a symbol sequence,
but also the presence of temporal correlations. This has
thermodynamic consequences, as discussed above. Now,
we turn to consider by what mechanisms an information
ratchet changes the presence of temporal correlations,
which manifests in changes in sequence structure and
organization.

By structure and organization, we refer the internal
states of the HMM that generates the input symbol se-
quence, the ratchet states and transitions, and the output
sequence. As depicted in Fig. 2, the input and the ratchet
each have their own set of internal states. Since the out-
put machine is the composition of the ratchet transducer
and input HMM, its states are the Cartesian product of
the set of input states and set of output states. In the

simplest case, when a memoryless ratchet is driven by
memoryless input, there is only ever one state, and no
temporal correlations are present at any stage. The only
possible action of the ratchet then is to change the statis-
tical bias of individual input symbols and transform this
change in Shannon entropy to a change in thermodynamic
entropy.

When one or both of the input and ratchet are mem-
oryful, the internal structure of the output will be, in
general, memoryful. That is, the ratchet has induced
a structural change in processing the input to generate
the output. Consider two basic structural-change operat-
ing modes [10]: pattern construction, where the output
is more structured than the input, and pattern decon-
struction, the output is less structured. As before, these
modalities are input-dependent—the same ratchet may
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exhibit either. Note that structural change to the symbol
sequence does not uniquely determine the thermodynamic
functionality associated with changes in randomness. It
is possible for an information engine to act as an engine,
eraser, or dud while constructing patterns. The same is
true of deconstruction. Rather, transformations of ran-
domness and structure are orthogonal, and a ratchet’s
information processing capabilities may lie anywhere in
the ∆hµ—∆dµ plane sketched in Fig. 7.

A. Pattern Construction

Ideal pattern construction occurs when a ratchet
takes structureless input—an IID process—to structured
output. Therefore, when the ratchet is driven with a
biased coin input, it is operating as an ideal pattern con-
structor. As discussed in Section VA, driving the ratchet
with memoryless input results in an uncountably-infinite
set of states in the output HMM for most parameter
values. The exception occurs along the line δ = ε in
parameter space, where the ratchet returns the input
unchanged, implying ∆Cµ = 0. At every other point in
ratchet parameter space ∆Cµ = +∞ and the ratchet acts
as a pattern constructor. As can be seen from Fig. S1,
this type of structural change can be associated with any
thermodynamic behavior.

The resulting divergence of Cµ is a direct consequence
of the nonunifilarity induced by the ratchet. The struc-
ture generated by any ratchet driven by an IID process
is the set of mixed states of the ratchet, given knowledge
of the outputs. Due to the ratchet’s topology, there is an
uncountable infinity of such mixed states. In this circum-
stance one uses the statistical complexity dimension—dµ
of Eq. (10)—of the set of output mixed states to monitor
the rate of the memory-resource divergence. ∆dµ distin-
guishes between output machines with an uncountable
infinity of states, and so is able to compare the structural
information processing of the ratchet across parameter
space.

Figure 7 places two examples of ideal pattern con-
struction on the right side of the ∆hµ–∆dµ plane with the
associated input and output machines, the latter plotted
on the 2-simplex. Although it may appear that the more
entropic ratchet in the upper half of the plane constructs
a more “complex” pattern, this is not so. Refer back to
Fig. 4 and compare the dimension of the two sets of mixed
states to see the opposite is true. The ratchet operating
in the −∆hµ half of the plane produces a much denser
set of states, resulting in a larger ∆dµ. In addition to the
structural transformation, the ratchet in the +∆hµ plane
randomizes inputs as a dud, while the other derandomizes
inputs as an eraser.

B. Pattern Deconstruction

In a complementary fashion, the ratchet can decon-
struct patterns. In ideal pattern deconstruction, a ratchet
transforms a memoryful input sequence, with Cµ > 0,
to memoryless, IID output, with Cµ = 0. When taking
a ratchet-focused view, as we do here, ideal pattern de-
construction is a more involved task than ideal pattern
construction, since we must carefully design inputs that a
ratchet will transform into a biased coin. Any correlations
in the input must be recognizable by the ratchet so that
the ratchet can map them to randomness. Similar to
the previous discussion, we consider the induced ratchet
mixed states, but now we have knowledge of the inputs.
The algorithm to design the required input process, given
knowledge of the ratchet, is discussed in Appendix B 4.

Critically, pattern deconstruction is not possible for
all ratchet parameters and desired output. That said,
the Mandal-Jarzynski ratchet can perform as an engine,
eraser, or dud while deconstructing patterns, as can be
seen in Fig. S3. As τ increases, the parameter-space
region in which the ratchet can extract patterns shrinks.
At τ →∞ pattern extraction may only occur along the
line δ = ε. In a mirror of pattern construction, generating
the input processes require reference to the uncountably
infinite set of mixed states of the ratchet. In general, this
implies that an input process which maps to a memoryless
output process also has an uncountably-infinite set of
states and ∆Cµ → −∞. In other words, to properly
ensure the output symbols are temporally uncorrelated,
the input process must remember its infinite past. Once
again, the associated statistical complexity dimension dµ—
now of the set of input mixed states—quantifies the rate
of the memory-resource divergence.

Two examples of ideal pattern deconstruction are
placed on the left side of the ∆hµ–∆dµ plane in Fig. 7,
with the ratchet mixed states—on the 2-simplex—and
the output machine. ∆dµ is approximate, based on the
dimension of the ratchet mixed states, which are conjec-
tured to have the same dimension as the input mixed
states.

C. Thermodynamic Taxonomy of Construction and
Deconstruction

From its highly stochastic nature and from parameter
sweeps like the one shown in Fig. S2, we conclude that for
almost all parameters, the Mandal-Jarzynski ratchet is
only able to construct patterns with infinite sets of predic-
tive features (mixed states). We conjecture that likewise,
it is only able to perfectly deconstruct infinite patterns.
An interesting note is that the input and output mixed-
state sets and their dimensions are asymmetric. We can
visually see the asymmetry in Fig. 7, which sketches the
∆hµ–∆dµ plane and shows an example of the Mandal-
Jarzynski ratchet operating in all four quadrants. Infinite
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state output constructed by the ratchet may span the sim-
plex, but the mixed states of the ratchet, while acting as a
deconstructor, always lie along a line in the simplex. This
implies that while the ratchet may construct patterns up
to ∆dµ = 2.0, it is only able to deconstruct patterns up to
∆dµ = −1.0. The difference in ∆dµ in these two modali-
ties points to a difference in memory-resource divergence
for pattern construction versus pattern deconstruction.

This asymmetry is not necessarily surprising. Recall
the asymmetry in the the ratchet’s ability to random-
ize and derandomize behavior. The combined area of
dud and engine region in Fig. 6 consists of the ratchet’s
randomizing regime, while the derandomizing regime is
the comparatively small eraser region. One interpreta-
tion of this asymmetry comes from the thermodynamic
limitations on the ordering of ∆hµ and 〈W 〉: While an
increase in ∆hµ is thermodynamically unbounded, ∆hµ
is constrained by the Second Law to only drop as low as
the minimum asymptotic work. This strongly suggests
that there is a thermodynamic taxonomy of structural
transformation—one that parallels our existing thermo-
dynamic taxonomy of randomness transformation. We
must leave finding such a taxonomy and the analysis of
more general ratchets with input-dependent structural
behavior to future work.

VII. RELATED EFFORTS

We can now place the preceding methods and new
results in the context of prior efforts to identify the ther-
modynamic functioning of information engines. In short,
though, having revealed the challenge of exact entropy
calculations and the inherent divergence in structural com-
plexity, the new methods appear to call for a substantial
re-evaluation of previous claims. We start noting a defi-
nitional difference and then turn to more consequential
comparisons.

The framework of information reservoirs discussed
here differs from alternative approaches to the thermody-
namics of information processing, which include: (i) active
feedback control by external means, where the thermody-
namic account of the Demon’s activities tracks the mutual
information between measurement outcomes and system
state [18–30]; (ii) the multipartite framework where, for a
set of interacting, stochastic subsystems, the Second Law
is expressed via their intrinsic entropy production, cor-
relations among them, and transfer entropy [31–34]; and
(iii) steady-state models that invoke time-scale separation
to identify a portion of the overall entropy production as
an information current [35, 36]. A unified approach to
these perspectives was attempted in Refs. [37–39].

These differences being called out, Maxwellian
demon-like models designed to explore plausible auto-
mated mechanisms that do useful work by decreasing the
physical entropy, at the expense of positive change in reser-
voir Shannon information, have been broadly discussed

elsewhere [6, 35, 40–44]. However, these too neglect cor-
relations in the information-bearing components and, in
particular, the mechanisms by which those correlations
develop over time. In effect, they account for thermody-
namic information-processing by replacing the Shannon
information of the components as a whole by the sum of
the components’ individual Shannon informations. Since
the latter is larger than the former [45], using it can lead
to either stricter or looser bounds than the correct bound
derived from differences in total configurational entropies.
Of more concern, though, bounds that ignore correlations
can simply be violated. Finally, and just as critically,
the bounds refer to configurational entropies, not the in-
trinsic dynamical entropy over system trajectories—the
Kolmogorov-Sinai entropy. A more realistic model was
suggested in Ref. [46]. Issues aside, these designs have
been extended to enzymatic dynamics [47], stochastic feed-
back control [48], and quantum information processing
[49, 50].

In comparison, our approach expands on that of Ref.
[7] that considers a Demon in which all correlations among
the system components are addressed and accounted for.
As shown above, this has significant impact on the analy-
sis of Demon thermodynamic functionality. To properly
account for correlations, we developed a new suite of tools
that allow quickly and efficiently analyzing nonunifilar
HMMs and related stochastic controllers, which removes
the mathematical intractability of analyzing correlations
for arbitrary demons. We note that our approach and
results are consistent with the analyses that consider the
entropy of the system as a whole, therefore treating corre-
lations in the system implicitly, an approach epitomized
by Ref. [51]. Since correlations are not ignored, this
approach is fully consistent with our treatment. This
being said, insofar as that work does not address specific
partitioning of the system, it does not offer an explicit
accounting of the system’s internal correlations, as is done
here. As previously discussed, one may derive information
ratchet-type results from that approach by considering
an explicit partitioning [10, 12, 52]. While the results are
consistent, leaving the role of correlations implicit does
not allow for investigating how to best leverage them. It
also does not give a way to analyze internal computational
structure. These remarks highlight the importance of ex-
plicitly considering information engine-style partitioning.

The dynamical-systems methods additionally allowed
us to consider a Demon’s internal structure, which had
only previously been investigated for unifilar ratchets
in Ref. [10]. From engineering and cybernetics to bi-
ology and now physics, questions of structure and how
an agent, here understood as the ratchet, interacts with
and leverages its environment—i.e., input—is a topic of
broad interest [53, 54]. General principles for how an
agent’s structure must match that of its environment
will become essential tools for understanding how to take
thermodynamic advantage of correlations in structured
environments, whether the correlations are temporal or
spatial. Ashby’s Law of Requisite Variety—a controller
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must have at least the same variety as its input so that the
whole system can adapt to and compensate that variety
and achieve homeostasis [53]—was an early attempt at
such a general principle of regulation and control. For
information engines, a controller’s variety should match
that of its environment [12]. Above, paralleling this, but
somewhat surprisingly, we showed that for the Mandal-
Jarzynski ratchet to extract patterns from its environment,
the input must have an uncountably infinite set of mem-
ory states synchronized to the ratchet’s current mixed
state. One cannot but wonder how such requirements
manifest physically in adaptive thermodynamic nanoscale
devices and biological agents.

VIII. CONCLUSIONS

Thermodynamic computing has blossomed, of late,
into a vibrant and growing research domain, driven by
applications and experiment [2, 18, 27, 31, 35, 38, 47, 48,
51, 55–60]. As such, it is vital that analytical tools accu-
rately relate information processing and thermodynamic
functionality. While the original class of Maxwellian in-
formation engines was flexible and well suited to spe-
cific applications, accurate analysis and correct func-
tional classifications were previously hampered by the
challenge of determining the entropy rate of temporally-
correlated sequences—sequences that are inevitably in-
duced by Maxwellian ratchets or are present in their possi-
ble environments. Previously useful and seemingly reason-
able approximations to the entropy rate are not up to this
task. As we demonstrated, they can fail miserably—even
lead to incorrect attributions of thermodynamic function
and, worse, to violations of the Second Law.

Here, we introduced new techniques from dynamical
systems and ergodic theory—dimension theory, iterated

function systems, and random matrix theory—that over-
come these hurdles and, in the process, constructively
solve Blackwell’s long-standing question of the entropy
rate of processes generated by hidden Markov models.
They allow us to accurately determine the thermodynamic
functioning of Maxwellian information engines with ar-
bitrary ratchet design, over all possible inputs. In this
way, the results significantly expand the set of analyzable
engines. In short, this changes the perspective of the cur-
rent research program from studying highly constrained
toy examples to broadly surveying engine designs. This
is a boon to both theory, experiment, and engineering.

Furthermore, these tools allowed us to look under the
hood, so to speak, and examine more than quantitative
changes in the intrinsic randomness of processes, but also
to show how ratchets impact structure and correlation.
Most strikingly, we showed that, in general, stochastic
ratchets generate outputs that require uncountably infi-
nite sets of predictive features to optimally function, even
when driven by trivial (temporally uncorrelated) input.
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Appendix A: Stochastic Processes

Several of the tools used here come from the theory of classical stochastic processes, we introduce several definitions
and notation for the reader less familiar with it. A classical stochastic process X is a series of random variables
and a specification of the probabilities of their realizations. The random variables corresponding to the behaviors
are denoted by capital letters . . . Xt−2, Xt−1, Xt, Xt+1, Xt+2 . . .. Their realizations are denoted by lowercase letters
. . . xt−2, xt−1, xt, xt+1, xt+2 . . ., with xt values drawn from a discrete alphabet A, in the present setting. Blocks are
denoted as: Xt:t+l = Xt, Xt+1, . . . Xt+l−1, the left index is inclusive and the right one exclusive.

For our purposes, we consider stationary stochastic processes, in which the probability of observing behaviors is
time-translation invariant:

Pr(Xt:t+` = xt:t+`) = Pr(X0:` = x0:`) ,

for all t and `. We consider processes that have finite or infinite Markov order and that can be generated by either
finite or infinite hidden Markov models.

1. Hidden Markov Models and Unifilarity

A hidden Markov model (HMM) is a quadruple (S,A, {T x}, π) consisting of:

• S is the set of hidden states.
• A the alphabet of symbols that the HMM emits on state-to-state transitions at each time step.
• {T x : x ∈ A} is the set of labeled transition matrices such that T xij = Pr(x, σj |σi) with σi, σj ∈ S. That is, T xij

denotes the probability of the HMM transitioning from state σi to state σj while emitting symbol x.
• π is the stationary state distribution determined from the left eigenvector of T =

∑
x∈A T

x normalized in
probability.

An HMM property that proves to be essential is unifilarity. An HMM is unifilar if, from each hidden state, the
emitted symbol x ∈ A uniquely identifies the next state. Equivalently, for each labeled transition matrix T x, there
is at most one nonzero entry in each row. Unifilarity ensures that a sequence of emitted symbols has a one-to-finite
correspondence with sequences of hidden-state paths.

In contrast, if an HMM is nonunifilar the set of allowed hidden-state state paths corresponding to a sequence of
emitted symbols grows exponentially with sequence length. Nonunifilarity makes inferring the underlying states and
transitions directly from the generated output process a computationally-challenging task.

2. Measures of Complexity

We consider two complexity measures that have clear operational meanings: a process’ intrinsic randomness and
the minimal memory resources required to predict its behavior accurately.

http://arxiv.org/abs/2003.00139
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The intrinsic randomness of a classical stochastic process X is measured by its entropy rate [11]:

hµ = lim
`→∞

H(`)
`

, (S1)

where H(`) = H[Pr(X0:`−1)] is the Shannon entropy for length-` blocks. That is, a process’ intrinsic randomness is the
asymptotic average Shannon entropy per emitted symbol—a process’ entropy growth rate.

Shannon showed that this is the same as the asymptotic value of the entropy of the next symbol conditioned on
the past [61]:

hµ = lim
`→∞

H[X0|X−`:0] . (S2)

This can be interpreted as how much information is gained per measurement once all the possible structure in the
sequence has been captured.

Determining hµ is possible only for a small subset of stochastic processes. Shannon [61] gave closed-form expressions
for processes generated by Markov Chains (MC), which are “unhidden” HMMs—they emit their states as symbols.
Making use of Eq. (S2), he proved that for MC-generated processes the entropy rate is simply the average uncertainty
in the next state:

hµ = −
∑
σ∈S

Pr(σ)
∑
σ′∈S

Tσσ′ log Tσσ′ , (S3)

where T is the MC’s transition matrix and S its set of states.
Another special case for which the entropy rate can be exactly computed is for processes generated by unifilar

HMMs (uHMMs) [11]. This class generates an exponentially larger set of processes than possible from MCs. Since each
infinite sequence of emitted symbols corresponds to a unique sequence of internal states, or at most a finite number,
the process entropy rate is that of the internal MC. And so, one (slightly) adapts Eq. (S3) to calculate hµ for these
processes. The expression is presented in Eq. (6).

A process’ structure is most directly analyzed by determining its minimal predictive presentation, its ε-machine. A
simple measure of structure is then given by the number of internal (causal) states |S| or by the statistical complexity
Cµ defined in Eq. (7), which is the Shannon information H[S] stored in the causal states. Since the set of causal states
is minimal, Cµ measures of how much memory about the past a process remembers. Said differently, Cµ quantifies the
minimum amount of memory necessary to optimally predict the process’ future.

However, for processes generated by nonunifilar HMMs, both hµ and Cµ given by Eqs. (6) and (7) are incorrect.
The former overestimates the generated process’ hµ, since uncertainty in the next symbol is not in direct correspondence
with the uncertainty in the next internal state. In fact, there is no exact general method to compute the entropy rate
of a process generated by a generic nonunifilar HMM. One has only the formal expression of Eq. (8) which refers to a
abstract measure that, until now, was not constructively determined. For related reasons, the statistical complexity
Cµ given by Eq. (7) applied to that abstract measure is useless—it simply diverges.

For processes generated by nonunifilar HMMs one can take a very pragmatic approach to estimate randomness
and structure from process realizations (measured or simulated time series) using information measures for sequences
of finite-length (`), such as reviewed in Refs. [62, 63]. This approximates the sequence statistics as an order-`
Markov process. The associated conditional distributions capture only finite-range correlations: Pr(Xt:∞|x−∞:t) =∏∞
i=t Pr(Xi|Xi−` . . . Xi−1). This approach is data-intensive and the complexity estimators have poor convergence.

Addressing the shortcomings for processes generated by nonunifilar HMMs requires introducing the fundamental
concepts of predictive features and a process’ mixed-state presentation.

3. Calculating Mixed States

The finite Markov-order approach seems to make sense empirically. However, one would hope that, if we know the
nonunfilar HMM and therefore have a model (states and transitions) that generates the process at hand, we can calculate
randomness and structure directly from that model. One hopes to at least do better than using slowly-converging
order-` Markov approximations. The approach is to construct a unifilar HMM—the process’ ε-machine—from the
nonunfilar HMM. This is done by calculating the latter’s mixed states.

Each mixed state tracks the probability distribution over the the nonunifilar HMM’s internal states, conditioned
on the possible sequences of observed symbols. In other words, the mixed states represent states of knowledge of the
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nonunifilar HMM’s internal states. This also allows one to compute the transition dynamic between mixed states,
forming a unifilar model for the same process as generated by the original nonunifilar HMM.

Explicitly, assume that an observer has an HMM presentation M for a process P and, before making any
observations, has probabilistic knowledge of the current state—the state distribution η0 = Pr(S). Typically, prior to
observing any system output the best guess is η0 = π.

Once M generates a length-` word w = x0x1 . . . x`−1 the observer’s state of knowledge of M ’s current state can
be updated to η(w), that is:

ησ(w) ≡ Pr(S` = σ|X0:` = w,S0 ∼ π) . (S4)

The collection of possible states of knowledge η(w) form the set R of M ’s mixed states:

R = {η(w) : w ∈ A+,Pr(w) > 0} .

And, we have the mixed-state (Blackwell) measure µ(η)—the probability of being in a mixed state:

Pr(η(w)) = Pr(S`|X0:` = w,S0 ∼ π) Pr(w) .

From this follows the probability of transitioning from η(w) to η(wx) on observing symbol x:

Pr(η(wx)|η(w)) = Pr(x|S` ∼ η(w)) .

This defines the mixed-state dynamic W over the mixed states. Together the mixed states and their dynamic give the
HMM’s mixed-state presentation (MSP) U = {R,W} [13].

Given an HMM presentation, though, we can explicitly calculate its MSP. The probability of generating symbol x
when in mixed state η is:

Pr(x|η) = η · T (x) · 1 , (S5)

with 1 a column vector of 1s. Upon seeing symbol x, the current mixed state ηt is updated:

ηt+1(x) = ηt · T (x)

ηt · T (x) · 1
, (S6)

with η0 = η(λ) = π and λ the null sequence.

Thus, given an HMM presentation we can calculate the mixed state of Eq. (S4) via:

π · T (w)

π · T (w) · 1
.

The mixed-state transition dynamic is then:

Pr(ηt+1, x|ηt) = Pr(x|ηt)
= ηt · T (x) · 1 ,

since Eq. (S6) tells us that, by construction, the MSP is unifilar. That is, the next mixed state is a function of the
previous and the emitted (observed) symbol.

Transient mixed states are those state distributions after having seen finite-` sequences w, while recurrent mixed
states are those remaining with positive probability in the limit that `→∞. When their set is minimized, recurrent
mixed states exactly correspond to causal states S [64].

Now, with a unifilar presentation one is tempted to directly apply Eqs. (6) and (7) to compute measures of
randomness and structure, but another challenge prevents this. With a small number of exceptions, the MSP of a
process generated by a nonunifilar HMM has an uncountable infinity of states η [17]. Practically, this means that one
cannot construct the full MSP, that direct application of Eq. (6) to compute the entropy rate is not feasible, and that
|S| diverges and, typically, so does Cµ.
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4. Entropy Rate of Nonunifilar Processes

Fortunately, when working with ergodic processes, such as those addressed here, one can accurately estimate the
MSP by generating a word w` of sufficiently long length [14]. The main text addresses in some detail how to use this
to circumvent the complications of uncountable mixed states when computing the entropy rate. Specifically, with the
mixed states in hand computationally, accurate numerical estimation of the entropy rate of a process generated by a
nonunifilar HMM is given by using the temporal average specified in Eq. (9). The development of that expression is
given in Ref. [14].

This handily addresses accurately estimating the entropy rate of nonunifilar processes. And so, we are left to
tackle the issue of these process’ structure with the statistical complexity dimension. This requires a deeper discussion.

5. Statistical Complexity Dimension

Cµ diverges for processes generated by generic HMMs, as they are typically nonunifilar and that, in turn, leads
to an uncountable infinity of mixed states. To quantify these processes’ memory resources one tracks the rate of
divergence—the statistical complexity dimension dµ of the Blackwell measure µ on R:

dµ = lim
ε→0
−Hε[R]

log2 ε
, (S7)

where Hε[Q] is the Shannon entropy (in bits) of the continuous-valued random variable Q coarse-grained at size ε and
R is the random variable associated with the mixed states η ∈R.

dµ is determined by the measured process’ entropy rate ĥBµ , as given by Eq. (9), and the mixed-state process’
spectrum of Lyapunov characteristic exponents (LCEs). The latter is calculated from an HMM’s labeled transition
matrices, which map the mixed states ηt ∈R according to Eq. (S6). The LCE spectrum Λ = {λ1, λ2, . . . , λN : λi ≥
λi+1} is determined by time-averaging the contraction rates along the N eigendirections of this map’s Jacobian. The
statistical complexity dimension is then bounded by a modified form of the LCE dimension [65]:

dµ ≤ dLCE , (S8)

where:

dLCE = k − 1 +
ĥBµ +

∑k
i=1 λi

|λk+1|
(S9)

and k is the greatest index for which ĥBµ +
∑k
i=1 λk > 0. Reference [14] introduces this bound for an HMM’s statistical

complexity dimension, interprets the conditions required for its proper use, and explains in fuller detail how to calculate
an HMM’s LCE spectrum.

In short, the set of mixed states generated by a generic HMM is equivalent to the Cantor set defining the attractor
of a nonlinear, place-dependent iterated function system (IFS). Exactly calculating dimensions—say, dµ—of such sets is
known to be difficult. This is why here we adapt dLCE to iterated function systems. The estimation is conjectured to
be accurate in “typical systems” [65–67]. Even so, in certain cases where the IFS does not meet the open set condition
[67]—the relationship becomes an inequality: dµ < dLCE. This case, which is easily detected from an HMM’s form, is
discussed in more detail in Ref. [14].

Appendix B: Mandal-Jarzynski Ratchet

To work with the Mandal-Jarzynski ratchet, we reformulated it in computational mechanics terms, which is
explained in Section II. In its original conception, the model was imagined as a single symbol (“bit”) interacting with
a dial that may smoothly transition between three positions, as shown on the left in Fig. 3. This results in six possible
states of the joint dial-symbol system, {A ⊗ 0, A ⊗ 1, B ⊗ 0, B ⊗ 1, C ⊗ 0, C ⊗ 1}. The transitions among these six
states are modeled as a Poisson process, where Rij is the infinitesimal transition probability from state j to state
i, with i; j ∈ {A× 0, . . . , C × 1} [6]. The weight parameter ε, so named because it is intended to model the effect of
attaching a mass to the side of the dial, impacts the probability of transitions among the six states by making 0→ 1



5

transitions energetically distinct from 1→ 0 transitions. This creates a preferred “rotational direction”, since bit flips
in one direction will be more energetically beneficial than the other. This is what allows the ratchet to do useful work.

Explicitly, the transition rate matrix R is:

R =


−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 + ε 1 + ε 0 0
0 0 1− ε −2− ε 1 0
0 0 0 1 −2 1
0 0 0 0 1 −1

 . (S1)

To express the ratchet’s evolution over a single interaction interval of length τ , we calculate T (τ, ε) =
(
eR(ε)τ)ᵀ, the

transition matrix of the six-state Markov model representing the Mandal-Jarzynski model. In turn, this six-state
model with the states {A⊗ 0, A⊗ 1, B ⊗ 0, B ⊗ 1, C ⊗ 0, C ⊗ 1} may be transformed into a three-state transducer,
with states {A,B,C} and input and output symbols in {0, 1}. To do this, we define the projection matrices:

P0 =
(
I3
03

)
and P1 =

(
03
I3

)
.

Then, the transducer input-output matrices K in,out(τ, ε) for a given T (τ, ε) are given by:

K in,out(τ, ε) = (Pin)ᵀ T (τ, ε)Pout .

For all ε ∈ (0, 1) and τ ∈ (0,∞], all four K in,out(τ, ε) are positive definite matrices. This is what is meant by
“fully-connected, highly stochastic” controller—all transitions on all combinations of symbols have positive probability.
Explicitly, the probability function f(. . .) referenced in both Fig. 2 and Fig. 3 is given by:

Pr(X ′ = x′, X = x,RN = r,RN+1 = r′) = f(x, x′, r, r′, ε, τ)
= (Px)ᵀ TR,R′(τ, ε)Px′ . (S2)

1. Composing a Ratchet with an Input Process’ Machine

Given an input process generated by an HMM with transition matrices T (x), such that x ∈ {0, 1}, we may exactly
calculate the transition matrices T ′(x′) of the output HMM:

T
′(x′)
RN×SN ,RN+1×SN+1

=
∑
x

Kx,x′

RN ,RN+1
T

(x)
SN ,SN+1

,

noting that the state space of the output HMM is the Cartesian product of the state space of the transducer R and the
state space of the input machine S. Although presenting this in the setting of the Mandal-Jarzynski ratchet specifically,
this method applies for any input machine and transducer, given that the transducer is able to recognize the input [68].

That said, there are several interesting points specific to the Mandal-Jarzynski ratchet we should highlight. As
noted in the previous section, the Mandal-Jarzynski transducer matrices are positive definite, guaranteeing that the
output machine will be nonunifilar, although disallowed state transitions in input machines are preserved in the output.
(Composing the Mandal-Jarzynski ratchet with the Golden Mean Process in Fig. 3 illustrates this effect.) This is
characteristic of any transducer defined via the rate transition matrix method outlined above. The conclusion is that
the techniques required to analyze nonunifilar HMMs are required in general.

2. Biased Coin Parameter Sweep

As Section VA discusses, we recreated the results from Mandal and Jarzynski’s original ratchet [6] using the
techniques outlined in this section and in Appendix A. There, the ratchet is driven by a memoryless Biased Coin and
the functional thermodynamic regions are identified via Eq. (3) [6]. These results are shown in Fig. S1, on the left, and
demonstrate close agreement with the original results. As previously noted, calculating the thermodynamic regions via
Eq. (5) did not significantly change the identified regions, as can be seen by comparison to the figure on the right.
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FIG. S1. MJ ratchet functional thermodynamic regions over ε ∈ [1,−1] and b ∈ [0, 10 with τ = 1. (Left) Purported functionality
identified via by single-symbol entropy bound Eq. (3). (Right) Correct functionality identified via the entropy-rate bound IPSL
Eq. (5).

Although not shown here, we also recreated the results at τ = 10, which again show strong agreement with results
reported in Ref. [6].

3. Information Ratchet Mixed-State Attractor Survey

To emphasize how exploring a ratchet’s mixed states elucidates the underlying physics, Fig. S2 presents the
attractors of the Mandal-Jarzynski ratchet driven by the Biased Coin, as a function of ε and b, in analogy with Fig. S1.
Each square in the grid shows the mixed-state attractor for the output HMM produced by the composition of the
Mandal-Jarzynski ratchet at the given ε with a Biased Coin at the given bias δ. The grid is laid out identically
to the functional thermodynamic plots above, with ε varying on the y-axis and the input bias b varying on the
x-axis. Note that the squares are not at the same scale: each is magnified to show the structure of the attractor; the
magnification factor is given in the lower right corner. Compare to Fig. 4 to see the mixed-state attractors in further
detail. Additionally, the attractors are color coded to show thermodynamic functionality: red for engines, blue for
erasers, and black for duds.

The symmetry of the Mandal-Jarzynski ratchet around ε = 0 is revealed by how structure of the output HMM
attractors is reflected and reversed over the ε = δ line. Along this diagonal, we see that the mixed-state attractor
collapses to a single state—a single point. This reflects the fact that at any ε = δ the output HMM is the input Biased
Coin, so 〈W 〉 = ∆H = ∆hµ = 0. Furthermore, we see that the structure of the mixed-state attractor does not have a
strong effect on the thermodynamic functionality—very similar attractors act as duds and as erasers on each side
of the ε = 0 line. This is as expected since, although thermodynamic functionality appears to change suddenly, the
grids in Figs. 6, S1 and S2 actually sweep over output machines with smoothly changing transition probabilities. And,
changes in functionality represented by the boundaries of thermodynamic regions are actually due to small, smooth
changes in the comparative magnitude of 〈W 〉 and ∆hµ. Figure S2 illustrates this clearly, as the mixed-state attractor
changes smoothly under the parameter sweep.

Note that the construction of Fig. S2 was only possible due to the new dynamical-systems techniques outlined in
Appendices A 3 and A4. The recently developed guarantee of ergodicity and quick generation of mixed states allows
us to easily plot and investigate the mixed-state attractors of arbitrary HMMs. And, this allows for parameter sweeps
of attractors of HMM families and rapid calculation of their entropy rates. The latter was required to determine the
thermodynamic functionality color coding in Fig. S2.



7

FIG. S2. Mixed-state attractors of the output HMMs of the Mandal-Jarzynski ratchet driven by a Biased Coin as a function of ε
and input bias δ, given above each square; (ε, δ) ∈ [0, 1]× [−1, 1]. Each plot shows 1, 000 mixed states from the attractor at the
magnification noted in the lower right corner. The attractors are color coded according to their thermodynamic functionality,
with red being engines, blue representing erasers, and black for duds.

4. Pattern Deconstruction and Thermodynamic Functionality

While it is relatively simple to run the Mandal-Jarzynski ratchet as an ideal pattern constructor, forcing the ratchet
to perfectly deconstruct patterns is a more difficult task. As previously discussed in Ref. [10], in order to deconstruct
patterns, the input and ratchet must remain synchronized. However, the Mandel-Jarzynski ratchet, being highly
stochastic, resists synchronization. Since the input process cannot stay synced to the states of the Mandal-Jarzynski
ratchet, it must synchronize to the mixed states instead. To design an input sequence that the ratchet transduces to
an IID output process with bias δ we calculate as follows:
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FIG. S3. Functional thermodynamic regions of a ratchet pattern deconstructor with an interaction interval of τ = 0.75. The
x-axis sweeps over the output bias δout, while the y-axis sweeps over ε. As indicated, there are two parameter regimes where the
ratchet is unable to act as a pattern deconstructor. In these regions, the desired output bias is not reachable by the machine
at the given ε. As τ →∞, this region grows, until it encompasses every parameter combination other than ε = δout, which is
always reachable with an input Biased Coin with bias δin = δout = ε.

1. Pick a ratchet mixed state;
2. Determine the input-output probability distribution;
3. Calculate the input probability distribution such that Pr(X ′ = 0)− Pr(X ′ = 1) = δ.
4. Step forward, record the input.
5. Use the input to update the ratchet mixed state; and
6. Repeat the procedure starting at Step (1), using the new mixed state.

Note that one must ensure that the output probability distribution remains constant at each time step.
As might be suspected from the algorithm, this is not possible at all parameters. For example, the ratchet may be

so heavily biased to flip 0→ 1 that emitting a sequence of mainly 1s is mathematically impossible. This is expressed
in the algorithm by finding a required input probability distribution with a negative component. This is illustrated
in Fig. S3, where the functional thermodynamic regions associated with the Mandal-Jarzynski ratchet acting as a
pattern deconstructor are shown. There are two inaccessible regions, where the desired output is not possible for
the ratchet at the given value of ε. As τ →∞ these regions grow in size, until at large τ the only parameter region
capable of pattern deconstruction is δ = ε. This is where the ratchet becomes memoryless, so it is trivially a pattern
deconstructor along this line.
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