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Deep-Learning-Aided Extraction of Optical Constants in Scanning Near-Field Optical
Microscopy
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(Dated: February 8, 2022)

Scanning near-field optical microscopy is one of the most effective techniques for spectroscopy of nanoscale
systems. However, inferring optical constants from the measured near-field signal can be challenging because
of a complicated and highly nonlinear interaction between the scanned probe and the sample. Conventional
fitting methods applied to this problem often suffer from the lack of convergence or require human inter-
vention. Here we develop an alternative approach where the optical parameter extraction is automated
by a deep learning network. Compared to its traditional counterparts, our method demonstrates superior
accuracy, stability against noise, and computational speed when applied to simulated near-field spectra.

I. INTRODUCTION

Scattering-type scanning near-field optical mi-
croscopy (s-SNOM) is a powerful method for study-
ing electromagnetic response beyond the diffraction
limit [1–3]. Recent applications of this technique to
two-dimensional materials [4–7], complex oxides [8–11],
and organic compounds [12–15] have attracted much
attention. In a typical s-SNOM experiment, depicted
schematically in Fig. 1, a probe with a sharp tip is
brought in proximity to a sample of interest. The sys-
tem is illuminated by a light beam of some frequency
ω and the complex amplitude of the scattered light is
measured. While the scattering occurs mostly because
of the reflection of the beam from the shank of the
probe, the scattering amplitude also contains a correc-
tion due to the short-range interaction between the tip
and the sample. This correction is a nonlinear function
of the tip-sample distance ztip. Therefore, the signal
measured in the tip tapping mode contains higher har-
monics of the tapping frequency, which can be isolated
by demodulation with a lock-in amplifier. This proce-
dure yields a set of complex amplitudes s⊥n e iφ⊥

n where
n = 2, 3, . . . is the demodulation order (see below).

A common end goal of s-SNOM experiments is to
extract optical parameters of the sample from the near-
field spectra, e.g., for a bulk material, to infer its per-
mittivity ε = ε(ω) from the demodulated amplitudes
s⊥n (ω) and phases φ⊥

n (ω). Solving this inverse problem
requires modeling of the tip-sample interaction. With
a chosen model, s⊥n e iφ⊥

n is computed using ε as an ad-
justable parameter, until the calculated spectra agree
with the data. A rigorous solution of such a forward
problem (f-problem) is computationally expensive, and
so the modeling typically involves some approxima-
tions. Thus, it has been traditional to represent the

FIG. 1. A schematic for the theoretical model of an s-SNOM
experiment. The probe-sample system is illuminated by an
external electric field (orange arrow). Near-field interaction
(magenta arrows) between the sample and the probe modifies
the dipole moment p of the probe, which creates scattered
radiation detected in the far field.

probe as a polarizable point dipole [16]. This simple
approach is however not quantitatively reliable. For
example, it fails to describe the dependence of the sig-
nal on ztip (the approach curve), which is important
in the demodulation procedure. A finite-dipole model
[17] gives a more realistic approach curve and approxi-
mately accounts for the antenna effect of the probe. Yet
it does not correctly reproduce the asymptotic behavior
for large ε and scaling with the probe length [18]. Both
the point- and the finite-dipole models are quasi-static
while in reality retardation also comes into play.

In principle, general-purpose electromagnetic solvers
can handle the retardation effects and realistic probe
geometry [19–23]. However, data fitting requires find-
ing numerical solutions for large parameter sets (ω, ε,
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ztip), which makes computational cost prohibitive. To
address the latter limitation, custom solvers employing
the boundary-element method [24, 25] have been devel-
oped, providing a more optimal tradeoff between accu-
racy and computational resources. On the analytical
side, it has been shown [18] that the s-SNOM signal is
dominated by a handful of eigenmodes confined in the
tip-sample nanogap. These eigenmodes become true
resonances of the system when the sample permittiv-
ity is equal to certain negative values εk that depend
on ztip and the shape and size of the tip. Note that
ε(ω) = −1 is the condition for the existence of a sur-
face polariton mode of a planar interface. Therefore,
the condition ε(ω) = εk can be interpreted as the cri-
terion for the existence of a surface polariton localized
to the tip. Once such polariton eigenmodes are pre-
calculated for a given tip geometry, the desired near-
field amplitudes can be rapidly computed for any ε(ω).
The calculation of these eigenmodes can be made par-
ticularly efficient if the probe shape is approximated by
a spheroid [18].

Even when a fast solver for the f-problem is avail-
able, fitting experimental spectra can be challenging
because of a nonlinear dependence of the near-field
amplitudes on the input parameters. The fitting is
commonly done by local optimizers, such as the least
squares Levenberg–Marquardt method [26] or the Trust
Region Reflective method (TRM) [27]. If the signal con-
tains noise or has a complicated line shape, the conver-
gence of such methods is impeded. One could improve
the convergence by regularizing the objective function
[28], using more sophisticated optimizers, or provid-
ing better initial guesses for the iterations. However,
because of a nontrivial relation between the s-SNOM
spectra and physical parameters [see Fig. 2], generating
such initial guesses often requires a human effort.

Recently, artificial neural networks (ANNs) have
demonstrated excellent capabilities for processing com-
plex data obtained by spectroscopy and imaging, in-
cluding atomic force microscopy [29, 30], Raman scat-
tering spectroscopy [31], scanning tunneling microscopy
[32, 33], scanning transmission electron microscopy
[34], and more [35]. The ANN method has been ap-
plied to s-SNOM data analysis in Ref. [36, 37]. In those
studies, the finite-dipole tip model was used and a map-
ping between the permittivity ε and the near-field sig-
nal was constructed. The mapping was tested on data
for several real materials with modestly strong optical
resonances such as SrTiO3, SiO2, etc. In Ref. [37], a
so-called hybrid neural network (HNN) solver for the
f-problem was developed. The network was trained to
reproduce the experimental data using the finite-dipole
model prediction for the same ε as an input. Addi-
tionally, it was shown that the HNN solver, combined
with an advanced local optimizer (differential evolution)
can be promising for solving the inverse problem (i-

problem), namely, extraction of ε from the experimen-
tal data.

In the present work we address the same i-problem
but our approach is more streamlined and our ANN,
optimizer, and tip model are all quite different. Al-
though we also use simulated data for the training of
our network, we go beyond the finite-dipole approxi-
mation. We compute these training data using a more
realistic spheroidal-tip model, allowing the tip aspect
ratio to be an adjustable parameter. Following [29],
we employ the approach where the ANN provides an
initial guess for the TRM fitting. This combines the
strengths of the two methods: on one hand, it obviates
human intervention and on the other hand, it leverages
the fast convergence of the TRM when the initial guess
is close to the true ground. We show that our method is
highly accurate, robust against noise, and able to han-
dle functions ε(ω) that contain sharp resonances. To
simplify the naming, we refer to the network only part
of our implementation as ANN and to the ANN-TRM
“hybrid” as iHNN where the “i” emphasizes that this is
a self-contained solver for the i-problem.

The remainder of the paper is organized as follows.
In Sec. II, we provide details on the data generation
and the ANN design. In Sec. III we compare the per-
formance of the TRM, ANN, and iHNN. We end with
concluding remarks in Sec. IV.

II. DATA GENERATION AND NETWORK
ARCHITECTURE

To generate large data sets needed for training and
testing of the iHNN we use the spheroidal tip model
[18]. The major semi-axis of the spheroid has the length
L and the radius of curvature of the tip is a, see Fig. 1.
The tip undergoes tapping motion with amplitude ∆z
and frequency Ω,

ztip(ϕ) = z0 +∆z(1−cosϕ), ϕ=Ωt , (1)

where z0 is the minimal tip-sample separation. We
compute the observable near-field signal s̄⊥n (ω) follow-
ing these five steps. First, we find the near-field reflec-
tivity β of the sample-air interface

β= ε(ω)−ε0

ε(ω)+ε0
, (2)

where ε0 = 1 is the permittivity of air. Second, we deter-
mine the out-of-plane polarizability χ⊥ = χ⊥(β) of the
tip as described in Ref. [18]. Third, the polarizability
χ⊥ is demodulated by taking its nth Fourier transform

χ⊥n (ω) = 1

π

∫ π

0
dϕχ⊥(ω, ztip(ϕ))cosnϕ . (3)

(In experiment, the demodulation is done for the far-
field background suppression.) Forth, to account for
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the reflection of the incident and scattered light off the
surface, we multiply the result by the so-called far-field
factor

F⊥(ω) = (
1+ rp,FF

)2 sin2θ . (4)

Here the far-field reflection coefficient rp,FF is

rp,FF =
εcosθ−ε0

√
ε
ε0
− sin2θ

εcosθ+ε0

√
ε
ε0
− sin2θ

, (5)

and θ =π/4 is the angle of incidence. Finally, the signal
is normalized with respect to some reference material
“ref” (usually, Au or Si):

s̄⊥n (ω) = χ⊥n (ω)F⊥ (ω)

χ⊥,ref
n (ω)F⊥,ref (ω)

. (6)

Although this theoretical model is simplified, it has
been shown to provide a good approximation to mea-
sured near-field spectra. Figure 2 demonstrates exam-
ples for (a) SiO2 and (b,c) (LaAlO3)0.3(Sr2AlTaO6)0.7

(LSAT) samples. The best fits to the spheroidal tip
model were found via a full search over a grid in the
two-dimensional parameter space (z0,L/a). The ma-
terial permittivities ε(ω) used in the calculations were
taken from the literature [38]. In Fig. 2(b,c) we also in-
clude the predictions of the HNN [37] which was first
trained on data from Fig. 2(a). Even though the fits to
the spheroidal tip model and the HNN predictions are
both in agreement with the experiment, the former has
a twice smaller mean squared error (MSE) and is more
accurate near the resonances than the latter. Other
examples (see Sec. IV) confirm that the spheroidal tip
model generally outperforms the finite-dipole one on
which the HNN is based.
Fitting of the experimental data often involves sev-

eral additional adjustable parameters such as a and ∆z.
If the frequency-dependent ε (ω) is not known, it is an
adjustable function as well. As the number of such vari-
ables grows, the fitting procedure quickly becomes very
laborious. We present an alternative method of data
analysis aided by an ANN. For this proof-of-principle
demonstration, we consider the dielectric permittivity
in the form of a single Lorentzian oscillator:

ε(ω) = ε∞
ω2

LO − iωγ−ω2

ω2
TO − iωγ−ω2

, (7)

where ε∞ is the high-frequency permittivity, ωLO the
longitudinal phonon frequency, ωTO is the transverse
phonon frequency, and γ is the damping rate. The
training data for the ANN were generated as follows.
We took Si as our reference material and considered
only the n = 3 demodulation order. We fixed a = 30nm,
z0 = 0.6nm, and ∆z = 50nm. This left us with five

900 950 1000 1050 1100 1150
0

0.2

0.4

0.6

0.8

1

1.2

- /4

0

/4

/2

3 /4

5 /4

(a)

400 600 800 1000
-2

-1.5

-1

-0.5

0

0.5

1

Experiment
HNN
Spheroid Model

(b)

400 600 800 1000
-1

-0.5

0

0.5

1

1.5

2
Experiment
HNN
Spheroid Model

(c)

FIG. 2. Experimental spectra (dashed) and their fits to the
spheroidal tip model (solid red) for (a) SiO2 (b, c) LSAT; the
reference material is Au for both. Parameters: (a) z0 = 0.07a,
∆z = 4.5a, L = 5a, ε(ω) from Ref. [39]. (b) z0 = 0.07a,
∆z = 0.974a, L = 5a, ε(ω) from Ref. [38]. Panels (b,c) in-
clude the predictions of the HNN (solid blue) trained on data
from panel (a).

free parameters: L/a, ε∞, ωLO, ωTO, and γ. We re-
stricted the first parameter to integer values in the
range 5 ≤ L/a ≤ 25. The last four parameters were
drawn randomly from uniform distributions over the
intervals 1 ≤ ε∞ ≤ 5, 1 ≤ γ ≤ 50, 650 ≤ ωTO ≤ 890, and
ωTO +10 ≤ ωLO ≤ 900. (Our frequency unit is 1cm−1.)
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FIG. 3. The iHNN structure. Complex-valued input signal is separated into its real and imaginary parts. They are sent
through three Conv1D Layers (orange) and three Dense Layers (purple) for pattern retrieving. After the Flatten Layer (gray), the
recognized patterns go through three Dense Layers (purple) to arrive at the output layer containing the predicted parameters
(yellow). The dashed line around L/a indicates that in the first part of our calculations this parameter was fixed (at 25) and was
not a part of the output.

These parameter ranges are representative of probes
and samples utilized in mid-infrared s-SNOM experi-
ments. Using Eqs. (1)–(7), we computed s̄⊥n (ω) spectra,
351 complex-valued points each, on the uniform (unit
spacing) frequency grid 650 ≤ ω ≤ 900. We separated
the real and imaginary parts of s̄⊥n (ω) to form a two-
row real-valued matrix. The task of the ANN was to
infer the five parameters L/a, ε∞, ωLO, ωTO, and γ

from such input spectra.

Let us describe the structure of the ANN. Its first part
is the pattern recognition section comprised of three
one-dimensional convolutional layers (Conv1D layers)
of sizes 64, 128 and 256, see Fig. 3. The layers have
kernel sizes of 25, 15, and 5 respectively. The pattern
recognition section is completed with three additional
dense layers of sizes 512, 256, and 128. The second part
of the ANN is the regression section. It begins with a
flattening layer where the pattern matrix from the pre-
vious section is reshaped into a column vector. This
layer is followed by three dense layers of sizes 512, 256,
and 128. Finally, the output layer of size 5 yields the
predicted ε∞, ωTO, ωLO, γ, and L/a. In the loss func-
tion of the ANN, these output parameters were normal-
ized to be between 0 and 1 to help decrease bias during
training. By design, Conv1D layers in the pattern recog-
nition section identify patterns of the signal on different
frequency scales and the following dense layers analyze
these patterns. The regression section then effectively
assigns weights to those patterns and combines them
to make the predictions. For all layers, the rectified
linear unit (ReLU) [40] activation is used. We trained
this network over 5 epochs utilizing data batches of size
32. The Adam optimizer a constant step size of 10−4

was used for all trainings. The first part of training
involved 3,000,000 noiseless spectra generated for the
fixed tip semi-length L/a = 25. Subsequently, we added

noise and allowed L/a = 25 to be a variable parameter.
A 20% of these spectra was reserved for validation to
combat overfitting. The training took about 4 hours on
a workstation equipped with an NVIDIA 1080Ti GPU
card.

III. RESULTS

An example of fitting a noiseless spectrum (with
L/a = 25) by the ANN is shown in Fig. 4. As one can
see in Fig. 4(a), the fit captures the overall shape of the
data well. The difference between the predicted and
actual resonant frequency and damping rate are small.
Moreover, when the ANN predictions are used as the
initial guess for the TRM optimization, the true param-
eters are found. Note that the spheroidal tip model can
generate multiple peaks in the near-field spectra when
the damping is sufficiently low [18]. An example is a
double peak seen in Fig. 4(b). The ANN is able to han-
dle this case, which demonstrates the capability of this
method to analyze complex spectra.

To test the stability of the TRM, ANN, and their
combination iHNN more systematically we used a set
of 1,000 randomly generated spectra. In Fig. 5(a) we
present the cumulative distribution functions (CDFs) of
the MSE of the four parameters ε∞, ωTO, ωLO, and γ.
The TRM with a random initial guess (the black curve)
gives the largest average and standard deviation for the
loss. It is a hit or miss: in roughly half of the cases the
TRM was trapped in local minima; however, in the re-
mainder, it reached the global one. In comparison, the
ANN alone [the blue curve in Fig. 5(a)] provides much
more consistent results. The highest MSE of the ANN
is around 10−4 and the standard deviation is greatly
reduced compared to the TRM. Apparently, the local
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FIG. 4. A representative near-field spectrum (black) and the
spectra computed with the parameters extracted by the ANN
(blue) and the iHNN (red). Due to an almost perfect fit pro-
duced by the iHNN, the original data are invisible in the plots.
Parameters: (a) ε∞ = 3.79, ωLO = 862, ωTO = 814, γ= 21.8. (b)
ε∞ = 4.36, ωLO = 853, ωTO = 636, γ= 12.9.

minima trapping problem is alleviated by the deep con-
nections among neurons. Additionally, for the ANN the
average computation time is less than 0.03s, which is
the shortest among the three methods. The iHNN (the
red curve) gives the smallest MSE, less than 10−18, ef-
fectively reaching the true ground for all spectra. The
average computation time for the iHNN remains quite
low (8.2s). Such results demonstrate that the iHNN
combines the advantages of the ANN and the TRM:
the former is capable to learn the complex nature of the
problem and approximate the required parameters, the
latter can swiftly refine these parameter values, while
the iHNN can do both.

In the spheroidal tip model we use here, the tip ge-
ometry is defined by the variables a and L (Fig. 1). We
added an additional neuron in the output layer of the
ANN to make it predict the aspect ratio L/a. This
five-output-parameter ANN (Fig. 3), was trained on
6,000,000 noiseless spectra generated using L/a rang-
ing from 5 to 25 with a unit spacing. After training,
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(b)

FIG. 5. Cumulative distribution functions (CDF) of the MSE
obtained using TRM (black), ANN (blue), and the iHNN (red),
for noiseless spectra. The graphs illustrate that the TRM pro-
duces the MSE with the largest mean and standard deviation,
followed by the ANN, and then by the iHNN. (a) L = 25a. (b)
5a ≤ L ≤ 25a.

the setup was tested on 1,000 other spectra with L/a
randomly sampled from the same range. In Fig. 5(b)
we demonstrate the CDF of MSE for the ANN along
with those for the TRM and the iHNN. Similar to the
fixed L/a case, the TRM converges for only half of the
test instances. It also requires the longest computa-
tional time, on average 353s per run. Despite becoming
slightly less precise than our previous four-parameter
ANN, the predictions of the new five-parameter ANN
are still more accurate and stable compared to the
TRM. The ANN predicts the geometric parameter L/a
with a mean absolute error of 0.25 and the standard
deviation of 0.34 for all tested cases. In comparison,
the iHNN has arrived at the global minimum for all
1,000 instances considered. The additional parameter
involved in the optimization has increased the average
computation time for the iHNN from seconds for the
ANN alone to 160s, although it is still twice faster than
the TRM. Based on these tradeoffs between the accu-
racy and the computational cost, we suggest that the
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FIG. 6. MSE obtained from the TRM (black dots), ANN (blue
dots), and the iHNN (red dots) as a function of the signal-to-
noise ratio (SNR) of the near-field signal.

ANN can be used as a high throughput fitting tool for
large datasets while the iHNN can fine tune the fits to
selected “interesting” spectra.
Finally, we investigated the effect of a Gaussian noise.

We added noise to both real and imaginary parts of
the spectra generated for fixed L/a = 25. The standard
deviation for the noise was sampled randomly in the
range [0,0.7] to have a broad range of signal-to-noise
ratio (SNR). The final dataset consisted of 6,000,000
spectra with SNR ≥ 1, i.e., nonnegative SNR on the dB
scale. To focus on highly noisy instances, we further
selected 0 ≤ SNR ≤ 15dB, which is about two thirds of
the entire dataset. The same SNR range was used for
generating a test set of 2,000 spectra. The results are
shown in Fig. 6 where the average MSEs for ε∞, ωTO,
ωLO, and γ are presented. Among the three methods,
the TRM performs the worst, giving the lowest aver-
age MSE at all SNR. The result hardly improves at
higher SNR, which illustrates the impracticability of this
method. In contrast, the ANN is more stable and accu-
rate, especially at small SNR. As the SNR gets higher,
the average MSE drops linearly and its lead in accu-
racy increases. Interestingly, the iHNN can be less sta-
ble at low SNRs. Under high noise, SNR < 5dB, the
MSE of the iHNN can occasionally be more than twice
higher than that for the ANN alone. However, at larger
SNR, the iHNN gets progressively more accurate than
the ANN. We attribute the somewhat reduced perfor-
mance of the iHNN at small SNR to the TRM being
trapped in one of numerous local minima. An example
is shown in Fig. 7(a) with SNR = 6.29dB. Despite such
an extreme noise level, both the ANN and the iHNN
produce good fits. The MSE for the ANN 1.4×10−4 is
actually lower than MSE of 0.0090 for the iHNN. (The
original and predicted values of individual parameters
are listed in Table I.) Note however that the outcome
of multi-dimensional optimization depends, in general,

(a) (b)

Orig. ANN iHNN Orig. ANN iHNN

ε∞ 4.91 4.65 4.34 4.92 4.89 5.05

ωLO 900 901 909 779 781 779

ωTO 835 832 834 747 747 748

γ 43.8 43.3 48.5 43.9 41.3 43.3

TABLE I. The original and fitted parameters in Fig. 7(a, b).

550 600 650 700 750 800 850 900
0

0.5

1

1.5

2

2.5

3

3.5
Original
ANN
iHNN
Denoised Data

(a)

550 600 650 700 750 800 850 900
0

0.5

1

1.5
Original
ANN
iHNN
Denoised Data

(b)

FIG. 7. Examples of very noisy data (blue) and their fitting
by ANN (red) and iHNN (yellow). The dashed line shows the
denoised data. (a) SNR = 6.29dB (b) SNR = 6.77dB.

on what weights are assigned to different parameters in
the total MSE. An example is shown in Fig. 7(b). The
initial guess by ANN has a more accurate ε∞. The sub-
sequent optimization by the TRM, which minimizes the
unweighted MSE, enlarges the error in ε∞ but increases
the accuracy of γ, see Table I.

IV. CONCLUSIONS AND OUTLOOK

In our work we address extraction of the optical
constants from the near-field signal. In the past, this
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i-problem has been tackled by conventional optimiza-
tion algorithms that require an initial guess. A random
guess gives about 50% convergence failure in the ex-
amples we studied (Fig. 6). We showed that the ANN
can provide initial guesses that eliminate such non-
converging cases (when no noise is present). Added
noise causes it to worsen; however, the prediction accu-
racy remains at the percent level even for unit signal-to-
noise ratio. The advantages of automatic data process-
ing and robustness to noise make our method promis-
ing for analyzing actual experimental spectra.
Let us compare the present iHNN with the HNN

developed in the earlier work [37]. First, the training
data for HNN has been generated from the finite-dipole
model whereas the iHNN is based on the spheroidal tip
model. The latter tends to handle the highly resonant,
i.e., large-β [Eq. (2)] materials better, see below. Next,
the mapping from ε to s̄⊥n by HNN does not utilize the
frequency variable. However, due to the nonlinearity
of the mapping, there are examples where fairly differ-
ent ε’s can produce very similar s̄⊥n ’s. These instances
make the inverse mapping ambiguous. In contrast, the
input given to the iHNN is an entire spectrum, i.e., s̄⊥n
as a function of ω. Due to its pattern recognition capa-
bility, the iHNN can detect correlation among s̄⊥n data
points. This effectively adds hidden labels that help to
differentiate s̄⊥n values that can nearly coincide in the
pointwise-ω mapping. Finally, the “hybrid” nature of
HNN and iHNN is quite different. The HNN uses the
output of the theoretical model as an input (basically,
an initial guess) whereas the iHNN generates such an
initial guess itself and then refines it.

We can think of several directions for improvement
and future investigations. One important problem is
the lack of universality in the probe-sample coupling.
For example, probes made by different manufacturers
give somewhat different results for the same sample (see
Supplementary Materials, Fig. S1). Even the signal gen-
erated by the same tip changes over time because of
rapid wear and degradation. The existing strategy to
deal with this variability is to employ models contain-
ing adjustable parameters. Such models are either ad
hoc analytical expressions or true electrodynamic solu-

tions for tips of simplified shapes [16–18, 41]. The finite-
dipole model is of the former kind and the spheroidal
tip model [18] used here is of the latter. Both mod-
els employ parameter L (Fig. 1) which is not the actual
length of the tip but an adjustable variable. As shown
in Fig. S3, it is possible to fit the same experimental
data for SiO2 and SiC to either model but the corre-
sponding L’s differ greatly. The spheroidal tip model
appears to give more accurate fits for these materials,
cf. Figs. S2 and S3. However, the search for a more
perfect model remains ongoing.

It is straightforward to upgrade our single Drude-
Lorentz resonance approximation for the sample per-
mittivity to a multi-resonance one. This would how-
ever increase the number of parameters the ANN has
to predict, which may decrease its prediction accuracy.
To counteract that, one could explore more advanced
ANN architectures, e.g., variational autoencoder [42] or
long short-term memory [43]. Finally, we expect a con-
siderable benefit from applying our method to process-
ing near-field spectra from systems that are strongly in-
homogeneous or undergoing phase separation [44, 45].
In those systems, spectra collected at different spatial
locations can be very dissimilar. The ANN approach
offers significant time-saving in analyzing such poten-
tially massive amounts of data.
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A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Ca-
mara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Kop-
pens, Optical nano-imaging of gate-tunable graphene
plasmons, Nature 487, 77 (2012).

[6] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S.
McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watan-
abe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C.
Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M.
Fogler, and D. N. Basov, Tunable Phonon Polaritons in
Atomically Thin van der Waals Crystals of Boron Ni-
tride, Science 343, 1125 (2014).

[7] Z. Fei, E. G. Iwinski, G. X. Ni, L. M. Zhang, W. Bao,
A. S. Rodin, Y. Lee, M. Wagner, M. K. Liu, S. Dai, M. D.
Goldflam, M. Thiemens, F. Keilmann, C. N. Lau, A. H.
Castro-Neto, M. M. Fogler, and D. N. Basov, Tunneling
Plasmonics in Bilayer Graphene, Nano Letters 15, 4973
(2015).

[8] M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O.
Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple,
F. Keilmann, H.-T. Kim, and D. N. Basov, Mott Transition
in VO2 Revealed by Infrared Spectroscopy and Nano-
Imaging, Science 318, 1750 (2007).

[9] H. Zhan, V. Astley, M. Hvasta, J. A. Deibel, D. M. Mit-
tleman, and Y.-S. Lim, The metal-insulator transition in
VO2 studied using terahertz apertureless near-field mi-
croscopy, Applied Physics Letters 91, 162110 (2007).

[10] K. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki,
Y. Tokura, M. A. Kelly, and Z.-X. Shen, Mesoscopic Per-
colating Resistance Network in a Strained Manganite
Thin Film, Science 329, 190 (2010).

[11] J. Zhang, A. S. McLeod, Q. Han, X. Chen, H. A. Bechtel,
Z. Yao, S. Gilbert Corder, T. Ciavatti, T. H. Tao, M. Aron-
son, G. Carr, M. C. Martin, C. Sow, S. Yonezawa, F. Naka-
mura, I. Terasaki, D. Basov, A. J. Millis, Y. Maeno, and
M. Liu, Nano-Resolved Current-Induced Insulator-Metal
Transition in the Mott Insulator Ca2RuO4, Physical Re-
view X 9, 011032 (2019).

[12] M. P. Nikiforov, S. C. Kehr, T.-H. Park, P. Milde, U. Zer-
weck, C. Loppacher, L. M. Eng, M. J. Therien, N. En-
gheta, and D. Bonnell, Probing polarization and dielec-
tric function of molecules with higher order harmonics in
scattering–near-field scanning optical microscopy, Jour-
nal of Applied Physics 106, 114307 (2009).

[13] C. Westermeier, A. Cernescu, S. Amarie, C. Liewald,
F. Keilmann, and B. Nickel, Sub-micron phase coexis-
tence in small-molecule organic thin films revealed by
infrared nano-imaging, Nature Communications 5, 4101
(2014).

[14] S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira,
I. Amenabar, and R. Hillenbrand, Nanoscale-resolved
chemical identification of thin organic films using in-
frared near-field spectroscopy and standard Fourier
transform infrared references, Applied Physics Letters
106, 023113 (2015).

[15] N. Qin, S. Zhang, J. Jiang, S. G. Corder, Z. Qian, Z. Zhou,
W. Lee, K. Liu, X. Wang, X. Li, Z. Shi, Y. Mao, H. A.
Bechtel, M. C. Martin, X. Xia, B. Marelli, D. L. Kaplan,
F. G. Omenetto, M. Liu, and T. H. Tao, Nanoscale prob-
ing of electron-regulated structural transitions in silk

proteins by near-field IR imaging and nano-spectroscopy,
Nature Communications 7, 13079 (2016).

[16] B. Knoll and F. Keilmann, Enhanced dielectric contrast
in scattering-type scanning near-field optical microscopy,
Optics Communications 182, 321 (2000).

[17] A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Analytical
model for quantitative prediction of material contrasts
in scattering-type near-field optical microscopy, Optics
Express 15, 8550 (2007).

[18] B.-Y. Jiang, L. M. Zhang, A. H. C. Neto, D. N. Basov,
and M. M. Fogler, Generalized spectral method for near-
field optical microscopy, Journal of Applied Physics 119,
054305 (2016).

[19] R. Esteban, R. Vogelgesang, and K. Kern, Simulation of
optical near and far fields of dielectric apertureless scan-
ning probes, Nanotechnology 17, 475 (2006).

[20] R. Esteban, R. Vogelgesang, and K. Kern, Full simula-
tions of the apertureless scanning near field optical mi-
croscopy signal: achievable resolution and contrast, Op-
tics Express 17, 2518 (2009).

[21] Z. Wang, B. Luk’yanchuk, L. Li, P. Crouse, Z. Liu,
G. Dearden, and K. Watkins, Optical near-field distri-
bution in an asymmetrically illuminated tip–sample sys-
tem for laser/STM nanopatterning, Applied Physics A
89, 363 (2007).

[22] X. Chen, C. F. B. Lo, W. Zheng, H. Hu, Q. Dai, and
M. Liu, Rigorous numerical modeling of scattering-type
scanning near-field optical microscopy and spectroscopy,
Applied Physics Letters 111, 223110 (2017).

[23] P. McArdle, D. J. Lahneman, A. Biswas, F. Keilmann, and
M. M. Qazilbash, Near-field infrared nanospectroscopy
of surface phonon-polariton resonances, Physical Review
Research 2, 023272 (2020).

[24] L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod,
G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N.
Basov, and M. M. Fogler, Near-field spectroscopy of sil-
icon dioxide thin films, Physical Review B 85, 075419
(2012).

[25] A. S. McLeod, P. Kelly, M. D. Goldflam, Z. Gainsforth,
A. J. Westphal, G. Dominguez, M. H. Thiemens, M. M.
Fogler, and D. N. Basov, Model for quantitative tip-
enhanced spectroscopy and the extraction of nanoscale-
resolved optical constants, Physical Review B 90, 085136
(2014).

[26] J. J. Moré, The Levenberg-Marquardt algorithm: Im-
plementation and theory, in Numerical Analysis, Lecture
Notes in Mathematics, edited by G. A. Watson (Springer,
Berlin, Heidelberg, 1978) pp. 105–116.

[27] M. A. Branch, T. F. Coleman, and Y. Li, A Subspace, In-
terior, and Conjugate Gradient Method for Large-Scale
Bound-Constrained Minimization Problems, SIAM Jour-
nal on Scientific Computing 21, 1 (1999).

[28] F. L. Ruta, A. J. Sternbach, A. B. Dieng, A. S.
McLeod, and D. N. Basov, Quantitative Nanoinfrared
Spectroscopy of Anisotropic van der Waals Materials,
Nano Letters 20, 7933 (2020).

[29] N. Borodinov, S. Neumayer, S. V. Kalinin, O. S. Ovchin-
nikova, R. K. Vasudevan, and S. Jesse, Deep neural net-
works for understanding noisy data applied to physical
property extraction in scanning probe microscopy, npj
Computational Materials 5, 1 (2019).

https://doi.org/10.1038/nature11254
https://doi.org/10.1126/science.1246833
https://doi.org/10.1021/acs.nanolett.5b00912
https://doi.org/10.1021/acs.nanolett.5b00912
https://doi.org/10.1126/science.1150124
https://doi.org/10.1063/1.2801359
https://doi.org/10.1126/science.1189925
https://doi.org/10.1103/PhysRevX.9.011032
https://doi.org/10.1103/PhysRevX.9.011032
https://doi.org/10.1063/1.3245392
https://doi.org/10.1063/1.3245392
https://doi.org/10.1038/ncomms5101
https://doi.org/10.1038/ncomms5101
https://doi.org/10.1063/1.4905507
https://doi.org/10.1063/1.4905507
https://doi.org/10.1038/ncomms13079
https://doi.org/10.1016/S0030-4018(00)00826-9
https://doi.org/10.1364/OE.15.008550
https://doi.org/10.1364/OE.15.008550
https://doi.org/10.1063/1.4941343
https://doi.org/10.1063/1.4941343
https://doi.org/10.1088/0957-4484/17/2/022
https://doi.org/10.1364/OE.17.002518
https://doi.org/10.1364/OE.17.002518
https://doi.org/10.1007/s00339-007-4114-6
https://doi.org/10.1007/s00339-007-4114-6
https://doi.org/10.1063/1.5008663
https://doi.org/10.1103/PhysRevResearch.2.023272
https://doi.org/10.1103/PhysRevResearch.2.023272
https://doi.org/10.1103/PhysRevB.85.075419
https://doi.org/10.1103/PhysRevB.85.075419
https://doi.org/10.1103/PhysRevB.90.085136
https://doi.org/10.1103/PhysRevB.90.085136
https://doi.org/10.1007/BFb0067700
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1137/S1064827595289108
https://doi.org/10.1021/acs.nanolett.0c02671
https://doi.org/10.1038/s41524-019-0148-5
https://doi.org/10.1038/s41524-019-0148-5


9

[30] O. M. Gordon, J. E. A. Hodgkinson, S. M. Farley, E. L.
Hunsicker, and P. J. Moriarty, Automated Searching and
Identification of Self-Organized Nanostructures, Nano
Letters 20, 7688 (2020).

[31] C. M. Valensise, A. Giuseppi, F. Vernuccio, A. De la Ca-
dena, G. Cerullo, and D. Polli, Removing non-resonant
background from CARS spectra via deep learning, APL
Photonics 5, 061305 (2020).

[32] C.-H. Lee, A. Khan, D. Luo, T. P. Santos, C. Shi, B. E.
Janicek, S. Kang, W. Zhu, N. A. Sobh, A. Schleife, B. K.
Clark, and P. Y. Huang, Deep Learning Enabled Strain
Mapping of Single-Atom Defects in Two-Dimensional
Transition Metal Dichalcogenides with Sub-Picometer
Precision, Nano Letters 20, 3369 (2020).

[33] O. Gordon, P. D’Hondt, L. Knijff, S. E. Freeney, F. Jun-
queira, P. Moriarty, and I. Swart, Scanning tunneling
state recognition with multi-class neural network ensem-
bles, Review of Scientific Instruments 90, 103704 (2019).

[34] M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang,
K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, and S. V.
Kalinin, Deep Learning of Atomically Resolved Scan-
ning Transmission Electron Microscopy Images: Chem-
ical Identification and Tracking Local Transformations,
ACS Nano 11, 12742 (2017).

[35] P. R. Wiecha, A. Arbouet, A. Arbouet, C. Girard, C. Gi-
rard, O. L. Muskens, and O. L. Muskens, Deep learning
in nano-photonics: inverse design and beyond, Photonics
Research 9, B182 (2021).

[36] X. Chen, R. Ren, and M. Liu, Validity of Machine Learn-
ing in the Quantitative Analysis of Complex Scanning
Near-Field Optical Microscopy Signals Using Simulated
Data, Physical Review Applied 15, 014001 (2021).

[37] X. Chen, Z. Yao, S. Xu, A. S. McLeod, S. N.
Gilbert Corder, Y. Zhao, M. Tsuneto, H. A. Bechtel, M. C.

Martin, G. L. Carr, M. M. Fogler, S. G. Stanciu, D. N.
Basov, and M. Liu, Hybrid Machine Learning for Scan-
ning Near-Field Optical Spectroscopy, ACS Photonics 8,
2987 (2021).

[38] T. N. Nunley, T. I. Willett-Gies, J. A. Cooke, F. S. Man-
ciu, P. Marsik, C. Bernhard, and S. Zollner, Optical
constants, band gap, and infrared-active phonons of
(LaAlO3)0.3(Sr2AlTaO6)0.35 (LSAT) from spectroscopic
ellipsometry, Journal of Vacuum Science & Technology
A 34, 051507 (2016).

[39] R. Kitamura, L. Pilon, and M. Jonasz, Optical constants
of silica glass from extreme ultraviolet to far infrared at
near room temperature, Applied Optics 46, 8118 (2007).

[40] V. Nair and G. E. Hinton, Rectified Linear Units Improve
Restricted Boltzmann Machines (2010).

[41] S. T. Chui, X. Chen, M. Liu, Z. Lin, and J. Zi, Scatter-
ing of electromagnetic waves from a cone with confor-
mal mapping: Application to scanning near-field optical
microscope, Physical Review B 97, 081406 (2018).

[42] D. P. Kingma and M. Welling, Auto-Encoding Variational
Bayes, arXiv:1312.6114 (2014).

[43] S. Hochreiter and J. Schmidhuber, Long Short-Term
Memory, Neural Computation 9, 1735 (1997).

[44] M. K. Liu, M. Wagner, E. Abreu, S. Kittiwatanakul,
A. McLeod, Z. Fei, M. Goldflam, S. Dai, M. M. Fogler,
J. Lu, S. A. Wolf, R. D. Averitt, and D. N. Basov,
Anisotropic Electronic State via Spontaneous Phase Sep-
aration in Strained Vanadium Dioxide Films, Physical
Review Letters 111, 096602 (2013).

[45] A. S. McLeod, E. van Heumen, J. G. Ramirez, S. Wang,
T. Saerbeck, S. Guenon, M. Goldflam, L. Anderegg,
P. Kelly, A. Mueller, M. K. Liu, I. K. Schuller, and D. N.
Basov, Nanotextured phase coexistence in the correlated
insulator V2O3, Nature Physics 13, 80 (2017).

https://doi.org/10.1021/acs.nanolett.0c03213
https://doi.org/10.1021/acs.nanolett.0c03213
https://doi.org/10.1063/5.0007821
https://doi.org/10.1063/5.0007821
https://doi.org/10.1021/acs.nanolett.0c00269
https://doi.org/10.1063/1.5099590
https://doi.org/10.1021/acsnano.7b07504
https://doi.org/10.1364/PRJ.415960
https://doi.org/10.1364/PRJ.415960
https://doi.org/10.1103/PhysRevApplied.15.014001
https://doi.org/10.1021/acsphotonics.1c00915
https://doi.org/10.1021/acsphotonics.1c00915
https://doi.org/10.1116/1.4960356
https://doi.org/10.1116/1.4960356
https://doi.org/10.1364/AO.46.008118
https://doi.org/10.1103/PhysRevB.97.081406
http://arxiv.org/abs/1312.6114
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1103/PhysRevLett.111.096602
https://doi.org/10.1103/PhysRevLett.111.096602
https://doi.org/10.1038/nphys3882

	Deep-Learning-Aided Extraction of Optical Constants in Scanning Near-Field Optical Microscopy
	Abstract
	I Introduction
	II Data Generation and Network Architecture
	III Results
	IV Conclusions and outlook
	 Acknowledgments
	 References




