
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Analysis, tuning and comparison of two general sparse solvers for
distributed memory computers

Permalink
https://escholarship.org/uc/item/7457v5mv

Authors
Amestoy, P.R.
Duff, I.S.
L'Excellent, J.-Y.
et al.

Publication Date
2000-06-30

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7457v5mv
https://escholarship.org/uc/item/7457v5mv#author
https://escholarship.org
http://www.cdlib.org/

Analysis, Tuning and Comparison of Two General Sparse

Solvers for Distributed Memory Computers�

Patrick R. Amestoyy, Iain S. Du�z, Jean-Yves L'Excellentx, and Xiaoye S. Li{

July 18, 2000

Abstract

We describe the work performed in the context of a Franco-Berkeley funded project
between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT
located in Toulouse (France). We discuss both the tuning and performance analysis
of two distributed memory sparse solvers (SuperLU from Berkeley and MUMPS from
Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National
Laboratory). This project gave us the opportunity to improve the algorithms and add
new features to the codes. We then quite extensively analyse and compare the two
approaches on a set of large problems from real applications. We further explain the
main di�erences in the behaviour of the approaches on arti�cial regular grid problems.
As a conclusion to this activity report, we mention a set of parallel sparse solvers on
which this type of study should be extended.

�The project is supported by the Franco-Berkeley Fund. This project also utilized resources of the

National Energy Research Scienti�c Computing Center (NERSC) which is supported by the Director, OÆce

of Advanced Scienti�c Computing Research, Division of Mathematical, Information, and Computational

Sciences of the U.S. Department of Energy under contract number DE-AC03-76SF00098.
yamestoy@enseeiht.fr, ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse, France. Visiting NERSC.
zI.Du�@rl.ac.uk, CERFACS, 42 Ave G Coriolis, F-31527 Toulouse Cedex 1, France.
xjeanyves@nag.co.uk, ENSEEIHT-IRIT, France now at NAg Ltd, Wilkinson House, Oxford OX2 8DR,

England.
{xiaoye@nersc.gov, NERSC, Lawrence Berkeley National Lab, MS 50F, 1 Cyclotron Rd., Berkeley, CA

94720. The research of this author was supported in part by the National Science Foundation Cooperative

Agreement No. ACI-9619020 and NSF Grant No. ACI-9813362.

1

Contents

1 Introduction 1

2 Description of algorithms used 1

3 Test environment 4

4 Impact of preprocessing and numerical issues 6

4.1 Use of a preordering to place large entries onto the diagonal and comments

on the cost of the analysis phase . 6

4.2 Use of orderings to preserve sparsity . 11

5 Tuning our sparse solvers 13

5.1 Description of the modi�cations made to SuperLU 13

5.1.1 Exploitation of Level 3 BLAS . 14

5.1.2 Pipelining and nonblocking send and receive 16

5.1.3 Exploiting more parallelism from the sparsity and the elimination

dags . 20

5.2 Description of the modi�cations made to MUMPS 21

5.2.1 Introducing immediate receives during factorization 25

6 Performance analysis on general matrices 33

6.1 Performance of the numerical phases . 33

6.1.1 Study of the factorization phase . 33

6.1.2 Study of the solve phase . 39

6.2 Memory usage . 41

7 Performance analysis on 3-D grid problems 43

8 Other codes 48

9 Appendix 49

i

1 Introduction

We consider the direct solution of sparse linear equations on distributed memory computers

where communication is by message passing, normally using MPI. We study in detail the

two codes, MUMPS [3, 6], and SuperLU [23]. The �rst uses a multifrontal approach with

dynamic pivoting for stability while the second is based on a supernodal technique with

static pivoting. We discuss these two codes in more detail in Section 2.

We compare the performance of the two codes in Section 6, where we show that such a

comparison can be fraught with diÆculties even when, as in this case, the code authors are

involved in the study. In Section 7, regular grids problems are used to further illustrate

and analyse the di�erence between the two approaches. We had originally thought to

do a comparison of more sparse codes but, given the documented diÆculties in assessing

codes that we know well, we have for the moment shelved this more ambitious project.

However, we feel that the lessons that we have learned in this present exercise are both

invaluable to us in our future wider study and have given us some insight into the behaviour

of sparse direct codes which we feel is useful to share with a wider audience at this

stage. In addition to valuable information on the comparative merits of multifrontal versus

supernodal approaches, we have examined the parameter space for such a comparison

exercise, and have identi�ed several key parameters that in
uence to a di�ering degree the

two approaches.

Two of the most important parameters are the use of a preprocessing to preorder the

matrix so that the diagonal entries are large relative to the o�-diagonals and the strategy

used to compute an ordering for the rows and columns of the matrix. We discuss these

aspects in detail in Sections 4.1 and 4.2 respectively.

From our investigations, we have identi�ed ways in which both codes can be improved.

Most of these improvements have been implemented in the framework of this project and

are discussed in Section 5. Future work will involve implementation of the remaining points

and an extended comparison with other sparse parallel direct codes. For the record, we

list the codes that we know about (including commercial codes) in Section 8.

2 Description of algorithms used

In this section, we brie
y describe the main characteristics of the algorithms that we are

comparing and highlight the major di�erences between them.

Both can be described by a computational tree whose nodes represent computations

and whose edges represent transfer of data. In the case of the multifrontal method, MUMPS,

at each node, some steps of Gaussian elimination are performed on a dense frontal matrix

and the Schur complement, or contribution block, that remains, is passed for assembly

at the parent node. In the case of the supernodal code, SuperLU, the distributed memory

version uses a right-looking formulation which, having computed the factorization of a

block of columns corresponding to a node of the tree, then immediately sends the data to

update the block columns corresponding to ancestors in the tree.

Both codes can accept any pivotal ordering and both have a built in capacity to

generate an ordering based on an analysis of the pattern of A+AT , where the summation

is performed symbolically. However, for the present version of MUMPS, the symbolic

factorization is markedly less eÆcient if an input ordering is given since di�erent logic

1

is used than in the case of the native ordering. The standard ordering used by MUMPS is the

approximate minimum degree (AMD) ordering [1] while SuperLU uses the multiple minimum

degree ordering (MMD) [24] on this symmetrized pattern. However, in the experiments

using a minimum degree code in the following sections, we consider only the AMD ordering

since both codes can generate this using the HSL routine MC47, it is usually far quicker than

MMD, and it produces a symbolic factorization close to that produced by MMD. We also

use a nested dissection ordering (ND) that varies from problem to problem. Sometimes

we use the ON-MeTiS ordering from MeTiS, sometimes the MFR ordering from Christian

Damhaug of Veritas, and sometimes the nested dissection/haloamd ordering from SCOTCH

[27]. Additionally, in some cases it is very bene�cial to precede the ordering by performing

an unsymmetric permutation to place large entries on the diagonal and then scaling the

matrix so that the diagonals are all of modulus one and the o�-diagonals have modulus

less than or equal to one. We use the MC64 code of HSL [22] to perform this preordering

and scaling [14] and indicate clearly when this is done in the forthcoming results. The

e�ect of using this preordering of the matrix is discussed in detail in Section 4.1. Finally,

when MC64 is not used, our matrices are always row and column scaled (each row/column

is divided by its maximum value).

In both approaches a pivot order is de�ned by the analysis and symbolic factorization

stages (which can be the same for both algorithms) but, in both cases, numerical

considerations might prevent strict adherence to this order during numerical factorization.

In the case of MUMPS, the modulus of the prospective pivot is compared with the largest

modulus of an entry in the column and it is only accepted if this is greater than a threshold

value, typically a value between 0.001 and 0.1 (our default value is 0.01). Note that, even

though MUMPS can choose pivots from o� the diagonal, the largest entry in the column

might not be available for pivoting at this stage because all entries in its row may not be

fully summed. This threshold pivoting strategy is common in sparse Gaussian elimination

and helps to avoid excessive growth in the matrix factorization and so directly reduces

the bound on the backward error. If a prospective pivot fails the test and cannot be

used within the partial factorization at a node, all that happens is that it is kept in the

Schur complement and is passed to the parent node. Eventually all of the columns will

be available for pivoting, at the root if not before, so that a pivot can be chosen from

that column. Thus the numerical factorization can respect the threshold criterion but at

a cost of increasing the size of the frontal matrices and potentially causing more work and

�ll-in than were forecast. For the SuperLU approach, a static pivoting strategy is used and

we keep rigorously to the pivotal sequence chosen in the analysis. The magnitude of the

potential pivot is tested against a threshold of �1=2jjAjj, where � is the machine precision
and jjAjj is the 1-norm of A. If it is less than this value it is immediately set to this value

(with the same sign) and the modi�ed entry is used as pivot. This corresponds to a single

precision perturbation to the original matrix. The result is that the factor is not exact

and iterative re�nement may then need to be used. Note that, after iterative re�nement,

we obtain an accurate solution in all the cases that we tested. If problems were still to

occur then extended precision BLAS could be used.

Both approaches use higher level BLAS to e�ect the elimination operations. However, in

MUMPS the frontal matrices are always square and are assumed dense and Level 3 BLAS are

used. It is possible that there are zeros in the frontal matrix especially if there are delayed

pivots or the matrix structure is markedly unsymmetric but the present implementation

2

Figure 1: Illustration of the asynchronous behaviour of the MUMPS factorization phase.

Process 0 4 4 5 MPI_Wait 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 1 4 108 5 108 5 5 5 5 5 5 5 Facto_L1 4 108 5 5 5 5 5 5 5 5 5

Process 2 4 108 5 108 108 5 5 5 5 5 5 5 108 5 108 5 108 5 5 5 5 5 5 5 4

Process 3 4 108 5 5 4 108 5 5 5 5 5 5 4 108 5 108 5 5 5 5 5 5 5 5 5

Process 4 5 5 4 108 5 5 5 5 5 5 5 108 5 5 5 5 5 5 5 5

Process 5 4 108 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2

Process 6 108 108 5 108 5 5 5 5 5 5 5 108 108 5 108 5 4 108 5 5 5 5 5 5 5

Process 7 108 2 2 2 2 2 2 2 2 108 108 4 108 5 108 5 5 5 5 5 5 5 5 5

MPI
Application

9.05s9.0s8.95s8.9s

Figure 2: Illustration of the relatively more synchronous behaviour of the SuperLU

factorization phase.

Process 0

Process 1 80 80 80 80 80 80 80 80 80

Process 2 80 80 80 80 80 80 80 80 80 80 80

Process 3

Process 4

Process 5 80 80 80 80 80 80 80 80 80 80

Process 6 80 80 80 80 80 80 80 80 80 80 80

Process 7

MPI
VT_API
Comm

9.32s9.3s9.28s

3

takes no advantage of this sparsity and all the counts measured assume the frontal matrix is

dense. In SuperLU, advantage is taken of sparsity in the blocks and usually the dense matrix

blocks are smaller than those used in MUMPS. In addition, SuperLU uses a more sophisticated

data structure to keep track of the irregularity in sparsity. Thus, the uniprocessor Mega
op

rate of SuperLU is not as good as that of MUMPS. The e�ect of these characteristics in reducing

performance is to some extent balanced by the reduction in
oating-point operations

because of the better exploitation of sparsity. As a rule of thumb, MUMPS will tend to

perform particularly well when the matrix structure is close to symmetric while SuperLU

can better exploit asymmetry.

The parallelism within MUMPS is at two levels. The �rst uses the structure of the

assembly tree, exploiting the fact that nodes which are not ancestors or descendents are

independent. The initial parallelism from this source (tree parallelism) is the number of

leaf nodes but this reduces to one at the root. The second level is in the subdivision of

the elimination operations through blocking of the frontal matrix. This blocking giving

rise to node parallelism, is either one-dimensional (referred to as 1D-node parallelism) or

two-dimensional (at the root and referred to as 2D-node parallelism). Node parallelism

depends on the order of the frontal matrix which, because of delayed pivots, is only

known at factorization time. Therefore this is determined dynamically. Each tree node is

assigned a processor a priori but the subassignment of blocks of the frontal matrix is done

dynamically.

SuperLU also uses two levels of parallelism although more advantage is taken of the

node parallelism through blocking of the supernodes. Because the pivotal order is fully

determined at the analysis phase, the assignment of blocks to processors can be done

statically a priori before the factorization commences. A 2D block-cyclic layout is used

and the execution can be pipelined since the sequence is predetermined.

We note that, even if the same ordering is input to the two codes, the computational

tree generated in each case will be di�erent. In the case of MUMPS, the assembly tree

generated by MC47 is used to drive the MUMPS factorization phase, while, for SuperLU, a

directed acyclic computational graph (dag) needs to be built.

In Figures 1 and 2, we use a vampir trace [25] to illustrate the typical parallel behaviour

of both approaches. These traces correspond to a zoom in the middle of the factorization

phase of matrix bbmat on 8 processors of the CRAY T3E. Black areas correspond to the

time spent in communications and related MPI calls. Each line between two processes

corresponds to one message transfer. From the plots we can see that SuperLU has distinct

phases for local computation and interprocess communication, whereas for MUMPS, it is

hard to distinguish when the process performs computation and when it transfers message.

This is due to the asynchronous scheduling algorithm used in MUMPS which may have better

chance of overlapping communication with computation.

3 Test environment

Throughout this paper, we will use a set of test problems to illustrate the performance

of our algorithms. Most results presented in this paper have been obtained on the Cray

T3E-900 (512 DEC EV-5 processors, 256 Mbytes of memory per processor, 900 peak

Mega
op rate per processor) from NERSC at Lawrence Berkeley National Laboratory,

4

although there has been a few experiments on a 35 processor IBM SP2 (66.5 MHertz

processor with 128 Mbytes of physical memory and 512 Mbytes of virtual memory and

266 peak Mega
op rate per processor) at GMD in Bonn, Germany that we used during

the PARASOL Project.

Note that Release 1.3.0.3 of the Cray operating system was used to obtain most results

in this paper. Some results (see Section 5) have been obtained with a more recent version

of the operating system (Release 1.3.0.4). As far as the performance of the two solvers is

concerned, the main di�erence between these two releases is that with the older release the

default size of the internal MPI bu�er was unlimited while, with the most recent release,

the default size is 4 Kbytes. The impact of the size of the MPI bu�er on the performance

of the two solvers is discussed in Section 5.

Real Unsymmetric Assembled (rua)

Matrix name Order No. of entries StrSym(�) Origin
bbmat 38744 1771722 0.54 Rutherford-Boeing (CFD)
ecl32 51993 380415 0.93 EECS Department of UC Berkeley
invextr1 30412 1793881 0.97 PARASOL (Poly
ow S.A.)
fidapm11 22294 623554 1.00 SPARSKIT2 (CFD)
garon2 13535 390607 1.00 Davis collection (CFD)
lhr71c 70304 1528092 0.00 Davis collection (Chem Eng)
lnsp3937 3937 25407 0.87 Rutherford-Boeing (CFD)
mixtank 29957 1995041 1.00 PARASOL (Poly
ow S.A.)
nasasrb.rua 54870 2677324 1.00 NASA (CFD)
rma10 46835 2374001 1.00 Davis collection (CFD)
twotone 120750 1224224 0.28 Rutherford-Boeing (circuit sim)
wang4 26068 177196 1.00 Rutherford-Boeing (semiconductor)

Real Symmetric Assembled (rsa)
Matrix name Order No. of entries Origin
bmwcra 1 148770 5396386 PARASOL (MSC.Software)
bmw3 2 227362 5757996 PARASOL (MSC.Software)
cranksg2 63838 7106348 PARASOL (MSC.Software)
nasasrb.rsa 54870 1366097 NASA (CFD)
hood 220542 5494489 PARASOL (INPRO)
ship 003 121728 4103881 PARASOL (Det Norske Veritas)

Table 1: Test matrices. (�) StrSym is the number of nonzeros matched by nonzeros in

symmetric locations divided by the total number of entries (that is, a symmetric matrix

has value 1.0).

Our test matrices come from the forthcoming Rutherford-Boeing Sparse Matrix

Collection [13] 1, the industrial partners of the PARASOL Project2, Tim Davis' collection3 ,

SPARSEKIT24 and the EECS Department of UC Berkeley5. The PARASOL test matrices

1Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2EU ESPRIT IV LTR Project 20160
3Web page http://www.cise.ufl.edu/�davis/sparse/
4Web page http://iftp.cs.umn.edu/pub/sparse/
5Matrix included in Rutherford-Boeing Collection

5

are available from Parallab (Bergen, Norway)6. There are larger matrices available from

this Web site but it is diÆcult to process them symbolically on a single processor.

Note that matrices mixtank and invextr1 have been modi�ed because of out-of-

range values (causing under
ow). To maintain, as much as possible, the same numerical

behaviour during the factorization all entries with an exponent smaller than -300 have

been set to numbers with the same mantissa but with an exponent of -300. (In fact the

out-of-range under
ow values in the initial matrix had an exponent equal to either -308

or -309.)

For each linear system, the right-hand side vector is generated so that the true solution

is a vector of all ones.

4 Impact of preprocessing and numerical issues

In this section, we �rst study the impact of the preprocessing of the matrix on both

solvers. In this preprocessing, we use column permutations to permute large entries onto

the diagonal. We report and compare both the structural and the numerical impact

of this preprocessing phase on the performance and accuracy of our solvers. After this

phase, a symmetric ordering (minimum degree or nested dissection) is used and we study

the relative in
uence of these orderings on the performance of the solvers in Section 4.2.

We will also comment on the relative cost of the analysis phase of the two solvers.

4.1 Use of a preordering to place large entries onto the diagonal and

comments on the cost of the analysis phase

In [14], Du� and Koster developed an algorithm for permuting a sparse matrix so that

the diagonal is large relative to the o�-diagonals. More precisely, when the matrix is

reordered and scaled, the resulting matrix has diagonal entries all equal to one in modulus

with o�-diagonal entries all of modulus less than or equal to one. They have also written a

computer code, MC64, to implement this algorithm. It is this code that we have used in our

subsequent studies. We use option 5 of MC64 which maximizes the product of the modulus

of the diagonal entries and then scales the permuted matrix so that it has diagonal entries

of modulus one and all o�-diagonals of modulus less than or equal to one.

The importance of this preordering and scaling is clear. In the case of the multifrontal

scheme, the analysis phase chooses a pivotal sequence based purely on the structure of

the matrix and assumes that diagonal pivoting is possible even in the unsymmetric case.

During the factorization phase, the pivot chosen by the analysis is checked for numerical

stability using a threshold pivoting criterion. If it passes the test, it is used as pivot and

the factorization follows exactly the route forecast by the analysis. If, however, it fails

the test, then the pivot is not chosen. The size of the Schur complement matrix, the so

called contribution block, sent to the parent node will then increase, potentially increasing

both storage and operation count for the factorization above that forecast by the analysis.

Intuitively, the less the number of times we need delay pivoting in this way, the better

we retain the good performance forecast by the analysis. If the initial matrix has large

6Web page http://www.parallab.uib.no/parasol/

6

diagonals (relative to the o�-diagonals), it does not guarantee that subsequent reduced

matrices will have this property but it should help.

For the SuperLU code, such a permutation can be even more crucial. If, for example,

the (1,1) entry were zero, the analysis in the original algorithm would fail. After the

modi�cations discussed later in Section 5, the analysis can process this matrix and static

pivoting in the SuperLU code would replace this entry by "1=2jjAjj where " is the machine
precision. A factorization will still be produced, although of a modi�ed matrix. Thus

the e�ect of this preordering can be very dramatic for SuperLU as we see in the results in

Table 3.

The MC64 code of [14] is quite eÆcient and so should normally require little time

relative to the matrix factorization even if the latter is executed on many processors while

MC64 runs on only one processor. Results in this section will show that it is not always

the case. Moreover, matrices which are unsymmetric but have a symmetric or nearly

symmetric structure are a very common problem class. The problem with these is that

MC64 performs an unsymmetric permutation and will tend to destroy the symmetry of

the pattern. Since both codes use a symmetrized pattern for the sparsity ordering (see

Section 4.2) and MUMPS uses one also for the symbolic factorization, the overheads in having

a markedly unsymmetric pattern can be high. Conversely, when the initial matrix is very

unsymmetric (as for example lhr71c) the unsymmetric permutation may actually help

to increase structural symmetry thus giving a second bene�t to the subsequent matrix

factorization.

We show the e�ects of using MC64 on some examples in Table 2. A more complete set

of results is provided in Table 17 of the Appendix. In Figure 3, we illustrate the relative

cost of the main steps of the analysis phase when MC64 is used to preprocess the matrix.

We see in Table 2 that, on very unsymmetric matrices (lhr71c and twotone), using

MC64 is really necessary to factor these matrices eÆciently. Both matrices have zeros in the

diagonal. Because of the static pivoting approach used by SuperLU, unless these zeros are

made nonzero by �ll-in and are then large enough, they will be perturbed in the SuperLU

factorization and only a factorization of a nearby matrix is obtained. Although MUMPS

can factor a matrix with zeros on the diagonal, the �ll-in obtained without MC64 makes

the use of MC64 necessary in this case also. In the case of MUMPS, the main bene�t from

using MC64 is more structural than numerical. The permuted matrix has in fact a larger

structural symmetry (see column 4) so that a symmetric permutation can be obtained on

the permuted matrix that is more eÆcient in preserving sparsity. SuperLU bene�ts in a

similar way from symmetrization because the computation of the symmetric permutation

is based on the same assumption even if SuperLU preserves better the nonsymmetric

structure of the factors by performing a symbolic analysis on a directed acyclic graph

and exploiting asymmetry in the factorization phase (compare, for example, results with

MUMPS and SuperLU on matrices lhr71c, mixtank and twotone).

The use of MC64 can also improve the quality of the factors, the numerical behaviour of

the factorization phase, and the number of steps of iterative re�nement required to improve

the accuracy of the solution. This is illustrated in Table 3 where we show the number of

steps of iterative re�nement required to reduce the componentwise relative backward error,

Berr = maxi
jrji

(jAj�jxj+jbj)i
[7], to machine precision (� 2.2e-16 on the CRAY T3E). Iterative

re�nement will stop when either the required accuracy is reached or the convergence rate

is too slow (Berr does not decrease by at least a factor of two). The true error is reported

7

Matrix Solver Ordering StrSym Nonzeros Flops
in factors
(�106) (�109)

bbmat MUMPS AMD 0.54 46.1 41.5
| MC64+AMD 0.50 44.3 36.9
SuperLU AMD 0.54 41.2 34.0
| MC64+AMD 0.50 40.2 31.2

invextr1 MUMPS AMD 0.97 31.2 35.8
| MC64+AMD 0.86 33.6 38.6
SuperLU AMD 0.97 24.8 22.6
| MC64+AMD 0.86 28.4 28.0

fidapm11 MUMPS AMD 1.00 16.1 9.7
| MC64+AMD 0.46 29.4 28.5
SuperLU AMD 1.00 14.0 8.9
| MC64+AMD 0.46 24.8 22.0

lhr71c MUMPS AMD(�) 0.00 285.8 1431.0
| MC64+AMD 0.21 11.8 1.4
SuperLU AMD 0.00 222.5 |
| MC64+AMD 0.21 7.6 0.5

mixtank MUMPS AMD 1.00 39.1 64.4
| MC64+AMD 0.91 45.7 81.5
SuperLU AMD 1.00 38.4 64.1
| MC64+AMD 0.91 41.2 64.6

twotone MUMPS AMD 0.28 235.0 1221.1
| MC64+AMD 0.43 22.1 29.3
SuperLU AMD 0.28 65.3 159.0
| MC64+AMD 0.43 11.9 8.0

Table 2: In
uence of permuting large entries onto the diagonal (using MC64) on the size

of factors and the number of operations to perform factorization. StrSym denotes the

structural symmetry after ordering. (�) Only the estimation given by the analysis is

provided (there was not enough memory to perform the factorization).

8

as Err =
jjxtrue�xjj

jjxtruejj
. This table illustrates the impact of the use of MC64 on the quality of

the initial solution obtained with both solvers prior to iterative re�nement. Additionally,

it shows that, thanks to numerical partial pivoting, the initial solution is generally more

accurate with MUMPS than with SuperLU. These two observations are further con�rmed on

a larger number of test matrices in Table 18 of the Appendix. In the case of the MUMPS

solver, MC64 can also result in a reduction in the number of o�-diagonal pivots and in the

number of delayed pivots. For example on matrix invextr1 the number of o�-diagonal

pivots drops from 1520 to 109 and the number of delayed pivots drops from 2555 to 42.

One can also see in Table 3 (results on matrix bbmat) that MC64 does not always improve

the numerical accuracy of the solution obtained with SuperLU.

SuperLU MUMPS

Matrix Iter. No MC64 MC64 No MC64 MC64

bbmat Err=2.1e-03 Err=5.6e-01 Err= 1.3e-06 Err=6.5e-08
0 Berr=4.0e-09 1.3e-05 Berr=7.4e-11 1.2e-11
1 Berr=7.7e-16 4.5e-11 Berr=3.2e-16 3.2e-16
2 Berr=5.2e-16 9.7e-15 Berr=3.2e-16 2.7e-16
3 Berr= 4.7e-16

Err= 2.5e-09 Err=2.4e-09 Err= 3.0e-09 Err=3.5e-09
lnsp3937 Err=1.6e-01 Err=2.6e-11 Err=9.2e-07 Err=3.6e-11

0 Berr=1.6e-07 3.5e-12 Berr=4.3e-08 1.5e-12
1 Berr=1.5e-08 2.2e-16 Berr=4.7e-16 2.4e-16
2 Berr=5.7e-10 2.5e-16 Berr=2.1e-16 1.9e-16
3 Berr=1.6e-11
4 Berr=4.2e-13
5 Berr=1.1e-14
6 Berr=3.2e-16
7 Berr=3.2e-16

Err=1.0e-11 Err=2.2e-11 Err=6.3e-12 Err=6.4e-12
garon2 Err=9.2e-07 Err=3.7e-12 Err=1.7e-10 3.4e-12

0 Berr=2.5e-10 2.4e-15 1.6e-15 2.1e-15
1 Berr=3.4e-16 3.8e-16 2.2e-16 2.3e-16
2 Berr=3.4e-16 3.4e-16 2.0e-16 1.8e-16

Err=2.9e-12 Err=3.3e-12 Err=1.6e-12 Err=1.3e-12

Table 3: Illustration of the convergence of iterative re�nement.

As one might expect, we see that, for matrices with a fairly symmetric pattern (see

results in Table 2 on matrix fidapm11), the use of MC64 leads to a signi�cant decrease

in symmetry which, for both solvers, results in a signi�cant increase in the number of

operations during factorization. We additionally recollect that the time spent in MC64

can dominate the analysis time of either solver (see Figure 3), even for matrices such as

fidapm11 and invextr1 for which it does not provide any gain for the subsequent steps.

Thus, for both solvers, the default should be to not use MC64 on fairly symmetric matrices.

In practice, the default option of the MUMPS package is such that MC64 is automatically

invoked when the structural symmetry is found to be less than 0:5. For SuperLU, zeros on

the diagonal and numerical issues must also be considered so that an automatic decision

during the analysis phase is more diÆcult.

9

Figure 3: Analysis time study

MUMPS

 bbmat ecl32 invextr1 fidapm11 lhr71c mixtank rma10 twotone wang4
0

5

10

15

20

25

30

35

40

45

50

S
ec

on
ds

Other
MC64
AMD

SuperLU

 bbmat ecl32 invextr1 fidapm11 lhr71c mixtank rma10 twotone wang4
0

5

10

15

20

25

30

35

40

45

50

S
ec

on
ds

Other
MC64
AMD

10

We �nally compare, in Figure 4, the time spent by the two solvers during the

analysis phase when reordering is based only on AMD (MC64 is not invoked). Since the

Figure 4: Time comparison of the analysis phases of MUMPS and SuperLU. MC64 preprocessing

is NOT used and AMD ordering is used.

 bbmat ecl32 invextr1 fidapm11 mixtank rma10 wang4
0

2

4

6

8

10

12

S
ec

on
ds

MUMPS
SuperLU

time spent in AMD is very similar in both cases, this gives a good estimation of the

cost di�erence of the analysis phase of the two solvers. During the SuperLU analysis

phase, all the unsymmetric structures involved during the factorization are computed and

the directed acyclic graph [17] of the unsymmetric matrix must be built and mapped

onto the processors. (Path searches in the directed acyclic graph are used to reduce

communications.)

With MUMPS, the main data structure handled during analysis is the assembly tree which

is produced directly as a by-product of the ordering phase. No further data structures

are introduced during this phase. Dynamic scheduling will be used during factorization so

that only a simple massage of the tree and a partial mapping of the computational tasks

onto the processors are performed during analysis.

4.2 Use of orderings to preserve sparsity

On matrices for which MC64 is not used we show, in Table 4, the impact of the choice of the

symmetric permutation on the cost of the numerical phase. As was observed in [3], the use

of nested dissection can signi�cantly improve the performance of MUMPS. We see here that

SuperLU will also, although to a lesser extent, bene�t from the use of a nested dissection

ordering. We examine this further in Section 5.1.3. We also notice that, independently

of the ordering used, SuperLU exploits the asymmetry of the matrix better than MUMPS.

(See results with matrix bbmat of structural symmetry 0:53 as well as results on more

unsymmetric matrices provided in Table 2.)

11

Matrix Ordering Solver NZ in LU Flops
�106 �109

bbmat AMD MUMPS 46.1 41.5
SuperLU 41.2 34.0

ND MUMPS 35.8 25.7
SuperLU 33.9 23.5

ecl32 AMD MUMPS 42.9 64.6
SuperLU 42.4 68.3

ND MUMPS 24.8 20.9
SuperLU 24.3 20.7

invextr1 AMD MUMPS 31.2 35.9
SuperLU 24.2 21.3

ND MUMPS 16.2 8.1
SuperLU 13.3 5.9

mixtank AMD MUMPS 39.1 64.4
SuperLU 38.2 64.4

ND MUMPS 19.6 13.2
SuperLU 18.6 12.9

nasasrb.rua AMD MUMPS 24.2 9.5
SuperLU 23.9 9.5

ND MUMPS 21.2 6.9
SuperLU 21.0 6.8

Table 4: In
uence of the symmetric sparsity reorderings on the cost of the factorization

phase of unsymmetric matrices. (MC64 is not used.)

12

5 Tuning our sparse solvers

In addition to enabling an in-depth comparison of our approaches to the solution of

sparse linear systems on distributed memory computers, the Franco-Berkeley collaboration

gave us the opportunity of introducing new features and improving our algorithms,

much of these motivated by the in-depth study. We discuss both code tuning and

algorithmic improvement of the two sparse solvers in this section before continuing with

our comparison, because we will use the improved versions of our codes in the results

described in the following sections.

Porting a code to a new platform always provides a good opportunity for improving

its performance not only on the target platform but also on previously implemented

environments. For both solvers, the �rst phase in the optimisation on a new platform

consists in adjusting a set of machine dependent parameters to �t the target machine.

These parameters are used to balance the parallel machine's speed of computation and

communication, and the algorithm's degree of parallelism. In the case of MUMPS, the porting

of the code to the 512 processor CRAY T3E-900 gave us the opportunity to study the

behaviour of the code on a larger number of processors than used in our previous work

[3, 6]. From our set of machine dependent parameters we choose appropriate parameters

to address this issue. Other algorithmic modi�cations were motivated by having more

processors available to us than formerly.

When porting SuperLU to the IBM SP2, we found that there is a rather big performance

gap between Level 2.5 and Level 3 BLAS. This motivated us to re�ne the numerical kernel

to always use Level 3 BLAS, see Section 5.1.1. Even on the same machine, we found that

MPI programming environment changes (for example the internal bu�er size) may result in

a dramatic performance di�erence, see Section 5.1.2. This enabled us to identify possible

enhancements to the SuperLU code to make its performance more robust.

We will occasionally, and only as complementary information, use MPI routine names

since it might help readers to understand which functionality of MPI has been used.

However, knowledge of MPI syntax is certainly not required to understand the algorithms.

Users interested in MPI should refer to the MPI user manual or to [12].

5.1 Description of the modi�cations made to SuperLU

SuperLU has a machine dependent parameter to control the granularity of the local

computation tasks and of the messages. This is called the maximum block size. Setting

it appropriately strikes a good balance between computation, communication and degree

of parallelism. For a larger value, we expect to have more local computation and less

communication. This is good for machines with relatively faster computation than

communication, such as the IBM SP2. Our experience showed that a good value for

this parameter on the IBM SP2 is around 40, while on the Cray T3E a good value is

around 24.

Another parameter is called relaxation, by which we mean that we relax the criteria

used to de�ne supernodes. That is, we may amalgamate several columns into a supernode

even if their row structures are di�erent so long as they do not di�er by too much. More

precisely, at the bottom of the elimination tree of AT +A, we perform the amalgamation

as follows: node i is merged with its parent node j when the subtree rooted at j has less

13

than or equal to r nodes, where, r is a small integer and can be set by the user. Setting

r = 1 disables amalgamation. For this amalgamated supernode, we will explicitly store

some zeros and perform operations on them. By doing so, we will have a larger block size

and will reduce the irregularity in the nonzero structure of the matrix. On the IBM SP2,

we can a�ord more aggressive amalgamation, and r is usually set to 10. On the Cray T3E,

we use a smaller number such as 6.

In the following subsections, we describe several algorithmic improvements that were

made or were discovered but still remain to be done in future developments.

5.1.1 Exploitation of Level 3 BLAS

In order to understand the numerical kernel routines used in SuperLU, we �rst explain how

we partition the matrix into blocks of submatrices, and how the blocks are assigned to the

processes.

Our matrix partitioning is based on the notion of an unsymmetric supernode introduced

in [11]. The supernode is de�ned over the matrix factor L. A supernode is a range (r : s)

of columns of L with the triangular block just below the diagonal being full, and the same

nonzero structure elsewhere (this is either full or zero). This supernode partition is used

as the block partition in both row and column dimensions. If there are N supernodes

in an n-by-n matrix, there will be N2 blocks of non-uniform size. Figure 5 illustrates

such a block partition. The o�-diagonal blocks may be rectangular and may not be full.

Furthermore, the columns in a block of U do not necessarily have the same row structure.

We call a dense subvector in a block of U a segment. The P processes are also arranged as

a 2D mesh of dimension Pr�Pc = P . By block-cyclic layout, we mean block (I; J) (of L or

U) is mapped onto the process at coordinate (I mod Pr, J mod Pc) of the process mesh.

During the factorization, block L(I; J) is only needed by the processes on the process

row (I mod Pr). Similarly, block U(I; J) is only needed by the processes on the process

column (J mod Pc). This partitioning and mapping can be controlled by the user. First,

the user can set the maximum block size parameter. The symbolic factorization algorithm

identi�es supernodes, and chops the large supernodes into smaller ones if their sizes exceed

this parameter. The supernodes may be smaller than this parameter due to sparsity and

the blocks are then formed along the supernode boundaries. Second, the user can set the

shape of the process grid, such as 2� 3 or 3� 2. The more square the grid, the better is

the performance expected.

In this 2D mapping, each block column of L resides on more than one process, namely,

a column of processes. For example in Figure 5, the second block column of L resides

on the column processes f1, 4g. Process 1 only owns two nonzero blocks, which are not

contiguous in the global matrix. The schema on the right of Figure 5 depicts the data

structure to store the nonzero blocks on a process. Besides the numerical values stored in

a Fortran-style array nzval in column major order, we need the information to interpret

the location and row subscript of each nonzero. This is stored in an integer array index,

which includes the information for the whole block column and for each individual block

in it. Note that many o�-diagonal blocks are zero and hence not stored. Neither do we

store the zeros in a nonzero block. Both lower and upper triangles of the diagonal block

are stored in the L data structure. A process owns parts of dN=Pce block columns of L,

so it needs dN=Pce pairs of index/nzval arrays.

14

Figure 5: The 2D block-cyclic layout and the data structure used in SuperLU.

1

.

.
1

. . .

.

...

...

index

Storage of block column of L

of blocks

nzval

block #

row subscripts

i1
i2

of full rows

block #

row subscripts

i1
i2

of full rows

LDA of nzval

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Process Mesh
0 1 2

3 4 5

K

L

K

1 2 0 1 2 00

3 4 5

U
4 5

210 0 1 2

3 4 5 3 4 5

0 1 2 0 21

3 4 5 3 4

0 1 2 0 1 2 0

0

0

3

3

3

Global Matrix

��
��
��
��

��
��
��
��

3

��
��
��
��
��

��
��
��
��
��

5

The main numerical kernel is a block update corresponding to the rank-k update to

the Schur complement: A(I; J) A(I; J) � L(I;K) � U(K; J), see Figure 6. In the

earlier versions of SuperLU, this computation was based on Level 2.5 BLAS. That is, we

call the Level 2 BLAS routine GEMV (matrix-vector product) but with multiple vectors

(segments), and the matrix L(I;K) is kept in cache across these multiple calls. This

to some extent mimics the Level 3 BLAS GEMM (matrix-matrix product) performance.

However, the di�erence between Level 2.5 and Level 3 is still quite large on many machines,

such as the IBM SP2. This motivated us to modify the kernel in the following way in order

to use Level 3 BLAS. For best performance, we distinguish two cases corresponding to the

two shapes of a U(K; J) block.

� The segments in U(K; J) are of same height, as shown in Figure 6 (a).

Since the segments are stored contiguously in memory, we can call GEMM directly.

� The segments in U(K; J) are of di�erent heights, as shown in Figure 6 (b).

In this case, we �rst copy the segments into a temporary working array T , with

some leading zeros padded if necessary. We then call GEMM using L(I;K) and T

(instead of U(K; J)). We will perform some extra
oating-point operations for those

padding zeros. The copying itself does not incur a run time cost, because we need to

access this part of data anyway and, once accessed, it will stay in cache throughout

the GEMM computation. The working storage T is bounded by the maximum block

size, which is a tunable parameter. For example, we usually use 40� 40 on the IBM

SP2 and 24� 24 on the Cray T3E.

15

Depending on the matrices, this Level 3 BLAS kernel improves the uniprocessor

factorization speed by about 20% to 40% on the IBM SP2. A similar performance gain

was also observed on the Cray T3E. It is clear that the extra operations are well o�set by

the bene�t of the more eÆcient Level 3 BLAS routines.

Figure 6: Illustration of the numerical kernels used in SuperLU.

(b) U(K, J) =
COPY

A(I, J) L(I, K) U(K, J)

− x

(a) U(K, J) =

= T

5.1.2 Pipelining and nonblocking send and receive

In this subsection, we �rst describe in detail how the parallel factorization algorithm

utilizes the pipeline e�ect. Then we discuss how to improve the performance robustness

by introducing immediate sends and receives. The following notation will be used in

Figures 7 and 8, and throughout the discussion. Matlab notation is used for integer ranges

and submatrices.

� Process IDs

{ PROCc(K) : the set of column processes that own block column K

For example, in Figure 5, PROCc(K) = f2; 5g.

{ PROCr(K) : the set of row processes that own block row K

For example, in Figure 5, PROCr(K) = f0; 1; 2g.

{ PK+1 : the process in PROCc(K + 1) \ PROCr(K + 1)

{ me : the process rank as illustrated in Figure 5

� Tasks labelled in Figure 8

{ F (: : :) : Factorize a block column or a block row7

{ S (: : :) : Send a block column or a block row

7There is also communication involved in this task, but it is negligible, and so is omitted in the

discussion.

16

{ R (: : :) : Receive a block column or a block row

{ U(K)(: : :) : Update the trailing submatrix using L(:; K) and U(K; :)

Figure 7 outlines the parallel sparse LU factorization algorithm. There are three steps

in the K-th iteration of the loop. In step (1), only processes PROCc(K) participate in

factoring block column L(K : N;K). In step (2), only processes PROCr(K) participate

in factoring block row U(K;K + 1 : N). The rank-b update by L(K + 1 : N;K) and

U(K;K+1 : N) in step (3) represents most of the work and also exhibits more parallelism

than the other two steps, where b is the block size of the K-th block column/row.

For ease of understanding, the algorithm presented in Figure 7 has been simpli�ed.

The actual implementation uses a pipelined organization so that processes PROCc(K+1)

will start step (1) of iteration K + 1 as soon as the rank-b update (step (3)) of iteration

K to block column K + 1 �nishes, before completing the update to the trailing matrix

A(K+1 : N;K+2 : N) owned by PROCc(K+1). Figure 8 illustrates this idea using Steps

K and K + 1 of the algorithm. In the �gure, we show the activities of the four process

groups along the time line. The path marked with the dashed line represents the critical

path, that is, the parallel runtime could be reduced only if the critical path is shortened.

The block factorization tasks \F (: : :)" are usually on the critical path, whereas the update

tasks \U (: : :)" are often overlapped with the other tasks. There is lack of parallelism for

the \F (: : :)" tasks in Steps (1) and (2), because only one set of column processes or row

processes participate in these tasks. This pipelining mechanism alleviates this problem.

For instance, on 64 processors of the Cray T3E, we observed speedups of between 10%

and 40% over the non-pipelined implementation.

Currently, for the message transfer tasks \S (: : :)" and \R (: : :)", we use MPI's standard

send and receive operations, mpi send and mpi recv. In Figure 8, we see idle time (longer

send) during the sending of \S (L(:; K + 1))" for process PK+1 on the critical path. This

could happen if the sender and receiver are required to handshake before proceeding.

That is, process PK+1 posts mpi send long before processes PROCr(K) post the matching

mpi recv, and the sender must be blocked to wait for mpi recv. This handshaking is not

always required with mpi send. Here is how the MPI standard de�nes its semantics [30,

pp. 32]:

\... It does not return until the message data and envelope have been safely

stored away so that the sender is free to access and overwrite the send bu�er.

... The message might be copied directly into the matching receiver bu�er, or

it might be copied into a temporary system bu�er. In the �rst case, the send

call will not complete until a matching receive call occurs. In the second case,

the send call may return ahead of the matching receive call, allowing a single-

threaded process to continue with its computation. The MPI implementation

may make either of these choices. It might block the sender or it might bu�er

the data. "

Very often, an MPI implementor chooses to use two di�erent protocols depending on

the length of the message:

� Short protocol (eager protocol) for small messages.

The sender copies the data into the system bu�er, and returns immediately without

17

Figure 7: Outline of the parallel factorization algorithm used in SuperLU.

for block K = 1 to N do

(1) if (me 2 PROCc(K))

Factorize block column L(K : N;K)

Send L(K : N;K) to the processes in my row who need it

else

Receive L(K : N;K) from one of the processes PROCc(K) (if I need it)

endif

(2) if (me 2 PROCr(K))

Factorize block row U(K;K + 1 : N)

Send U(K;K + 1 : N) to processes in my column who need it

else

Receive U(K;K + 1 : N) from one of the processes PROCr(K) (if I need it)

endif

(3) for J = K + 1 to N do

for I = K + 1 to N do

if (me 2 PROCr(I) and me 2 PROCc(J)

and L(I;K) 6= 0 and U(K; J) 6= 0)

Update trailing submatrix A(I; J) A(I; J)� L(I;K) �U(K; J)

endif

end for

end for

end for

Figure 8: Illustration of the pipeline at Steps K and K+1 during the SuperLU factorization.

Computation

(k−1)
U

(K:N, K:N)

U
(k)

(K+1:N, K+1:N)

F (U(K+1, :))F (L(:, K+1))U
(k)

(:, K+1) U
(k)

(:, K+2:N)

R (L(:, K+1))

R (L(:, K+1))U
(k)

(K+1:N, K+1:N) F (U(K+1, :))

U
(k)

(K+1:N, K+1:N)

r PROC (K)

F (L(:, K))

Other processes

(K:N, K:N)
(k−1)

Time

U

idle Wait for synchronization

PROC c (K)

Communication

R (L(:, K))

R (L(:, K))

(K:N, K:N) R (L(:, K))

U
(k−1)

S (L(:, K))

F (U(K, :)) R (L(:, K+1))S (U(K, :))

R (U(K, :)) i d l e S (L(:. K+1))

R (U(K, :))

R (U(K, :))

Critical Path

P
K+1

18

waiting for the matching receive. The additional copying usually increases the

message transfer overhead, however, in many asynchronous algorithms it may be

e�ectively smeared by overlapping the computation with the communication. This

is exactly what we observed from the SuperLU performance.

� Long protocol for large messages.

The sender �rst sends a \request-to-send" message to the receiver, then waits for the

receiver to send back a \ready-to-receive" message. The sender now transmits the

message data directly into the receiver's user space without bu�ering. This protocol

requires handshaking of the sender and receiver, but the message transfer overhead is

smaller than for the short protocol because we do not pay the extra cost of copying.

Whether a message is short or long is determined by the size of the MPI system bu�er.

For example, on the Cray T3E, the user may determine the size of the system bu�er by

setting an environment variable MPI BUFFER MAX. If a message length exceeds this value,

the long protocol will be used. When the short protocol is used, the idle time shown

in Figure 8 would disappear.

We have seen big di�erences in performance between setting MPI BUFFER MAX to

unlimited and to 4 Kbytes. Table 5 shows the timing di�erences. The most dramatic

is on 2 processors, where the di�erence is 74%.

Nprocs 1 2 4 8 16 32 64 128
Grid size 29 33 36 41 46 51 57 64
unlimited 57 62 53 62 63 66 76 81
4 Kbytes 58 108 92 103 104 102 119 111

Table 5: SuperLU factorization time in seconds for the cubic grid problems with

MPI BUFFER MAX set to unlimited and to 4Kbytes.

It is somewhat unpleasant that the performance of our code depends on the MPI system

bu�er size. We plan to make some algorithmic changes so that the code performance is

less dependent on the underlying MPI implementation and is more portable. Our proposal

is to introduce the nonblocking send and receive, mpi isend and mpi irecv as follows.

� For the sender, we simply replace mpi send by mpi isend. This could also eliminate

the idle time during the send \S (L(:; K + 1))" shown in Figure 8.

� For the receiver, we will post mpi irecv much earlier than we actually need the data.

For example, for processes PROCr(K), we could post \R (L(:; K + 1))" before

\U (A(K + 1 : N;K + 1 : N))". That is, as soon as we have received a message

using mpi wait, we will post the mpi irecv for the next message, before performing

the local computation with the just-arrived message.

Although it is not hard to implement this idea, we need to provide an extra bu�er on

the receiving process to take care of one outstanding message. We still have to experiment

with this scheme and see how sensitive the performance is to the size of the system bu�er.

19

5.1.3 Exploiting more parallelism from the sparsity and the elimination dags

One simple sparsity ordering strategy for unsymmetric matrices is to apply a symmetric

ordering algorithm on a symmetrized matrix. In the earlier versions of SuperLU, we usually

adopted the sparsity ordering strategies based on the structure of ATA, whether using

minimum degree or nested dissection. After the ordering, we computed an elimination

tree also based on the structure of ATA, and followed by another column reordering so

that the nodes of the tree are numbered in a postorder. The rationale of performing an

ordering on ATA is based on the following observation [16]. The structure of the symbolic

Cholesky factor of ATA is an upper bound on the structure of the LU factors for any row

permutations (corresponding to partial pivoting). So minimizing the upper bound tends

to minimize the actual nonzero structure of L and U . But since in the distributed memory

version of SuperLU, we use a static pivoting strategy in place of partial pivoting (i.e. the

pivots are chosen on the diagonal), the Cholesky factor of ATA is much too loose an upper

bound for the actual structure.

When pivots are chosen on the diagonal, the symmetrized matrix AT + A is better.

The Cholesky factor of AT +A gives a tighter bound on the LU factors than that of ATA.

For example, using an AMD ordering on the structure of AT + A, we have seen more than

twice the �ll-in reduction and even more reduction in operations, compared with using an

AMD ordering on ATA.

The current factorization algorithm has two limitations to parallelism. Here we explain,

by examples, what the problems are and speculate how the algorithm may be improved

in the future. In the following matrix notation, the zero blocks are left blank. For each

nonzero block we mark in box the process which owns the block.

� Parallelism from the sparsity.

Consider a matrix with 4-by-4 blocks mapped onto the 2-by-2 process mesh

2
6664

0 1 0 1

3 2 3

0 1 0

3 3

3
7775 :

Although node 2 is the parent of node 1 in the elimination tree (associated with

AT + A), not all processes in column 2 depends on column 1. Only process 1

depends on the L block on process 0. Process 3 could start factoring column 2 at

the same time as process 0 is factoring column 1, before process 1 starts factoring

column 2. But the current algorithm requires all the column processes to factorize

the column synchronously, thereby introducing idle time for process 3. We can

relax this constraint by allowing the diagonal process (3 in this case) to factor the

diagonal block and then send the factored block down to the o�-diagonal processes

(using mpi isend), even before the o�-diagonal processes are ready for this column.

This would eliminate some false interprocess dependencies and potentially reduce

the length of the critical path.

Note that this kind of independence comes from not only the sparsity but also the 2D

process-to-matrix mapping. An even more interesting study would be to formalize

20

these 2D task dependencies into a task graph, and perform some optimal scheduling

on it.

� Parallelism from the elimination dags.

Consider another matrix with 6-by-6 blocks mapped onto the 2-by-3 process mesh

2
666666664

0 1 0 2

4 3

2 0 2

4 3 5

0 1 2

3 5 5

3
777777775
:

Columns 1 and 3 are independent in the elimination dags. The column process sets

f0, 3g and f2, 5g could start factoring columns 1 and 3 simultaneously. However,

since process 2 is also involved in the update task of block (5; 6) associated with

Step 1 and our algorithm gives precedence to all the tasks in Step 1 to any task

in Step 3, process 2 does not factor column 3 immediately. We may change this

task precedence by giving the factor task of a later iteration higher priority than

the update tasks of the previous iterations, because the former is more like on the

critical path. This would exploit better the task independencies coming from the

elimination dags.

We expect the above improvements will have a large impact for very sparse and/or

very unsymmetric matrices, and for the orderings that give wide and bushy elimination

trees, such as nested dissection.

5.2 Description of the modi�cations made to MUMPS

The initial version of MUMPS will be referred to as Version 4.0 whereas the modi�ed version

will be referred to as Version 4.1.

Most of our machine dependent parameters that control the eÆciency of the code are

designed to take into account both the uniprocessor and multiprocessor characteristics of

the computers. Because of our dynamic distributed scheduling approach, we do not need as

precise a description of the performance characteristics of the computer as for approaches

based on static scheduling such as PaStiX [21]. Most of the machine dependent parameters

in MUMPS are associated with the block sizes involved in the parallel blocked factorization

algorithms of the dense frontal matrices. Our main objective is to maintain a minimum

granularity to eÆciently exploit the potential of the processor while providing suÆcient

tasks to exploit the parallelism available. We found that smaller granularity tasks could

be used on the CRAY T3E than on the IBM SP2 because node parallelism is relatively

more e�ective on the CRAY T3E than on the IBM SP2. This can be explained by the

relatively faster rate of communication to Mega
op rate on the CRAY T3E than on the

IBM SP2 (see Table 6). That is to say that the communication is relatively more eÆcient

on the CRAY T3E.

Our �rst algorithmic modi�cation was to modify our initial dynamic scheduling

algorithm to better control the distribution of the tasks to the processors. The critical

21

Computer CRAY T3E-900 IBM SP2

Frequency of the processor 450 MHertz 66 MHertz

Peak uniproc. performance 900 M
ops 264 M
ops

E�ective uniproc. performance 340 M
ops 150 M
ops

Peak communication bandwidth 300 Mbytes/sec 36 Mbytes/sec

Latency peak 4 �sec 40�sec

Bandwidth/E�ective performance 0.88 0.24

Table 6: Performance of the CRAY T3E-900 and the IBM SP2. The factorization of matrix

wang4 was used to estimate the e�ective uniprocessor performance of the computers.

part of this algorithm is when a process associated with a tree node decides to reassign

some of its work, corresponding to a one-dimensional partitioning of the rows, to a set

of so-called worker processes. We call such a node a one-dimensional parallel node. In

MUMPS Version 4.0, a �xed block size is used to partition the rows and work is distributed to

processes starting with the least loaded process. (The load of a process is determined by

the amount of work (number of operations) allocated to it and not yet processed.) Since

the block size is �xed, it is possible for a process in charge of a one-dimensional parallel

node to give additional work to processes that are already more loaded than itself. This

can happen near the leaf nodes of the tree where sparsity provides enough parallelism to

keep all processes busy. On the other hand, insuÆcient tasks might be created to provide

work to all idle processes. This situation is more likely to occur close to the root of the

tree.

In the new algorithm, the block size for the one-dimensional partitioning can be

dynamically adjusted by the process in charge of the node. Early in the processing of

the tree (that is, near the leaves) this should give a relatively bigger block size so reducing

the number of worker processes; whereas close to the root of the tree the block size will be

automatically reduced to compensate for the lack of parallelism in the assembly tree. We

bound the block size for partitioning a one-dimensional parallel node by an interval. The

lower bound is needed to maintain a minimum task granularity and control the volume

of messages. The upper bound of the interval is not critical (it is by default chosen at

about eight times the lower bound) but it is used in estimating the maximum size of the

communication bu�ers and of the factors and so should not be too large. This strategy has

been implemented for unsymmetric matrices. For symmetric matrices, we already have an

irregular partitioning of the non-fully summed rows and this would make such a dynamic

adjustment of the block size diÆcult to implement in an eÆcient way. In addition such a

change would be unlikely to produce the same bene�ts as in the unsymmetric (�xed block

size) case. We leave further study of this as an open problem for future consideration.

The second and main algorithmic modi�cation of MUMPS is the introduction of

asynchronous immediate receives (mpi irecv) during the factorization phase. In

Version 4.0, the communications are fully asynchronous and are based on an immediate

send (mpi isend). The receiver normally matches the asynchronous send with a test

for the availability of the message, potentially followed by an e�ective reception of the

message (mpi recv). A problem with this mechanism occurs when messages are much

larger than the MPI internal bu�er size (whose default size on the CRAY T3E is 4 Kbytes).

22

In this case, independently of the time di�erence between the issue of the send and

the issue of the receive, almost all the data to be exchanged will start to be sent

only when the receive process actually issues a receive instruction providing user space

required for the communication to proceed. This can very signi�cantly a�ect the potential

algorithmic overlapping between computation and communication. However, if we can use

an immediate receive (mpi irecv), which can be interpreted as having a separate \spawned"

process implementing the reception, the reception can progress in parallel with the process

that issued the mpi irecv, so that potentially the receive can have completed (that is the

complete message is available in the user space of the process issuing the mpi irecv) at

the time when we test for the availability of the message. Note that by doing so we have

also overlapped the copying from the MPI bu�er to the user space.

In this paragraph, we recall what is speci�c to a CRAY T3E implementation of MPI

communications that will be relevant to the analysis of the performance of our sparse

solvers. We focus on the di�erences between standard asynchronous communications

(mpi send and mpi recv) and immediate communications (mpi isend and mpi irecv) since

it corresponds to the two communication patterns respectively used by SuperLU and MUMPS.

On the CRAY T3E, only an MPI receive bu�er (no MPI send bu�er) of default size 4 Kbytes

(Release 1.3.0.4) is used to implement the communications. When the message to be sent

is smaller than the size of the MPI receive bu�er then the sender directly writes into the MPI

receive bu�er of the destination process. Note that this will occur independently of the

way the send is actually performed (mpi send or mpi isend) and the receiver performs the

reception (mpi recv or mpi irecv). As long as space is available in the MPI receive bu�er, the

send process will not be blocked and, when the receive process actually issues a reception,

only coping from the MPI bu�er to the user space will be involved. For large messages

(larger than the MPI receive bu�er) then the MPI bu�er is not used. The communication of

the e�ective data will only start when the receiver posts the receive instruction (mpi recv or

mpi irecv). Note that an MPI bu�er of unlimited size (as was the case in an earlier version

of the CRAY T3E MPI implementation, Release 1.3.0.3) would then result in causing

communications based on standard sends and receives (mpi send and mpi recv) to perform

very similarly to asynchronous immediate communications (mpi isend and mpi irecv).

We illustrate, in Table 7, the impact of the size of the MPI bu�er on the performance

of our algorithm on a large matrix of our test set. The standard receive (mpi recv) is used

to match the immediate send mpi isend. One �rst sees that, on our example, the size of

Size (in Bytes) of the MPI bu�er

0 128 512 1K 4K (�) 64K 512K 2Mega 8Mega

37.7 37.0 37.4 38.3 37.6 32.8 28.3 26.4 26.4

Table 7: In
uence of the MPI bu�er size on the time (in seconds) for the factorization of

matrix cranksg2 on 8 processors of the CRAY T3E. mpi recv is used to match mpi isend.
(�) default value on the CRAY T3E.

.

the MPI bu�er strongly in
uences the factorization time. Secondly, with the default size of

the MPI bu�er (4 Kbytes), the use of a standard receive (mpi recv) to match an immediate

asynchronous send (mpi isend) does not lead to a good overlapping of communication with

23

computation. As was explained before, matching the immediate sends (mpi isend) with

immediate receives (mpi irecv) should address both issues (that is, independence with

respect to MPI bu�er size and communication overlapping).

Although, in the context of MUMPS, the use of an immediate receive seems quite

natural, we explain in Section 5.2.1, why it required more algorithmic developments than

might have been expected. The main issue with using an immediate receive in our very

asynchronous environment is that we cannot tell a priori which message we are receiving.

That is, the mpi irecv request must be sent to receive any type of message from any

source. In our implementation, we avoid some possible added complications by restricting

ourselves to a single mpi irecv pending request. In Section 5.2.1, we explain this in more

detail, discuss the algorithmic issues, illustrate the di�erence in the behaviour of the code

(with and without mpi irecv), and analyse the performance gains.

Note that Table 7 refers to the internal MPI bu�ers. There can also be a bu�er de�ned

by the user which may be a separate staging area or may be directly in the working space

of the user process. In the following, we will always pre�x the term bu�er by MPI when we

mean the MPI internal bu�ers so that the use of the term bu�er, without this pre�x, will

always refer to the user-de�ned bu�er space. This will apply also to the use of the term

in the Tables and Algorithms.

The performance improvement due to the modi�cations described in this section

(including the use of immediate receive with the default size of 4 Kbytes for the MPI

bu�er) is illustrated in Table 8. We see that, on medium size symmetric and unsymmetric

matrices from our set, and using both a minimum degree based ordering (AMD) and a nested

dissection ordering (MeTiS), the gains mainly come from the better parallel behaviour of

the modi�ed version of the code.

Matrix Ordering Version Number of processors
1 2 4 8 16 32 64

hood MeTiS 4.0 | | 25.1 12.1 6.3 3.7 3.5
4.1 | | 15.0 8.2 4.4 4.0 2.4

nasasrb.rsa AMD 4.0 26.7 18.4 10.2 6.4 6.3 6.1 6.1
4.1 26.7 17.5 8.8 5.4 4.2 3.8 3.7

invextr1 MeTiS 4.0 | 23.1 18.0 15.6 14.9 14.4 14.5
4.1 | 23.1 11.8 8.5 7.5 7.0 6.8

nasasrb.rua AMD 4.0 | 23.1 18.0 15.6 14.9 14.4 14.5
4.1 | 23.1 11.8 8.5 7.5 7.0 6.8

wang4 AMD 4.0 30.6 19.0 11.2 7.3 5.5 5.0 4.4
4.1 30.6 18.9 11.1 7.0 5.2 4.3 3.9

Table 8: Time (in seconds) for factorization using two versions of the MUMPS solver. |

means not enough memory.

In the next section, when we study in detail the bene�t coming from our main

algorithmic modi�cation (that is, the use of asynchronous immediate receives), we will

use larger test matrices and perform a more extensive performance analysis.

24

5.2.1 Introducing immediate receives during factorization

In this section, we describe the modi�cations required for our introduction of asynchronous

immediate receives in MUMPS Version 4.0. For the sake of clarity, we �rst describe how we

modify the reception of messages involved during dynamic scheduling. We then show

how to modify this solution to handle all type of receptions involved in the MUMPS code.

We study the performance obtained on large symmetric and unsymmetric matrices and

illustrate, using vampir traces, the gains obtained on one of our largest problems.

As we mentioned in the previous sections, in MUMPS Version 4.0, communications

are asynchronous and based on immediate sends with explicit bu�ering in user space.

A Fortran module was designed for this purpose and is brie
y described in [6]. On

the destination process, the reception of the messages will be the key point for the

synchronization and scheduling of the work. In fact, message reception can be invoked in

the following three situations :

1. Dynamic scheduling:

Blocking and non-blocking receives are used to drive the scheduling of the tasks on

each process.

2. Task ordering:

A process may have to receive and treat a \late" message to be able to �nish its

current task.

3. InsuÆcient space in send bu�er:

To avoid deadlock, the corresponding process tries to receive messages until space

becomes available in its local send bu�er.

We recall that to avoid the drawback of centralised scheduling, distributed dynamic

scheduling is used. A pool of tasks private to each process is used to implement dynamic

scheduling. All tasks ready to be activated by a process are stored in the pool of tasks

local to the process. Each process then executes Algorithm 1.

Algorithm 1 Dynamic scheduling

While not all nodes processed

If [local pool empty] Then

blocking receive for a message; process the message

Else If [message available ({ mpi iprobe {)] then

receive and process message

Else

extract work from the pool, and process it

End If

End While

To modify the dynamic scheduling algorithm in the context of immediate receives, we

introduce in Algorithm 2 the procedure Try to receive and process message for which the

parameter blocking indicates whether we want to wait for the arrival of a message or not.

25

Algorithm 2 Dynamic scheduling with immediate receive

While not all nodes processed

blocking = false

If [local pool empty] blocking = true

Try to receive and process message (blocking)

If [no message received and pool not empty] Then

extract work from the pool and process it

End If

End While

The procedure Try to receive and process message is described by Algorithm 3. We

di�erentiate between the cases of a receive request pending and of the blocking wait for

a message. Finally, we always receive all short messages related to dynamic scheduling

(one integer holding the updated load of the other processes) that are ready to be received

before reactivating an immediate receive request. We remind the reader that the load of a

process is de�ned as the total number of operations ready to be performed. In fact, since

a maximum of one mpi irecv request is pending at a given time, part of the bene�t of

issuing mpi irecv might be lost if one does not force, at this point of the algorithm, the

reception of these short and trivial to process messages (in fact, they are really used to

emulate an mpi put in a portable way). If we take the example of a large message following

a single dynamic scheduling message then, until the small message is processed, it is not

possible to have the mpi irecv active on the large message. Thus we postpone the start

of the mpi irecv on the large message which might cause a delay in the sending process

because of situation 3. A delay in the sender could then cascade causing a blocking receive

because of a \late message" as in situation 2. An immediate receive request will thus be

issued each time a message is received and processed.

Actually, Algorithm 3 should also be designed to handle messages corresponding to

situation 2 (task ordering). During task ordering, we need to perform a blocking receive

on a so called \late message". Such cases are illustrated in [4, 6] and are due to the

fact that, although the algorithm is asynchronous, we still have to maintain a partial

order between the tasks. Our asynchronous algorithm has been designed so that, when

a \late message" needs to be received, we can guarantee that this message has already

been sent. A blocking receive on this message can thus safely be performed. Note that in

Algorithm 3, the parameter blocking only speci�es that we are blocked until the reception

of any message.

The main diÆculty introduced by the use of a blocking receive on a given message in

Algorithm 3 is that a \wrong" message might already be in our receive bu�er because

of an asynchronous pending receive request. Algorithm 4 shows how we have modi�ed

Algorithm 3 to solve this problem. An additional parameter LateMessage has been

introduced to characterise the expected message. Combined with blocking set to true,

LateMessage indicates the type of message (process source and message label) that is

expected. Setting LateMessage to \any message" will enable us to perform a blocking

receive on any message as required by the dynamic scheduling Algorithm 2.

For the sake of clarity, two new local variables have been introduced in Algorithm 4.

26

Algorithm 3 Try to receive and process message (blocking)

If [Receive request pending] Then

If [blocking] Then

Wait for the end of pending receive request ({ mpi wait {)

Process message

Else If [Message in bu�er ({ mpi test {)] Then

Process message

End If

Else

If [blocking] Then

Blocking receive for any message ({ mpi recv {)

Process message

Else If [Message ready to be received ({ mpi iprobe {)] Then

Receive message in bu�er ({ mpi recv {)

Process message

End If

End If

If [No receive request pending] Then

process all ready-to-be-received messages related to dynamic scheduling

Reactivate an immediate receive request ({ mpi irecv {)

End If

MessRecv indicates that a message has been received during the pending receive request.

RightMessage is true when the message received is the expected one (that is has the same

characteristics as LateMessage). Comments are in parentheses using small and slanted

fonts. Note that, if LateMessage is true in a call to Algorithm 4, then blocking must

also be true.

Between lines 5 and 8 of the algorithm we are, in the case mentioned before, of having

already received a message in our local bu�er which is not the expected one. Since we

know that the expected message has been sent we can do a blocking probe on the expected

message (line 7) and force the current process to wait for the availability of the late message

before processing the current message in the bu�er. This will enable us to perform a non-

blocking probe on the expected message at line 16 and conclude at line 18 that the message

must have been processed if it is not ready to be received. In fact, we must also guarantee

that the expected message has not be stored in the receive bu�er by an immediate receive

request. Therefore, we must be sure that between lines 7 and 16 another immediate receive

has not been issued. The only place which could cause the activation of an immediate

receive is at line 13 where Algorithm 4 might be called recursively. A receive can be issued

during the processing of almost any message giving rise to a situation 2 (task ordering)

or 3 (insuÆcient space in the send bu�er). To avoid such an occurrence, we suspend the

activation of immediate receives at line 12 and only reactivate it again at line 15. At line

31, we must then test whether activation of an immediate receive is authorised.

One �nal minor problem introduced by the use of immediate receive is that it must now

be the responsibility of the sending process to decide if the receive bu�er of the destination

27

Algorithm 4 Try to receive and process message(blocking, LateMessage)

0. MessRecv=false; RightMessage=true

1. If [Receive request pending] Then

2. If [blocking] Then

3. Wait for the end of pending request; ({ mpi wait {)

4. MessRecv=true ({ message is in bu�er {)

5. If [The message received 6= LateMessage] Then

6. RightMessage=false

7. Blocking probe for expected message ({ mpi probe {)

8. End If

9. Else If [Message in bu�er] MessRecv=true

10. End If

11. If [MessRecv] Then

12. If [Not RightMessage] Suppress activation of immediate receive

13. Process the message already in bu�er

14. If [Not RightMessage] Then

15. Re-authorise activation of immediate receive

16. If [LateMessage ready to be received ({ mpi iprobe {)] Then

17. Receive and process it

18. Else ({ expected message is already received and processed {)

19. End If

20. End If

21. End If

22. Else

23. If [blocking] Then

24. Blocking receive for any message ({ mpi recv {)

25. Process message

26. Else If [Message ready to be received ({ mpi iprobe {)] Then

27. Receive message in bu�er ({ mpi recv {)

28. Process message

29. End If

30. End If

31. If [No receive request pending and Immediate receive authorised] Then

32. Receive and process all ready-to-be-received messages related to dynamic scheduling

33. Reactivate an immediate receive request ({ mpi irecv {)

34. End If

28

process is large enough to process it. In Version 4.0 of the code, the destination process

always checked the size of the message to be received before receiving it. The maximum

size of the receive bu�er can only be estimated during the analysis phase because of the

delay in selecting pivots caused by numerical pivoting for stability.

Using immediate receive, we explain in the following why one can expect better

overlapping of communication and computation. In this context, a message is said to be

large if it is signi�cantly larger than the internal MPI system bu�ers. For large messages, we

see two reasons for obtaining an improvement. (For short messages we do not expect much

improvement.) First, with no immediate receive, if a large message is to be received then

the message might actually �nish being transferred/sent only when the receiver actually

performs the reception. Second, using immediate receive, the space in the send bu�er

becomes free earlier. Less idle time in the sending process, as in situation 3, might be

expected if the send bu�er is not saturated.

Matrix Ordering mpi irecv Number of processors
4 8 16 32 64

bmwcra 1 MeTiS OFF | | 24.7 20.4 11.4
ON | | 22.7 16.6 9.6

bmw3 2 MeTiS OFF | 24.6 16.4 9.2 6.2
ON | 22.6 15.9 8.2 5.7

cranksg2 MeTiS OFF | 37.6 22.1 13.3 8.9
ON | 26.4 18.1 11.3 8.0

ship 003 MeTiS OFF | | 37.3 24.5 17.9
ON | | 30.8 21.1 15.7

bbmat AMD OFF 46.0 25.7 19.9 17.2 12.9
ON 45.2 24.7 18.0 15.2 12.5

ecl32 AMD OFF 56.7 38.4 26.5 19.9 15.3
ON 54.0 35.4 23.4 18.4 15.7

invextr1 AMD OFF 37.7 26.9 19.4 21.6 20.0
ON 36.8 25.6 19.5 21.3 18.9

mixtank AMD OFF 57.3 36.7 25.4 23.2 17.1
ON 52.9 33.5 24.1 19.7 16.9

Table 9: In
uence of the use of mpi irecv on the time (in seconds) for factorization of

MUMPS Version 4.1. | means not enough memory

On our largest test matrices we show, in Table 9, the impact of using immediate

receive during the factorization phase. Version 4.1 of MUMPS with the same tuning of

machine dependent parameters has been used to get all the results (with and without

immediate receive) reported in Table 9. The default size of our send bu�er is twice the

size of the largest message. Note that the performance of Version 4.1 reported in Section 6

is slightly better. In fact, the results shown in this section were obtained with the most

recent release of the CRAY operating system (1.3.0.4) for which the default size of the MPI

bu�ers is 4 Kbytes. All results provided in Section 5 were obtained using an older release

(Release 1.3.0.3) for which the size of the MPI bu�er was unlimited. Although MUMPS with

mpi irecv is not very sensitive to the size of the MPI bu�ers, this is a good reason for the

small performance di�erence.

29

One can see that relatively larger gains are obtained on a smaller number of

processors. Symmetric matrices seems to bene�t more from this modi�cation. Node

parallelism involves a relatively larger number of messages on symmetric matrices than

on unsymmetric matrices (see results on 64 processors in Table 26 of the Appendix) that

might saturate more the send bu�er and the internal MPI bu�ers.

Matrix Ordering Number of processors
4 8 16 32 64

Maximum message size

bmwcra 1 MeTiS | | 7.3 2.7 2.2
bmw3 2 MeTiS | 10.0 2.2 1.2 1.3
cranksg2 MeTiS | 7.0 4.0 2.1 1.6
ship 003 MeTiS | | 5.6 2.6 2.1
bbmat AMD 4.8 3.0 2.6 2.5 2.4
ecl32 AMD 12.9 6.1 3.4 3.4 3.2
invextr1 AMD 7.2 5.1 3.4 2.8 2.5
mixtank AMD 16.0 7.3 4.3 3.9 3.9

Average Communication volume

bmwcra 1 MeTiS | | 34 33 18
bmw3 2 MeTiS | 25 25 17 9
cranksg2 MeTiS | 31 30 23 18
ship 003 MeTiS | | 65 60 34
bbmat AMD 35 35 33 32 19
ecl32 AMD 64 63 56 45 26
invextr1 AMD 60 43 33 28 15
mixtank AMD 77 115 109 93 51

Table 10: Maximum message size (in Mbytes) and average volume of communication per

processor (in Mbytes) during factorization. { means not enough memory.

In Table 10, we show the maximum size of the messages and the average volume of

communication. One can see that, because of node level parallelism, the maximum size of

the messages generally reduces when increasing the number of processors [3]. It explains

why, for a �xed problem, larger relative gains are obtained in Table 9 on a smaller number

of processors. We also see that the total volume of messages can also be a good indicator

of the gain that can be expected from the use of immediate receives.

To further analyse the gain due to the use of immediate receives, we show in Figures 9

and 10 the execution traces for the factorization of matrix cranksg2 (using 8 processors of

the CRAY T3E). Messages have been suppressed to see better the proportion of execution

time used by MPI communications. One can see that MPI takes signi�cantly more time

when immediate receive is o� than when it is on. The summary chart of the same traces

in Figure 11 shows that using immediate receives reduces the time spent in MPI calls by

almost a factor of three.

To conclude this study, we show (compare the results in Tables 7 and 11), as one

might expect from the previous discussion, that the new code based on immediate receives

(mpi irecv) is very much less sensitive to the size of the internal MPI bu�er than the initial

version based on standard receives (mpi recv).

30

Figure 9: Immediate receive OFF; Trace of the factorization phase of matrix cranksg2

using 8 processors of the CRAY T3E. Black areas correspond to the time spent in MPI.

Process 1 1 1 1 1 1 1 1 MPI_Recv 1 4 80 79 79 79

Process 2 1 1 1 1 1 1 MPI_Probe 79 79 79 79 79 79

Process 3 1 1 1 1 1 1 1 MPI_Recv Facto_L1 79 79 79 79

Process 4 1 1 1 1 1 1 1 80 MPI_Recv MPI_Recv 1 1 1 1 1

Process 5 1 1 1 1 80 MPI_Recv MPI_Recv 1 1 80 80 79 79

Process 6 1 1 1 1 1 1 80 MPI_Recv MPI_Recv 1 1 80

Process 7 1 1 1 1 1 1 1 1 79 MPI_Probe 79 79 79 79 79 79

Process 8 1 1 1 1 1 1 1 Facto_L1 79 79 79 79 79

MPI
VT_API
Application

Figure 10: Immediate receive ON; Trace of the factorization phase of matrix cranksg2

using 8 processors of the CRAY T3E. Black areas correspond to the time spent in MPI.

Process 1 1 1 1 1 1 1 1 1 1 Facto_L1 4 4

Process 2 1 1 1 1 1 1 1 108 108 108

Process 3 1 1 1 1 1 1 1 1 1 Facto_L1

Process 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Process 5 1 1 1 1 1 1 1 1 1 1 1 108

Process 6 1 1 1 1 1 1 1 1 1 1 1 Facto_L1

Process 7 1 1 1 1 1 1 1 1 Facto_L1 108 108 108

Process 8 1 1 1 1 1 1 1 1 1 1 1 1 3 Facto_L1

MPI
VT_API
Application

Figure 11: Summary chart on the use of immediate receive during the MUMPS factorization

phase (Matrix cranksg2, ND ordering, 8 processors of the CRAY T3E).

mpi irecv OFF mpi irecv ON

10.0s 20.0s

Application

MPI

VT_API

10.0s 20.0s

Application

MPI

VT_API

31

Size (in Bytes) of the MPI bu�er

0 128 512 1K 4K (�) 64K 512K 2Mega 8Mega

27.1 27.3 26.5 26.6 26.4 26.2 26.2 26.4 26.2

Table 11: In
uence of the MPI bu�er size on the time (in seconds) for the factorization of

matrix cranksg2 on 8 processors of the CRAY T3E. mpi irecv is used to match mpi isend.
(�) default value on the CRAY T3E.

32

6 Performance analysis on general matrices

6.1 Performance of the numerical phases

In this section, we compare the performance and study the behaviour of the numerical

phases (factorization and solve) of the two solvers. For all the results provided in this

section we have used Release 1.3.0.3 of the Cray operating system (with MPI internal bu�ers

of unlimited size). On the most recent release of the operating system (Release 1.3.0.4)

the default size for MPI internal bu�ers is 4 Kbytes. This could result in a performance

degradation for both solvers although relatively more for SuperLU than for MUMPS (see

results and discussion in Section 5).

The same orderings will always be used so that we can guarantee that the same input

problem is given to the numerical phases. We recall that this does not mean that both

solvers will perform the same number of operations. In general, SuperLU performs fewer

operations than MUMPS because it exploits better the asymmetry of the matrix although the

execution time is less for MUMPS because of the Level 3 BLAS e�ect that we discuss later.

Both nested dissection and minimum degree orderings will be considered since we want to

show that the two solvers have very di�erent sensitivity to the choice of the ordering.

A complete set of results is available in the Appendix. We report, in this section, on

results for the largest problems from our set. Both symmetric and unsymmetric matrices

will be considered although we mainly focus on unsymmetric ones because only MUMPS has

an option to exploit symmetry. Although results are very often matrix dependent, we will

try, as much as possible, to identify some general properties of the two solvers. We should

point out that the maximum dimension of our unsymmetric test matrices is only 120750

(see Table 1).

6.1.1 Study of the factorization phase

We show in Table 12 the time spent during the factorization phase of both solvers. On a

relatively small number of processors (less than 32) MUMPS is generally faster than SuperLU

for two reasons.

First, MUMPS handles symmetric and more regular data structures better than SuperLU,

because MUMPS uses Level 3 BLAS kernels on relatively bigger blocks than those arising

in the Level 3 BLAS kernels of SuperLU. As a result, the Mega
op rate of MUMPS on one

processor is on average about twice that of the SuperLU factorization. This is also evident in

the results on smaller test problems in Table 23 and from the results on 3D grid problems

in Table 29 of the Appendix. Note that, even on matrix twotone, for which SuperLU

performs three times fewer operations than MUMPS, MUMPS is over 2.5 times faster than

SuperLU on four processors. On a relatively small number of processors, we also notice

that SuperLU does not always fully bene�t from the reduction in the number of operations

(see Table 20) due to the use of a nested dissection ordering (see the results with SuperLU

on matrix bbmat using 4 processors).

Furthermore, one should notice that, on matrices that are structurally very

unsymmetric, SuperLU can be much less scalable than MUMPS. For example, on matrix

lhr71c (see the results in Table 23 of the Appendix), speedups of 1.8 and 8.3 are obtained

with SuperLU and MUMPS, respectively. This is due to two parallel limitations of the

current SuperLU algorithm described in Section 5.1.3. First, SuperLU does not fully exploit

33

the parallelism of the elimination DAGs. Second, the pipelining mechanism does not

fully bene�t from the sparsity of the factors (a blocked column factorization should be

implemented). This also explains why SuperLU does not fully bene�t, as in the case in

MUMPS, from the better balanced tree generated by a nested dissection ordering.

On a larger number of processors (greater than or equal to 32), we see that the

ordering very signi�cantly in
uences the performance of the codes and, in particular,

the performance of MUMPS which generally outperforms SuperLU using a nested dissection

ordering even on a large number of processors. On the other hand, if we use the minimum

degree ordering, SuperLU is generally faster than MUMPS on a large number of processors.

We also see that, on most of our unsymmetric problems, neither of the solvers provides

enough parallelism to bene�t from using more than 128 processors. The only exception

is matrix ecl32 using the AMD ordering (requiring 64 � 109
ops for the factorization),

for which only SuperLU continues to decrease the factorization time up to 512 processors.

Our lack of other large unsymmetric systems gives us few data points in this regime but

one might expect that, independent of the ordering, the 2D distribution used in SuperLU

should provide better scalability (and hence eventually better performance) on a large

number of processors than the mixed 1D and 2D distribution used in MUMPS. To further

Matrix Order. Solver Number of processors
1 4 16 32 64 128 256 512

Unsymmetric matrices

bbmat AMD MUMPS | 45.7 16.5 13.7 11.9 11.2 9.1 12.6
SuperLU | 66.1 22.8 14.6 11.2 8.9 9.9 9.1

ND MUMPS | 39.4 13.2 11.9 9.9 9.2 9.4 11.6
SuperLU | 137.8 41.2 25.2 17.3 12.4 14.3 14.7

ecl32 AMD MUMPS | 54.6 23.8 17.6 15.6 15.1 16.0 16.5
SuperLU | 107.4 35.8 20.6 14.9 11.1 10.9 8.9

ND MUMPS | 24.7 9.7 7.7 6.9 7.0 7.0 8.9
SuperLU | 49.0 16.7 12.0 9.9 8.8 9.9 9.5

invextr1 AMD MUMPS | 36.0 21.7 19.2 19.1 18.8 16.6 18.6
SuperLU | 56.3 17.2 11.0 8.3 6.0 7.1 6.6

ND MUMPS 31.8 13.2 4.5 3.9 3.8 4.4 5.4 6.3
SuperLU 68.2 23.1 9.1 6.7 5.7 4.7 6.1 5.8

mixtank AMD MUMPS | 53.3 24.3 20.4 17.0 15.9 16.4 18.2
SuperLU | 80.9 23.7 14.4 9.8 6.7 7.0 6.5

ND MUMPS 40.8 13.0 5.6 4.4 3.9 4.2 4.2 5.4
SuperLU 88.1 28.8 10.1 7.0 5.3 4.5 5.6 5.5

twotone MC64 MUMPS | 40.3 18.6 14.7 14.4 14.3 14.0 14.3
+AMD SuperLU | 106.2 32.7 25.7 21.0 16.2 21.2 18.5

Symmetric matrices

ship 003 ND MUMPS | | 29.3 17.3 14.1 12.6 11.8 14.8
SuperLU(�) | | | 45.1 31.3 24.2 23.0 19.8

bmwcra 1 ND MUMPS | | 21.9 12.8 8.8 7.1 6.5 7.9

Table 12: Factorization time of large test matrices on the CRAY T3E. \|" indicates not

enough memory. (�)SuperLU computes an LU factorization of matrix ship 003 and does

not exploit the symmetry in the matrix.

34

analyse the scalability of our solvers, we consider three dimensional regular grid problems

in Section 7. On our relatively larger symmetric problems (ship 003 and bmwcra 1), we

see that performance gains can be obtained on up to 256 processors with MUMPS but on up

to 512 processors with SuperLU. This again gives an indication of the better scalability of

SuperLU compared to MUMPS.

To better understand the performance di�erences observed in Table 12 and to identify

the main characteristics of our solvers, we show, in Figures 12, 13, and 14, the average

communication volume on 4 and 64 processors respectively. The speed of communication

can depend very much on the size of the messages and we thus indicate, in Figure 15,

the average message size on 64 processors. A complete set of results is provided in

the Appendix (see Table 26). To overlap communication by computation, MUMPS uses

fully asynchronous communications (during both sends and receives). The use of non-

blocking sends during the more synchronous scheduled approach used by SuperLU also

enables overlapping between communication and computation.

Figure 12 shows that, on 4 processors and with nested dissection, SuperLU involves

signi�cantly more communication per processor than MUMPS. On 4 processors and with

the minimum degree ordering, the volume of communication of the two solvers is globally

\comparable". On 16 processors (Figure 13), the volume of communication of our two

solvers using nested dissection is of the same order while, when using a minimum degree

ordering, MUMPS involves more communication than SuperLU. On 64 processors (Figure 14)

and on matrices for which MUMPS continues subdividing nodes to provide more parallelism

than on 16 processors (see for example mixtank with AMD, ecl32 with AMD, or bbmat with

nested dissection), the communication volume of MUMPS remains or becomes greater than

that of SuperLU.

Figure 15 shows that, although the average volume of messages with 64 processors

can be comparable with both solvers, there is between one and two orders of magnitude

di�erence in the average size of the messages. This is due to the much larger number of

messages involved in a fan-out approach (SuperLU) with respect to a multifrontal approach

(MUMPS). Note that, with MUMPS, the number of messages does include the messages (one

integer) required by the dynamic scheduling algorithm to update the load of the processes.

The average volume of communication per processor of each solver depends very much

on the number of processors. While, with SuperLU, increasing the number of processors

will generally decrease the communication volume per processor (see Figure 16) it is not

always the case with MUMPS (see Figure 17). This should contribute to a better eÆciency

of SuperLU with respect to MUMPS on a large number of processors.

35

Figure 12: Average communication volume (4 processors).

 bbmat ecl32 invextr1 mixtank twotone
0

10

20

30

40

50

60

70

80

90

100

M
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

Figure 13: Average communication volume (16 processors).

 bbmat ecl32 invextr1 mixtank twotone
0

20

40

60

80

100

120

140

M
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

36

Figure 14: Average communication volume (64 processors).

 bbmat ecl32 invextr1 mixtank twotone
0

10

20

30

40

50

60

M
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

Figure 15: Average message size (64 processors).

 bbmat ecl32 invextr1 mixtank twotone
0

5

10

15

20

25

K
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

37

Figure 16: Average volume of communication (SuperLU and nested dissection).

 bbmat ecl32 invextr1 mixtank
0

10

20

30

40

50

60

70

80

M
by

te
s

4 Procs
16 Procs
64 Procs

Figure 17: Average volume of communication (MUMPS and nested dissection).

 bbmat ecl32 invextr1 mixtank
0

10

20

30

40

50

60

70

80

M
by

te
s

4 Procs
16 Procs
64 Procs

38

6.1.2 Study of the solve phase

We already discussed in Section 4.1 the di�erence in the numerical behaviour of the two

solvers, showing that, in general, SuperLU will involve more steps of iterative re�nement

than MUMPS to obtain the same accuracy in the solution.

In this section, we focus on the time spent to obtain the solution. A complete set

of results is provided in the Appendix (Tables 24 and 25). We apply iterative re�nement

improve the solution only when the backward error (Berr) is larger than
p
". The iterative

re�nement will then stop when the backward error has reached the required accuracy. The

iterative re�nement procedure involves not only forward and backward solves but also

products with the original matrix to compute the backward error used in the stopping

criterion. With MUMPS, the user can provide the input matrix in a very general distributed

format [3]. This functionality was used to parallelize the matrix-vector products. With

SuperLU, the parallelization of the matrix-vector product was easier because the input

matrix is duplicated onto all the processors.

We �rst observe (compare the results in Tables 12 and 13) that, on a small number of

processors (less than 8), the solve phase is almost two orders of magnitude less costly than

the factorization. On a large number of processors, because our solve phases are relatively

less scalable than the factorization phases, the di�erence drops to one order of magnitude.

On applications for which a large number of solves might be required per factorization this

could become critical for the performance and might have to be addressed in the future.

The performance reported in Table 13 shows that the regularity in the structure of

the matrix factors generated by the factorization phase of MUMPS in general leads to a

faster solve phase than that of SuperLU for up to 256 processors. On 512 processors,

the solve phase of SuperLU is usually faster than that of MUMPS although in all cases the

fastest solve time is recorded by MUMPS usually on a fewer number of processors. The cost

of iterative re�nement can signi�cantly increase the cost of obtaining a solution. With

SuperLU, because of static pivoting, it is more likely that, on numerically diÆcult matrices

(see bbmat, invextr1 and mixtank) iterative re�nement will be required to obtain an

accurate solution. With MUMPS, the use of partial pivoting during the factorization will

reduce the number of matrices for which iterative re�nement is required. (In our set, only

invextr1 requires iterative re�nement.) For both solvers, the use of MC64 to preprocess

the matrix might also be considered to reduce the number of steps of iterative re�nement

and even avoid the need to use it in some cases (see Section 4.1).

39

Matrix Order. Solver Number of processors

1 4 16 32 64 128 256 512

Unsymmetric matrices

bbmat AMD MUMPS | 0.53 0.31 0.32 0.32 0.36 0.40 0.56

SuperLU | 1.77 1.05 1.00 0.80 0.70 0.70 0.66

| + (IR) | 3.38 1.60 1.27 1.05 0.90 0.89 0.79

ND MUMPS | 0.38 0.26 0.29 0.31 0.35 0.37 0.54

SuperLU | 2.12 1.28 1.12 0.99 0.82 0.85 0.68

| + (IR) | 4.91 2.41 1.47 1.32 1.04 1.04 0.87

ecl32 AMD MUMPS | 0.80 0.40 0.41 0.40 0.45 0.52 0.83

SuperLU | 2.09 1.54 1.46 1.10 0.98 0.73 0.57

ND MUMPS | 0.53 0.30 0.28 0.28 0.43 0.39 0.48

SuperLU | 1.76 1.38 1.41 1.05 0.93 0.68 0.53

invextr1 AMD MUMPS | 0.57 0.46 0.41 0.40 0.58 0.54 0.60

| + (IR) | 1.42 1.02 0.96 0.94 1.03 1.16 1.38

SuperLU | 0.91 0.56 0.54 0.41 0.38 0.34 0.32

| + (IR) | 1.57 0.86 0.76 0.61 0.55 0.51 0.48

ND MUMPS 0.59 0.31 0.18 0.18 0.18 0.25 0.26 0.37

| + (IR) 2.10 0.48 0.50 0.48 0.47 0.51 0.62 0.92

SuperLU 1.45 0.77 0.55 0.51 0.46 0.36 0.34 0.28

| + (IR) 2.69 1.58 0.90 0.74 0.67 0.54 0.52 0.44

mixtank AMD MUMPS | 0.56 0.39 0.41 0.40 0.41 0.49 0.59

SuperLU | 1.10 0.69 0.64 0.51 0.41 0.36 0.31

ND MUMPS 0.67 0.27 0.16 0.16 0.15 0.19 0.24 0.35

SuperLU 1.47 0.90 0.65 0.58 0.49 0.33 0.30 0.24

twotone MC64 MUMPS | 1.03 0.97 0.98 0.98 1.03 1.13 1.41

+AMD SuperLU | 3.26 2.52 2.24 1.84 1.56 1.38 1.21

| + (IR) | 25.84 12.63 4.18 3.64 2.27 1.84 1.55

Symmetric matrices

ship 003 ND MUMPS | | 0.87 0.69 0.71 0.66 0.74 0.88

SuperLU | | | 1.45 1.18 1.04 0.89 0.70

bmwcra 1 ND MUMPS | | 0.80 0.55 0.43 0.40 0.47 0.61

Table 13: Solve time for large matrices. \ | + (IR) " : time spent to improve the initial

solution using iterative re�nement. Note that, on the symmetric matrix ship 003, SuperLU

uses the LU factors to compute the solution.

40

6.2 Memory usage

We study, in this section, the memory used during factorization as a function of both the

algorithm and the number of processors. The best ordering on a subset of the large test

problems is used to illustrate our discussion. A complete set of results is reported in the

Appendix (see Table 27).

We want �rst to point out that, because of the dynamic scheduling approach and the

partial pivoting with threshold used in MUMPS, the analysis phase cannot fully predict the

space that will be required on each processor and an upper bound is therefore used for the

memory allocation. With the static task mapping approach used in SuperLU, the memory

used can be predicted during the analysis phase. In this section, we only compare the

memory actually used by the solvers during the factorization phase. This includes reals,

integers and communication bu�ers. Storage for the initial matrix is, however, not included

but we have seen, in [3], that the input matrix can also be provided in a general distributed

format and can be handled very eÆciently by the solver.

We notice, in Figures 18 and 19, the signi�cant reduction in the required memory when

increasing the number of processors. We also see that, in general, SuperLU usually requires

less memory than MUMPS although this is less so when many processors are used showing a

better memory scalability of MUMPS. One can observe (see also Table 27) that there is little

di�erence between the average and maximum memory usage showing both algorithms are

well balanced, with SuperLU marginally the better of the two.

41

Figure 18: Average memory used per processor.

 bbmat ecl32 invextr1 mixtank twotone
0

20

40

60

80

100

120

140

160

180

M
by

te
s

MUMPS (4procs)
SuperLU (4procs)
MUMPS (64procs)
SuperLU (64procs)

Figure 19: Maximum memory used per processor.

 bbmat ecl32 invextr1 mixtank twotone
0

20

40

60

80

100

120

140

160

180

M
by

te
s

MUMPS (4procs)
SuperLU (4procs)
MUMPS (64procs)
SuperLU (64procs)

42

7 Performance analysis on 3-D grid problems

To further analyse and understand the main characteristics of our solvers, we report in

this section results obtained for the 11-point discretization of the Laplacian operator on

three-dimensional (NX, NY, NZ) grid problems.

We �rst consider a set of 3D cubic grids (NX=NY=NZ) on which we only consider

a nested dissection ordering. Since we are also interested in the behaviour of our solvers

using minimum degree, we also consider a set of rectangular grids (NX, NX/4, NX/8) for

which both orderings (nested dissection and AMD) are applied. The set of grids is de�ned

such that the number of operations (using nested dissection) remains almost constant. The

size of the grids used, the number of operations and the complete timings are reported in

Table 28 of the Appendix. While increasing the number of processors, we have tried as

much as possible to maintain a constant number of operations per processor while keeping

as much as possible the same shape of grids. This was not always possible (see results in

Appendix), so that the number of operations per processor is not completely constant.

Since all our test matrices are symmetric, we can use MUMPS to compute either an LDLT

factorization, referred to as MUMPS-SYM, or an LU factorization, referred to as MUMPS-UNS.

SuperLU will compute an LU factorization. Note that, for a given matrix, the unsymmetric

solvers (SuperLU and MUMPS-UNS) perform roughly twice as many operations as MUMPS-SYM.

To overcome the problem of the number of operations per processor being non-

constant, we �rst report in Figures 20, 22 and 24, the Mega
op rate per processor for our

three approaches on cubic grids using nested dissection, rectangular grids using nested

dissection, and rectangular grids using AMD, respectively. In our context, the Mega
op rate

is meaningful because, on those grid problems the number of operations is almost identical

for MUMPS-UNS and SuperLU (see results in Appendix).

In Figures 21, 23 and 25 we report the parallel eÆciency on cubic grids using nested

dissection, rectangular grids using nested dissection, and rectangular grids using AMD,

respectively. The eÆciency of a solver on p processors is de�ned as the ratio of its Mega
op

rate per processor on p processors over its Mega
op rate on 1 processor.

Before discussing the eÆciency which is strongly related to the Mega
op rate on one

processor, we �rst brie
y discuss the Mega
op rate per processor which corresponds to

the absolute performance of the approach used on a given problem. We �rst notice that

on up to 8 processors, and independently of the grid shape and the ordering, MUMPS-UNS

is about twice as fast as SuperLU and also has much higher Mega
op rate than MUMPS-SYM.

On 128 processors and using nested dissection on both rectangular and cubic grids, all

solvers have almost an identical Mega
op rate per processor. However, on 128 processors

and using minimum degree SuperLU is three times as fast as MUMPS-UNS, and slightly faster

than MUMPS-SYM.

In terms of eÆciency, SuperLU is generally more eÆcient that MUMPS-UNS even on a

relatively small number of processors. MUMPS-SYM is relatively more eÆcient than MUMPS-UNS

and using nested dissection the MUMPS-SYM eÆciency is very comparable to that of SuperLU.

On a large number of processors SuperLU is signi�cantly more eÆcient than MUMPS-UNS.

The peak is reached on rectangular grids ordered with minimum degree (128 processors)

for which SuperLU is about three times more eÆcient than both MUMPS-UNS and MUMPS-SYM.

On cubic grids using nested dissection (128 processors), SuperLU is also about three times

more eÆcient than MUMPS.

43

Figure 20: Mega
op rate per processor (cubic grids, nested dissection).

1 2 4 8 16 32 64 128
0

50

100

150

200

250

300

Processors

M
eg

af
lo

p
ra

te

MUMPS−SYM
MUMPS−UNS
SuperLU

Figure 21: Parallel eÆciency (cubic grids, nested dissection).

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

Processors

E
ffi

ci
en

cy

MUMPS−SYM
MUMPS−UNS
SuperLU

44

Figure 22: Mega
op rate per processor (rectangular grids, nested dissection).

1 2 4 8 16 32 64 128
0

50

100

150

200

250

Processors

M
eg

af
lo

p
ra

te

MUMPS−SYM
MUMPS−UNS
SuperLU

Figure 23: Parallel eÆciency (rectangular grids, nested dissection).

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

Processors

E
ffi

ci
en

cy

MUMPS−SYM
MUMPS−UNS
SuperLU

45

Figure 24: Mega
op rate per processor (rectangular grids, AMD).

1 2 4 8 16 32 64 128
0

20

40

60

80

100

120

140

160

180

200

220

Processors

M
eg

af
lo

p
ra

te

MUMPS−SYM
MUMPS−UNS
SuperLU

Figure 25: Parallel eÆciency (rectangular grids, AMD).

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

1.2

Processors

E
ffi

ci
en

cy

MUMPS−SYM
MUMPS−UNS
SuperLU

46

Finally, we report in Table 14, a quantitative evaluation of the overhead due to

parallelism. In the rows \computation", we report the percentage of the time spent doing

numerical factorization. MPI calls and idle time due to communications or synchronization

are reported in rows \overhead" of the table.

Table 14 shows that the overhead increases faster with MUMPS than with SuperLU. The

better parallel behaviour of MUMPS-SYM with respect to MUMPS-UNS can also be observed in

this table.

Nprocs Grid size MUMPS-SYM MUMPS-UNS SuperLU

4
(NX=36)
computation 69% 76% 87%
overhead 31% 24% 13%

16
(NX=46)
computation 67% 69% 75%
overhead 33% 31% 25%

64
(NX=57)
computation 50% 36% 56%
overhead 50% 64% 44%

Table 14: Percentage of the factorization time spent in computation and in overhead due

to parallelism.

47

8 Other codes

As we said in the introduction, we started this exercise with the intention of comparing a

wider range of sparse codes. However, as we have demonstrated in the preceding sections,

the task of conducting such a comparison is very complex. We do feel though that the

experience we have gained in this task will be useful in extending the comparisons in the

future.

In this section, we summarize the major characteristics of the parallel sparse direct

codes of which we are aware. A clear description of the terms used in the tables is given

by [19].

Code Technique Scope Availability Ref

CAPSS Multifrontal SPD www.netlib.org/scalapack [20]

MUMPS Multifrontal SYM/UNS www.enseeiht.fr/apo/MUMPS [3]

PaStiX Fan-in SPD see caption(�) [21]

PSPASES Multifrontal SPD www.cs.umn.edu/�mjoshi/pspases [18]

SPOOLES Fan-in SYM/UNS www.netlib.org/linalg/spooles [8]

SuperLU Fan-out UNS www.nersc.gov/�xiaoye/SuperLU [23]

S+ Fan-outy UNS www.cs.ucsb.edu/research/S+ [15]

Table 15: Distributed memory codes.
y Uses QR storage to statically accommodate any LU �ll-in.
(�) www.dept-info.labri.u-bordeaux.fr/�ramet/pastix

Code Technique Scope Availability Ref

GSPAR Interpretative UNS Grund [9]

MA41 Multifrontal UNS www.cse.clrc.ac.uk/Activity/HSL [2]

MA49 Multifrontal QR RECT www.cse.clrc.ac.uk/Activity/HSL [5]

PARDISO Left-right looking UNS Schenk [29]

PSLDLT Left-looking SPD SGI product [28]

PSLDU Left-looking UNS SGI product [28]

SuperLU Left-looking UNS www.nersc.gov/�xiaoye/SuperLU [10]

PanelLLT Left-looking SPD Ng [26]

Table 16: Shared memory codes

Acknowledgments

We want to thank James Demmel, Jacko Koster and Rich Vuduc for very helpful

discussions. We are grateful to Chiara Puglisi for her comments on an early version

of this report and her help with the presentation.

48

9 Appendix

The complete set of results is provided in this section. The following notations are used

in the tables.

� the componentwise backward error, Berr = maxi
jrji

(jAj�jxj+jbj)i
[7],

� the true relative error, Err =
jjxtrue�xjj
jjxtruejj

, where x is the computed solution and xtrue
is the exact solution equal to a vector of all ones,

� the double precision machine precision, " � 2.2e-16 (64 bits).

49

Matrix Solver Ordering StrSym Nonzeros Flops
in factors
(�106) (�109)

bbmat MUMPS AMD 0.54 46.1 41.5
| MC64+AMD 0.50 44.3 36.9
SuperLU AMD 0.54 41.2 34.0
| MC64+AMD 0.50 40.2 31.2

ecl32 MUMPS AMD 0.93 42.9 64.6
| MC64+AMD 0.93 42.9 64.6
SuperLU AMD 0.93 42.4 68.3
| MC64+AMD 0.93 42.7 68.4

invextr1 MUMPS AMD 0.97 31.2 35.8
| MC64+AMD 0.86 33.6 38.6
SuperLU AMD 0.97 24.8 22.6
| MC64+AMD 0.86 28.4 28.0

fidapm11 MUMPS AMD 1.00 16.1 9.7
| MC64+AMD 0.46 29.4 28.5
SuperLU AMD 1.00 14.0 8.9
| MC64+AMD 0.46 24.8 22.0

lhr71c MUMPS AMD(�) 0.00 285.8 1431.0
| MC64+AMD 0.21 11.8 1.4
SuperLU AMD 0.00 222.5 |
| MC64+AMD 0.21 7.6 0.5

mixtank MUMPS AMD 1.00 39.1 64.4
| MC64+AMD 0.91 45.7 81.5
SuperLU AMD 1.00 38.4 64.1
| MC64+AMD 0.91 41.2 64.6

rma10 MUMPS AMD 1.00 8.9 1.4
| MC64+AMD 0.90 9.7 1.6
SuperLU AMD 1.00 8.9 1.5
| MC64+AMD 0.90 9.3 1.5

twotone MUMPS AMD 0.28 235.0 1221.1
| MC64+AMD 0.43 22.1 29.3
SuperLU AMD 0.28 65.3 159.0
| MC64+AMD 0.43 11.9 8.0

wang4 MUMPS AMD 1.00 11.6 10.5
| MC64+AMD 1.00 11.6 10.5
SuperLU AMD 1.00 10.7 9.1
| MC64+AMD 1.00 10.7 9.1

Table 17: Impact of permuting large entries onto the diagonal (using MC64) on the size

of the factors and the number of operations. (�) estimation given by the analysis (not

enough memory to perform factorization). StrSym denotes the structural symmetry after

ordering.

50

WITHOUT MC64

Matrix Solver WITHOUT Iter. Ref. WITH Iterative Re�nement

Berr Err Nb Berr Err

bbmat MUMPS 7.4e-11 1.3e-06 2 3.2e-16 3.0e-9

SuperLU 8.7e-08 4.3e-02 3 4.6e-16 2.5e-09

ecl32 MUMPS 3.6e-13 3.0e-11 2 3.1e-16 1.4e-11

SuperLU 2.4e-14 2.6e-11 2 2.9e-16 7.0e-11

invextr1 MUMPS 4.4e-8 8.9e-01 2 8.3e-06 2.8e-05

SuperLU 1.7e-07 1.0e-01 3 8.0e-16 1.3e-05

fidapm11 MUMPS 3.6e-11 1.7e-09 2 2.8e-16 1.2e-12

SuperLU 1.7e-06 1.9e-04 4 3.1e-16 1.8e-12

garon2 MUMPS 1.6e-15 1.7e-11 2 2.0e-16 1.6e-12
SuperLU 2.5e-10 9.2e-07 2 3.4e-16 2.9e-12

lhr71c MUMPS Not enough memory

SuperLU Not enough memory

lnsp3937 MUMPS 4.3e-08 9.2e-07 3 2.1e-16 6.3e-12
SuperLU 1.6e-07 1.6e-01 7 3.1e-16 1.0e-11

mixtank MUMPS 1.9e-12 4.8e-09 2 5.9e-16 1.4e-11
SuperLU 3.6e-09 4.4e-04 3 4.8e-16 2.8e-11

rma10 MUMPS 1.2e-13 8.3e-13 2 5.0e-16 1.2e-12
SuperLU 2.2e-06 3.8e-05 3 4.2e-16 9.2e-13

twotone MUMPS 5.0e-07 1.3e-05 3 1.3e-15 2.1e-11

SuperLU 1.0e+00 1.0e+00 1 1.0e+00 1.0e+00

WITH MC64

Matrix Solver WITHOUT Iter. Ref. WITH Iterative Re�nement

Berr Err Nb Berr Err

bbmat MUMPS 1.2e-11 6.5e-08 2 2.7e-16 3.5e-09

SuperLU 1.3e-05 5.6e-01 4 4.6e-16 2.4e-09

ecl32 MUMPS 5.6e-12 5.6e-10 2 3.0e-16 1.6e-11
SuperLU 2.9e-14 1.3e-11 2 3.5e-16 1.7e-11

invextr1 MUMPS 6.7e-16 1.6e-05 2 6.3e-16 5.6e-06
SuperLU 1.0e-05 9.8e-01 3 6.8e-16 1.2e-05

fidapm11 MUMPS 4.4e-12 2.3e-10 2 3.6e-16 6.8e-13

SuperLU 1.3e-01 7.8e-01 12 3.5e-16 1.1e-12

garon2 MUMPS 2.0e-15 3.4e-12 2 1.8e-16 1.3e-12

SuperLU 2.4e-15 3.7e-12 2 3.4e-16 3.3e-12

lhr71c MUMPS 1.1e-05 9.9e+00 3 3.2e-13 1.0e+00

SuperLU 7.1e-04 1.0e+00 2 8.9e-07 1.0e+00

lnsp3937 MUMPS 1.5e-12 3.6e-11 2 2.0e-16 6.4e-12
SuperLU 3.5e-12 2.7e-11 2 2.2e-16 2.2e-11

mixtank MUMPS 4.8e-12 2.3e-08 2 4.2e-16 4.0e-11

SuperLU 8.2e-03 8.7e-01 5 5.1e-16 3.1e-11

rma10 MUMPS 2.1e-12 3.4e-11 2 5.0e-16 1.0e-12
SuperLU 1.3e-06 3.9e-05 3 4.9e-16 1.1e-12

twotone MUMPS 3.2e-13 1.6e-10 2 1.6e-15 2.3e-11
SuperLU 1.0e-06 9.0e-03 4 6.1e-16 1.6e-11

Table 18: Comparison of the numerical behaviour, backward error (Berr) and forward

error (Err), of the solvers. Nb corresponds to the number of steps of iterative re�nement.

Stopping criterion Berr < ".

51

Matrix Solver Preprocess. Total MC64 AMD

bbmat MUMPS AMD 4.7 | 3.0
| MC64+AMD 7.2 2.1 3.1
SuperLU AMD 11.3 | 2.8
| MC64+AMD 11.8 2.0 2.9

ecl32 MUMPS AMD 3.9 | 2.3
| MC64+AMD 4.5 0.5 2.3
SuperLU AMD 9.0 | 2.1
| MC64+AMD 14.1 0.6 2.1

invextr1 MUMPS AMD 2.9 | 1.2
| MC64+AMD 47.2 42.6 1.5
SuperLU AMD 7.1 | 1.2
| MC64+AMD 45.8 36.8 1.5

fidapm11 MUMPS AMD 1.7 | 0.6
| MC64+AMD 13.1 10.4 1.6
SuperLU AMD 2.7 | 0.5
| MC64+AMD 14.1 9.1 1.4

lhr71c MUMPS AMD 47.5 | 39.4
| MC64+AMD 34.0 31.0 2.0
SuperLU AMD 121.3 | 35.0
| MC64+AMD 32.0 26.9 1.8

mixtank MUMPS AMD 3.2 | 0.8
| MC64+AMD 5.8 2.2 0.9
SuperLU AMD 8.4 | 0.8
| MC64+AMD 11.0 2.2 0.9

rma10 MUMPS AMD 2.3 | 0.4
| MC64+AMD 4.6 2.3 0.5
SuperLU AMD 3.6 | 0.5
| MC64+AMD 6.1 2.3 0.6

twotone MUMPS AMD 12.7 | 8.7
| MC64+AMD 8.8 1.7 4.8
SuperLU AMD 21.4 | 7.9
| MC64+AMD 12.0 1.7 4.4

wang4 MUMPS AMD 1.7 | 0.8
| MC64+AMD 2.0 0.2 0.8
SuperLU AMD 2.4 | 0.7
| MC64+AMD 2.59 0.2 0.7

Table 19: In
uence of permuting large entries onto the diagonal (using MC64) on the time

(in seconds) for the analysis phase of MUMPS and SuperLU.

52

Matrix Ordering Solver NZ in LU Flops
�106 �109

bbmat

AMD MUMPS 46.1 41.5
SuperLU 41.2 34.0

ND MUMPS 35.8 25.7
SuperLU 33.9 23.5

ecl32

AMD MUMPS 42.9 64.6
SuperLU 42.4 68.3

ND MUMPS 24.8 20.9
SuperLU 24.3 20.7

invextr1

AMD MUMPS 31.2 35.9
SuperLU 24.2 21.3

ND MUMPS 16.2 8.1
SuperLU 13.3 5.9

mixtank

AMD MUMPS 39.1 64.4
SuperLU 38.2 64.4

ND MUMPS 19.6 13.2
SuperLU 18.6 12.9

nasasrb.rua

AMD MUMPS 24.2 9.5
SuperLU 23.9 9.5

ND MUMPS 21.2 6.9
SuperLU 21.0 6.8

Table 20: In
uence of the symmetric reordering (minimum degree or nested dissection)

on the cost of the factorization phase for unsymmetric matrices. (MC64 is not used.)

Matrix Solver NZ in LU Flops
�106 �109

ship 003 MUMPS 57.1 72.1
SuperLU(�) 112.6 145.6

bmwcra 1 MUMPS 70.3 61.0
bmw3 2 MUMPS 46.2 26.9
cranksg2 MUMPS 42.2 42.5
hood MUMPS 27.6 8.2
nasasrb.rsa MUMPS 10.6 3.4

Table 21: Cost of the LDLT factorization phase of MUMPS on symmetric matrices using a

nested dissection ordering. (�) SuperLU performs an unsymmetric LU factorization.

53

Matrix Order. Solver Number of processors
1 4 8 16 32 64 128 256 512

Unsymmetric matrices

bbmat AMD MUMPS | 45.7 24.0 16.5 13.7 11.9 11.2 9.1 12.6

SuperLU | 66.1 38.1 22.8 14.6 11.2 8.9 9.9 9.1

ND MUMPS | 39.4 22.8 13.2 11.9 9.9 9.2 9.4 11.6
SuperLU | 137.8 74.9 41.2 25.2 17.3 12.4 14.3 14.7

ecl32 AMD MUMPS | 54.6 32.0 23.8 17.6 15.6 15.1 16.0 16.5
SuperLU | 107.4 58.4 35.8 20.6 14.9 11.1 10.9 8.9

ND MUMPS | 24.7 14.1 9.7 7.7 6.9 7.0 7.0 8.9

SuperLU | 49.0 28.2 16.7 12.0 9.9 8.8 9.9 9.5

invextr1 AMD MUMPS | 36.0 26.4 21.7 19.2 19.1 18.8 16.6 18.6

SuperLU | 56.3 28.7 17.2 11.0 8.3 6.0 7.1 6.6

ND MUMPS 31.8 13.2 6.5 4.5 3.9 3.8 4.4 5.4 6.3

SuperLU 68.2 23.1 13.3 9.1 6.7 5.7 4.7 6.1 5.8

mixtank AMD MUMPS | 53.3 33.5 24.3 20.4 17.0 15.9 16.4 18.2

SuperLU | 80.9 38.3 23.7 14.4 9.8 6.7 7.0 6.5

ND MUMPS 40.8 13.0 7.8 5.6 4.4 3.9 4.2 4.2 5.4
SuperLU 88.1 28.8 14.6 10.1 7.0 5.3 4.5 5.6 5.5

twotone MC64 MUMPS | 40.3 22.6 18.6 14.7 14.4 14.3 14.0 14.3

+AMD SuperLU | 106.2 61.8 32.7 25.7 21.0 16.2 21.2 18.5

Symmetric matrices

ship 003 ND MUMPS | | | 29.3 17.3 14.1 12.6 11.8 14.8

SuperLU | | | | 45.1 31.3 24.2 23.0 19.8

bmwcra 1 ND MUMPS | | | 21.9 12.8 8.8 7.1 6.5 7.9

bmw3 2 ND MUMPS | | 20.5 11.5 7.6 5.2 5.1 5.1 6.6

cranksg2 ND MUMPS | | 26.5 15.2 10.4 7.6 7.1 7.6 8.1

Table 22: Factorization phase time study of large test matrices on the CRAY T3E. \|"

indicates not enough memory.

Matrix Ordering Solver Number of processors
1 4 8 16 32 64

Unsymmetric matrices

fidapm11 AMD MUMPS 31.6 11.7 8.4 6.5 5.7 5.7

SuperLU 58.6 14.3 9.7 6.0 4.5 4.4

lhr71c MC64+AMD MUMPS 13.3 4.3 2.9 1.7 1.5 1.6

SuperLU 34.7 17.8 13.0 12.5 11.5 14.0

nasasrb.rua AMD MUMPS | 11.8 8.5 7.5 7.0 7.2

SuperLU | 18.3 11.2 9.7 7.6 7.7

ND MUMPS 28.0 8.2 5.2 3.3 2.8 2.6
SuperLU 15.1 9.9 7.3 6.0 5.6

rma10 AMD MUMPS 8.1 3.1 2.2 2.1 2.0 2.1

SuperLU 11.6 5.1 3.7 3.6 3.1 3.8

wang4 AMD MUMPS 30.6 11.1 7.0 5.2 4.3 3.9

SuperLU 56.3 19.4 13.9 7.9 5.8 5.6

Symmetric matrices

hood ND MUMPS | 15.0 8.2 4.4 3.4 2.4

nasasrb.rsa ND MUMPS 22.1 6.2 3.8 3.3 2.8 2.4

Table 23: Factorization phase time study on the CRAY T3E of small test matrices . \|"

indicates not enough memory.

54

Matrix Order. Solver Number of processors
1 4 8 16 32 64 128 256 512

Unsymmetric matrices

bbmat AMD MUMPS | 0.53 0.38 0.31 0.32 0.32 0.36 0.40 0.56
SuperLU | 1.77 1.59 1.05 1.00 0.80 0.70 0.70 0.66
| + (IR) | 3.38 2.10 1.60 1.27 1.05 0.90 0.89 0.79

ND MUMPS | 0.38 0.37 0.26 0.29 0.31 0.35 0.37 0.54
SuperLU | 2.12 1.74 1.28 1.12 0.99 0.82 0.85 0.68
| + (IR) | 4.91 2.69 2.41 1.47 1.32 1.04 1.04 0.87

ecl32 AMD MUMPS | 0.80 0.50 0.40 0.41 0.40 0.45 0.52 0.83
SuperLU | 2.09 1.99 1.54 1.46 1.10 0.98 0.73 0.57

ND MUMPS | 0.53 0.35 0.30 0.28 0.28 0.43 0.39 0.48
SuperLU | 1.76 1.96 1.38 1.41 1.05 0.93 0.68 0.53

invextr1 AMD MUMPS | 0.57 0.41 0.46 0.41 0.40 0.58 0.54 0.60
| + (IR) | 1.42 1.03 1.02 0.96 0.94 1.03 1.16 1.38
SuperLU | 0.91 0.84 0.56 0.54 0.41 0.38 0.34 0.32
| + (IR) | 1.57 1.22 0.86 0.76 0.61 0.55 0.51 0.48

ND MUMPS 0.59 0.31 0.20 0.18 0.18 0.18 0.25 0.26 0.37
| + (IR) 2.10 0.48 0.31 0.50 0.48 0.47 0.51 0.62 0.90
SuperLU 1.45 0.77 0.73 0.55 0.51 0.46 0.36 0.34 0.28
| + (IR) 2.69 1.58 1.11 0.90 0.74 0.67 0.54 0.52 0.44

mixtank AMD MUMPS | 0.56 0.38 0.39 0.41 0.40 0.41 0.49 0.59
SuperLU | 1.10 0.96 0.69 0.64 0.51 0.41 0.36 0.31

ND MUMPS 0.67 0.27 0.19 0.16 0.16 0.15 0.19 0.24 0.35
SuperLU 1.47 0.90 0.82 0.65 0.58 0.49 0.33 0.30 0.24

twotone MC64 MUMPS | 1.03 0.92 0.97 0.98 0.98 1.03 1.13 1.41
+AMD SuperLU | 3.26 3.02 2.52 2.24 1.84 1.56 1.38 1.21

| + (IR) | 25.84 11.13 12.63 4.18 3.64 2.27 1.84 1.55

Symmetric matrices

ship 003 ND MUMPS | | | 0.87 0.69 0.71 0.66 0.74 0.88
SuperLU | | | | 1.45 1.18 1.04 0.89 0.70

bmwcra 1 ND MUMPS | | | 0.80 0.55 0.43 0.40 0.47 0.61
bmw3 2 ND MUMPS | | 1.17 0.88 0.71 0.60 0.56 0.64 0.80
cranksg2 ND MUMPS | | 0.71 0.46 0.38 0.33 0.35 0.41 0.54

Table 24: Solve phase time study for large matrices. \ | + (IR) " shows the time spent

improving the initial solution using iterative re�nement. Note that, on the symmetric

matrix ship 003, SuperLU uses the LU factors to compute the solution. Stopping criterion

for iterative re�nement is Berr <
p
".

55

Matrix Ord. Solver Number of processors
1 4 8 16 32 64

Unsymmetric matrices

fidapm11 AMD MUMPS 0.48 0.25 0.24 0.21 0.20 0.20
SuperLU 1.14 0.70 0.55 0.52 0.50 0.40

lhr71c MC64+AMD MUMPS 0.92 0.56 0.32 0.24 0.23 0.22
SuperLU 2.39 2.48 2.76 2.19 2.02 1.83

nasasrb.rua AMD MUMPS | 0.41 0.33 0.33 0.31 0.31
SuperLU 0.95 0.70 0.69 0.61 0.55

ND MUMPS 0.82 0.33 0.23 0.18 0.17 0.16
SuperLU 0.84 0.76 0.60 0.51 0.45

rma1010 AMD MUMPS 0.43 0.23 0.22 0.21 0.22 0.23
SuperLU 0.79 0.66 0.54 0.52 0.37 0.31

wang4 AMD MUMPS 0.57 0.29 0.21 0.19 0.17 0.16
SuperLU 1.01 1.01 0.77 0.88 0.85 0.65

Symmetric matrices

hood ND MUMPS | 1.08 0.68 0.58 0.47 0.39
nasasrb.rsa ND MUMPS 0.76 0.33 0.28 0.21 0.16 0.15

Table 25: Solve phase time study on the CRAY T3E for small matrices.

56

Matrix Ord Solver Number of processors

4 16 64

Max Vol. #Mess Max Vol. #Mess Max Vol. #Mess

Unsymmetric matrices

bbmat AMD MUMPS 4.9 44 3240 3.3 63 1700 2.9 20 2257

SuperLU 0.18 81 23412 0.09 61 34176 0.05 35 35035

ND MUMPS 2.2 7 2214 2.8 43 1441 1.5 48 3228
SuperLU 0.17 82 30698 0.09 62 45598 0.04 36 50925

ecl32 AMD MUMPS 9.7 91 5451 3.7 117 2585 2.9 54 2743
SuperLU 0.32 90 27437 0.16 67 37486 0.09 39 34981

ND MUMPS 8.5 37 3663 2.5 60 1981 1.5 29 2679

SuperLU 0.25 56 28966 0.13 42 41172 0.07 24 41271

invextr1 AMD MUMPS 7.6 85 4169 4.6 67 1967 2.0 29 2006

SuperLU 0.24 55 15023 0.12 41 21527 0.07 24 21990
ND MUMPS 2.2 13 2320 1.1 18 1314 1.5 7 1550

SuperLU 0.15 31 17774 0.08 23 25824 0.05 13 27123

fidapm11 AMD MUMPS 2.5 28 3000 2.4 22 1471 2.4 6 1323

SuperLU 0.15 27 14768 0.08 20 19114 0.04 12 15621

lhr71c MC64 MUMPS 1.0 1 96 1.1 1 342 1.1 1 377

+AMD SuperLU 0.04 21 72932 0.03 15 91640 0.02 8 91640

mixtank AMD MUMPS 12.1 77 6071 4.0 109 2660 2.8 51 2513

SuperLU 0.32 67 11044 0.17 50 16077 0.09 29 16598

ND MUMPS 3.5 30 3138 1.7 33 1650 1.2 11 1616
SuperLU 0.19 40 13667 0.11 30 19635 0.05 18 19064

rma10 AMD MUMPS 0.7 3 114 0.7 2 302 0.7 1 337
SuperLU 0.06 18 11346 0.03 13 14124 0.02 7 10883

twotone MC64 MUMPS 8.8 61 5076 2.9 139 4144 2.1 49 2762

+AMD SuperLU 0.26 27 120006 0.15 20 153995 0.05 11 104906

wang4 AMD MUMPS 3.9 16 3483 1.5 27 1682 1.5 8 1215

SuperLU 0.19 24 27728 0.10 18 34495 0.05 10 27561

Symmetric matrices

ship 003 ND MUMPS | | | 6.9 175 3586 2.7 94 5752

SuperLU | | | | | | 0.15 100 33856

bmwcra 1 ND MUMPS | | | 10.5 90 2108 3.1 54 3958
bmw3 2 ND MUMPS | | | 2.3 69 2399 1.6 23 2857

cranksg2 ND MUMPS | | | 5.6 89 2391 2.0 43 3553

hood ND MUMPS 1.6 4 167 2.0 11 782 2.2 4 1413
nasasrb.rsa ND MUMPS 2.5 5 146 1.2 7 609 1.9 2 842

Table 26: Maximum size of the messages (Max in Mbytes), average volume of

communication (Vol. in Mbytes) and number of messages per processor (#Mess) for

large matrices during factorization.

57

Matrix Ordering Solver Number of processors
4 16 64

Avg. Max. Avg. Max. Avg. Max.
Unsymmetric matrices

bbmat AMD MUMPS 147 176 52 65 32 40
SuperLU 113 114 50 51 33 34

ND MUMPS 114 118 44 53 28 35
SuperLU 124 128 60 61 43 44

ecl32 AMD MUMPS 190 212 55 64 32 41
SuperLU 113 115 42 44 24 25

ND MUMPS 132 139 39 44 25 28
SuperLU 79 81 33 34 21 22

invextr1 AMD MUMPS 136 171 49 58 27 39
SuperLU 73 75 30 31 18 19

ND MUMPS 65 85 23 28 17 22
SuperLU 47 48 22 22 15 16

fidapm11 AMD MUMPS 65 67 25 30 16 19
SuperLU 38 39 16 16 10 10

lhr71c MC64 MUMPS 54 48 22 25 16 20
+AMD SuperLU 49 51 27 29 21 21

mixtank AMD MUMPS 206 204 58 61 34 37
SuperLU 85 85 32 33 19 19

ND MUMPS 84 87 29 31 19 21
SuperLU 55 56 23 23 14 15

nasasrb.rua AMD MUMPS 82 88 33 36 22 26
SuperLU 72 73 30 31 19 20

ND MUMPS 78 81 29 32 20 24
SuperLU 64 66 28 29 18 19

twotone MC64 MUMPS 167 180 57 67 42 60
+AMD SuperLU 66 80 35 41 24 24

wang4 AMD MUMPS 69 82 22 23 15 20
SuperLU 33 34 14 14 8 9

Symmetric matrices

ship 003 ND MUMPS | | 124 105 55 70
SuperLU | | | | 93 96

bmwcra 1 ND MUMPS | | 133 160 59 69
bmw3 2 ND MUMPS | | 90 114 62 69
cranksg2 ND MUMPS | | 81 95 57 72
hood ND MUMPS 145 153 70 81 57 66
nasasrb.rsa ND MUMPS 56 59 25 27 20 24

Table 27: Memory used during factorization.

58

Nprocs Grid size LDLT factorization LU factorization

NX NY NZ MUMPSSYM MUMPSUNS SuperLU

ops time
ops time
ops time

�109 �109 �109

Cubic grids (nested dissection)
1 29 3.6 18.8 7.2 24.0 7.2 57.0

2 33 8.0 20.8 16.0 29.5 15.9 62.3

4 36 13.4 19.9 26.8 28.1 26.8 53.3
8 41 30.1 18.5 60.1 33.9 60.0 61.5

16 46 59.1 20.7 118.1 34.4 117.9 62.7

32 51 112.7 24.3 225.3 46.3 224.9 65.7

64 57 222.7 30.3 445.1 67.3 444.7 76.1

128 64 444.2 51.6 887.8 113.9 886.4 80.7

Rectangular grids (nested dissection)
1 96 24 12 2.2 13.2 4.5 16.6 4.5 31.1
2 110 28 13 4.8 13.1 9.5 17.5 9.6 36.6

4 120 30 15 9.0 12.0 17.9 17.0 17.9 35.4

8 136 34 17 18.4 13.8 36.8 19.5 36.6 33.0
16 152 38 19 36.5 13.3 72.8 24.6 72.7 42.2

32 168 42 21 67.8 14.9 135.5 27.5 135.3 43.7

64 184 46 23 118.2 19.3 236.2 35.8 236.0 51.3
128 208 52 26 243.1 27.4 485.8 53.6 485.6 60.7

Rectangular grids (minimum degree)
1 96 24 12 2.5 14.2 3.9 18.4 5.0 36.0

2 110 28 23 3.7 14.1 7.4 18.5 7.3 25.0
4 120 30 15 7.0 14.6 14.0 18.6 13.9 24.9

8 136 34 17 13.8 12.7 27.6 21.5 27.3 27.4

16 152 38 19 28.8 14.9 57.6 30.0 57.2 31.6
32 168 42 21 101.7 30.8 203.2 77.1 202.8 55.5

64 184 46 23 134.8 40.2 269.3 106.7 269.0 47.6

128 208 52 26 328.9 71.2 665.8 218.9 655.7 62.2

Table 28: Factorization time on Cray T3E. LU factorization is performed for MUMPSUNS

and SuperLU, LDLT for MUMPSSYM.

Nprocs Cubic grids Rectangular grids

Nested dissection Nested dissection Minimum Degree

MUMPS SuperLU MUMPS SuperLU MUMPS SuperLU

SYM UNS SYM UNS SYM UNS

1 191 300 126 167 271 145 176 212 139

2 192 271 128 183 271 131 131 200 146

4 168 238 126 187 263 126 120 188 140

8 203 222 122 167 236 139 136 160 125

16 178 215 118 172 185 108 121 120 113

32 145 152 107 142 154 97 103 82 114

64 115 103 91 96 103 72 52 39 88

128 67 61 86 69 71 63 36 24 82

Table 29: Mega
op rate per processor during the factorization phase on Cray T3E.

59

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Du�. An approximate minimum degree ordering algorithm.

SIAM Journal on Matrix Analysis and Applications, 17:886{905, 1996.

[2] P. R. Amestoy and I. S. Du�. Memory management issues in sparse multifrontal methods on
multiprocessors. Int. J. of Supercomputer Applics., 7:64{82, 1993.

[3] P. R. Amestoy, I. S. Du�, J. Koster, and J.-Y. L'Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. Technical Report RT/APO/99/2, ENSEEIHT-IRIT, 1999.

(submited to SIAM Journal on Matrix Analysis and Applications).

[4] P. R. Amestoy, I. S. Du�, and J. Y. L'Excellent. Parall�elisation de la factorisation LU de matrices

creuses non-sym�etriques pour des architectures �a m�emoire distribu�ee. Calculateurs Parall�eles R�eseaux

et Syst�emes R�epartis, 10(5):509{520, 1998.

[5] P. R. Amestoy, I. S. Du�, and C. Puglisi. Multifrontal QR factorization in a multiprocessor

environment. Int. Journal of Num. Linear Alg. and Appl., 3(4):275{300, 1996.

[6] P. R. Amestoy, I.S. Du�, and J.-Y. L'Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods Appl. Mech. Eng., pages 501{520, 2000.

[7] M. Arioli, J. Demmel, and I. S. Du�. Solving sparse linear systems with sparse backward error. SIAM
Journal on Matrix Analysis and Applications, 10:165{190, 1989.

[8] C. Ashcraft and R. G. Grimes. SPOOLES: An object oriented sparse matrix library. In Proceedings

of the Ninth SIAM Conference on Parallel Processing for Scienti�c Computing, San Antonio, Texas,

March 22{24, 1999.

[9] J. Borchardt, F. Grund, and D. Horn. Parallel numerical methods for large systems of di�erential-

algebraic equations in industrial applications. Technical Report 382, Weierstra�-Institut f�ur

Angewandte Analysis und Stochastik, Berlin, 1997.

[10] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for sparse

Gaussian elimination. SIAM Journal on Matrix Analysis and Applications, 20(4):915{952, 1999.

[11] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu. A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications,

20(3):720{755, 1999.

[12] J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. MPI : A message passing interface standard.

Int. Journal of Supercomputer Applications, 8:(3/4), 1995.

[13] I. Du�, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix Collection. Technical

Report RAL-TR-97-031, Rutherford Appleton Laboratory, 1997. Also Technical Report ISSTECH-

97-017 from Boeing Information & Support Services and Report TR/PA/97/36 from CERFACS,
Toulouse.

[14] I. S. Du� and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.
Technical Report RAL-TR-1999-030, Rutherford Appleton Laboratory, 1999.

[15] Cong Fu, Xiangmin Jiao, and Tao Yang. EÆcient sparse LU factorization with partial pivoting on

distributed memory architectures. IEEE Trans. Parallel and Distributed Systems, 9(2):109{125, 1998.

[16] A. George and E. Ng. Symbolic factorization for sparse Gaussian elimination with partial pivoting.

SIAM J. Sci. Stat. Comput., 8:877{898, 1987.

[17] J. R. Gilbert and J. W. Liu. Elimination structures for unsymmetric sparse LU factors. SIAM Journal

on Matrix Analysis and Applications, 14:334{352, 1993.

[18] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix

factorization. IEEE Trans. Parallel and Distributed Systems, 8:502{520, 1997.

[19] M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear systems. SIAM Review,

33:420{460, 1991.

[20] M. T. Heath and P. Raghavan. Performance of a fully parallel sparse solver. Int. Journal of

Supercomputer Applications, 11(1):49{64, 1997.

60

[21] P. Henon, P. Ramet, and J. Roman. A mapping and scheduling algorithm for parallel sparse fan-in

numerical factorization. In EuroPar'99 Parallel Processing, Lecture Notes in Computer Science, No.

1685, pages 1059{1067, Berlin, Heidelberg, New York, 1999. Springer-Verlag.

[22] HSL. A collection of Fortran codes for large scale scienti�c computation, 2000.

[23] X. S. Li and J. W. Demmel. A scalable sparse direct solver using static pivoting. In Proceedings of the

Ninth SIAM Conference on Parallel Processing for Scienti�c Computing, San Antonio, Texas, March
22{24, 1999.

[24] J. W. H. Liu. Modi�cation of the minimum degree algorithm by multiple elimination. ACM

Transactions on Mathematical Software, 11(2):141{153, 1985.

[25] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visualization and
analysis of MPI resources. Supercomputer, 12(1):69{80, January 1996.

[26] E. G. Ng and B. W. Peyton. A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors. SIAM Journal on Scienti�c and Statistical Computing, 14:761{769, 1993.

[27] F. Pellegrini, J. Roman, and P. R. Amestoy. Hybridizing nested dissection and halo approximate

minimum degree for eÆcient sparse matrix ordering. In Proceedings of Irregular'99, San Juan, Lecture

Notes in Computer Science 1586, pages 986{995, 1999.

[28] E. Rothberg. EÆcient sparse Cholesky factorization on distributed-memory multiprocessors. In J.G.

Lewis, editor, Proceedings Fifth SIAM Conference on Applied Linear Algebra, page 141, Philadelphia,
1994. SIAM Press.

[29] O. Schenk, K. G�artner, and W. Fichtner. EÆcient sparse LU factorization with left{right looking
strategy on shared memory multiprocessors. BIT, 40(1):158{176, 2000.

[30] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete

Reference. The MIT Press, Cambridge, Massachusetts, 1996.

61

