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ABSTRACT OF THE DISSERTATION 
Game Theoretic Investigation of Decision-Making and Theory of Mind in Neurotypical 

Individuals with Differential Levels of Autistic Traits 

by 
Alexis Craig 

Doctor of Philosophy in Psychology – Cognitive Neuroscience 

University of California, Irvine, 2016 

Professor Jeffrey L. Krichmar, Chair 

Theory of mind (ToM) is the cognitive ability to imagine the thoughts, beliefs, goals, 

and motivations of another person. This ability is utilized both consciously and 

subconsciously in the majority of social interaction in order to conduct rational, 

appropriate decision-making and form cooperative or competitive relationships to 

achieve one’s goals. Automatic, or implicit, ToM is a trait that has been shown to be 

impaired in individuals who suffer from autism spectrum disorders (ASD), which is 

one of the factors leading to the social deficits experienced by these individuals. The 

objectives of this dissertation are to 1) develop a non-verbal social task in which implicit 

ToM is evoked; 2) develop a computer agent that is capable of acting as a social partner 

within the task to evoke ToM response; 3) use this task in behavioral research to collect 

data from neurotypical individuals who engage socially with the computer agent. The 

first chapter introduces the Stag Hunt, a game theoretic task with a payoff matrix biased 

toward cooperation in which two players must decide whether to hunt a low payoff 

hare individually or attempt to cooperate to catch a high payoff stag. For the purposes 

of conducting the task with subjects, an adaptive agent was developed that initially 

enters the task naïve and develops in real time, based on the actions of the other player 

and the outcomes of repeated trials, a strategy suited to the subject it is interacting with. 
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The second chapter discusses a behavioral study using a probabilistic variant of the 

Wisconsin Card Sorting Test in order to investigate cognitive biases inherent in 

decision-making in an uncertain environment. Understanding common coping 

mechanisms for uncertainty provides a baseline for comparing the decision-making 

strategies of atypical individuals. The third chapter expands upon the efforts of the first 

with the inclusion of variants of the preexisting adaptive agent in order to differentially 

evoke complex ToM responses correlated to the level of autistic traits in subjects drawn 

from the general population. This was accomplished through use of forward planning 

and simulated ToM. The fourth chapter discusses a pilot fMRI study to collect data on 

the correlation between levels of autistic traits and brain activation related to ToM and 

decision-making. Taken together, this body of work provides a foundation for utilizing 

non-verbal social tasks to evoke ToM response with non-human agents, a format that 

lends itself well to autism research. The overarching goal of this line of work is to aid in 

the identification of differences in neural processing of individuals affected with 

varying levels of ASD, both clinically and subclinically, to provide information that can 

be traced back to the locus of development in the brain leading to autistic expression. 
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INTRODUCTION 
 

On a day-to-day basis, living things utilize cooperation and competition to reach a 

desired outcome.  Because of this common dynamic, social behavior in cooperative and 

competitive situations has become a popular field of study.  The use of games in social 

behavior experiments can give insight into the interactive dynamics between players, as 

well as their decision-making processes. Such games can highlight individual and 

group differences in a controlled and highly customizable environment.  Game theory 

provides additional benefits, as it includes tools to predict behavior and decision-

making by assuming players will attempt to achieve the most desirable outcome (Lee, 

2008).  Games are especially useful when considering the topic of social behavior from a 

human-computer interaction (HCI) standpoint.  Because games provide a clearly 

defined state space and set of rules, they are amenable to providing a framework for 

humans to interact with computers as partners or opponents. The Prisoner’s Dilemma, 

Ultimatum Game, Trust Game, Hawk/Dove, and Stag Hunt are among the most 

prominent games used to research social behavior in HCI. 

 

Game theory and computer agents 

In a study conducted by Kiesler, Sproull, and Waters (1996), the Prisoner’s Dilemma 

was used to determine the differences in cooperation between humans and different 

types of computer opponents.  In the Prisoner’s Dilemma, two players must decide to 

either “rat out” their opponent or to keep quiet, a decision that affects each player’s 

“sentencing,” or personal cost.  In these experiments, subjects played against three 

types of computer opponents: text-based, electronically generated speech-based, and 

electronically generated face- and speech-based.  The text-based opponent interacted 
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with the human player through text messages, while the speech-based opponents used 

computer-generated audio.  The face- and speech-based opponent was accompanied by 

a semi-realistic animated human face.  The computer opponents were programmed to 

cooperate in four out of six trials.  While the face- and speech-based computer 

opponents were largely unable to garner trust in players (likely stemming from an 

uncanny valley effect), the text-based computer opponent was able to encourage the 

same rates of cooperation in subjects as human opponents.  This finding suggests that 

human players are able to respond prosocially to some forms of computer opponents.  

 

The Ultimatum Game is similar to the Prisoner’s Dilemma in that they both explore 

players’ intentions to accept or reject the formation of a social contract. However in the 

Ultimatum Game, two players must decide how to divide a sum of money between 

each other.  In an experiment conducted by Rilling, Sanfey, Aronson, Nystrom, and 

Cohen (2004), both the Prisoner’s Dilemma and the Ultimatum Game were used in 

order to gain insight into the difference between interactions with a human or computer 

partner in terms of “theory of mind,” or one’s conception of another person’s thoughts 

and mental state in a social capacity. In this version of the Prisoner’s Dilemma, 

cooperative payoffs were inflated to encourage cooperation. Results indicated that 

subjects are more likely to accept unfair behavior from a computer player rather than a 

human player (Rilling et al., 2004).  This suggests that human subjects do not hold the 

computer to the same social constructs they hold other humans to, alluding to the issue 

of not considering the computer used in this experiment as a socially equal opponent.  

Similar to the Ultimatum Game, the Trust Game leaves two players the task of splitting 

a resource, with one player ultimately deciding how much each player receives 

(Anderhub, Engelmann, & Güth, 2002).  In McCabe, Houser, Ryan, Smith, and Trouard 
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(2001), subjects played the Trust Game in both a human and a computer player 

condition.  The computer player used a probabilistic model, the choice probabilities of 

which were shown to the subjects.  Functional MRI (fMRI) results uncovered neural 

correlates indicating that the active brain areas involved varied between the two 

opponent types.  While both opponents engage the prefrontal cortex in order to form a 

mental picture of the other player’s state of mind, human opponents evoked higher 

prefrontal cortex activation and more cooperation attempts in some subjects. 

 

It is important to note that these example experiments using the Prisoner’s Dilemma 

and the Ultimatum Game paradigms have utilized either set strategies or 

preprogrammed responses in their computer agents.  However, an agent with an 

adaptive strategy, one that learns in real-time while playing a game with another, might 

produce results that not only engage the human player in a higher capacity, but may 

also emulate human players enough to evoke strong social responses that influence 

behavior during play.  Along these lines, Asher and colleagues introduced embodied, 

neurobiologically-plausible models of action selection and neuromodulation with the 

ability to adapt to their opponent’s behavior while playing the game Hawk-Dove 

(Asher, Zaldivar, Barton, Brewer, & Krichmar, 2011; Asher, Zhang, Zaldivar, Lee, & 

Krichmar, 2012). These models incorporated the roles of the dopaminergic and 

serotonergic neuromodulatory systems in tracking expected rewards and costs, 

respectively. Because of their adaptive nature and physical embodiment, these models 

evoked interesting, strong, and complex responses from subjects. The Hawk-Dove 

game consisted of a human and a neural agent choosing to either share (Display) or 

fight (Escalate) for a valued resource. Whereas an unchallenged escalation (one subject 

escalates, the other displays) resulted in the escalating subject receiving the total value 
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of the resource, a challenged escalation (where both subjects escalate) resulted in a 

costly penalty. If both subjects displayed, they shared the value of the resource.  Thus, 

this paradigm optimizes investigation into risk-taking and cooperative behavior. 

 

In order to study the effects of embodiment, subjects played Hawk-Dove games against 

both a simulated computer agent and an autonomous, physical robot (Asher, Barton, et 

al., 2012; Asher, Zhang, et al., 2012).  In both cases, in order to probe the 

neuromodulatory mechanisms that give rise to cooperative and competitive behaviors, 

subjects played against a model with an intact serotonergic system and a lesioned 

serotonergic system, the latter of which typically made the agent play more 

aggressively. To impair the human player’s serotonergic systems, subjects underwent 

an acute tryptophan depletion (ATD) procedure, which temporarily lowered serotonin 

levels and has been shown to reduce cooperation in the Prisoner’s Dilemma game 

(Wood, Rilling, Sanfey, Bhagwagar, & Rogers, 2006). Subjects adjusted their strategies 

depending on the type of agent they played. Subjects exhibited a significant shift from a 

Win-Stay-Lose-Shift (WSLS) strategy against an intact agent to a Tit-for-Tat strategy 

against an agent that was more aggressive due to lesions of its simulated serotonergic 

system. This strategy change suggested that subjects were sending a message to the 

aggressive agent that they were being treated unfairly.  

 

In the Asher et al. study, two groups best described individual subject’s responses. ATD 

caused some subjects to be more aggressive, but others to be less aggressive, as seen by 

their probability to escalate a fight. A similar trend of two polarized subject groups was 

observed when considering the effect of physical embodiment on game play.  This 

study showed that an adaptive agent could evoke strong, varied responses in subjects 
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(Asher, Zhang, et al., 2012).  This suggests that there might be underlying biological or 

experiential factors leading to subject tendencies and or phenotypes in social situations. 

 

The Stag Hunt has recently been used to test theory of mind assumptions, both through 

modeling and by human subjects against computer agents (W. Yoshida, Seymour, 

Friston, & Dolan, 2010; Wako Yoshida, Dolan, & Friston, 2008).  In Yoshida and 

colleagues’ experiment, subjects played Stag Hunt with a computer agent possessing 

one of three levels of sophistication, defined by the number of levels of reciprocal belief 

inference used by the model. Players were not aware of the level of sophistication used 

by the agent. Their fMRI results showed that rostral medial prefrontal cortex, a brain 

region consistently identified in psychological tasks requiring mentalizing, had a 

specific role in encoding the uncertainty of the other's strategy, and that the dorsolateral 

prefrontal cortex encoded the depth of recursion of the strategy being used. Their study 

demonstrates that socioeconomic games like the Stag Hunt and sophisticated computer 

agents can provide an excellent environment for probing social contracts, decision-

making, and theory of mind. 

 

Theory of Mind and Autism Spectrum 

Autism spectrum disorders (ASD) are typically characterized by difficulties in 

communicating and forming relationships with other people (Wang & Doering, 2015). 

Beginning with the shift away from discrete diagnoses to the umbrella term featured in 

the DSM-V, the definition of autism has been formally changing to encompass a wider 

variety of disorders of social impairment including Asperger’s, childhood disintegrative 

disorder, and pervasive development disorder (“Autism Spectrum Disorder,” 2013). 

The DSM-V characterizes autistic impairment as a deficit in social communication and 
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interaction or repetitive or restrictive behavioral patterns that first appear early in the 

developmental period, cause impairment in typical functioning, and cannot otherwise 

be explained by intellectual disability (American Psychiatric Association, 2013). 

Typically, ASD is diagnosed using behavioral assessments in the first two to four years 

of life (Lord, Rutter, & Le Couteur, 1994). 

 

Social deficits in individuals with ASD are in part attributed to impaired theory of mind 

(ToM), the ability to infer what another person is thinking, feeling, or perceiving (Simon 

Baron-Cohen, Leslie, & Frith, 1985; Boucher, 2012; Chevallier et al., 2014; Kana, Keller, 

Cherkassky, Minshew, & Just, 2009; Mason, Williams, Kana, Minshew, & Just, 2008; 

Senju, 2012; Spek, Scholte, & Berckelaer-Onnes, 2010; Zalla, Miele, Leboyer, & Metcalfe, 

2015). Common assessments of ToM abilities include tasks in which individuals must 

read stories and infer mental states of the characters (e.g. the Faux-Pas test and the 

Strange Stories test; (Spek et al., 2010; S. White, Hill, Happé, & Frith, 2009). While these 

tasks are successful in revealing positive correlations between utilization of ToM and 

the extent of autistic affectedness, narrative-based approaches rely on verbal ability and 

are abstracted by fiction. The field would benefit from the introduction of dynamic 

tasks that can be conducted non-verbally, engaging individuals with potentially limited 

verbal skills in social situations while minimizing direct social contact, in order to probe 

critical thinking and ToM in real-time. 

 

Theory of mind (ToM) is the ability to imagine the beliefs, intentions, and mental states 

of social partners (Leslie, Friedman, & German, 2004). Investigation of a ToM network 

in the brain is an enduring topic of research that is focused on understanding the neural 

correlates of interpersonal interactions that are an inherent part of day-to-day life. 
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Research of the ToM network is crucial in gaining insight into the causes of and 

treatments for social impairments such as ASD (Simon Baron-Cohen et al., 1985; Stone, 

Baron-Cohen, & Knight, 2013). 

 

ToM occurs in both intentional and subconscious forms, referred to as “explicit” and 

“implicit,” respectively (Frith & Frith, 2008; Schuwerk, Vuori, & Sodian, 2014).  Most 

commonly, ToM is probed through narrative tasks that explicitly require the participant 

to imagine what another person is thinking. One common example, the False Belief 

task, tests a subject’s ability to represent another person’s knowledge separately from 

their own, allowing for the fact that other people may not know what you know. The 

False Belief task is trivial for typical subjects, yet young children and some individuals 

with ToM impairments are not able to pass it (Apperly et al., 2004; Helming et al., 2014; 

S. White et al., 2009). While less commonly utilized, ToM can also be investigated 

through non-narrative tasks that provide their context implicitly through an animation 

or a game environment. Through clips of animated shapes using biological or random 

motion, Castelli et al. was able to probe ToM in both neurotypical (NT) and cognitively 

able subjects with autism, identifying differences in brain activity within the ToM 

network (Castelli, 2002). Similarly, Yoshida et al. utilized the game theoretic Stag Hunt 

task, evoking ToM implicitly in the preferred cooperative outcome (Yoshida, Seymour, 

et al., 2010). The addition of eye-tracking hardware to ToM studies can also be a useful 

probe into cues that signal ToM, especially in studies that incorporate individuals with 

autism because attempts to engage in ToM can be interpreted through eye gaze. For 

instance, individuals with autism are more likely to look at the mouth and less likely to 

look at the eyes of a social partner, indicating that the cues they are using are different 

from neurotypical individuals (Boraston & Blakemore, 2007). Individuals with autism 
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can often successfully describe other individuals’ mental states when explicitly asked, 

but will fail to use ToM inferences when performing a task that benefits from implicit 

ToM (Schuwerk et al., 2014). 

 

As a result of the abstract nature and subsequently tenuous understanding of ToM, it is 

often a useful tactic to explore and reinforce hypotheses through computational 

modeling of its functional or physical components. Because ToM is applicable in social 

situations of all scales, it is useful to study both groups of agents interacting in a 

simulation such as Pynadath and Marcella’s PsychSim model of ToM agents (Pynadath 

& Marsella, 2005), which models personality traits and behaviors of a group of people 

in order to simulate bullying in schools, as well as the individual’s ToM experience in 

order to match collected behavioral data (Bosse, Memon, & Treur, 2007; El Kaliouby & 

Robinson, 2005; Friedlander & Franklin, 2008; Si, Marsella, & Pynadath, 2010; A L 

Thomaz, Berlin, & Breazeal, 2005; Andrea Lockerd Thomaz, Berlin, & Breazeal, 2005).  

 

Amongst the most promising of these studies are those that are neurobiologically 

inspired and explore ToM down to the neurochemical processes involved. For instance, 

Abu-Akel and Shamay-Tsoory’s neural network model of ToM that attempts to model 

specific brain areas incorporated in the mentalizing network (Abu-Akel & Shamay-

Tsoory, 2011), as models of this type align themselves most closely with the machinery 

upon which they are based. In a specific example of ToM modeling work related to the 

present study, Hampton et al. conducted a study utilizing modeling and game theory to 

probe mentalizing behavior in an fMRI setting with the intention of matching up the 

model’s activity with neural data (Hampton, Bossaerts, & O’Doherty, 2008). Subjects 

played an economic game in the scanner against other human players, and the data 
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collected from this experiment was shown to match the data of the model playing the 

game. While this study was successful in attributing decision-making activity to mPFC, 

bilateral STS, and various other areas, the authors only used human players during the 

experiment. While they did not use their model as a player, they expressed the desire to 

see studies in the future that utilized adaptive agents in this capacity, a primary goal of 

the present work. 

 

Recent research has indicated that differing levels of autistic traits can be found 

throughout the general population (Simon Baron-Cohen, Wheelwright, Skinner, Martin, 

& Clubley, 2001; Ruzich et al., 2015), indicating that the spectrum of ASD may extend 

beyond clinical diagnoses and into subclinical populations. In an effort to study varying 

levels of autistic traits, the Autism Quotient (AQ) test, a 50 question Likert-based survey 

querying the presence or absence of various behaviors typically associated with ASD 

was created (Simon Baron-Cohen et al., 2001). The AQ test allows identification of the 

presence of autistic traits, such as ToM impairment, in the general population and can 

be used to bridge the gap between subclinical and clinical populations. 

 

 In research closely related to the AQ test, the Empathizing/Systemizing Quotient tests 

are also used to assess the degree of autistic traits in general population individuals (S. 

Baron-Cohen, Richler, Bisarya, Gurunathan, & Wheelwright, 2003; Simon Baron-Cohen, 

2009; Focquaert & Vanneste, 2015; Wheelwright et al., 2006). Individuals with autism 

and high levels of autistic traits tend to be described as “high systemizing,” meaning 

that such individuals tend to analyze systems by rules and patterns, whereas 

individuals with low levels of autistic traits tend to be “high empathizing,” meaning 

that they tend to predict and respond to mental states and emotions (Focquaert & 
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Vanneste, 2015). 

 

Neural basis of ToM and Autistic Impairment 

Research on the neural expression of the ToM network is crucial in gaining insight into 

the causes of and treatments for social impairments such as Autism Spectrum Disorder 

(ASD) (Baron-Cohen et al., 1985; Stone et al., 2013), which is often accompanied by 

impairments in ToM ability. As ToM is a high-level phenomenon that exhibits distinct 

characteristics through both behavior and neural activity, identifying the neural 

correlates, including both specialized areas of the brain and their corresponding 

networks, is key in understanding how ToM is represented and carried out in each 

specific situation. As a result of the abstract nature and subsequently tenuous 

understanding of ToM, it is often a useful tactic to explore and reinforce hypotheses 

through 1) noninvasive brain imaging measures and 2) computational modeling of its 

functional or physical components. There is a core network of brain areas that plays a 

role in ToM tasks and is therefore categorized as ToM areas: TPJ (R. Saxe & Powell, 

2006), APC (Gallagher & Frith, 2003), STS (Allison, Puce, & McCarthy, 2000; 

Beauchamp, 2015; Deen & Saxe, 2012; von dem Hagen et al., 2011), mPFC (Yoshida et 

al., 2010), and ToM supplementary areas such as the amygdala (Fine, 2001) and OFC 

(Gallagher & Frith, 2003). 

 

In previous work, mPFC has been found to be engaged in perspective taking (Hari & 

Kujala, 2009), shared attention to a goal (Rebecca Saxe, 2006), or as an integration area 

for social information (Van Overwalle, 2009). TPJ has traditionally been viewed as an 

area specialized for ToM, involved in mentalizing or imagining the goals and desires of 

a social partner (Hari & Kujala, 2009), perhaps in an effort to understand the mental 
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states (Rebecca Saxe, 2006) or intentions of others (Van Overwalle, 2009). The APC and 

STS are two additional areas that have been implicated in attempting to understand the 

intentions of others (Gallagher & Frith, 2003; Hari & Kujala, 2009), especially utilizing 

biological motion cues in the case of STS (Allison et al., 2000; Rebecca Saxe, 2006; Van 

Overwalle, 2009). The bilateral temporal poles have shown activity in ToM experiments, 

particularly narrative driven (Olson, Plotzker, & Ezzyat, 2007), in regards to attributing 

mental states (Hari & Kujala, 2009) and relating to other people, perhaps in ways 

informed by one’s personal memories of similar experiences (Gallagher & Frith, 2003). 

OFC and amygdala have both shown to be active in emotional contexts (Camille, 2004; 

Coricelli et al., 2005; Moll, de Oliveira-Souza, Bramati, & Grafman, 2002), emotion 

having a strong influence on ToM and social interaction in general, a compelling 

argument as to why these areas are relevant in this context. OFC activity correlates with 

the influence of moral responsibility on emotion (Moll et al., 2002) (e.g. guilt), while the 

amygdala appears to be active in situations involving the effect of one’s emotions on 

social judgments (Hari & Kujala, 2009). 

 

As mentioned above, impairment of ToM in varying degrees of severity is a common 

deficit found in people with ASD (Matthews et al., 2012). As autism is characterized by 

a difficulty interacting with other people and understanding their mental states (Eigsti 

& Shapiro, 2003), the primary ToM network and its interaction with other areas of the 

brain is commonly discussed alongside autism (Simon Baron-Cohen et al., 1985). While 

ToM deficits in individuals with ASD are pervasive early in childhood and adolescence, 

through experience and therapy, it is not uncommon to see improvements in autistic 

individuals such that they exhibit a definite improvement in the ability to cope with 

social situations by late adolescence and adulthood (White et al., 2014). However, it has 
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recently been shown that while these deficits are not as apparent behaviorally in 

advanced years, the neural correlates of these deficits and their subsequent 

compensations are still observable using fMRI (S. J. White et al., 2014). White et al. 

identified an hyperactivation of the mentalizing network, characterized by the regions 

of interest (ROIs) mPFC, posterior cingulate cortex (PCC), TPJ, and temporal poles in an 

explicit, narrative-driven fMRI task of ToM in comparison to NT subjects (S. J. White et 

al., 2014), in agreement with the results of other similar tasks (Mason et al., 2008), and a 

complementary pattern of hypoactivation has been shown in individuals participating 

in implicit ToM tasks (Castelli, 2002). 

 

The field of autism and ToM could benefit largely from further investigation into this 

supported theory of ToM network activation as a function of explicit vs. implicit tasks.  

White et al. hypothesize that overactivity of the neural correlates of ToM in people with 

autism may be correlated to explicit tasks because they are made aware of the task 

demands and perform strong compensation for deficits, whereas implicit tasks may not 

be sufficient to cue a ToM response in subjects with ASD, leading to decreased activity 

in ToM areas of the brain; both hypotheses have been supported by findings from 

related studies (Castelli, 2002; Kana, Keller, Minshew, & Just, 2007; Koster-Hale, Saxe, 

Dungan, & Young, 2013; M. V. Lombardo et al., 2010; Mason et al., 2008; S. J. White et 

al., 2014). Coupled with the previously discussed concept that the general population 

expresses varying levels of autistic traits, the investigation of brain activity of adults in 

the general population during ToM tasks is a promising venture capable of providing 

insight into the neural correlates of ToM and autism by means of comparison to 

differential activation patterns. 
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CHAPTER 1: Social Contracts and Human-Computer 
Interaction with Simulated Adapting Agents  

 

In the present study, we are interested in moving beyond games that focus on the 

competition between players, to explore teamwork and social signaling among players 

by using the socioeconomic game known as the Stag Hunt (Skyrms, 2004).  In the game 

of Stag Hunt, two players decide whether to hunt a high-payoff stag cooperatively or a 

low-payoff hare individually.   As described in detail in Scholz and Whiteman (2010), 

the risk in this game is that both players must decide to hunt the stag in order to catch 

it.  In the case that both players hunt the stag, both are awarded a high payoff.  

However, if only one player decides to hunt the stag while the other hunts a hare, the 

player who hunted the stag gets no payoff and the player who hunted the hare obtains 

a small payoff.  Thus, success in the Stag Hunt requires the ability to make a social 

contract with another player and form a representation of another’s intentions. A 

description of this work can be found in Adaptive Behavior (A B Craig, Asher, Oros, 

Brewer, & Krichmar, 2013) 

 

A major goal of the study presented in this chapter is to show that an agent with the 

ability to adapt to another player’s gameplay more effectively challenges a subject.  In 

many Human Computer Interface (HCI) games, subjects play against computer 

opponents with static strategies, which may not challenge subjects in a natural way.  A 

simulated agent with the ability to adapt to its opponent’s behavior has the potential to 

evoke more complex and interesting results in subjects than these set-strategy agents 

used in the studies described above.  Such an adaptive system may be a more 

informative probe for investigating human behavior under challenging conditions.  The 



14	

use of adaptive agents provides a controlled way to make subjects believe they are 

playing against an intelligent opponent.  Moreover, incorporating the adaptive behavior 

observed in subjects into future simulated agents may lead to HCI systems that interact 

more naturally with people.  

 

To move beyond the more simplistic and commonly used paradigm of game play 

against agents with set-strategies, the present study investigated the social and 

behavioral effects of an adaptive agent on human subjects within the highly social Stag 

Hunt game environment.  In order to compare pre-set and adaptive agent paradigms, 

human subjects played a computerized version of the game with five different 

strategies: exclusive hare hunting, exclusive stag hunting, random hunting, Win-Stay, 

Lose-Shift (WSLS) hunting, and an adaptive agent.  The adaptive agent was 

implemented with an Actor-Critic model that took into account the costs and benefits of 

moves.  Our results show that such an adaptive agent is able to evoke a response in 

subjects that is significantly different from those produced by set-strategy paradigms.  

Subjects spend more time and effort when playing against an adaptive agent, following 

more complex paths to their targets.  Thus, such adaptive agents have the potential to 

be used in social situations as a partner or opponent akin to another human player, 

while allowing for greater control. 

 

1.1. Methods 

 

1.1.1. Human Participants.  

Forty subjects (age range: 18-25) were recruited through an online database maintained 

by the Experimental Social Science Laboratory (ESSL) at the University of California, 
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Irvine (UCI).  The subject database is comprised of currently enrolled undergraduate 

and graduate students from UCI who have volunteered to be contacted for and 

participate in socioeconomic experiments within the UCI School of Social Sciences.  In 

this recruiting database, there is no screening for race, gender or other background 

characteristics.  Subjects had not previously participated in the same experiment.  The 

experimental protocol was approved by the Institutional Review Board at University of 

California, Irvine, and informed consent was obtained from all subjects.  Two subjects 

did not appear to understand the instructions for the majority of the experiment; their 

data was removed before analysis. 

 

1.1.2. Computer Interface for the Stag Hunt 

Subjects played a variant of the Stag Hunt game against simulated agents, which was 

similar to the game used by Yoshida and colleagues (W. Yoshida, Seymour, et al., 2010).   

This version of the Stag Hunt game differed from the traditional version by adding a 

spatial and temporal component to the game.  The spatial component consisted of a 

game board with tokens, both for the players and for the stag and hare prey, such that 

the players needed to traverse squares on the board in order to reach and capture their 

prey.  The temporal component was a byproduct of this game environment in that it 

took a variable amount of time in each game to reach and capture prey.  This non-

standard approach was used in order to provide more measurable differences in human 

behavior beyond the record of the action choices themselves (e.g. reaction time, number 

of turns, path on gameboard, etc.).  However, the present version retains the stag and 

hare equilibriums of the original version of Stag Hunt.   
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Figure 1.1. Screenshot of Stag Hunt game board.  
The game board included a 5 × 5 grid of spaces upon which the player (stick figure image), 
agent (robot image), stag (stag image), and hare (hare image) tokens resided. The screen 
included a button to start the experiment, the subject’s score for the round, the subject’s overall 
score for the experiment, the game number within the round, a 3-second countdown to the start 
of the game, and a 10-second counter monitoring the game’s timeout. At the beginning of each 
game, the locations for the stag, player, and agent tokens were randomly placed along either the 
top row, bottom row, or middle column at least one square away from each other. The initial 
positions of the hares were fixed in the locations shown above for all games. The player and 
agent could move one square at a time towards their goal at the start of the game, while the 
targets remain fixed. 
 
 
The computer interface consisted of a 5x5 grid on which a stag token, two hare tokens, a 
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subject token, and an agent token were placed (Figure 1.1).  The two hare tokens were 

placed on the middle square of the left and right columns for every game while the stag, 

subject, and agent tokens were randomly placed on a square residing within the first 

row, last row, or center column of the game grid.  This precaution ensured that the 

players and the stag would not begin a game right next to a hare.  Player tokens were 

prevented from being initially placed directly next to or on top of a stag or each other. 
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Figure 1.2. Screenshot of hare capture.  
Players moved towards a target by performing consecutive left mouse clicks on adjacent 
squares until they had arrived at their target. In order to catch a hare, the player needed to be on 
top of the hare so that the image displayed both the player’s and the hare’s tokens. The player 
then performed a right mouse click on top of the current square to catch it. In the case that both 
players were on a hare square, the first player to click on the hare caught it. When a player 
caught a hare, that player won one point and the current game ended. 
 

Each participant controlled the subject token through left mouse clicks to adjacent 

squares on the grid to hunt either the stag or hare token.  Moves were executed 

simultaneously between players (i.e. were not limited to turns), and the subject’s moves 

took effect instantaneously.  Computer agents moved every 600 ms, which was shown 

in software testing to create a reasonable level of difficulty (assessed by near-equal 

agent/subject point totals in non-expert players).  Subjects were capable of moving 

quickly (~200 ms), but often took more time in deciding moves.   In order to hunt a 

hare, the subject token needed to occupy the same square as a hare token (Figure 1.2).  

A subject made a right mouse click on the currently occupied hare square to catch the 

hare.  In the event that both players tried to catch a hare at the same time, the player 

that made the first click caught the hare.  In order to hunt a stag, the subject and agent 

tokens needed to occupy squares adjacent to the stag token vertically, horizontally, or 

diagonally (Figure 1.3).  A subject made a right mouse click on the stag square in order 

to catch it.  It was not sufficient for both players to merely be next to the stag; they both 

needed to indicate their intentions to catch the stag.  As soon as a hare or stag was 

caught, the game ended. Catching a stag awarded each player four points, while 

catching a hare awarded the successful player one point and the unsuccessful player 

zero points (see payoff matrix in Table 1.1).  

 

Table 1.1. Payoff matrix of Stag Hunt. 
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During the games, the subjects saw their total scores for the current round as well as a 

10 second countdown timer for each game that provided a time limit for each game.  If a 

game lasted over 10 seconds, no payoffs were given.  At the end of each round, the 

subjects were shown their total scores summed over all rounds already played.  Subjects 

were not shown the score of the agent in order to prevent unnecessary competition. 
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Figure 1.3. Screenshot of stag capture.  
In order to catch a stag, both the player and agent tokens needed to be in squares adjacent to the 
stag token, whether horizontally, vertically, or diagonally adjacent. Both the player and the 
agent required the intention of catching a stag. It was not sufficient to simply pass next to the 
stag while the other player intended to catch it. Once both players were adjacent to the stag and 
had the intention to catch the stag, the human player performed a right mouse click on top of 
the stag in order to catch it. Catching a stag awarded both players four points each. 
 

1.1.3. Agents for the Stag Hunt 

For each of the 250 games of the Stag Hunt, the agent played one of the following five 

strategies: EQStag, EQHare, Random, Win-Stay-Lose-Shift (WSLS), and Adapt.  EQStag 
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agents always hunted stags, while EQHare agents always hunted hares.  The Random 

agent had an equal probability of hunting a hare or a stag in each game.  The WSLS 

agent chose either hare or stag randomly in its first game, switching to the other target 

after losing a game and repeating its choice after winning a game.  The Adapt agent 

began its first game with no choice preference or strategy, and developed its strategy 

through an Actor-Critic model that will be described below.  The rounds were 

presented in random order for each subject, and all subjects played against every agent 

strategy.  No significant order effects were found. 

 

During the round in which the subject played against the Adapt agent, an Actor-Critic 

model was employed, which learned the appropriate actions based on the rewards and 

penalties acquired during a series of Stag Hunt games.  

 

The model updated state tables for a Reward Critic, Cost Critic, and Actor.  Each state 

was designated by: 1) the player’s distance from hare, 2) the agent’s distance from hare, 

3) the player’s distance from stag, and 4) the agent’s distance from stag.  The distances 

were calculated using Euclidean distance and then truncated to the nearest integer 

value. Player tokens could be, at most, five squares from the stag and three from the 

nearest hare, so there were 225 possible states in each table.  

 

The Reward Critic state table contained a weight that corresponded to the expected 

reward at the current state. Reward was defined as the payoff received at the end of a 

game as given by the payoff matrix (see Table 1.1). Similarly, the Cost Critic state table 

contained a weight that corresponded to the expected cost at the current state. Cost was 

defined as the perceived loss on a hunt. For example, if the Agent was hunting a stag 
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and the human caught a hare, the cost would be -4 (see Table 1.1). The Actor state table 

contained two weights for each state: one for the likelihood to hunt hare and the other 

for the likelihood to hunt stag in a given state. The Adapt agent was naïve for each 

subject at the beginning of the experiment, meaning that the state tables were initialized 

to zero.   

 

After each move made by either player, the Actor-Critic model state tables were 

governed by the following equations. 

 

The Actor-Critic weights depended on a delta rule that calculated an error prediction: 

 

𝛿 𝑡 = 𝑟 𝑡 + 𝑉 𝑠, 𝑡 − 𝑉 𝑠, 𝑡 − 1)        (1) 

 

where 𝑟 𝑡  was either the reward or cost at time 𝑡, 𝑉 𝑠, 𝑡  was the Critic’s weight at state 

𝑠, at time 𝑡, and 𝑉 𝑠, 𝑡 − 1  was the Critic’s weight for the previous timestep. 𝑟 𝑡  for the 

Reward Critic was given as: 

 

𝑟!"# 𝑡 =
4;  𝑖𝑓 𝑐𝑎𝑢𝑔ℎ𝑡 𝑠𝑡𝑎𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
1; 𝑖𝑓 𝑐𝑎𝑢𝑔ℎ𝑡 ℎ𝑎𝑟𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (2) 

 

𝑟 𝑡  for the Cost Critic was given as: 

 

𝑟!"#$ 𝑡 =
−4;  𝑖𝑓 ℎ𝑢𝑛𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑔 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑐𝑎𝑢𝑔ℎ𝑡 𝑝𝑟𝑒𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
−1;  𝑖𝑓 ℎ𝑢𝑛𝑡𝑖𝑛𝑔 ℎ𝑎𝑟𝑒 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑐𝑎𝑢𝑔ℎ𝑡 𝑝𝑟𝑒𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3) 
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The Critic’s state table was updated by:  

 

𝑉 𝑠, 𝑡 + 1 =  𝑉 𝑠, 𝑡 + 𝛿(𝑡)        (4) 

 

Equations 1-4 were applied after each move to update the weights in the Reward and 

Cost Critic state tables. 

 

The Actor’s weights were updated according to Equations 5 and 6. Equation 5 is given 

for the condition in which the Adapt agent hunted a hare.  

 

𝑉 ℎ𝑎𝑟𝑒, 𝑠, 𝑡 + 1) = 𝑉 ℎ𝑎𝑟𝑒, 𝑠, 𝑡 + 1− 𝑝 ℎ𝑎𝑟𝑒 ∗ 𝛿 𝑡  

𝑉 𝑠𝑡𝑎𝑔, 𝑠, 𝑡 + 1) = 𝑉 𝑠𝑡𝑎𝑔, 𝑠, 𝑡 − 𝑝 𝑠𝑡𝑎𝑔 ∗ 𝛿(𝑡)     (5) 

 

𝑉 ℎ𝑎𝑟𝑒, 𝑠, 𝑡  was the Actor’s state table value for hunting a hare in state 𝑠 at time 𝑡.  

Likewise, 𝑉 𝑠𝑡𝑎𝑔, 𝑠, 𝑡   was the Actor’s state table value for hunting a stag in state 𝑠 at 

time 𝑡.  𝛿 𝑡  was the delta value from both the Reward and Cost Critics. Equation 6 is 

given for the condition in which the Adapt agent hunted a stag. 

 

𝑉 𝑠𝑡𝑎𝑔, 𝑠, 𝑡 + 1) = 𝑉 𝑠𝑡𝑎𝑔, 𝑠, 𝑡 + 1− 𝑝 𝑠𝑡𝑎𝑔 ∗ 𝛿 𝑡   

𝑉 ℎ𝑎𝑟𝑒, 𝑠, 𝑡 + 1) = 𝑉 ℎ𝑎𝑟𝑒, 𝑠, 𝑡 − 𝑝 ℎ𝑎𝑟𝑒 ∗ 𝛿(𝑡)     (6) 

 

Equations 5 and 6 were applied for both the Reward and Cost Critic. The probability for 

hunting a hare, 𝑝 ℎ𝑎𝑟𝑒 , or stag, 𝑝 𝑠𝑡𝑎𝑔 , was given by the SoftMax function: 
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𝑝 ℎ𝑎𝑟𝑒 = !!(!!"#,!,!)

!!(!!"#,!,!)!!!(!"#$,!,!)
  

𝑝 𝑠𝑡𝑎𝑔 = 1− 𝑝[ℎ𝑎𝑟𝑒]         (7) 

 

At each turn, Equation 7 was used to choose the agent’s prey. The agent would then 

move one square closer to the stag, if stag was chosen, or one square closer to the 

nearest hare, if a hare was chosen. 

 

1.1.4. Experimental Design 

Data for each subject were collected simultaneously on forty Dell desktop computers in 

the ESSL, with each subject separated by privacy boards to prevent distraction and 

discussion between subjects.  The subjects first watched a narrated PowerPoint 

presentation, which provided a standardized explanation of the purpose and 

instructions for the experiment.  Subjects were informed at this time that they would 

receive both a baseline compensation for participation as well as an incentive payment 

that was dependent on their performance in the experiment game play.  The subjects 

next participated in a training session in which they played ten games of the Stag Hunt 

against a random-acting agent; the results from these ten games did not count towards 

the subjects’ final scores.  The experimental session then consisted of 250 games of Stag 

Hunt, divided equally between five rounds.  Each subject played the Stag Hunt game 

against all five of the computer agents (as discussed above) in rounds of 50 games, one 

round per agent type, with the rounds presented in a random order for each subject.  

Subjects were aware of switches between the agents, but they were not given any 

information on the agent’s strategy.  Data for each subject were saved to text files, 
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which were then compiled using Netsupport School computer software. 

 

Following completion of the experiment, all subjects received a US$7 standard payment 

for experimental participation as well as compensation based on their performance at 

the rate of US$0.02 for each point won during the experimental session.  Four points 

were awarded for catching a stag, or US$0.08, one point for catching a hare, or US$0.02, 

and zero points for not catching a target or allowing the ten-second timer to run out 

during a game.  End of experiment payments ranged from US$10 to US$21. 

 

1.2. Results 

 
 
Figure 1.4. Scatter plot of Actor state table data.  
Data for all subjects were taken from the Actor state tables of the Actor–Critic models used in 
the Stag Hunt experiment. (a) shows the probability for the adapting agent to hunt the closest 
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hare from each possible distance to closest hare target, while (b) shows the probability of the 
agent to hunt the closest hare from each possible distance of the subject to the closest hare 
target. (c) shows the probability for the agent to hunt the stag from each possible distance to the 
stag, while (d) shows the probability of the agent to hunt the stag from each possible distance 
from the subject to the stag. 
 

The Adapt agent demonstrated the ability to adapt to the subjects’ gameplay by taking 

into consideration the subjects’ position with regard to game tokens. An analysis of the 

Actor state tables was performed to show the likelihood to hunt hare based on the 

distances of the Adapt agent and the subject from the stag and the closest hare.  The 

Adapt agent was more likely to hunt a stag if it was further away from a hare (Figure 

1.4(a)) or if the other player was further away from a hare (Figure 1.4(b)). Figures 1.4(c) 

and 1.4(d) show the Adapt agent was more likely to hunt a stag if either it or the other 

player were near a stag.  These results show that the Actor-Critic algorithm was not 

only sensitive to its own position on the game board, but was also monitoring the other 

player’s position. 

 

Table 1.2. P-values for Wilcoxon rank-sum pairwise comparisons of average subject scores in 
each condition 
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Figure 1.5. Subject scores against agent strategy.  
For each boxplot, the central mark is the median, the edges of the box are the 25th and 75th 
percentiles, the whiskers extend to the most extreme data points not considered outliers, and 
outliers are plotted individually as ‘ + ’ symbols. The data were not normally distributed; 
therefore subject performance against different agents was compared using Wilcoxon rank-sum 
tests (Bonferroni corrected, p <.005 was considered significant). The graph depicts the subject 
scores when playing with different agent strategies: Adapt, EQHare, EQStag, Random, and 
Win– Stay–Lose–Shift (WSLS). Scores were averaged over all subjects during the Stag Hunt 
experiment (Table 1.2). 
 

Subject performance varied depending on the type of agent played (Figure 1.5; Table 

1.2). In all cases, the agents’ scores were similar to human scores, indicating that the two 

opponents were fairly matched. EQStag was shown to produce significantly higher 

overall subject scores than all other agent strategies, followed by WSLS, which 

produced significantly higher scores than the remaining three conditions.  These high 

scores were due to the subjects gravitating towards cooperation and the high-payoff 

equilibrium of hunting stags. Subjects had the lowest scores against EQHare agents 

because they were forced to compete against their opponents for low-payoff hares. 
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Playing with Adapt and Random agents resulted in significantly higher scores than 

EQHare and lower scores than EQStag and WSLS, however they were not found to be 

significantly different from each other.  Successfully hunting hare in all games would 

have resulted in a score of 50, while successfully hunting stag in all games would have 

resulted in a score of 200.  Because subjects had scores higher than 50, yet lower than 

200, this implies that subjects switched between hare and stag hunting against Adapt 

and Random agents rather than tending toward the hare or stag equilibrium. 

Furthermore, the wider range of scores when comparing Adapt to Random suggests 

that subjects had more difficulty figuring out the Adapt agent’s strategy. 
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Figure 1.6. Ratio of stag to hare catches for all participants.  
The ratio of stag to hare catches was calculated by the equation 𝑞!!"#:!"#$ = (𝑛!"#$ − 𝑛!!"#)/
(𝑛!"#$ + 𝑛!!"#), in which 𝑞!!"#:!"#$ is the ratio for a given subject, 𝑛!"#$ is the number of stags 
captured during a given condition, and −𝑛!!"# is the number of hares captured during a given 
condition. Values of positive one indicate exclusive stag hunting (EQStag), while values of 
negative one indicate exclusive hare hunting (EQHare). The histograms display the ratio data 
for (a) EQStag, (b) Random, (c) WSLS, and (d) Adapt agents. Note that the y-axis differs 
between Adapt/Random and EQStag/WSLS in order to better observe the shape of the data. 
 

To understand how individual subjects altered their strategy when playing with 

different agents, we calculated the ratios of stag-to-hare catches for each subject in each 

condition (Figure 1.6).  The ratio was calculated by using the equation, 

 

𝑞!"#$:!!"# = (𝑛!"#$ − 𝑛!!"#)/(𝑛!"#$ + 𝑛!!"#)      (8) 

 

in which  represents the normalized ratio of stags to hares,  represents the 

total number of stags caught for that subject over all games in the condition, and  

represents the total number of hares caught for that subject over all games in the 

condition.  Each ratio falls along a scale between negative one and positive one, 

negative one representing exclusive hare hunting and positive one representing 

exclusive stag hunting.  In order to show the distribution of hunt behavior in subjects, 

Figure 1.6 shows how the subject hunted with an Adapt, EQStag, Random, or WSLS 

agent. We omitted the histogram for EQHare, as it was only possible for either player to 

catch a hare when playing with this strategy and thus all data points were at negative 

one.  Also, two subjects were omitted from this analysis for not successfully catching 

any stags or hares in the Adapt and WSLS conditions.  As expected, subjects showed a 

bias towards stag hunting when playing against EQStag (Figure 1.6(a)), which suggests 

that they found a high-payoff equilibrium.  In Figure 1.6(b), subjects playing a Random 
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agent had a somewhat normally distributed distribution of hunting tendencies with the 

peak being a mixture of stag and hare hunting.  In Figure 1.6(c), subjects playing a 

WSLS agent had a bias towards stag hunting, as was also seen in EQStag and likely was 

a result of the high-payoff equilibrium.  In Figure 1.6(d), subjects playing the Adapt 

agent had a trimodal distribution: 1) those preferring the cooperative equilibrium, 2) 

those preferring the non-cooperative equilibrium, and 3) those who were equally split 

between those two extremes. 

 
Table 1.3. Color-coded chart of equilibrium alignment for individual subjects against each agent 
strategy. 
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The key shows the ratio, with green colors representing strong stag hunting equilibrium, and 
red colors representing strong hare hunting equilibrium. 
Darker shades represent a stronger bias, and white represents minimal to no bias. The majority 
of subjects displayed positive/moderate ratios 
throughout conditions, and those who displayed strongly negative ratios often remained 
negative or weakly biased throughout conditions. 
 

Table 1.3 shows each individual subject’s hunting bias for each condition, as indicated 

by their normalized ratios, with darker colors representing stronger biases toward stag 

or hare equilibrium.  EQHare was omitted, because subjects could only capture a hare 

in this condition.  As shown by the table, many subjects were biased to stag or hare 
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hunting across different conditions.  For example, subjects 11, 13, 15, 38, 55, and 57 

remained strong stag hunters in multiple conditions, including the Adapt condition.  

Some subjects showed hare equilibrium tendencies across multiple conditions (i.e. 

Subjects 12, 14, 34, 41). These results suggest that subjects may have tendencies toward 

cooperation or non-cooperation. However, subjects 36, 37, and 52 tended toward hare 

hunting in the Adapt condition but not in other conditions, implying that the Adapt 

agent evoked a shift in strategy in some subjects.  

 
 
Figure 1.7. Average path deviation ratio over all subjects for each agent strategy.  
The boxplots have the same notation as in Figure 5. The data were not normally distributed; 
therefore subject performance against different agents was compared using Wilcoxon ranksum 
tests (Bonferroni corrected, 𝑝 < .005 was considered significant). The length of the direct path to 
the target was calculated by measuring the distance between the first and last moves for each 
game of each subject. That distance was subtracted from the subject’s total distance traveled in 
each game calculated by summing the distances between each move. Those differences were 
used in the above graphs as the average path deviation for each agent strategy: Adapt, EQHare, 
EQStag, Random, and Win–Stay–Lose–Shift (WSLS). (a) The average path deviations over all 
games and strategies. (b) The average path deviations for only the games in which the subject 
did not successfully catch a stag or hare, in other words losing the game (Table 1.5). 
 

Subjects’ paths were analyzed to determine the directness of their movements by 

measuring the amount of deviation from a direct path connecting their first movement 

toward their final destination at the end of the game, referred to as the "direct path".  

The games analyzed were for all outcomes (Figure 1.7(a); Table 1.3), and games in 
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which the subject failed to catch either a stag or a hare (Figure 1.7(b); Table 1.4).  

Failures, in particular, were analyzed because the path deviation provided extra 

information as to why the subject failed to catch a target, for example indicating an 

attempt to observe the agent, attempting to hunt the stag while the agent hunted hare, 

etc.  Path deviation was calculated by finding the length of the direct path (distance 

between the first and last moves for each game of each subject) and subtracting that 

number from the subject’s total distance traveled in each game (calculated by summing 

the distances between each move).  

 

Table 1.4. p-values for Wilcoxon rank-sum pairwise comparisons of average subject path 
deviation ratio in each condition over all games. 

 

 

All comparisons were performed on the average path deviation ratio for each subject 

per agent strategy. In the rank sum analysis for path deviation over all games, EQHare 

showed smaller average deviations from all other conditions.  Adapt showed nearly 

significantly larger deviations from Random and WSLS.  No other comparisons were 

shown to be significantly different.  However, in the rank sum analysis for losses 

(Figure 1.7(b); Table 1.4), Adapt was found to have significantly larger path deviations 

from all other agent strategies.  These results might indicate that subjects realized that 

the adaptive agent’s actions were malleable depending on subject behavior, and 
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therefore subjects attempted to guide the agent or wait for the agent to change its target.  

EQHare and Random were both shown to have significantly larger path deviations than 

WSLS, however they were not significantly different from each other.  EQStag had no 

analyzable loss data because the only way to lose a game in EQStag is to time out.  All 

timeout data was removed before analysis due to excessive skewing. 

 

The path deviation of the Adapt agent was analyzed in the same way as the human 

data. Performing the path deviation analysis on the Adapt agent showed that the 

average deviation per game over all subjects is 1.5 units (𝜎 = 0.4) (compared to the 

human’s average path deviation in Adapt (~1.2)).  For reference, each of the other agent 

types had an average path deviation of 1 (direct path) due to their inability to switch 

targets mid-game.  In addition to using path deviation to give insight into the player’s 

intention, move data in the Adapt condition was analyzed to see which player arrived 

at the stag first.  Subjects arrived first at the stag 36% (𝜎 = 16%) of the time stags were 

caught. The indirect paths and tendency to get to the stag first on many games, may 

suggest that subjects were trying to guide the Adapt agent’s behavior. 

 
 
Figure 1.8. Average time between mouse clicks/number of turns.  
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(a) The average time between mouse clicks for subjects during agent strategy: Adapt, EQHare, 
EQStag, Random, and Win–Stay–Lose–Shift (WSLS). The data were not normally distributed; 
therefore subject performance against different agents was compared using Wilcoxon rank-sum 
tests (Bonferroni corrected, 𝑝 < .005 was considered significant). Each mouse click indicated a 
desired movement on the game board or action taken to catch a stag or hare target performed 
by the subject. (b) The average number of turns taken by subjects during each agent strategy. 
The number of turns was taken cumulatively for all games in a particular strategy for each 
subject. The boxplots have the same notation as in Figure 5. 
 

To test how quickly subjects were making decisions, the average time between mouse 

clicks and the number of turns taken by the subjects were analyzed (Figure 1.8; Table 

1.5; Table 1.6).  Subjects had significantly shorter delays in the EQHare condition for 

mouse clicks than all other conditions, and subjects had significantly longer delays in 

the EQStag condition when compared to the Random condition (Figure 1.8(a); Table 

1.5).   

Table 1.5. p-values for Wilcoxon rank-sum pairwise comparisons of average subject path 
deviation ratio in each condition over game losses. 

 

 

Table 1.6. p-values for Wilcoxon rank-sum pairwise comparisons of average subject mouse click 
delays in each condition. 
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Subjects took nearly significantly longer between mouse clicks when playing with the 

Adapt agent compared to the Random agent, and EQStag had nearly significantly 

slower click times than WSLS.  No other comparisons were significantly different.  

EQHare shows the most dramatic difference with a very short click time, indicating that 

in this condition, subjects had a target and trajectory clearly in mind for each game and 

made moves as quickly as possible. The increase in click time for Adapt might indicate 

that the subjects invested more time watching to see what moves the adaptive agent 

would make before the subjects made their movement decisions.  Rank sum tests were 

also run for the differences between the average number of turns taken by subjects over 

all games in each of the five conditions (Figure 1.8(b); Table 1.6). EQHare was found to 

have significantly fewer turns taken when compared to all other conditions, followed 

by Random, which had significantly fewer turns taken than the remaining three 

conditions.  EQStag was found to have nearly significantly more turns taken than 

WSLS.  Subjects took more turns playing with the Adapt than with the Random agent.  

Both the increased number of turns and high mouse click delay indicate that the 

subjects were aware that the adaptive agent was not acting randomly and may show 

that the subjects attempted to guide the agent’s behavior toward stag hunting to 

maximize payoffs. 
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1.3. Discussion 

Economic game theory has had a long, productive history of predicting and describing 

human behavior in cooperative and competitive situations (Maynard Smith, 1982; M. A. 

Nowak, Page, & Sigmund, 2000; B. Skyrms, 2001). The theory of games has also been 

used to illuminate the neural basis of economic and social decision-making (Lee, 2008; 

Rilling & Sanfey, 2011). However, these studies typically have human subjects play 

against opponents with set-strategies and predictable behavior. By introducing agents 

with the ability to adapt to subject variation and the game environment, we were able to 

evoke stronger strategic variation in our subjects.  

 

Specifically, subjects played the socioeconomic game known as the Stag Hunt because 

of its advantages for studying cooperation, teamwork, and social signaling (Skyrms & 

Pemantle, 2000; Skyrms, 2004). In a Stag Hunt, subjects must weigh the decision of 

hunting a valuable stag, which requires the cooperation of another player, against 

hunting a hare, a less valuable but more easily obtainable prey (i.e., cooperation is 

unnecessary). Because it has both a cooperative and non-cooperative equilibrium, as 

well as a temporal aspect (e.g., hunters can change their decision as the hunt 

progresses), the Stag Hunt may be a better model of cooperation and intention than the 

Prisoner’s Dilemma, Hawk-Dove, or Ultimatum Game. 

 

The adaptive agent was constructed based on a variant of the Actor-Critic model, which 

contained one Critic that learned the expected reward of an action and another Critic 

that learned the expected cost of an action. The model was similar to prior work in 

which a computational model of neuromodulation and action selection was developed 
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based on the assumptions that dopamine levels were related to the expected reward of 

an action, and serotonin levels were related to the expected cost of an action (Asher, 

Zaldivar, & Krichmar, 2010; Zaldivar, Asher, & Krichmar, 2010). The dopaminergic and 

serotonergic systems have been shown to influence the evaluation of rewards and costs 

for future decisions respectively, and have a strong influence on social decision-making 

(Boureau & Dayan, 2010; Cools, Nakamura, & Daw, 2010; Krichmar, 2008). 

 

The main findings of the present study involve the differences in subject behavior when 

playing with an adaptive model, as opposed to preset, predictable computer strategies 

and purely random strategies. We found significant differences in scores, deviation 

from a direct path to the desired target, delay between movement mouse clicks, and the 

ratio of stags to hares caught.  It was found that subjects had more variation and 

uncertainty in their play with the Adapt agent. Additionally, close examination of the 

Adapt agent revealed that it not only altered play based on its own position on the 

game board, but also monitored the human players’ relative locations on the board.  

Lastly, our findings indicate that there may be a divide in the subject pool that defines 

two distinct types of reactions to the adaptive model: those that become highly 

cooperative by primarily hunting stag with other players and those that become highly 

uncooperative by primarily hunting hare on their own. 

 

Subjects playing with an adaptive agent may be investing more time and effort in trying 

to discover the agent’s strategy, recognizing that a strategy was, in fact, being used 

rather than the agent taking random actions.  As seen in Figure 1.8(b), subjects took 

significantly more turns when playing with the Adapt agent than the Random agent.  

This could indicate that either players were attempting to influence the agent’s actions 
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by executing guiding movements toward the desired target, or that players found it 

necessary to change their strategies mid-game, abandoning their first target to pursue a 

different target as the agent’s actions became clearer.  In further investigation of the 

guiding hypothesis, the data was analyzed to determine which player arrived at the 

stag first in the Adapt condition on average.  This was decided by identifying the player 

who landed within one square of the stag first.  Subjects arrived first in over 1/3 of the 

games, indicating that on many trials, the subject attempted to show the Adapt agent 

cooperative intention.  Further supporting the idea of subject observation and 

strategizing was the finding that the adaptive agent was shown to cause somewhat 

longer delays between mouse clicks than the random agent (Figure 1.8(a)), indicating 

that subjects spent a longer time thinking about their moves with the Adapt agent than 

with the Random agent.  This extra time was likely used either to estimate the pattern of 

the adaptive agent’s moves in order to choose the best target, or to develop a strategy to 

guide the adaptive agent towards the desired target. 

 

Subjects showed greater uncertainty and varied strategy in play with the adapting 

agent compared to other conditions. In Figure 1.5, the average scores for Adapt were 

significantly different from every other condition except Random.  However, the wider 

variance of the quartiles in Adapt suggests that some subjects varied their responses, 

possibly in an attempt to shape the adaptive agent’s actions.  This conclusion is 

compatible with the interpretation of the results in Figure 1.8 because the extra turns 

and extra time spent considering possible outcomes in the Adapt condition may also be 

an attempt to influence the adaptive agent.  The path deviation analysis further 

supports these claims.  Subjects deviated from a straight path more when playing with 

the Adapt agent, as opposed to other agents (Figure 1.7), providing more evidence that 
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the Adapt condition may encourage subjects to either change their strategy mid-game 

or that they attempted to use guiding moves to influence the adaptive agent’s behavior.  

Again, the significant difference between Adapt and Random underscores the point 

that the subjects treated the adaptive agent as if the agent was using a complex strategy 

rather than acting randomly.  Figure 1.7(b) shows an even more pronounced difference 

between Adapt and the other conditions when comparing only the games in which the 

subjects did not successfully catch their target and were beaten by the computer.  This 

result is likely found because in any condition besides Adapt, when the subject loses a 

game, it happens quickly as the agent is simply heading straight for a hare target.  The 

adaptive agent is not likely to simply rush to a hare target unless it has been trained to 

do so by a frequently uncooperative subject. 

 

In the Adapt condition, the agent is able to change its mind in deciding what target it 

will pursue mid-game, meaning that the path to a target for the adaptive agent is not as 

clear-cut and may change.  This indicates that more thought on the part of subjects was 

put into interpreting the movements of the adaptive agent than any of the other 

strategies.  The analysis of path deviation conducted for the Adapt agent showed a 

slightly higher, but comparable average value to average human path deviation.  The 

Adapt agent’s path deviation behavior indicates that it is interpreting the players’ 

positions on the board and using past payoff information to determine its best strategy 

on any given turn. 

 

When considering the Actor state tables, it becomes clear that the adaptive agent was in 

fact able to learn when to hunt stag and when to hunt hare depending upon both the 

agent’s position and the subject’s position to either target (Figure 1.4).  The closer the 
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agent was to the hare or the further the agent was from the stag, the higher its 

probability to hunt hare. However, the adaptive agent also considered the state of the 

other player. The closer the human subject was to the hare and the further the subject 

was from the stag, the more likely the adaptive agent would hunt hare. There were 

many cases in which the Adapt agent did not demonstrate a clear strategy and switched 

its hunting goal mid-game. For example, when the agent or the subject was far away 

from the stag, the probability to hunt a particular prey was roughly at chance.  This 

result could be improved upon in future experiments by allowing the adaptive agent to 

play more games with the subject, therefore providing the agent more time to learn and 

develop its state tables, or by training different agents off-line (i.e., playing non-naïve 

agents). For the sake of the length of this experiment, however, the number of games 

per condition was capped at 50, the threshold found in simulation at which the agent 

began to exhibit strong strategic biases. 

 
Table 1.7. P-values for Wilcoxon rank sum pairwise comparisons of average subject turn counts 
for each condition. 

 

 

The possibility of three distinct groups within the subject pool is suggested by the stag-

to hare-catch ratio data of the Adapt condition (Figure 1.6(d)). About half of the subjects 

in the Adapt data seem to form clusters at the extremes of the distribution, indicating a 
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bias toward exclusive stag-hunting or exclusive hare-hunting, while the remainder 

tended to switch between stag and hare catching (see peak in the middle of Figure 

1.6d). In contrast, the ratio of stag-to-hare catching against Random agents was 

somewhat normally distributed with a peak in towards equal stag and hare hunting 

(see Figure 1.6b).  This implies that playing with the Adapt agent evoked different 

responses in some subjects over others, either encouraging strong cooperation or strong 

competition.  For comparison, Figure 1.6(a) shows the EQStag data and Figure 1.6(c) 

shows the WSLS data.  Both EQStag and WSLS appear to be heavily biased towards 

exclusive stag hunting.  In the case of EQStag, stag hunting is obviously encouraged by 

the fact that the agent hunts only stag.  In the WSLS condition, if the subject beat the 

agent once at catching a hare target, the agent would attempt to hunt stag in the next 

game and would continue stag hunting as long as the subject is also hunting stags, 

which subjects playing to maximize their score should do as predicted by game theory.  

Accompanying these histograms, the equilibrium table (see Table 1.7) shows each 

individual subject’s personal bias in hunting over those four conditions, implying that 

many subjects have tendencies to cooperate and compete in this context, and that some 

subjects were strongly influenced to change those biases when playing against an 

Adapt agent (e.g., see subjects 33, 36, 37, and 52 in Table 1.7). 

 

The suggestion that two or more types of strategies can emerge among individuals 

when playing socioeconomic games is similar to conclusions found in Asher et al.’s 

Human Robot Interaction (HRI) study in the game of Hawk/Dove using an adaptive 

model (Asher, Zhang, et al., 2012). The conclusions drawn from their Acute Tryptophan 

Depletion (ATD) data indicated a division in their subject pool very similar to the 

divide found in the current experiment.  Their subjects, when tryptophan-depleted, fell 
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into one of two groups; either more cooperative or more competitive during games, 

much like the present study’s subjects while playing against the adaptive agent.  The 

present study is further comparable in that the Reward and Cost Critics used here 

resemble the serotonergic/dopaminergic systems inspiring the model in Asher’s study.   

 

Variation between individuals in socioeconomic games may be due to differences in 

dopamine and serotonin signaling (Bevilacqua & Goldman, 2011; Hyde, Bogdan, & 

Hariri, 2011; Loth, Carvalho, & Schumann, 2011). For instance, a variation of an 

upstream promoter region of the serotonin transporter gene (5-HTTLPR) has been 

shown to influence both behavioral measures of social anxiety and amygdala response 

to social threats in humans (Caspi, Hariri, Holmes, Uher, & Moffitt, 2010; Caspi, 2003; 

Hariri, 2002; Lesch et al., 1996; Young et al., 2007).  Subjects carrying the short allele 

variant of the 5-HTTLPR outperform subjects with the long allele in an array of 

cognitive tasks and show increased social conformity (Homberg & Lesch, 2011). 

Polymorphisms in dopaminergic genes, including variable number tandem repeat 

(VNTR) polymorphisms in DRD4 and DAT1, have been associated with poor ‘action 

restraint’ and ‘action cancellation’ (Congdon, Lesch, & Canli, 2008; Munafò, Yalcin, 

Willis-Owen, & Flint, 2008). The prevalence of such polymorphisms in the human 

population suggests that there is an evolutionary advantage for this variability, such as 

optimizing competition or cooperation in different situations and investigating this 

variation in games such as the Stag Hunt may be promising. 

 

Several simulation studies are pertinent to the present results. The cooperation aspect of 

game theory was also explored in studies such as Valluri (2006), where a variant of the 

Prisoner’s Dilemma was used in a simulation with adaptive agents.  The Prisoner’s 
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Dilemma was altered such that cooperation was able to evolve, albeit against classical 

game theory predictions, by being iterated and sequential.  This means that agents 

played games repeatedly against the same opponents, with the second player knowing 

the first player’s action before deciding on their own action rather than both players 

making their actions simultaneously.  A Q-learning algorithm controlled agents with a 

similar SoftMax function as the one used in the current experiment.  Because this 

version of Prisoner’s Dilemma was able to evoke cooperation in its agents, it is 

comparable to the Stag Hunt.  The link between the sequential iterated Prisoner’s 

Dilemma and the Stag Hunt is the ability to see intentionality before making an action.  

In Valluri (2006), the ability of the agents to reach cooperation was attributed to the 

sequential nature of turns rather than the traditional simultaneous action selection.  In 

the version of the Stag Hunt used in the present experiment, players could see the path 

of the agent and choose their actions based on that knowledge.  In this way, the present 

methods agree with this prior simulation study. In a study by Calderon (2006) using the 

Ultimatum Game, a simulation model of phenotypic plasticity was used in order to 

determine the evolution of cooperation in a population.  The results showed that when 

plasticity was increased, cooperation was also increased in terms of the threshold for 

acceptance and the offer amount.  Agents learned at the end of each game; proposers 

increased the amount they offered by one if their offer was accepted, and decreased 

their offer by one if it was rejected in the last game.  The same alterations were made by 

recipients for their acceptance threshold.  The games played were strictly one-shot, as 

the agents did not retain knowledge of whom they had played or what their previous 

payoffs were.  In the Ultimatum game, cooperation is contingent on reaching middle 

ground in which the proposer and the recipient both agree on the division of the 

resource.  Calderon found that in his control group, which did not exhibit plasticity, the 
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relative fitness was higher than in the group with plasticity (2006).  Although this result 

appears to be a strike against adapting agents, Calderon states that the reason this 

occurs is in any case where two individuals share a behavior, the agent who had that 

behavior innately will outperform the adapting agent due to the adaptive agent’s initial 

learning cost.  This comparison is very similar to the comparison of the EQStag and 

Adapt agents in the present study, as higher scores were achieved when playing against 

the EQStag agent. While the EQStag agent began at cooperative equilibrium, there was 

inevitably a large cost accrued in the learning period needed for the Adapt agent to 

learn cooperation, and the subject to adapt to the Adapt agent. 

 

The results of the present experiment have brought up some interesting observations 

for future study.  The individual subject strategy differences while playing with the 

adaptive agent suggests that there may be phenotypical variation influencing this 

behavior.  Additionally, the unique response overall to the adaptive agent in 

comparison to set-strategy agents invites further exploration of the adaptive agent’s 

ability to evoke a social response akin to that of playing against another subject.  In a 

future study, these two observations will be explored through their neural correlates to, 

in the case of the first observation, distinguish a difference in brain activity between the 

two equilibrium players, and in the case of the second observation, show the difference 

in response between adaptive agent opponents and other human opponents.  This 

study will both qualify and quantify the adaptive agent’s effect on subjects seen in the 

present experiment. 

 

1.4. Conclusion 

The main goal achieved by the present study was to show that adaptive agents were in 
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fact able to create a significantly different response in human subjects than that of set-

strategy agents.  Adaptive agents are useful for interacting in a game environment due 

to their unique ability to evoke complex and interesting results in human subjects while 

learning strategies of their own from both experience and subjects’ behavior.  Having 

the experiment situated in a game allows for a level of control and customization that is 

valuable when conducting experiments of any degree of specificity.  Because of the 

unavoidable degree of unpredictability encountered when using exclusively human 

subjects, the level of control afforded by the use of an adaptive agent is also desirable.  

The secondary goal achieved by the present study was to create computer agents that 

were able to learn in real-time without deliberate feedback outside of the game 

environment and have those agents mimic human behavior enough for subjects to learn 

to trust and cooperate with them in a relatively short time span.  The ability of the 

adaptive agent to evoke a more complex reaction in human players warrants study into 

the social effects of human-robot interaction using robots that are able to better emulate 

complex strategies humans would use in a game environment.  Future research in the 

field of adaptive agents may lead to robot or computer interfaces that are more natural 

or sociable, providing a smoother transition of complex technology into everyday life.  

In addition, adaptive agents have the potential to add a heightened degree of realism to 

HRI, specifically for socially affective robots (Thomaz & Breazeal, 2008).  
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CHAPTER 2: Investigation of Biases and Compensatory 
Strategies in the Probabilistic Wisconsin Card Sorting Test  

 

Social interaction and performance in game environments is comprised both of theory 

of mind and decision-making abilities. Knowing when to make the right decisions at the 

right times is a product of experience, instinct, and the ability to cope with uncertainty 

in a dynamic environment. Therefore, to accompany analysis of theory of mind, the 

investigation of decision-making ability in probabilistic environments is relevant to the 

study of subject performance in game environments because of its usefulness in 

deciding, with very few social cues, what another player is likely to do given a 

particular scenario. As with most cognitive processes humans conduct on a daily basis, 

decision-making is subject to bias, whether that bias comes from evolutionary 

shortcomings that were adaptive in human development, or from an interruption in the 

stream of sensory data the subject receives from its environment. In order to study these 

biases and how they affect human decision-making during games, the Wisconsin Card 

Sorting Test provides a well-established research tool to use as foundation. A 

description of this work can be found in Frontiers in Psychology (Craig, Phillips, 

Zaldivar, Bhattacharyya, & Krichmar, 2016). 

	
2.1. Wisconsin Card Sorting Test 

 

Dating back to 1948, David Grant and Esta Berg’s Wisconsin Card Sorting Test (WCST) 

is a task that is commonly used in assessing the ability to “set-shift,” or change one’s 

way of thinking in the face of new goals or stimuli (Bishara et al., 2010; Grant & Berg, 

1948). This task is useful in studying, modeling, and diagnosing disorders in higher-



48	

level processing areas of the brain such as the prefrontal cortex (Dehaene & Changeux, 

1991; Lie, Specht, Marshall, & Fink, 2006; Milner, 1963; Nyhus & Barceló, 2009; 

Robinson, Heaton, Lehman, & Stilson, 1980; Rougier & O’Reilly, 2002).  In the WCST, a 

subject is presented with one reference card and three to four choice cards. Each card 

contains an image with a particular shape, color, and number of items, and is designed 

such that each choice card’s feature expressions are mutually exclusive. Every choice 

card matches a different feature of the reference card. In each trial, one feature is 

selected as the “rule,” and the objective is to select a card that matches the rule for the 

reference card. For example, if the rule is green, the correct choice would be the card 

that contained green items, irrespective of the number or shape of items on that card. 

The WCST consists of several iterations of trials that use the same rule, followed by a 

rule shift that requires subjects to change their behavior. 

 

With the goal of evoking and quantifying changes in strategizing, behavior, and biases 

due to uncertainty, we developed a modified version of the WCST called the 

probabilistic WCST (pWCST). pWCST incorporates an element of uncertainty in the 

form of a probabilistic rule selection, and an option to forage for information by 

observing a trial. Each trial has a set of three probabilities corresponding to the 

likelihood that a particular feature will be the rule. For example, the rule could be 

dictated by a 90% chance of shape, 7% chance of color, and 3% chance of number of 

items. These probability distributions are referred to as the Top, Middle and Bottom 

rules, respectively, and these base percentages are referred to as the “ground truth 

probability distribution” in the paper. Because humans are oftentimes shown to make 

irrational decisions regarding probabilistic assessment in the face of uncertainty, 

incorporating a varying degree of uncertainty into the WCST adapts the task into a tool 
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that can be used to evoke and quantify the degree of change in behavior that is 

introduced into the decision-making process for unpredictable events. We hypothesize 

that by increasing the level of uncertainty in the WCST task, we will evoke biases and 

strategic changes in subjects that correlate to the degree of uncertainty. 

 

Card-based tasks in the past have been common for assessing the patterns of balancing 

exploration and exploitation (Hoehn, Southey, Holte, & Bulitko, 2005; Sang, Todd, & 

Goldstone, 2011; Worthy, Maddox, & Markman, 2007), both for testing diminishing 

resources as would be experienced in real world explore/exploit tasks, and for 

understanding the underlying probability in action choices. The element of information 

foraging is commonly studied using decision-making experiments, often utilizing a 

probabilistic task, although to our knowledge, the WCST has not been previously 

modified to accommodate this mechanism. Introducing uncertainty into the WCST has 

been explored in a previous study by Wilson and Niv (2012). Wilson and Niv used the 

WCST in conjunction with a Bayesian model in order to examine the methods by which 

humans decide what information to learn in a changing environment.  

 

The present study moves beyond Wilson & Niv’s paradigm with the addition of 

“Observe” trials, an option to collect information without affecting one’s score. While 

Wilson and Niv kept task uncertainty fixed, the present study investigates the effect of a 

variable level of uncertainty, which is hypothesized to affect both Observe behavior and 

strategy usage. The Observe feature introduced in the pWCST allows the subject to 

explore potential payoffs rather than exploit immediate gains. This adds an alternate 

option, similar to no-choice utility (Howes, Duggan, Kalidindi, Tseng, & Lewis, 2015), 

to the classical explore/exploit tradeoff where subjects can practice alternate strategies 
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in a subsequent choice phase. Another similar task of note is the probabilistic lights task 

utilized by Navarro and Newell testing the theory that humans tend to assume a higher 

underlying rate of change than the ground truth probability distribution during a 

probabilistic task (2014). In this task, subjects were told to predict which of two lights 

would come on, given that only one would light up on each trial. In the dynamic 

condition, subjects were told that the bias on these two lights could randomly change, 

and in the static condition, the bias was to stay the same. In both conditions, the bias 

was always 70% and 30%, with a 1.6% chance of switching in the dynamic condition. 

Subjects were allowed to either Observe or Bet on each trial, with Observe allowing 

them to test their response without gaining or losing points, while Betting would result 

in a change in points. Results showed that in both static and dynamic conditions, 

subjects significantly overestimated the amount of switching that occurred, which 

confirmed the hypothesis and suggested that it was more costly to underestimate a rate 

of change than overestimate. Similarly to the pWCST, subjects were allowed to Observe 

trials without any point gain or loss, as an alternative to betting their real points. While 

Navarro and Newell’s task adequately probed subject Observe behavior, the pWCST 

takes this task paradigm further with the inclusion of differing probability distributions, 

adding a level of uncertainty that cannot be directly tested in the probabilistic lights 

task. Additionally, the introduction of varying probability levels allows for the 

investigation of effects due to probability magnitudes, potentially identifying 

overweighting and underweighting effects, as well as differences in the level of Observe 

reliance. 

 

2.2. Cognitive Biases 
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Cognitive biases are deviations from normative strategies, which occur both consciously 

and unconsciously in human decision making, to quickly and efficiently cope with 

uncertainty or task difficulty. While these biases can lead to non-optimal action 

decisions (Tversky & Kahneman, 1974) it has also been shown that such biases, under 

the right circumstances, can result in near-optimal task performance, designating them, 

not as irrational, but as “bounded rational” behavior (Gigerenzer & Goldstein, 1996). 

Therefore, these biases are interesting to study both for their commentary on 

shortcomings of human decision-making, as well as their insight into conscious and 

subconscious techniques that allow for fast and frugal yet high-yielding processes for 

creating action decisions. The decision-making behaviors of interest, including cognitive 

biases, heuristics, and non-optimal/bounded rational strategies, in the present paper 

include negativity bias, probability matching, and satisfaction of search, all of which the 

pWCST is expected to evoke, that would not be expected in the traditional WCST.  

 

Negativity bias is the unbalanced increase in salience of negative over positive feedback 

(Carretié, Mercado, Tapia, & Hinojosa, 2001; Ito, Larsen, Smith, & Cacioppo, 1998; Rozin 

& Royzman, 2001; Vaish, Grossmann, & Woodward, 2008). Negativity bias may have 

adapted by allowing humans to focus more on information that was potentially harmful 

rather than helpful, as neglecting harmful information is more likely to shorten one’s 

lifespan. However, the presence of negativity bias, through prioritizing avoiding 

negative behavior patterns, could potentially delay or prevent time spent on the 

development of positive behavior patterns. The present pWCST is hypothesized to 

evoke negativity bias while WCST would not, as pWCST is inherently more challenging 

due to the probabilistic rule, and in higher uncertainty levels, is expected to lead to 

higher amounts of negative feedback. This may result in subjects spending more time 
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foraging for information when they feel they are receiving too much negative feedback 

resulting from their choices. 

	
In probability matching behavior, an individual will perform actions that roughly 

mirror the underlying probability structure inherent in a task environment (Shanks, 

Tunney, & McCarthy, 2002; Vulkan, 2000; Wozny, Beierholm, & Shams, 2010). 

Probability matching can occur in situations where it is advantageous to explore 

options rather than exploit the best choice. When a subject feels uncomfortable with 

their ability to identify and exploit the most valuable option, subjects may revert to 

probabilistic search for information about the rules of their present task (Gaissmaier & 

Schooler, 2008). Probability matching is another suboptimal decision framework that 

pWCST is expected to evoke where WCST would not, as it is a behavioral strategy that 

is employed during situations in which the subject receives probabilistic payoff, a novel 

inclusion in the pWCST paradigm. We hypothesize that subjects will utilize probability 

matching as a means to cope with the uncertain environment in the pWCST, rather than 

the optimal strategy of continuously selecting the highest probability feature. During 

periods of moderate uncertainty, we expect subjects to use the Observe option to derive 

the “expected uncertainty” from a block of trials (Yu & Dayan, 2005). 

 

In satisfaction of search, the individual possesses a threshold at which they determine 

they have collected enough information for their task (Fleck, Samei, & Mitroff, 2010; 

Simons, 2010). As confirmatory evidence is acquired, less evidence is required from the 

information foraging process, which is a heuristic that can save time and energy but is 

not inherently rational (Gigerenzer & Goldstein, 1996). Having preconceived notions 

about the underlying nature of a task is in itself a bias, and when those notions are 
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accompanied by confirming evidence that is determined by a probability rather than a 

static metric, these biases become compounded. We hypothesize that, during higher 

uncertainty levels, the satisfaction of search threshold will be higher than in lower 

uncertainty levels. This may be due to a resulting increase of conflicting information 

necessitating a larger sample size to reach the same level of confidence. The pWCST 

allows for the opportunity to study satisfaction of search where the WCST would not, 

owing to the inclusion of an option that allows for risk-free information foraging. 

Through the incorporation of the Observe option, we predict that the satisfaction of 

search threshold (i.e., the number of Observe trials necessary for a subject to be 

confident enough in their rule beliefs to cease foraging) will be higher under higher 

uncertainty conditions. 

	
Win-Stay-Lose-Shift (WSLS), a strategy commonly used in game theory (Imhof, 

Fudenberg, & Nowak, 2007; M. Nowak & Sigmund, 1993) involving staying with an 

action following its successful use and shifting to another action following its 

unsuccessful use, was selected for strategic assessment alongside probability matching 

during the pWCST. These strategies were chosen for comparative analysis in order to 

provide reasonable baselines for subject performance that realistically encompassed 

biases, suboptimal strategizing, and human limitations. While probability matching and 

WSLS behaviors are formal strategies that lead to positive performance in the pWCST, 

the pWCST is akin to a multi-armed bandit task (Michael D. Lee, Zhang, Munro, & 

Steyvers, 2011) coupled with the WCST as a result of the introduced probabilistic 

component. In the pWCST, optimal task performance consists of always selecting the 

highest probability feature. 
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2.3. Methods 

 

2.3.1. Human Participants.  

Sixty subjects (ages 18-25) were recruited in two sessions of 30 subjects through an 

online database maintained by the Experimental Social Science Laboratory (ESSL) at the 

University of California, Irvine (UCI). This database is comprised of UCI’s 

undergraduate and graduate student population that have agreed to participate in 

computer experiments based in social and economic decision-making conducted by 

members of the School of Social Sciences and affiliated organizations. Subjects were not 

selected using background characteristics (age, race, gender) other than their student 

status. Subjects participating in the second session were prescreened to ensure that they 

had not previously participated in the experiment. Experimental protocol was reviewed 

and approved by the UCI Institutional Review Board, and informed consent was 

obtained from all participants. 

 

2.3.2. Experimental Design.  

Subject data was collected using desktop PCs within the ESSL. Prior to the experiment, 

subjects were instructed on the basic structure of the task, the payment system 

consisting of a baseline amount plus an incentive sum reliant on their performance, and 

their right to cease participation without penalty for any reason at any time. Subjects 

then participated in two behavioral tasks, the pWCST and a version of the Wason 

Selection Task, a similar decision-making task also investigating biases and 

compensatory strategizing related to uncertainty, in a randomly assigned order. The 

Wason task will not be discussed further in this paper, as it is the subject of a separate 

analysis. Each behavioral task incorporated a brief tutorial to train subjects on the tasks, 
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as well as inform them that the rule involved in the tasks would change throughout the 

experiment. Subjects were not, however, informed that the rule sets they would 

encounter would be probabilistic, in an effort to preserve unprejudiced strategizing in 

the face of unreliable feedback.  

Upon completion of both tasks, subjects received a $7 flat rate for participation, as well 

as compensation dependent on their performance in both tasks. The rate of 

compensation for WCST was $0.02 per point, with a minimum performance-based 

payout of $2. Total payments ranged from $10 to $30. 

 

Table 2.1. Probability sets for WCST. 
 

Uncertainty Top 
rule 

Middle 
rule 

Bottom 
rule 

No 100% 0% 0% 
Low 90% 7% 3% 
Moderate 75% 20% 5% 
High 60% 30% 10% 

 
Table 2.2. Block order/Criterion for WCST.  
 

Uncertainty Block order Criterion 
No 1, 7, 10 90% 

correct 
Low 2, 6, 11 80% 

correct 
Moderate 3, 5, 8 65% 

correct 
High 4, 9 50% 

correct 
 

2.3.3. Probabilistic Wisconsin Card Sorting Test (pWCST).  

Subjects played a total of 550 pWCST games, which were split into 11 blocks of 50 

games each. There were four block types – No, Low, Moderate, and High uncertainty – 

all of which were presented three times each except High, which was only presented 

twice as a result of the block order. The probability sets associated with each block type 
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are listed in Table 2.1, and the order of the blocks is listed in Table 2.2. The first third of 

the condition presentation order was designed to scale up the uncertainty-based 

difficulty gradually in order to investigate the effect of increasing uncertainty on 

strategy choice, information foraging, and the appearance of biases. As stated in the 

hypotheses, it was expected that altering the underlying feature probabilities and 

increasing uncertainty would lead to an increase in information foraging and 

satisfaction of search threshold, as well as the emergence of negativity bias. The second 

third of the order was intended to assess the rate at which subjects would adapt to a 

gradually decreasing uncertainty under their previous expectation derived from the 

trend of increasing uncertainty, which was expected to reverse the hypothesized 

increase in information foraging behavior and other changes in formal strategizing. The 

final third of the condition order was used to assist in testing for order effects and to 

incorporate more unpredictable jumps in uncertainty level between blocks. 
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Figure 2.1. Screenshot of pWCST GUI.  
On a given trial, subjects would choose between one of the three cards on the bottom, 
attempting to match the rule of common feature between the reference card and the target. Two 
points were received for each choice matching the rule, and two points were taken for any 
choice that did not match the rule on that given trial. Alternatively, subjects could click the 
Observe button in order to simulate a trial, in which a target card was randomly chosen and 
presented to the subject along with the score they would have received had they chosen it, with 
no actual point gain or loss. 
 
	
Subjects were required to choose a feature (color, numerosity, or shape) of the presented 

cards that they believed to be in compliance with a particular rule (Figure 2.1). Each 

feature in a rule set had a probability associated with it. A feature set was randomly 
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assigned to a probability at the beginning of the experiment and again each time a 

criterion for successful trials was met. This criterion was a percentage of correct answers 

out of the most recent ten trials (see Table 2.2). For example, in a Low uncertainty block, 

subjects who chose correctly on at least eight of ten trials received a rule change. To 

reduce the predictability of set shifts, assessments did not begin until a randomly 

selected number of trials (i.e., between ten and fifteen) had elapsed since the last block 

change or feature set shift. 

 

In an effort to assess subjects’ preference for foraging behavior to cope with the 

uncertainty of their task, subjects had the option to “Observe” rather than choosing one 

of the three cards during each trial. In this case, the subject did not select a card for that 

trial. Instead, by observing, a choice card was selected at random and the subject was 

informed what the card was and whether or not it followed the rule. By using Observe, 

subjects had a chance of collecting information about the rule until they were able to 

reduce their own level of uncertainty enough to select cards on their own. In essence, an 

Observe trial could be used to obtain information, but resulted in a loss of potential 

points. Alternatively, an Observe trial could be used to spare the subject from losses. 

The first block did not feature the Observe option, as it was meant to provide subjects 

with practice for the fundamental task and to determine whether they had fully 

understood the instructions. 

 

The pWCST software interface (Figure 2.1) consisted of a reference card and three 

clickable cards that subjects chose from during each game. If a subject selected a card 

that matched the correct feature of the reference card, they received two points. Two 

points were taken away for each incorrect answer. The graphical user interface allowed 



59	

subjects to see the percent of the task that they had completed, the block they were in, 

their total score, the reference and chosen card from the previous game, and the points 

received on the previous game. Subjects advanced through trials at their own pace, with 

the majority finishing both behavioral tasks in 60 to 90 minutes. 

 

Unless otherwise specified, all reported p-values were derived using the two-sample 

Kolmogorov-Smirnov hypothesis test (refer to MATLAB kstest2). Because these p-

values were based on multiple comparisons, the significance threshold was Bonferroni 

corrected by dividing 0.05 by the number of comparisons. 

2.4. Results 
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Figure 2.2. Average score per block by uncertainty.  
Average score decreased as the block uncertainty level increased. In (A), the x-axis is grouped 
by uncertainty level. In (B), blocks along the x-axis are arranged in the order in which they were 
presented to subjects. Bars denote the standard error. 
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2.4.1. Score.  

Subject performance varied depending on the level of uncertainty, as revealed by the 

average score per uncertainty level (see Figure 2.2(A) and Supplementary Tables 1-3) 

and average score per block (see Figure 2.2(B) and Supplementary Tables 4-6). The score 

per block averaged over all 60 subjects was significantly different between the four 

uncertainty levels (p < .001), with higher uncertainty associated with lower, often 

negative, scores.  
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Figure 2.3. Average Observe use per block by uncertainty.  
(A) Average Observe usage increased alongside increasing block uncertainty. (B) Observe usage 
per half-block by uncertainty. Observe usage largely increased during the second half of each 
block. This gap increased along with increasing uncertainty and decreased with decreasing 
uncertainty, in some blocks even causing usage in the first half to overtake the second half. In 
(A), the x-axis is grouped by uncertainty level. In (B), blocks along the x-axis are arranged in the 
order in which they were presented to subjects. Bars denote the standard error. 
 
	
2.4.2. Observe Usage.  
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We analyzed Observe use in order to quantify how changes in uncertainty level could 

affect satisfaction of search thresholds. Search behavior, or information foraging, was 

assessed as use of the Observe option, a means of collecting information regarding the 

feature rule without risking points. Typical subject behavior was altered by changes in 

uncertainty level, as revealed by both the number of times the Observe option was used 

in blocks of each uncertainty level (see Figure 2.3 and Supplementary Tables 7-9). The 

number of trials in which Observe was used in a block increased with uncertainty level 

(see Figure 2.3(A)), and comparisons of No vs. Moderate (p = .006), No vs. High (p < 

.001) and Low vs. High (p = .002) uncertainty were found to be significant. To examine 

how subjects used Observe to gain knowledge about the task structure, we compared 

the amount of Observe trials during the first and second halves (25 trials each) of each 

block (see Figure 2.3(B) and Supplementary Table 10). Although no comparisons 

between the first and second halves of a block were shown to be significant, there was a 

trend indicating that Observe trials were more common in the second half than the first 

half of a block in most blocks, suggesting a subject preference to perform their own 

sampling within a new block before resorting to Observe use. This difference in 

Observe usage increased alongside increasing uncertainty and decreased with 

decreasing uncertainty. Taking the number of Observes per block as insight into 

information foraging behavior, these results support the hypothesized increase in the 

satisfaction of search threshold at higher uncertainty levels.  
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Figure 2.4. Run length of Observe usage by all subjects per block.  
Blocks are grouped horizontally by presentation number of each uncertainty level, and 
vertically by uncertainty level. The title numbers indicate the true block order as experienced by 
the subjects. The length of the tail, and thus the average length of runs of Observe trials, 
increased both with increasing uncertainty and successive presentations of each uncertainty 
level. 
 

To further measure how Observe usage changed over time and uncertainty level, we 

measured the runs of consecutive Observe usage (see Figure 2.4 and Supplementary 

Tables 11-16), which here is defined by the number of trials in a row a subject chose to 

Observe rather than picking one of the three cards. As shown in Figure 2.4, average 

number of Observe runs increased with both uncertainty (compare rows of Figure 2.4) 

and time (compare columns of Figure 2.4), although the only comparison that reached 

significance under a 2-sample Komolgorov Smirnov test was that of the first and second 

presentations of the Low condition (Blocks 2 and 6 in Figure 2.4) (p  < .015). In 

accordance with the previously discussed results, this increase in runs of Observe usage 
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also comments on satisfaction of search, which rose over time alongside score (see 

Figure 2.2(B)), suggesting more accurate performance during non-Observe trials based 

on a more extensive collection of information over the length of a block. 

 
 
Figure 2.5. Win-Stay and Lose-Shift use by uncertainty.  
“Win-Stay” bars denote the percentage of Win-Stay behavior out of all trials in which the 
subject chose the correct rule, while “Lose-Shift” bars denote the percentage of Lose-Shift 
behavior out of all trials in which the subject chose incorrectly. Bars denote the standard error 
and x-axis is arranged in the order the blocks were presented (Table 2.2). 
 

2.4.3. Win-Stay-Lose-Shift (WSLS) Strategy.  

WSLS usage was sensitive to the level of uncertainty and the order of blocks. The 

uncertainty level and the block order affected the use of Win-Stay and Lose-Shift 

behavior (Figure 2.5 and Supplementary Tables 17-28). The significant dominant 
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strategy was found to be Win-Stay (i.e., choosing the same feature after a win), for win 

trials and Lose-Shift (i.e., choosing a different feature after a loss) for lose trials over all 

blocks (p < .001). While no significant order effects exist, a trend of increasing Win-Stay 

usage over time for all uncertainty levels was observed, excepting for the second 

Moderate and Low blocks. On average, Win-Stay and Lose-Shift strategy use decreased 

with increasing uncertainty, and this effect was significant for comparisons between No 

and Moderate, No and High, and Low and High uncertainty levels for both Win-Stay 

and Lose-Shift, as well as Low and Moderate Win-Stay (Lose-Shift Low vs. High: p < 

.006; all others: p < .001).  

 

For some comparisons, blocks of high uncertainty were found to bias future behavior. 

The proportion of trials in which a Win-Stay strategy was used in the second Moderate 

and Low uncertainty blocks was lower than that of the other presentations of Moderate 

and Low uncertainty blocks (see Figure 2.5). This effect was found to be significant in 

the comparison between the second and third presentations of the Moderate 

uncertainty level (p < .001), and was expected as a likely consequence of the 

experienced high uncertainty in the High block persisting to devalue reliability of 

confirmatory evidence in proceeding blocks, coupled with the subjects’ lack of 

knowledge that the uncertainty level would decrease rather that increase over time. 

 

A similar order effect was found in Lose-Shift strategy. However, in contrast to Win-

Stay, the proportion of Lose-Shift trials did not show as dramatic of a change over time 

between presentations of the same uncertainty level (Figure 2.5). There was a significant 

decrease in Lose-Shift usage from the first to second presentations in Low uncertainty 

blocks (p < 0.001). There was also a substantial, but not statistically significant, decrease 



67	

in Lose-Shift usage from the first to the second presentations of the Moderate 

uncertainty blocks. This behavior, similar to patterns of usage for Win-Stay, appears to 

be a consequence of lowered informational reliability from the High uncertainty block. 

	

 
 
Figure 2.6. Subject feature matching vs. ground truth probability distribution averaged over all 
non-Observe trials for all blocks of each uncertainty level for all subjects.  
Solid lines indicate subjects’ choice percentages for the Top, Middle, and Bottom probability 
rules averaged over all trials of the No, Low, Mod, and High conditions. The dashed lines 
indicate the base rule frequency of the Top, Middle, and Bottom rules during each condition 
(see Table 2.1). (A) Feature matching percentages averaged over all non-Observe trials for each 
uncertainty level. (B) Feature matching percentages averaged over the last 10 trials (excluding 
Observes) before a rule shift (i.e. probability set to feature matchup scrambled) for each 
uncertainty level. (C) Feature matching percentages averaged over all non-Observe trials for 
each block. (D) Feature matching percentages averaged over the last 10 trials (excluding 
Observes) before a rule shift. Bars denote the standard error. 
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2.4.4. Probability Matching.  

We analyzed subjects’ choice behavior to see if they attempted to match the underlying 

distribution of rules rather than a normative strategy such as always choosing the most 

likely feature. Subject feature selection was averaged over each block to derive rule 

choice percentages. Feature selection percentages were calculated by dividing the 

number of times subjects selected the Top, Middle, and Bottom probability features by 

the number of non-Observe trials per block to obtain proportions (Figure 2.6(A) and (C), 

and Supplementary Tables 29-30). An additional analysis was conducted that used only 

the last 10 trials excluding Observes before a rule shift using the same metric, the 

window imposed by the rule shifting mechanism’s threshold for analyzing correct 

responses (Figure 2.6(B) and (D), and Supplementary Tables 31-32). These data were 

compared with the ground truth probability distributions that were established prior to 

the experiment (see Table 2.1).  

 

Results showed that the probability of selecting the Top, Middle, and Bottom feature 

roughly followed the ground truth probability distribution. Rather than choosing the 

highest percentage feature, Top rule selection decreased with increasing uncertainty. 

To further examine the use of probability matching behavior, comparisons between 

uncertainty levels were made on the last 10 trials. Using a one-sample t-test, 10-trial 

uncertainty-wise comparisons showed that the Top rule was significantly different from 

the ground truth probability distribution only during No uncertainty (p < .001), the 

Middle rule was significantly different from the ground truth probability distribution 

during No, Moderate and the third presentation of Low uncertainty (p < .001), and 

Bottom was significantly different from the ground truth probability distribution only 

during the first presentations of No, Low, and High uncertainty, as well as the third 
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presentation of No uncertainty (p < .001) (Figure 2.6(D)). In the 10-trial analysis, subject 

rule selection was only universally different from the ground truth probability 

distribution for all rules during the No uncertainty condition. Taken together, these 

results suggest that subjects did tend to probability match rather than use an optimal 

Top rule selection strategy.  

 

2.4.5. Over/Under-selection.  

Overselection, in the case of this experiment, is defined as choosing low probability 

rules at a significantly higher probability than the ground truth, and underselection is 

similarly defined as choosing high probability rules to a less often than the ground 

truth. We analyzed all trials and 10-trial block-wise data for similarity to ground truth. 

Using a one-sample t-test, all-trial block-wise rule selection proportions, with the 

exception of Middle/High, were significantly different from base rule percentages 

(Mid/Mod1: p < .005, Mid/Mod2: p < .005, Mid/Mod3 < 0.005; all others: p < 0.001) 

(Figure 2.6(C)). Subject usage of the Top rule universally fell under the ground truth, 

while selection of the Bottom rule always more frequent than the ground truth. Subject 

usage of the Middle rule fell over ground truth, but this difference declined with 

increasing uncertainty until the difference was not significant. These results provide 

evidence for underselection of the Top probability rule alongside overselection of the 

Bottom probability rule.  

 

2.5. Discussion 

 

In the present study, we showed that a probabilistic version of WCST with a means of 

information foraging is an effective tool for evaluating compensatory biases and 
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suboptimal strategizing related to rational choice in economic decision-making. 

Through analysis of feature selection, it was clear that Win-Stay Lose-Shift and 

Probability Matching behaviors were the most prevalent strategies. The principal 

findings were that: 1) the threshold for satisfaction of search increased with uncertainty 

(Figure 2.3 and 2.4), 2) negativity bias occurred in trials following periods of high 

uncertainty (Figure 2.3 and 2.5), and 3) while subjects followed the trends of probability 

matching behavior, subjects also persisted in underselecting the Top probability rule 

while overselecting the Bottom probability rule  (Figure 2.6). These findings address the 

relationship between uncertainty and the prevalence of biased and suboptimal selection 

behavior, a field with potential applications in the development of cognitive 

technologies and improving the decision-making techniques of human operators. 

 

Through the incorporation of information foraging using an Observe option, 

satisfaction of search bias was demonstrated in the present study. The use of the 

Observe button increased with increasing uncertainty, indicating that the threshold for 

a subject’s satisfaction of search (Fleck et al., 2010), or the amount of information a 

subject must collect before they are confident enough to take action in their current 

circumstances, similarly increased as hypothesized. This increase in Observe usage can 

be explained both as an avoidance tactic for losing points when the rule has a high 

degree of ambiguity, and as an attempt to learn a probability rule by collecting more 

information under conditions of high uncertainty. The relatively low Observe usage in 

lower uncertainty blocks may be the result of a lower satisfaction of search threshold or 

high confidence level. When analyzing the length of trials in which Observe was used 

consecutively, referred to as a “run,” number of runs increased for both uncertainty 

level and block order (Figure 2.4). This trend also supports the increase of a subject’s 
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satisfaction of search threshold with higher uncertainty levels, but also indicates that 

subjects may be attempting to prevent further losses later on in the game by Observing 

more. By increasing the number of Observe runs in later blocks, subjects appear to 

behave according to an exploration paradigm in order to ensure they have the correct 

rule at multiple time points before risking their point reserve by participating in trials. 

In the analysis of the prevalence of Observe usage during the first and second halves of 

a block, it was revealed that Observe usage was typically higher during the second half 

of a block, although this trend reverses in trials that follow presentations of High 

uncertainty blocks (Figure 2.3(B)). It is likely that the normal trend speaks to the 

subjects’ preference to attempt to exploit their own theories in a new block before 

resorting to Observe usage to explore other options. The exception that occurred within 

the second presentations of Moderate and Low uncertainty blocks was likely a holdover 

following the first presentation of the High uncertainty block.  Subjects did not yet 

know that uncertainty could decrease over time, and may have kept foraging for 

information in preparation for a higher uncertainty future. This behavior is indicative of 

an increase in risk aversion that led to an artificially increased level of satisfaction of 

search in lower uncertainty blocks as a result of the previously experienced higher 

uncertainty blocks.  Furthermore, this result corroborates the observation that humans 

tend to shift to an information-seeking strategy when considering longer horizons for 

overall rewards (Wilson, Geana, White, Ludvig, & Cohen, 2014). 

 

Negativity bias, or the tendency to remember negative feedback more strongly than 

positive (Rozin & Royzman, 2001), can be seen through increased risk-avoidance 

behavior that appeared after an increase in negative feedback. For example, the 

relatively slow (two block) return to a previously levels of WSLS following the first 
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difficult, High uncertainty block suggests a negativity bias (see Figure 2.5) in that 

subjects’ decisions were less likely to be influenced by confirmatory evidence and 

consistently select reinforced feature choices. Furthermore, this bias led to a substantial 

increase in Observe usage between the first and second presentations of Moderate 

uncertainty and a substantial decrease in score between the first and second 

presentations of Low uncertainty (see Figure 2.3(B)). As discussed in regard to 

satisfaction of search, the increase in Observe usage for higher uncertainty conditions 

supports the hypothesized evocation of negativity bias, as subjects may have opted for 

observing trials after experiencing a large degree of negative feedback as a result of 

their choices (see Figure 2.3(A)). Additionally, the finding that Observe usage is higher 

in the second half of a block other than in the two blocks directly following the first 

presentation of the High uncertainty condition is in support of a negativity bias (see 

Figure 2.3(B)). After experiencing a large degree of loss during the first half of a block, a 

subject may have made use of the Observe option more often in the second half of the 

block to prevent more loss. It might be that the feeling of loss persists from the end of 

the High uncertainty block through the beginning of the following blocks, creating a 

desire to prevent further losses until the underlying probabilities of the new block are 

better understood. Although this trend was observed, it would be of interest to conduct 

a follow-up study that utilizes more blocks in order to see the shift from high to low 

uncertainty enough times to confirm this theory with a higher significance level. 

 

A trend indicative of over- and under-selection emerged regarding subject choice 

percentages for the Top, Middle, and Bottom probability features (Table 2.1) as a factor 

of uncertainty level. Subjects tended to overselect the Bottom feature, and underselect 

the Top feature across all uncertainty levels at a relatively consistent rate (see Figure 
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2.6). Subjects likely experienced trials in which the Bottom feature appeared commonly 

enough in the small sampling of trials to lead subjects to perceive their frequency as 

higher than the base truth. While the explanation for this result is not unequivocally 

clear, there are a few potential factors that may, by themselves or collectively, have 

resulted in the trends seen in the data. It is possible that an effect such as 

representativeness, the tendency to underselect and overselect as a result of small trial 

size and uncertainty (Tversky & Kahneman, 1974), could have led to this result. The 

most conservative explanation is that this effect was caused by noise in the data 

(Costello & Watts, 2014; Erev, Wallsten, & Budescu, 1994; Hilbert, 2012), perhaps due to 

feature choice error or the random sampling of features in lieu of a more concrete 

strategy. However, due to the consistency of this effect between subjects, it is unlikely 

that the identified effect could be completely described by noise. Moreover, if the effect 

was primarily due to noise, the deviation from the ground truth probability at high 

uncertainty levels should have led to increased random searching, which was not the 

case. Building slightly from this conservative explanation, it is possible that the 

uncertainty itself is the reason for the trend, given that a higher level of uncertainty 

leads to a longer feature sampling period as it becomes more difficult to identify the 

Top rule while experiencing a high degree of information obfuscating belief formation.  

 

As an intermediary view between noise and bias, Gigerenzer posits the idea that, while 

the apparent trends in the data exist, they do not necessarily signify violations of 

probabilistic reasoning (Gigerenzer, 1991). In a similar view posed by Haselton, such 

trends are characterized as the result of “design features” rather than “design flaws” 

(Haselton, Nettle, & Andrews, 2005). Under this notion, the tactics exhibited by the 

subjects instead identify fundamental properties of probability and statistical theory in 
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a situation involving varying degrees of uncertainty in task feedback. Building upon the 

ideas of Herbert Simon (1972), Gigerenzer provides additional applicable work 

concerning the idea of “bounded rational” strategizing, or the use of strategies that can 

be considered rational within the confines of a task. Given the uncertainty inherent in 

the pWCST, it is a further possibility that the identified trend falls under the category of 

a bounded rational strategy (Gigerenzer & Goldstein, 1996). As discussed below, one of 

our future plans is to develop an optimal model that could be compared to subject 

behavior in the pWCST. Such a model could provide more concrete support for one of 

these theories in explaining under- and over-selection of rules under uncertainty. 

 

Perhaps the most interesting aspect of the subject choice percentage data is the trend of 

the Middle probability feature. Initially, the Middle probability feature, much like the 

Bottom probability feature, is overselected. However, as the uncertainty level increases, 

this overselection gradually tapers off until the selection percentage nearly matches the 

ground truth. It is possible that this result speaks to a threshold at which a probability 

becomes just substantial enough that it no longer falls prey to the bias that causes it. We 

predict that, in the pWCST paradigm, that threshold would fall at 33%, the uniform 

distribution given three feature choices. In the current paradigm, the Middle feature fell 

just short of that in the High uncertainty condition at 30%, and as would be expected, 

averaged subject selection of this feature was just above the ground truth probability 

distribution in this uncertainty level. In order to reveal more concrete evidence for this 

theory, in future work, we would like to add another uncertainty level to this paradigm 

in which all three features are at uniform probability. It would also be helpful in the 

future to design a model capable of playing the pWCST in an effort to make a firm 

assessment of baseline performance within each probability level, given the ambiguous 
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nature of this particular result. 

 

Lastly, probability matching behavior (Wozny et al., 2010) was observed in the analysis 

of overall strategy usage. Subjects feature choices roughly mirrored the ground truth 

probability distribution in trend in the 10-trial analysis (Figure 2.6 (B)), with a shift for 

over/underselection in the all-trials analysis (Figure 2.6 (A)). This finding indicates that 

rather than utilizing the optimal strategy of always selecting the Top probability 

feature, subjects favored selecting the features based on what they knew of their 

underlying ground truth probability distribution. An alternative explanation is that the 

variability seen in the data is caused by feature exploration, as subjects will need to test 

hypotheses by switching between the features before deciding upon their most 

rewarding rule. In order to address this possibility, we analyzed the probability 

matching data for just the last 10 trials before a rule shift occurred, with the rationale 

being that the subject needed to reach a high percentage of correct feature choices in 

order to engage the rule change, suggesting that they had at that point solidified their 

strategy. Even in the 10-trial analysis, not only did subjects still eschew the optimal 

strategy in favor of probability matching, but also their choices more closely matched 

the probability matching strategy than with the overall data. This finding provides 

strong evidence for the presence of this cognitive bias under varying levels of 

uncertainty. 

 

There is the possibility that some of the biases found in this paper, especially the 

over/underselection of rules, may more conservatively fall under the explanation of 

noise in the data (Costello & Watts, 2014; Erev et al., 1994; Hilbert, 2012). While the 

explanations presented above serve as potential causes for the trends observed, we 
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recognize the possible effects of noise or other potential explanations for the consistent 

trends in behavior across subjects leading to potentially suboptimal decision-making. 

While we cannot know the exact strategy, motivation, and perceptual acuity the 

subjects exhibited during these blocks, the trends of irrational and occasionally 

detrimental gameplay strategies that are evident in the collected data suggest the 

explanation that to some degree, subjects were under the influence of biases and 

suboptimal strategizing that prevented them from behaving rationally as dictated by 

the tenets of Game Theory (Zagare, 1984). However, the not yet unambiguated nature 

of these conclusions invites further investigation into the underlying causes for the 

patterns of behavior exhibited by subjects performing the pWCST. 

 

The present study introduces a variation of the well-known WCST to examine biases, 

strategy usage, and decision-making under uncertain conditions. This study sought to 

expand upon previous experiments using the WCST and similar decision-making tasks 

to investigate uncertainty-related changes in behavior in subjects. The two primary 

extensions to the WCST are the introduction of uncertainty in the form of probabilistic 

feature selection, and the option to “Observe” a trial by allowing the computer to select 

a card for the user, showing them the outcome with no change to their score. These 

initial findings suggest that the present pWCST can evoke interesting deviations from 

normative behaviors. 

 

The results of the pWCST task support the assertion that under increasing degrees of 

uncertainty, people tend to respond with a decreasing capacity for optimal decision-

making behavior. However, there are a few modifications to the present paradigm 

going forward that would add to its statistical power and investigative scope. In future 
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experiments using this task, it would be desirable to query further self-report data in 

order to elucidate the subject’s mental state when performing the pWCST to form 

stronger conclusions regarding the reasons behind the biases that were evident in the 

data. The lack of self-report data is a limitation of the current study, and stronger 

conclusions might have been formed regarding biases had these data been collected. As 

mentioned above, we were limited by the number of uncertainty levels and recommend 

that future studies investigate additional uncertainty levels that staircase down to a 

uniform probability distribution, 33/33/33, in order to test the hypothesis that 

over/underestimation has a threshold, perhaps adding a shallower gradient between 

uncertainty levels for more accurate identification.  

 

In regard to the discussion of over- and under-selection of features, the strategies taken 

by our subjects might be better understood if compared with an optimal computer 

model that played the pWCST. This is something we plan to explore in the future. Such 

a model would provide a better baseline for human subject performance in an effort to 

better assess the validity of claims about subject strategizing in the present study and 

might support conclusions about the presence of cognitive biases. Using performance 

data from the model, we would be able to comment on how each bias behaves in 

isolation, in the presence of other trends and biases, and the effects it would have on 

memory for future decision-making. Additionally, we would be able to distinguish, 

depending on whether the model outperformed subjects or roughly approximated their 

results, whether human performance on the pWCST could be considered bounded 

rational (Gigerenzer & Goldstein, 1996) or suboptimal. Another further analysis that 

could provide insight into the validity of cognitive biases in the data is minimum 

description length modeling (MDL) (Rissanen, 1983). Typically used in order to provide 
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support for one theory among many that exist to encapsulate a trend found in data, 

MDL would be well-suited for disambiguating the aforementioned results, particularly 

regarding the over and underselection of features, which has been shown to have 

varying potential explanations. 

 

An additional bias that might fit within the scope of the paradigm is confirmation bias. 

Confirmation bias is the practice of seeking out information that confirms one’s prior 

beliefs rather than testing disproving information in an attempt to elucidate the ground 

truth in a situation (Doll, Hutchison, & Frank, 2011; Nickerson, 1998). While the 

confirmation bias may have been an adaptive shortcut that increased human survival 

by enabling expedient development of heuristics, this bias can also lead to either 

incomplete or incorrect perceptions of the world in many circumstances (Klayman, 

1995). We have previously shown that satisfaction of search can work in conjunction 

with the confirmation bias to lower the threshold at which a subject stops foraging for 

information (Phillips, Chelian, Pirolli, & Bhattacharyya, 2014). This bias could be tested 

within pWCST by the addition of the ability to choose which feature is being used in 

Observe trials like in the paradigm utilized in Navarro and Newell (2014), instead of 

that feature being randomly selected. Confirmation bias would be a natural extension 

for this paradigm because, unlike the WCST, the pWCST, especially at high levels of 

uncertainty, would lead subjects to believe that low probability features are more 

common than they are as a result of conclusions based on a small sampling of trials. 

 

Going forward, pWCST serves as a suitable platform for continuing to investigate 

biases and suboptimal strategies that are not commonly evoked by the traditional 

WCST, such as those described in this paper, as well as confirmation bias given the 
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alterations described above. pWCST also holds potential use in investigating the 

tradeoff between balancing of information foraging and trial and error strategizing. The 

pWCST in its current form allowed for understanding when subjects were foraging for 

information or testing their hypotheses of the task structure. The revised Observe 

mechanism proposed above would make the held beliefs of the subject clearer, allowing 

a tighter investigation of when and how information foraging transpires. Gaining a 

clear understanding of the ways in which humans engage in suboptimal strategizing 

and the mechanisms that cause them to arise holds importance in a variety of applied 

positions, such as reducing human operator error, improving adaptive educational 

software, and modeling cognitive processes for medical and research applications. 
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CHAPTER 3: Theory of Mind-Inspired Adaptive Agents 
Utilizing an Actor-Critic Model with Forward Planning 

 

In this chapter, we describe a study that investigates the relationship between autistic 

traits in typical individuals and implicit ToM during socioeconomic game play. Subjects 

played the repeated spatiotemporal Stag Hunt game with five different agents ranging 

from simple fixed strategies to adaptive strategies that simulated aspects of ToM. We 

quantified the level of autistic traits in our subclinical population using AQ scores from 

self-report survey responses (Simon Baron-Cohen et al., 2001). We hypothesized that 

subjects with high levels of autistic traits would engage in less cooperative strategies as 

compared to subjects with low levels of autistic traits. This disinclination to engage 

implicit ToM should be most apparent while playing with adaptive agents, conditions 

in which eliciting cooperative behavior from the simulated agent yields optimal 

rewards. In addition, we hypothesized that subjects with high levels of autistic traits 

would have difficulty understanding the intention of agents with ToM attributes, which 

may be exhibited through differences in visual displays of intention during game play. 

These displays of intention are indicators of cooperative or competitive behavior and 

therefore should follow the previously discussed correlation between cooperative 

preference and AQ. This work builds upon the materials and results discussed in 

Chapter 1. 

 

3.1. Methods 

 

3.1.1. Human Participants.  

113 subjects (ages 18-33) were recruited in four separate sessions through the 
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Experimental Social Science Laboratory at the University of California, Irvine. This lab 

maintains contact information for a large population of undergraduate and graduate 

students that have agreed to participate in social and economic studies in exchange for 

monetary compensation. Subjects were not screened for characteristics (e.g. ethnicity, 

gender, age) beyond their current student status. The experimental protocol was 

reviewed and approved by the UCI Institutional Review Board, and informed consent 

was obtained from all subjects. Nine subjects were removed for failure to complete the 

AQ survey or the experimental task with full comprehension; the remaining 104 are 

included in the following analysis. 

 

 
 
Figure 3.1. Stag Hunt game environment.  
Subjects moved their avatar (stick figure) across the 5x5 game board using the arrow keys in 
order to catch a low payoff hare individually, or attempt to catch a high payoff stag with the 
computer agent (silhouette in computer screen). To catch a stag, both the subject and the agent 
must move their avatars into a square directly adjacent to the stag square, and the subject must 
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press the Space bar. To catch a hare, the subject must move their avatar on top of a hare square 
and press the Space bar. When a prey was successfully caught by one of the subjects, the game 
ended and points were awarded based on prey. 
 

3.1.2. Stag Hunt Software. 

In Craig et. al (Craig et al., 2013), software was developed to create a computer game 

version of the Stag Hunt. The game board (Figure 3.1) included a 5x5 grid of squares on 

which a human player and computer agent each controlled an avatar. The game board 

also included hare squares positioned at the leftmost and rightmost squares of the 

middle row of the board, and a stag image that was placed on a random square at the 

beginning of each game (but never appeared directly adjacent to a hare). The player 

avatars started on a random square on the game board such that they did not appear 

directly next to a hare, a stag, or each other. Two hares were included in order to 

prevent one player from having a significant location advantage derived from the 

random placement.  

 

The human player moved their avatar using the left, right, up, and down keyboard 

keys, and caught a stag or hare by pressing the space bar. Diagonal movement was not 

allowed for either player. The human player was able to move as often as they liked, 

while the agent moved at randomized intervals between 300 and 900 ms, timed to 

reduce predictability and to approximate the range of reaction times exhibited by 

humans during pilot testing.  

 

A successful hare capture required the player to be on the same square as the hare and 

to press the space bar, which awarded the first player who initiated a capture one point. 

A successful stag capture was worth 4 points to each player and required both players 
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to be on squares adjacent to the stag square. The human player had to press the space 

bar on the computer keyboard when the agent was positioned adjacent to the stag and 

intended to hunt a stag. Successfully capturing the hare or stag ended the game. If 

neither the stag nor the hare was captured within ten seconds, the game timed out and 

no players received points. 

 

Table 3.1. Agent types 
 

 
Agent 

Influenced by  
Other Player 

 
ToM 

 
Planning 

ToMPlan Yes Yes Yes 
Plan Yes No Yes 
AC Yes Yes No 
Random No No No 
WSLS Yes No No 
 
 

3.1.3. Computer Agents. 

Participants played the Stag Hunt with five simulated agents (see Table 3.1): Theory of 

Mind Planning (ToMPlan), Planning (Plan), Actor-Critic (AC), Random, and Win-Stay-

Lose-Shift (WSLS). In Table 3.1, agents are organized by whether or not their behavior is 

influenced by the subject, whether or not the agent simulates ToM, and whether or not 

the agent uses planning to make action decisions. Subjects played multiple successive 

games (blocks) with the same agent type, allowing the agent to develop game outcome-

based contingent strategies. 

 

3.1.3.1. Fixed Strategy Agents.  

There were two fixed strategy agents: Random and WSLS. The Random agent was 
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randomly assigned a prey (stag or hare) at the onset of each game and moved directly 

toward that goal without deviation. The WSLS agent used a fixed strategy in which its 

prey was selected based on the outcome of the previous game (with a random prey 

initially assigned on the first game of each block). If the agent won the previous game, it 

would select the same prey in the following game, and if it lost the previous game, it 

would switch to the other prey. 

 

3.1.3.2. Adaptive Agents. 

The remaining three agents used variations of an actor-critic model (Dayan, 2001), 

which was based on our previous work (see 1.2.3). The actor-critic model was 

comprised of state tables associating all possible configurations of the game board with 

their expected value under hare or stag hunting. These values were based on the agent’s 

experience and were updated in real-time after the subject or the agent moved. Given 

the size of the game board (see Figure 3.1), the maximum distance of a player to a stag 

was four steps, and the maximum distance of a player to the nearest hare was three 

steps. When including the possibility of being on top of the target, this equated to 400 

possible configurations, although not all of these states were reached during games. The 

actor-critic model included three state tables associated with these configurations: 

Reward, Cost, and Actor. The Reward and Cost tables held values of the expected 

reward and cost at each state, respectively. The Actor table combined this information 

together using a delta rule to provide a value that, through a softmax function, gave the 

probability of the agent to hunt each prey type at each state. This probability was used 

with a randomly generated number between 0 and 1 to make an action decision for the 

configuration of the game board when the agent made a move. If hare was selected, the 

agent moved one square closer to the hare, and if stag was selected, the agent moved 
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one square closer to the stag. 

 

Three agents used variants of the AC model: The actor-critic agent (AC), the theory of 

mind and planning agent (ToMPlan), and the planning agent (Plan). 

A) Actor-critic 

 
B) ToMPlan 
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C) Plan 

 
 
Figure 3.2. Flow charts of A) the actor-critic (AC) model, B) the theory of mind planning 
(ToMPlan) model, and C) the planning (Plan) model.  
Model A) served as the foundation for all three models. On each turn, if an endgame was not 
reached through a stag or hare capture, the model would decide upon an action of either 
moving closer to the hare or the stag using state table information run through a softmax 
function. The agent would then move one square on the game board, update the state tables, 
and iterate again. In models B) and C), while an endgame state was not reached, a temporary 
copy of the state tables was made and a sample game for both hare and stag outcome was 
simulated until either endgame state was reached or three levels of recursion were completed. 
The prey with the simulated game containing the highest valued end state was selected, and 
this state was run through the softmax function to return a prey to act upon. While model B) 
held state tables for both the agent and the subject, model C) only held state tables for the agent, 
and those state tables did not keep track of any subject location information. 
 

The AC agent used the basic actor-critic model described above (also see Figure 3.2A). 

This agent was able to learn in real time using the other player’s behavior, but did not 

possess the ability to plan ahead. 

 

The ToMPlan agent extended the basic actor-critic model to mimic mental simulation 

and planning (Figure 3.2B). It maintained real-time state tables of both the agent’s and 
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the subject’s expected values for stag and hare hunting for each board configuration, 

using them to simulate a game prior to making each move in order to select the prey 

with perceived higher profitability based the simulation’s outcome. Instead of simply 

updating the tables after the agent moves, the agent kept track of a separate set of tables 

(i.e. Projected state table (subject and agent)) that were updated after the subject’s 

moves in order to simulate the subject’s knowledge. This agent was able to learn in real 

time, using both its own and the other player’s behavior, plan ahead based on projected 

game outcomes, and form a conception of the other player’s mental state based on their 

payoff history. In addition to being used to update the in-game weights after a move on 

the game board, the actor-critic model was also used between moves to simulate a full 

game using the player’s state tables to approximate the player’s likely strategy based on 

the current setup of the board. Two simulations were conducted, one for each prey, 

either for 3 moves or until a prey was caught (i.e. recurse > 3 || Temp Stag/Hare == 1), 

and the prey used in the simulation that ended in the highest Actor state value (i.e. the 

value in the Actor state table for the ending board configuration) for the agent was 

selected to pursue during the agent’s next move. 

 

The Plan agent used the actor-critic model, but with state tables only for the agent, 

meaning that the values used to update the state tables did not include the player’s 

position (Figure 3.2C). Like the ToMPlan agent, the Plan agent simulated the game’s 

outcome using the state tables prior to making moves, but without the ability to directly 

observe the subject’s behavior. To achieve this, the state tables were modified so that 

they did not index by the position of the subject’s avatar on the game board. During 

planning, the player’s prey was set to the same prey as the agent, simulating an 

inability to use ToM to recognize that another individual can hold differing goals and 



88	

mental states from one’s own. 

 

3.1.4. Experimental Design.  

A maximum of 40 subjects participated in the experiment simultaneously at each 

collection session. The computer software portion of the experiment was administered 

via desktop PCs located in the Experimental Social Science Laboratory. NetSupport 

School (NetSupport, Ltd) software launched the program and collected the behavioral 

data in text files. Subjects read written instructions outlining how to play the Stag Hunt, 

then played a 15-game training block against a random agent. Following the practice, 

subjects participated in five blocks against different agents (in randomized order), with 

50 games per block. Subjects were allowed to complete the task at their own pace. 

Between each block, the subjects filled out a written survey querying their own 

behavior and the perceived cooperation of the agent they were playing with.  

 

After finishing the experiment, subjects completed a written demographic survey 

collecting personal information regarding their age, major, experience with video 

games, whether English was their first language, and whether they were willing to be 

contacted for a follow-up study. They then completed the 50-question Autism Spectrum 

Quotient (AQ) test for adults (University of Cambridge’s Autism Research Centre). 

Subjects were compensated US$7 plus a variable US$0-$15 of performance earnings that 

corresponded to their score during a randomly selected block of the computer 

experiment. Each point was worth 7.5 cents, and the total payment was rounded to the 

closest dollar. 

 

3.1.5 Analysis.  
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Unless otherwise specified, all analyses were performed in MATLAB (Mathworks, Inc.) 

and tested for significance using ANOVA and a two-sample Kolmogorov-Smirnov 

hypothesis test. Each significance threshold was corrected for error of p < .05 using 

Bonferroni correction. 

 

3.1.5.1. Cooperation.  

The primary metric of cooperation used in our analysis of the Stag Hunt was the 

number of successful stag captures per block. In a given block, there was the 

opportunity to catch 50 stags.   

 

3.1.5.2. Intent.  

Human subjects could signal their goal to induce cooperation or intent by their position 

on the game board. Path analyses included the amount of time a player spent next to 

the stag attempting to initiate cooperation, and deviation from the optimal path 

between the subject’s start and end game positions. The amount of time spent next to a 

stag, referred to as “loitering,” was measured in seconds from the moment the player 

reached a square adjacent to the stag until either the player moved to a non-adjacent 

square, or the end of the game was reached. Path deviation was calculated as the 

difference between the number of moves taken by the subject and the number of 

squares between the subject’s endgame position and their randomized starting position. 

 

3.1.5.3. Agent State Tables.  

The state tables produced by the adaptive agents relays detailed information regarding 

target choice preferences in relation to game board configuration. State tables were 

analyzed by counting the number of board configuration states in which the likelihood 
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of selecting a particular target reached or exceeded 60%, indicating preference for that 

target. 

 

3.2. Results 

 

A number of analyses were conducted assessing various subject factors on cooperation 

or AQ. We found no significant effects of self-reported English second language status, 

gender, and previous experience with video games on the number of stags caught and 

no correlation with AQ. There were also no significant effects of block order on 

cooperation. 

 

A)             B) 

   
 
Figure 3.3. Bar graphs for A) the number of stags caught over all games by block, and B) the 
number of hares caught by subjects over all games by block.  
Subjects caught significantly more stags in the Plan and WSLS conditions than all other 
conditions, and significantly less stags in the Random condition than all other conditions. 
Subjects caught significantly more hares in the Random condition than all other conditions, and 
significantly less hares in the Plan and WSLS conditions than all other conditions. In the graphs, 
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the x-axis is blocks by agent type, while the y-axis is A) total stags caught during block and B) 
total hares caught by subject during block, out of a maximum of 50. 
 

3.2.1. Analysis by Agent Type.  

Analysis of cooperative behavior (i.e., hunting stags) indicated that subjects were 

sensitive to the differences between the simulated agents and changed their play 

accordingly. Subjects caught significantly different numbers of stags and hares 

depending on the type of agent with which they played. Comparisons over all subjects 

for number of stags caught between each agent type were significant (F(1, 4) = 109.49; p 

< 0.001) in all pairs except ToMPlan v. AC and Plan v. WSLS (Figure 3.3A). 

 

Table 3.2. Behavioral metrics for subjects (mean and standard deviation). 
 

Subjects caught the most stags when playing with the WSLS agent and the Plan agent, 

and the fewest when playing with the Random agent (Table 3.2 and Figure 3.3). Success 

catching stags with the WSLS and Plan agent indicates subjects engaged in strategies 

that elicited high levels of cooperation from the agent. For the WSLS, the agent could 

easily be trained into stag equilibrium after a single trial of successful stag hunting. For 

Metric ToMPlan Plan AC Random WSLS 
Stags caught 33.365 

(8.590) 
43.212 
(9.081) 

35.856 
(7.055) 

20.019 
(6.348) 

41.452 
(12.385) 

Hares caught 8.788 
(8.487) 

3.567 
(7.145) 

6.961 
(7.043) 

17.269 
(9.371) 

5.212 
(10.060) 

Subject path dev. 0.412 
(0.342) 

0.243 
(0.236) 

0.373 
(0.351) 0.377 (0.340) 

0.188 
(0.230) 

Subject loiter 3.754 
(0.871) 

4.026 
(0.719) 

3.972 
(0.806) 2.551 (0.830) 

3.621 
(0.935) 
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the Plan agent, ignorance of the subject’s position prevented the agent from being 

deterred from the stag while the subject was far from the stag target. This led to initial 

shows of cooperative intent on behalf of the agent, guiding the subject into profitable 

cooperative behavior. In contrast, subjects had no control over the Random agent, and 

thus tended to defect when it appeared advantageous. 

 

Similar to stag hunting, an analysis of non-cooperative behavior (i.e., hunting hares) 

revealed differences in strategy depending on the agent. A one-way ANOVA revealed 

significant differences in the number of hares caught in games with each agent (F(1, 4) = 

41.12; p < 0.001) between all agent types other than ToMPlan and AC (Figure 3.3B). 

Subjects caught the most hares when playing with the Random agent, the condition in 

which consistent cooperation could not be achieved (Table 3.2). This was followed by 

the ToMPlan and AC conditions, two conditions in which the adaptive agents required 

multiple game interactions to develop strategies that played effectively with a given 

subject. The fewest hares were caught in the Plan and WSLS conditions.  

 

 
 
 
 
 
 
 
 
 
 
A)        B) 
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Figure 3.4. Bar graphs of A) average subject deviation from the optimal path in squares during a 
block and B) average time in seconds spent next to a stag during a block.  
Path deviation was significantly less in the Plan and WSLS conditions compared to the 
ToMPlan condition. Loitering was significantly less for the Random condition compared to all 
other conditions, which were comparable to each other. In the graphs, the x-axis is blocks by 
agent type, while the y-axis is deviation in game board squares and time in seconds, 
respectively. 
 

Subjects also engaged in different visual displays of intent when playing with agents; 

deviation from the optimal path (F(1, 4) = 9.52; p < .001) and loitering (F(1, 4) = 53.79; p 

< .001) both depended on agent type. Subjects opted for more indirect paths with the 

ToMPlan agent than the Plan and WSLS agents (ToMPlan v. Plan: p < .002; ToMPlan v. 

WSLS: p < .001) (Figure 3.4A; Table 3.2). WSLS and Plan featured the lowest path 

deviation, meaning subjects typically chose a direct route to their end position during 

games. Subjects loitered significantly less in the Random condition (p < .001), but all 

other conditions were comparable (Figure 3.4B). 

 

Players used clearly differentiated hunting strategies with each agent type. In the 

following section, we consider the relationship between subject behavior and autistic 

traits and we focus on the ToMPlan and Random agent. Because Plan and WSLS 
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conditions largely expressed ceiling effects with the number of stags caught, it was not 

considered. The AC condition was very similar to the ToMPlan condition, but not as 

polarizing. Therefore, going forward, we will analyze subject responses to the ToMPlan 

and Random agents. 

 

3.2.2. Relationship to AQ.  

Scores on the AQ test across the subject population ranged from 9 to 36 points, with 

greater scores indicating higher affectedness by autistic traits. Subjects differed in their 

behavior and in their responses to different agents depending on their level of autistic 

traits as measured by AQ. Overall, subjects with high AQ scores tended to cooperate 

less and had trouble discerning the intent of adaptive agents. 

 

A)                    B) 

 
 
Figure 3.5. Scatter plots of the number of stags caught as a function of AQ when playing with 
the A) ToMPlan and B) Random agents.  
The number of stags caught in the ToMPlan and AC conditions was significantly negatively 
correlated with AQ, and the number of stags caught in the Random condition was significantly 
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positively correlated with AQ. The x-axis is AQ ranging from 0-40, the y-axis is the number of 
stags out of a possible 50, and the regression line is included. 
 

3.2.2.1. Cooperation.  

The relationship between AQ and cooperation revealed two distinct patterns depending 

on agent type. Cooperation, as measured by stag captures, was negatively correlated 

with AQ in the ToMPlan (r = -0.276, p < 0.002), and positively correlated with AQ in the 

Random condition (r = 0.234, p < 0.008; Figure 3.5 and Table 3.2). Low AQ subjects 

captured more stags than high AQ subjects when playing with the adaptive agent, 

whereas high AQ subjects captured more stags than low AQ subjects in the Random 

condition. The implication is that subjects with high AQ did not recognize and develop 

strategies for eliciting cooperative behavior from the adaptive agent, evidence for 

difficulty understanding the adaptive agents’ intention.  

 

This does not imply, however, that high AQ subjects did not understand the purpose 

and goals of the Stag Hunt game. High AQ subjects could cooperate with the simple 

Random agent, and were even more successful at capturing stags than lower AQ 

individuals. In this condition, being predisposed to strategies that do not rely on 

cooperative signals resulted in more optimal play. 
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Figure 3.6. Scatter plots of the average number of hares caught by subjects as a function of AQ 
during the ToMPlan condition.  
A significant positive correlation was found in the ToMPlan condition, indicating that subjects 
with higher AQ tended to catch more hares than in lower AQ subjects. The x-axis is AQ ranging 
from 0-40, the y-axis is the number of hares out of a possible 50, and the regression line is 
included. 
 

As hare hunting is typically preferential when cooperation cannot be achieved, and 

subjects with High AQ had difficulty cooperating, there was a positive correlation 

between AQ and the number of hares caught was observed in the ToMPlan condition 

(see Figure 3.6A; r = 0.264, p < 0.003). This significant positive correlation with AQ 

suggests that high AQ subjects defected more under these conditions because they 

could not interpret the intent of ToMPlan agent (Schuwerk et al., 2014). 

 

Together, these findings support the hypothesis that high AQ subjects were less likely 

to engage in implicit exhibit ToM, reminiscent of impairment characteristic of clinical 

ASD (Begeer, Bernstein, van Wijhe, Scheeren, & Koot, 2012; Senju, Southgate, White, & 
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Frith, 2009; White et al., 2014). Individuals with high AQ were less cooperative when 

faced with a player that had the ability to alter its decisions depending on changing 

context. In other words, they had trouble discerning the intentions of the agent, which 

simulated attributes of ToM. 

 

3.2.2.2. Intent.  

In an effort to understand the connection between AQ and the extent to which subjects 

attempted to communicate with and influence the other player, we assessed the degree 

to which subjects signaled their intentions through path deviation and loitering next to 

a stag during game play. Path deviation is a means by which we can discern whether a 

subject either used movement to communicate or changed targets during a game, and 

loitering is an indicator of cooperative intent. Although the analysis of path deviation 

did not show significant results, analysis of loitering exposed differences between agent 

types in both subject and agent behavior. 

 

A)        B) 
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C)       D) 

 
Figure 3.7. Scatter plots of loitering next to stag as a function of AQ.  
Loitering was significantly negatively correlated with AQ in games with the ToMPlan agent, 
both for the subject and the agent (A and C). Loitering was positively correlated with AQ when 
playing with the Random agent (B and D), although only agent loitering was significant. The x-
axis is AQ ranging from 0-40, the y-axis is the average amount of time in seconds the player 
spent next to a stag per game, and the regression line is included. 
 

The amount of time both subjects and agents spent loitering next to a stag (Figure 3.7) in 

the ToMPlan condition was negatively correlated with AQ (Subjects: r = -0.225, p < 0.01; 

Agent: r = -0.255, p < 0.004). The amount of time the agent spent loitering next to a stag 

in the Random condition was positively correlated with AQ (r = -0.326, p < 0.001), a 

trend that was seen but did not reach significance in subjects (Figure 3.7B). These effects 

match the correlation between AQ and stag captures, providing further evidence that 

subjects with higher AQ tend to spend less time signaling catch intent in the ToMPlan 

condition, but allow the Random agent more time to signal its intention to catch stags. 

These trends are potentially indicative of an increase in systemizing behavior on behalf 
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of the high AQ subjects, as the Random agent was predictable within game due to its 

direct path toward its target and therefore, high systemizing subjects could pick up on 

the pattern and use it to their advantage. The ToMPlan agent on the other hand 

incorporated unpredictability both within and between game as a result of its 

constantly adapting behavior, making it more difficult to recognize a pattern to 

systematically respond to. 

 

A)       B) 

 
C)       D) 
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Figure 3.8. Scatter plot of target preference according to human and agent state tables collected 
by the ToMPlan agent. 
 A) and B) show the average state table weights for stag preference for the human and agent, 
respectively. In C) and D), the number of target preferences for a subject was defined as the 
number of states in each table in which the likelihood to hunt the target was greater than 60%. 
There were significant positive correlations between subject AQ and the propensity for the 
ToMPlan agent to hunt stag, and the number of hare preferences and the subject’s AQ score. 
The x-axis is AQ ranging from 0-40, the y-axis is the average state table weight in propensity to 
hunt stag (A & B) or the number of target preferences (C & D), and the regression line is 
included. 
 

3.2.2.3. Agent State Tables.  

In analyzing the state tables created by the ToMPlan agent, we were able to find trends 

that underscore the findings above (Figure 3.8). Subject AQ and the state table weights 

were negatively correlated, indicative of the agent’s propensity to hunt stag when 

playing with low AQ subjects (r = -0.195, p < .05; Figure 3.8B). The same trend was 

found in the subject state tables, although this did not reach significance (r = -0.16, p < 

0.1; Figure 3.8A). Analysis of the ToMPlan’s human state tables derived from subject 

choice preferences and path information revealed that the amount of states in which 

subjects showed a preference for hare positively correlated with AQ score (r = .224, p < 
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.022; Figure 3.8C). The same trend was found in the agent state tables, although this did 

not reach significance (r – 0.17, p < .08; Figure 3.8D). This indicates that subjects with 

higher AQ showed they were less amenable to stag hunting in a way that was apparent 

to the ToMPlan agent. 

  

3.3. Discussion  

 

Results of the present study successfully showed that strategizing and decision-making 

in social game environments is differentially linked to the level of autistic traits in 

subjects of the general population. We found differences in the tendency to elicit and 

engage in cooperative stag hunting, and in the analysis of intent through subject 

movements across the game board.  

 

Subjects with higher incidence of autistic traits failed to engage in social behaviors 

when playing games with agents simulating ToM and planning. AQ score was 

negatively correlated with the amount of cooperation when playing with an agent that 

simulated ToM, and AQ score positively correlated to the amount of cooperation when 

playing with a simplistic, randomly acting agent. This suggests that subjects with high 

levels of autistic traits may have had trouble understanding the intent of an agent that 

simulates ToM, much like individuals with clinical ASD diagnoses (Boucher, 2012; Kana 

et al., 2009; Mason et al., 2008; Matthews et al., 2012; Senju, 2012).  

 

The finding that individuals with high AQ scores do not have as much difficulty 

cooperating with Random agents as low AQ individuals suggests that when higher AQ 

subjects can discern another’s strategy or intention, they might be more capable of 
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cooperation. This theory is also seen in the positive correlation between time spent 

loitering next to the stag and AQ, as evidenced by the increase in visual intention 

signaling by the Random agent. The negative correlation between AQ and loitering for 

the ToMPlan agent in both subject and agent shows the converse, as subjects with high 

AQ likely spent less time signaling cooperative intent, suggesting that subjects with 

higher levels of autistic traits may have had more trouble discerning the strategies of 

this agent, indicative of underlying social deficits (Simon Baron-Cohen et al., 1999; Feil-

Seifer & Matarić, 2009; Rolison, Naples, & McPartland, 2015). Taken together, these 

results demonstrate that a non-verbal task, such as the Stag-Hunt, can induce 

differential behavior among subjects whose autistic traits differ, and that these 

differences may be related to variations in implicit theory of mind. 

 

3.3.1. Agent Differences. 

Computer agents that learn from experience have been used in both embedded and 

embodied implementations to study strategy formation and learning with and without 

human subjects (Baldassarre, 2003; Kidd & Breazeal, 2004; Merrick, 2010; Merrick & 

Maher, 2009; Schembri, Mirolli, & Baldassarre, 2007; Sutton, Barto, & Williams, 1992; 

Szolnoki & Perc, 2009; Szolnoki, Xie, Ye, & Perc, 2013; Thomaz & Breazeal, 2008; Valluri, 

2006).  Like many of these studies, the present study utilizes a model implementing 

reinforcement learning, which is practiced in biological systems (Frank et al., 2015; 

Gläscher, Daw, Dayan, & O’Doherty, 2010; Glimcher, 2011). The actor-critic model 

(Khamassi, Lachèze, Girard, Berthoz, & Guillot, 2005; Li, Lowe, & Ziemke, 2013; 

Nakamura, Mori, Sato, & Ishii, 2007) formed the foundation for the three adaptive 

agents in this study, which enabled them to learn in a real-time environment, tailoring 

their gameplay to the unique strategies of the subject with which they were currently 
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engaged. 

 

While the AC agent used the base actor-critic model and was mostly reactive, planning 

only one action in advance and considering the position of the other player but not their 

likely actions, the ToMPlan agent added both planning and mental simulation to 

consider the future and the likely actions the subject would take when determining a 

prey to pursue. Both agents began a block of games without bias and acquired 

behavioral tendencies through their turn-by-turn experience with a given human 

player. These agents were designed for the present study in order to present a complex 

social partner to subjects, similar to a human player but lacking the inherent bias and 

confounds when using human social interaction. While the AC agent was shown to be 

sufficient in evoking complex and varied reactions from subjects in our past study (A B 

Craig et al., 2013), the new elements of simulated ToM and planning made the ToMPlan 

agent more polarizing in terms of subject reaction. In other words, the ToMPlan and AC 

agents largely evoked the same responses in subjects, but the ToMPlan’s effect was 

stronger.  

 

Although the Plan agent used similar underlying architecture to the ToMPlan and AC 

agents, subject behavior when playing with this agent was most comparable to play 

with the WSLS agent; both agents elicited a strong cooperative strategy from subjects. 

The Plan agent was included as a control agent with the ability to simulate games to 

inform action decisions, but without the ability to model future actions of the human 

player. Because the Plan agent did not consider the subject’s behavior or placement on 

the game board, it frequently began a block of games attempting to pursue the most 

profitable prey, the stag. Most subjects ascertained this signal of cooperation, which is 
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likely responsible for the near ceiling numbers of stags caught in the Plan condition.  

 

Like the Plan agent, the WSLS agent also readily elicited cooperation from the human 

subjects. The WSLS agent (Imhof et al., 2007; M. Nowak & Sigmund, 1993) kept its 

target following a win and switched its target after a loss. As a result, once the first stag 

was caught in a block of games, the WSLS would continually pursue stags until the 

subject defected. It was easy for subjects to fall into a cooperative equilibrium with the 

WSLS agent; the subjects just needed to move their avatar directly to the stag every 

time. The WSLS agent was included as a control agent, influenced by subject behavior 

but with a simple, fixed strategy that did not vary in real time like the adaptive agents 

(see Table 3.1). However, because the WSLS and Plan agents did reach near ceiling 

levels of cooperation, games largely became trivial, moving straight to the same target 

over and over. 

 

Lastly, the Random agent was included in the present study as a baseline control for all 

other agents, given that it held no strategy, was not affected by subject behavior, and its 

behavior did not change in any meaningful way over time. 

 

3.3.2. Effect of agent type on behavior.  

The ToMPlan agent evoked behavioral responses in subjects that did not reach the 

magnitude of cooperative equilibrium. Compared to the other agent types, in games 

with the ToMPlan agent, the ratio of hares to stags caught by subjects was midway 

between the highest and lowest conditions (Figure 3.3; Table 3.2). Agents in this 

condition operated off of constantly changing state tables that learned in a way that is 

not transparent to the subjects. Even if a subject attempted to cooperate or defect 
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consistently with the agent, the state tables learn based on board configurations that can 

be ambiguous, meaning that it is difficult for the agent to behave consistently in every 

game. In addition, the agent’s response is granular, functioning on the level of 

individual moves rather than the highly integrated cognitive response that humans 

produce. The moderate number of stags in the ToMPlan condition may have been a 

result of the uncertainty of the actor-critic model, which added difficulty to the 

formation a cooperative equilibrium with the subject. 

 

In games with the Random agent, overall findings show a highly polarizing effect on 

subject behavior. The Random agent evoked the least amount of stag hunting and the 

highest number of hares caught by the subject out of all of the agent types (Figure 3.3; 

Table 3.2). Unlike the adaptive agents, the Random agent could not be coerced into 

cooperation under any circumstance. As the number of stags caught in games with the 

Random agent was close to half of the maximum number of stags available in a block, 

this is in keeping with the rules of probability that govern the Random agent. Once the 

subject ascertained that their behavior could not influence the agent, their action 

decisions became relatively straightforward. Similar decreases of engagement when 

playing with a randomly-acting agent have been seen in simple games, both 

behaviorally and neurally (Chaminade et al., 2012). When considering the paths 

themselves, path deviation did not significantly differ between the ToMPlan and 

Random conditions (Figure 3.4A). Although this finding is seemingly at odds with our 

previous finding that subject take longer paths when playing with complex adaptive 

agents (A B Craig et al., 2013), it is possible that for some subjects, the probabilistic 

nature of the Random agent in fact makes that agent complex and increases the amount 

of uncertainty in interacting with it, leaving subjects desiring more information to deal 
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with this type of behavior (Hilbert, 2012; Schultz, Mitchell, Harper, & Bridges, 2010). 

 

3.3.3. Effect of AQ on behavior 

 

3.3.3.1. Cooperation. 

 Subjects with high AQ had a difficult time deciphering the intentions and influencing 

the strategies of the agent. Specifically, we observed a significant negative correlation of 

AQ to the number of stags caught in the ToMPlan condition (Figure 3.5A), which was 

accompanied by a significant positive correlation of AQ to the number of hares caught 

in the same conditions (Figure 3.6). Because the ToMPlan agent modeled aspects of 

ToM, understanding this agent required a higher level of ToM processing. With this in 

mind, the fact that high AQ subjects did not seem to be as successful as low AQ subjects 

at reaching a cooperative equilibrium with the ToMPlan agent indicates that the high 

AQ subjects failed to engage implicit ToM when implementing their game playing 

strategy. This behavior of individuals with high AQ is reminiscent to that of individuals 

with clinical ASD (Kana et al., 2009; Matthews et al., 2012; Senju, 2012). 

 

Interestingly, subjects with high AQ were more successful than subjects with low AQ at 

catching stags with the Random agent. Positive correlations with AQ score and the 

Random agent were found in the metrics of stags caught (Figure 3.5B). This result 

eliminates the possibility that high AQ subjects were simply less successful in 

cooperation when playing the Stag Hunt in general. One potential explanation for this 

difference could be that low AQ subjects, after several failed attempts at cooperation, 

became upset with the agent and acted out against them by defecting. Previous studies 

in game theory have shown that emotion plays an important role in decision-making 



107	

during social games (Rilling & Sanfey, 2011; Sanfey, 2003; Schultz et al., 2010; Schwarz, 

2000). The phenomenon of acting against one’s best interests in order to seek revenge on 

a party that one believes has wronged them is well established in game theory, 

especially in tasks such as the Ultimatum Game (M. A. Nowak et al., 2000; Rand, 

Tarnita, Ohtsuki, & Nowak, 2013; Wei, Zhao, & Zheng, 2013; Wout, Kahn, Sanfey, & 

Aleman, 2006). In the case that high AQ subjects did not consider the other player’s 

mental state, this emotional valence may not have been strong enough to desire revenge 

or to trigger negative emotional response to the agent’s behavior at all. As empathy and 

emotion is interlinked with ToM processing (Boucher, 2012; Ciaramelli, Bernardi, & 

Moscovitch, 2013), the difference between high and low AQ subjects likely revolves 

around the recruitment of ToM in decision-making. Alternatively, high AQ subjects 

could have been more successful with the Random agent because of an overlying 

difficulty understanding the broader strategies of agents. This limitation would suggest 

that high AQ subjects would need to strategize on the level of games rather than on the 

level of blocks, a tactic that would allow for capitalizing on the trials in which the 

Random agent happened to go for a stag rather than discontinuing attempts at 

cooperation with an agent who could not consistently cooperate.  

 

3.3.3.2. Strategizing under uncertainty. 

In games with the ToMPlan agent, AQ score affected the amount of time players 

loitered next to a stag. With the Random agent, AQ positively correlated with both 

loitering time for both the subject and agent (Figure 3.7B & D), but negatively correlated 

with the ToMPlan agent (Figure 3.7A & C). It stands to reason that subjects with higher 

AQ spent longer in games with the Random agent in an either in an attempt to gain 

more information from the agent to determine its strategy, or because the subject did 
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not understand the agent’s goal at the beginning of the game and changed his/her prey 

choice midgame. Both of these conclusions are indication of the overarching theme that 

high AQ subjects have more difficulty understanding the behavior of adaptive agents, 

which likely stems from implicit ToM impairment (White et al., 2009). 

 

Analysis of the state tables collected by the ToMPlan agent showed that the agent’s 

preference for stag hunting decreased in games with subjects of high AQs (Figure 3.8B). 

This correlation is evidence that the agent was able to pick up on the subject’s 

behavioral cues and shape its own behavior to match that style of play. While not 

significant, the human state tables displayed the same trend of negative correlation to 

AQ score (Figure 3.8A). In regard to hare hunting, the state tables revealed that subjects 

with higher AQs preferred hare hunting with this agent (Figure 3.8C), a trend also 

found in the raw number of hares and stags caught. Although not significant, this same 

preference for hare hunting was found in the agent state tables (Figure 3.8D). Coupled 

with the results on loitering, it is clear that high AQ subjects had more trouble 

understanding the ToMPlan agent’s cooperative intent and therefore spent less time 

signaling visual intent. Furthermore, the subject state tables illustrate the agent’s ability 

to accurately assess the target preferences of the subjects. The ToMPlan agent learned 

that high AQ subjects are less likely to hunt stags, and adjusted its behavior 

accordingly. While reinforcing the theories above, this information is important for its 

insight into what the model controlling the ToMPlan agent is perceiving. The values 

collected in the agent’s state tables allow us to predict the subject’s behavior, and this 

predictive value allows us to estimate the AQ of the subject. Simply through the 

information the agent acquired during previous games, the agent learned that subjects 

with higher AQ were less amenable to cooperation. Through the state table values, it is 
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apparent that the subject’s behavior shaped the agent’s behavior towards hare hunting 

in games with high AQ subjects. 

 

When assessing these findings with the results of cooperation, in the ToMPlan 

condition, low AQ subjects tended to invest a longer amount of time signaling the 

intention to hunt stags, but when they went for a stag, they tended to be successful. 

When high AQ subjects were able to catch a stag, they tended not to have loitered as 

long as the low AQ subjects to do so. It is possible that the positive correlation with AQ 

and hare outcomes resulted from high AQ subjects being unable to induce cooperation 

and switching to hare hunting during a game. Because the hare outcome can be attained 

without any path deviation or extra movement, it is likely that subjects who take many 

moves during a game in which they catch a hare did not begin the game with a 

commitment to hare hunting. This explanation would further affirm the notion that 

high AQ subjects have difficulty deciphering the ToMPlan agent, as it implies they were 

either unable to get the ToMPlan agent to cooperate or did not understand how to 

influence ToMPlan agent. 

 

In the Random condition, on the other hand, when playing with high AQ subjects, the 

agent tended to spend longer loitering next to the stag, but were more often successful 

than with low AQ subjects. Because the Random agent operates on a set strategy, this 

difference resides in subject behavior. High AQ subjects spent more time observing in 

games with the Random agent than low AQ subjects, which caused the Random agent, 

who would move directly to a target and wait, to spend more time waiting next to a 

stag. This explanation implies that subjects with higher AQs invested more time in 

determining the Random agent’s intent visually before deciding what target to pursue, 
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whereas subjects with lower AQs chose a target quicker and did not spend as much 

time observing the Random agent’s behavior. The fact that in the present study high 

AQ subjects seem to cooperate better with a Random agent is in keeping with the high 

systemizing mentality, as it was likely easier for these subjects to analyze the patterns of 

the Random agent. The low AQ subjects, relying more on their intuition as to the 

mental state of the agent, would not receive useful cues, as the Random agent behaved 

without a unified goal between games. 

 

3.3.4. Additions to Prior Research.  

The concept of explicit vs. implicit ToM tasks is a key component in using ToM tasks to 

study autism, as it has been theorized that the atypical activity of the ToM network in 

the brain differs depending on which type of task is employed (S. J. White et al., 2014). It 

is especially important to investigate implicit ToM, as the process arises spontaneously 

and is therefore more difficult to accurately assess. The present study adds to the 

comparatively small field of implicit ToM research, creating a non-verbal paradigm to 

evoke implicit ToM through cooperation. We have shown through metrics of 

cooperation and intention signaling that autistic traits correlate to differential behavior 

in this task, likely with the difference residing in ToM impairment. 

 

In the Yoshida et al. studies (2008; 2010a; 2010b), agents lacked the ability to react in 

real-time, instead switching their level of sophistication at random. This behavior does 

not lend itself well to the assessment of social interaction, as the other player would not 

reliably behave in a manner that appeared to be influenced by the subject. This study 

goes beyond Yoshida’s work in that the agents used in this experiment adapt in real-

time rather than switching between fixed models at a designated interval. The adaptive 
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agent entered the Stag Hunt environment naïve and developed a strategy over repeated 

games based on both the behavior of the other player and the outcomes of the games. 

We were able to show that subjects utilized more complex paths when playing games 

with an adaptive simulated agent that developed strategies over repeated games based 

on both the behavior of the other player and the outcomes of the games. This was in 

comparison to play with fixed strategy agents, which implemented the same hunt 

strategy regardless of the human path or game outcomes. With the present study, we 

built upon the prior work to investigate the between-subject differences as related to 

levels of autistic traits by using computer agents with behaviors that range from fixed 

strategy to simulated ToM to probe subjects’ ToM abilities. Utilizing various types of 

adaptive agents in this experiment allowed more nuanced observation of behaviors in 

subjects. Metrics such as loitering next to a stag were heavily influenced by the ability of 

the agent to change its prey choice within a game, providing more detail into the 

formation of strategy and the utilization of paths as a signifier of intention. 

 

3.3.5. Limitations.  

One of the surprising results of the present study was we had initially attempted 

comparing the twenty highest and lowest AQ subjects on the metrics used above, but 

the findings failed to reach significance. A possible explanation for the inability to find 

more significant results between the High and Low groups could be the fact that the 

subject population did not possess high enough AQ scores to show substantial 

differences from our Low AQ group. We performed all of the previously discussed 

analyses with twenty of each of the highest and lowest scored AQ subjects, but the 

subject population may not have possessed a sufficiently wide range of AQ scores. A 

recently conducted meta-analysis of studies conducted using both neurotypical and 
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clinically diagnosed autistic individuals found that their clinical population averaged 35 

points on the AQ test (Ruzich et al., 2015). Only a handful of subjects in the present 

study scored 28 or above, with the mean score for the High AQ group equaling 27.75. In 

this case, the size of the subject population was a limitation that could be improved 

upon by expanding the number of subjects until the Low and High AQ groups featured 

more extreme scores. 

 

Another possible explanation for the lack of significant results between High and Low 

AQ groups is that because our subject population was comprised of adult college 

students, the presumption is that these individuals are highly functional. The 

implication is that differences resulting from affectedness by autistic traits may only be 

observable through neural processing because behavior has been corrected to achieve 

high functioning status through neural compensation. In this case, an investigation into 

the brain functioning occurring during gameplay would be necessary to display 

differences between the Low and High AQ groups. Such a continuation on the present 

study would also afford comparisons to other studies in the growing body of research 

focused on neuroimaging correlating AQ among the general population with irregular 

neural processing attributed to clinically autistic individuals. 

 

The findings of the present study indicate a strong connection between the ability to 

cooperate with adaptive and fixed strategy agents and the individual’s level of 

affectedness by autistic traits as determined by AQ score. Likely as a result of a decrease 

in consideration of other individuals’ mental states, subjects with higher AQs tend to 

cooperate less with adaptive agents than subjects with lower AQs while cooperating 

more with agents that behave randomly. Although this finding is apparent in select 
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behavioral metrics, there is likely a strong underlying cognitive component to this 

difference that can only be observed through the addition of information regarding 

neural processing. In future work, we hope to utilize fMRI to investigate differences 

within the ToM network of the brain between low and high AQ subjects playing the 

Stag Hunt with these computer agents. This work will help to further the field’s 

understanding of autism spectrum disorders as a gradient within the general 

population by identifying atypical neural correlates that are common between 

individuals with formal ASD diagnoses and neurotypical individuals with high AQ. 

The Stag Hunt software developed for this study holds potential for use in clinical 

autistic populations as a non-verbal game capable of probing ToM abilities without the 

confound of human interaction. 
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CHAPTER 4: Neural Basis of Theory of Mind Processing 
Differences Between Subjects of Varying Levels of Autistic 

Traits 
 

The present body of work identified behavioral components related to autistic traits, 

theory of mind, and cooperation. In addition, it would be of interest to identify the 

neural correlates of this behavior. Therefore, the next addition to this line of research is 

the utilization of functional magnetic resonance imaging (fMRI) to identify the potential 

differences in neural activation both between subjects of varying levels of autistic traits 

and when playing the Stag Hunt game with agents of varying strategies.  

 

In this preliminary study, we used fMRI in conjunction with adaptive agents while 

playing the Stag Hunt game, combining a ToM implicit, game theoretic task 

environment with intelligent and autonomous yet artificial agents in order to analyze 

the neural and behavioral response to non-human agents that probe ToM. 

 

4.1. Specific Aims & Hypotheses.  

 

The specific aims of the proposed research are as follows: 1) Utilize a computer agent 

incorporating functionality based on aspects of ToM and is capable of evoking ToM 

behavior, in subjects during the Stag Hunt. To make decisions, this agent takes into 

consideration (i) its own potential costs and rewards, (ii) the other players potential 

costs and reward, and (iii) recursive planning of potential outcomes. 2) Investigate 

differential behavioral responses between low AQ and high AQ subjects towards 

adaptive agents controlled by ToM model when playing the Stag Hunt. The novel 
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addition of adaptive agents to the experimental paradigm will engage a complex, ToM 

response in subjects not possible using set-strategy agents and more controlled than 

human opponents, a quality necessary for assuring the validity of conclusions. We 

expect to find response patterns that match most closely set-strategy agents in subjects 

with high levels of autistic traits, indicating a reduced ToM response, while subjects 

with low levels of autistic traits are expected to match adaptive agents, indicating a 

higher degree of ToM response. 3) Investigate differential neural response between 

subjects of varying levels of autistic traits in the mentalizing network through fMRI 

when playing the Stag Hunt with adaptive agents. We expect to find hypoactivation of 

ToM network in subjects with high AQ compared to subjects with low AQ in implicit 

ToM tasks, and hyperactivation in explicit tasks, responses that correlate with 

behavioral findings in Aim 2) and identify the nature of atypical ToM network 

activation for subjects with high levels of autistic traits in explicit vs. implicit ToM tasks. 

 

4.2. Experimental Paradigm.  

 

The neurobiologically-inspired model capable of evoking ToM response in subjects is 

equipped with mentalizing and planning capabilities, key aspects that comprise and 

cue ToM response (see Chapter 3). 

 

This agent, alongside fixed strategy control agents, will be used as players in an fMRI 

experiment to test hypotheses regarding the theory of hypo- and hyper-activation of the 

mentalizing network in subjects with high levels of autistic traits when using implicit 

vs. explicit ToM tasks. Several behavioral measures will be taken during games 

including score, prey preference, path trajectory, and game length, which will be 
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compared both between both high and low AQ subjects, as well as to the adaptive agent 

data as tested above, to make conclusions regarding what mechanisms were likely 

favored in each group’s play style. We expect the results of the proposed behavioral 

study to show a decrease in cooperative behavior in high AQ subjects compared to low 

AQ subjects, similar to what has been shown in past research with neurotypical subjects 

and subjects with clinical ASD (Yoshida, Dziobek, et al., 2010). As cooperative behavior 

is subserved by the ability to imagine the mental state of another person, the 

implication of this finding is that subjects with high AQ may engage less in ToM 

behavior when performing implicit ToM tasks such as the Stag Hunt. We expect the 

results of the proposed fMRI study to show hypoactivation in the mentalizing network 

(i.e. mPFC, TPJ, APC) in high AQ subjects vs. low AQ subjects when playing the Stag 

Hunt game, as it does not explicitly cue ToM behavior to take place and therefore 

should not strongly activate in subjects with high levels of autistic traits even though 

subjects with low levels of autistic traits should engage spontaneous ToM. We expect 

hyperactivation of the mentalizing network in high vs. low AQ subjects when 

responding to questions, which explicitly cue ToM, a finding that has been observed in 

past research (White et al., 2014). These two findings would provide evidence in 

support of the explicit vs. implicit ToM theory, as well as insight into atypical activity 

and connectivity of the mentalizing network in the high AQ brain. 

 

4.3. Pilot data.  

 

Preliminary efforts have already begun to collect pilot data using general population 

individuals assessed by AQ score. The preexisting Stag Hunt software was modified for 

use in the fMRI scanner to accommodate the added restrictions inherent to the testing 
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environment. Nine subjects were acquired through either the Experimental Social 

Sciences Laboratory or on campus advertisement at the University of California, Irvine. 

Subjects filled out the Autism Quotient (AQ) test to be used as a metric for evaluating 

their cooperative performance relative to other subjects of varying AQs. They were 

selected for participation based on AQ if they scored either lower than 15 or higher than 

25. The range for low AQ was 9-14, and the range for high AQ was 26-31. Subjects 

played repeated games in three, thirty-second blocks separated by 10 second rests of the 

ToMPlan agent, the Random agent, and the WSLS agent (see Chapter 3) interleaved. 

Subjects were not told which agent they were playing with, although they were notified 

when the agent strategy would change. Rather than using the computer keyboard, 

subjects used two, four-button control boxes for moving their player icon around the 

game board. During games, fMRI data was collected at two-second intervals to capture 

neural activity for comparison both between subjects and between agents. 

 

A)         B)       C) 

 
 
Figure 4.1. Plot of average change in BOLD response during games in each condition.  
A) Right temporoparietal junction, B) right fusiform gyrus, and C) right medial temporal gyrus 
each exhibited similar trends indicating higher activation when playing with the ToMPlan and 
Random agents than the WSLS agent. This is likely due to the fact that the ToMPlan and 
Random agents required more effort to understand their strategy, whereas the WSLS agent 
operated on a fixed strategy. 
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Although we were only able to acquire the data of nine subjects, results of this pilot 

data reveal trends in BOLD response related to both agent type and level of autistic 

traits in the subjects.  Average change in BOLD activation indicates that the highest 

level of activation was exhibited in games with the ToMPlan agent, closely followed by 

the Random agent in rTPJ, right fusiform gyrus (rFG), and right medial temporal gyrus 

(rMT) (Figure 4.1). Activity in these areas was substantially less in games with the 

WSLS agent. These trends indicate that subjects expended more effort in games with the 

ToMPlan and Random agents than with the WSLS agent. The ToMPlan and Random 

agents are complex in their strategy, given that a subject cannot discern with certainty 

what the agent will do from one game to the next. The WSLS agent operated on a fixed 

strategy, so it was possible to predict the agent’s behavior on each game. Given that 

rTPJ has been implicated in ToM processing (Gallagher & Frith, 2003; R Saxe & 

Kanwisher, 2003), its increased activation in games with agents using complex 

strategies is unsurprising. In regard to the increase in activity in rMT, this is also 

potentially related to the role of rMT in theory of mind processing (Sabbagh, 2004), 

which works in tandem with the rTPJ to contribute to processing of social stimuli. 

Rather than increased activity, rFG expressed deactivation during games, although the 

trend is the same as that found in the other brain areas. rFG has been found to play a 

part in the processing of visual stimuli and in some cases has shown up in theory of 

mind processing (Gallagher et al., 2000; Gobbini, Koralek, Bryan, Montgomery, & 

Haxby, 2007; Martin & Weisberg, 2003). 

 

A)           B)               C) 
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D)          E)              F) 

 
 
Figure 4.2. Box plots of change in BOLD response between subjects with low and high levels of 
autistic traits. 
 A), B), and C) show the BOLD response within the medial prefrontal cortex during games with 
the ToMPlan, Random, and WSLS agents, respectively. All conditions exhibit trends indicating 
increased activation in high AQ subjects. Additionally, this trend is found in the right medial 
temporal gyrus for the E) ToMPlan and F) WSLS agents. The opposite trend is found in right 
temporoparietal junction for the ToMPlan agent. The wide range of variance resulting from 
small sample size prevents clear conclusions, but trends indicate low AQ subjects did not use 
mPFC and rMT strongly in games, especially in the ToMPlan and WSLS conditions. 
Additionally high AQ subjects recruited rTPJ less in games with the ToMPlan agent. 
 

To analyze BOLD response on the basis of AQ, subjects were split into groups of five 

low AQ and four high AQ. In mPFC, low AQ subjects tended toward lower BOLD 

response in all conditions compared to high AQ subjects (Figure 4.2. A-C). The same 
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was true of rMT in games with the ToMPlan and WSLS agents (Figure 4.2 E-F). mPFC is 

linked to higher level cognition, planning, and decision-making behavior (Barraclough, 

Conroy, & Lee, 2004; Benoit, Szpunar, & Schacter, 2014; Nyhus & Barceló, 2009), while 

rMT has been shown to be involved in theory of mind assessment (Sabbagh, 2004). 

However, the trend found in rMT exhibited deactivation, a decrease in activation as 

compared to the baseline. In recent studies, deactivation of brain areas has been traced 

back to the default mode network, which keeps many areas of the brain active in a 

steady state during rest (Mars et al., 2012). For this reason, some areas of the brain 

become less active when recruited in tasks such as the present study. This heightened 

deactivation in low AQ subjects could be a result of these subjects recruiting less higher 

level processing when playing games, indicating that these subjects had an easier time 

coping with the agents’ uncertain strategies. Lastly, rTPJ was found to be more active 

for low AQ subjects in games with the ToMPlan agent (Figure 4.2 D). As rTPJ processes 

ToM judgments (Michael V. Lombardo, Chakrabarti, Bullmore, & Baron-Cohen, 2011, p. 

-; R Saxe & Kanwisher, 2003), it follows that low AQ subjects dealt with the increase in 

uncertainty caused by the ToMPlan agent by recruiting rTPJ. High AQ subjects 

recruited this area to a much lesser degree, indicating a potential deficit in processing of 

ToM. It is possible that the increased processing in areas like mPFC was an effort to 

compensate for the deficit in normal social processing areas like rTPJ so that high AQ 

subjects could process uncertainty, albeit in a more systematic, problem-solving 

capacity. Such compensatory efforts have been shown in individuals with clinical ASD 

diagnoses (S. J. White et al., 2014). 

 

Taken with the caveat that the subject pool would ideally increase to 20 per condition, 

the pilot data collected identifies key trends that are both in keeping with the literature 
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and add validity to hypothesized effects. In future work, I plan to expand upon this 

study to gain a clearer picture of the neural activity of subclinical autistic traits in the 

general population. This line of research will help to bridge the gap between ASD 

research and subclinical social deficits, hopefully with the intent of deciphering the 

origins of the disorder and the development of its neural expression.  
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CHAPTER 5: Implications of Findings and Future Directions 
 

The preceding chapters documented a body of work that comments broadly on the 

methods by which humans cope with uncertainty in their environment to make 

decisions. Using adaptive agents to evoke complex reactions in subjects without the 

inherent unpredictability of human social interaction, this work identifies strategies and 

cognitive biases humans use when engaging in social and economic games that mirror 

situations that exist in daily life. This work also explores a population that typically 

struggles with social interaction by investigating individuals in the general population 

who exhibit high levels of traits characteristic of individuals with ASD, both in 

behavioral and neural data. 

 

Chapter 1 detailed the use of adaptive agents in a spatiotemporal variant of the Stag 

Hunt game to assess differences in subject cooperation between agents of differing 

strategies. Subjects were found to have more variation and uncertainty when playing 

with the adaptive agent, taking significantly more turns than in games with the 

Random agent. This finding indicated that players may have sensed the malleability of 

the adaptive agent, prompting them to try to influence the agent or by changing 

strategies in-game once the agent’s actions became apparent. 

 

In Chapter 2, a probabilistic component was incorporated into the Wisconsin Card 

Sorting Task to investigate the use of cognitive biases in varying degrees of uncertainty. 

Subjects increased usage of the risk-averse Observe option during trials of high 

uncertainty, and tended to overselect the lowest probability rule while underselecting 

the highest probability rule. These results indicated a tendency for subjects to respond 
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with a decreasing capacity for optimal decision-making behavior under high levels of 

uncertainty. 

 

In Chapter 3, the spatiotemporal stag hunt game was used as a foundation for further 

investigation of cooperative behavior while playing with agents of varying strategies, 

and the level of autistic traits in general population individuals was correlated to 

performance. The actor-critic model-based adaptive agent was redesigned to 

incorporate abilities simulating theory of mind and planning to more realistically 

imitate a human player. Subjects with higher levels of autistic traits, as assessed by AQ 

score, tended to cooperate less with the ToMPlan agent than subjects with low levels of 

autistic traits. Conversely, these high AQ subjects tended to cooperate more with the 

Random agent than low AQ subjects. These findings suggest that high AQ subjects had 

more difficulty understanding the behavior and intentions of the ToMPlan agent, and 

were unable to form a cooperative equilibrium, often opting for hare hunting. 

Additionally, high AQ subjects, approximating the systemizing tendencies seen in 

clinically diagnosed individuals with ASD, appeared to be more adept at 

understanding the pattern of behavior exhibited by the Random agent, allowing them 

to capitalize on stag hunting at a higher frequency than low AQ subjects. 

 

Chapter 4 discussed the pilot data for a proposed fMRI study that investigates the 

correlation between levels of autistic traits in general population individuals and 

differential neural expression while attempting social decision-making in a game 

theoretic environment. From the limited subject pool, trends were identified in several 

brain areas implicated in the ToM network. Subjects exhibited higher activation 

assessed by BOLD response in the rTPJ, right fusiform gyrus, and right medial temporal 
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gyrus, when playing with an adaptive agent that simulated theory of mind. 

Furthermore, subjects with high levels of autistic traits showed less activation in rTPJ 

and rMT, brain areas that have been shown to process theory of mind assessments, and 

more activation in mPFC, an area related to higher level cognition and systematic 

decision-making, when compared to subjects with low levels of autistic traits. These 

trends indicate that subjects with high levels of autistic traits tend to recruit ToM areas 

less than subjects with less autistic traits, potentially increasing the recruitment of 

mPFC to compensate. 

 

Taken together, this body of work contributes to our understanding of the differing 

abilities of individuals in the general population to respond in situations of varying 

levels of uncertainty. Here, we introduce two paradigms to investigate subject response 

to uncertainty in the presence of varying ability to form social contracts. A recurring 

theme linking the above studies was the success of the adaptive agent to engage 

complex and varied behavior from subjects. Moreover, the correlation of AQ score to 

cooperative strategizing that differs depending on the strategy used by the agent 

further suggests that using adaptive agents could have important implications for the 

study of ASD and other neurological disorders. These results warrant further 

investigation into their origins and the scope of their effects on behavior. 

 

Additionally, extending this research from the general population as correlated by AQ 

score to clinical ASD populations could prove valuable. While it is generally accepted 

that autism is caused by structural or functional abnormalities in the brain, there is 

currently no known explicit point of origin for this anomalous development. As a direct 

result of the proposed research, deciphering exactly what types of ToM tasks people 
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with high levels of autistic traits have trouble with (i.e., explicit vs. implicit), as well as 

the neural expression behind that deficit (i.e., hyper- vs. hypo-activation) will take the 

field closer to understanding the differences in underlying brain activity within areas 

recruited in the mentalizing network in people with ASD in order to develop targeted 

treatment methods and informed theories of autistic development at a population level. 

 

Due to varying levels of ability in verbal comprehension and higher executive 

functioning among people with ASD, it is possible that the commonly used narrative-

driven ToM tasks may be biased or gamed (Matthews et al., 2012) by cognitively able 

individuals who can compensate for ToM deficits. The proposed research utilizes the 

dynamic, non-verbal Stag Hunt task, a more neutral, implicit venue for investigating 

atypical ToM activation, less likely to be confounded by individual differences in 

compensatory strategies. This ensures the data collected will be more accurate and 

meaningful when applied to the context of differences between ASD and NT subjects. 

The incorporation of an adaptive ToM agent will provide insight into differences in 

activation of ROIs that result from using an intelligent, non-human player that has of 

yet remained unexplored. As individuals with autism have been shown to respond well 

to social robotics (Scassellati et al., 2012), we believe that using adaptive agents in the 

proposed research is a natural addition to ASD research as intelligent, versatile 

interaction partners lacking common stressors present in human social partners, 

capable of probing complex behavior, social interaction, and ToM response. 

 

Utilizing a dynamic game theoretic environment with fMRI subjects will provide 

valuable insight into what cues are important in determining whether another entity is 

worthy of ToM while recording in real-time the neural response to those entities. This 
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research will provide a multimodal foundation for establishing a functional network of 

ToM that can be used to develop more intelligent technology, improve upon the 

understanding of ToM in the brain, and work towards understanding and treating 

disorders that affect ToM performance. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Table 1. Score – Blockwise Komolgorov Smirnov test statistic values. 
The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between blocks as reported by KS test statistic. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1 0.000 0.317 0.667 0.733 0.700 0.500 0.250 0.717 0.733 0.200 0.367 
2   0.000 0.533 0.750 0.533 0.350 0.550 0.583 0.733 0.483 0.167 
3     0.000 0.400 0.183 0.417 0.767 0.183 0.250 0.750 0.700 
4       0.000 0.533 0.667 0.850 0.533 0.167 0.867 0.850 
5         0.000 0.367 0.800 0.133 0.433 0.767 0.683 
6           0.000 0.717 0.417 0.617 0.683 0.333 
7             0.000 0.800 0.850 0.117 0.617 
8               0.000 0.400 0.783 0.733 
9                 0.000 0.867 0.833 
10                   0.000 0.533 
11                     0.000 
 
Supplementary Table 2. Score – Blockwise Komolgorov Smirnov p-values. The results 
of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing similarity 
between blocks as reported by p-value. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1 1.000 0.004 <0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

0.039 <0.00
1 

<0.00
1 

0.160 <0.00
1 

2   1.000 <0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

0.345 

3     1.000 <0.00
1 

0.239 <0.00
1 

<0.00
1 

0.239 0.039 <0.00
1 

<0.00
1 

4       1.000 <0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

0.345 <0.00
1 

<0.00
1 

5         1.000 <0.00
1 

<0.00
1 

0.629 <0.00
1 

<0.00
1 

<0.00
1 

6           1.000 <0.00
1 

<0.00
1 

<0.00
1 

<0.00
1 

0.002 

7             1.000 <0.00
1 

<0.00
1 

0.784 <0.00
1 

8               1.000 <0.00
1 

<0.00
1 

<0.00
1 

9                 1.000 <0.00
1 

<0.00
1 

10                   1.000 <0.00
1 

11                     1.000 
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Supplementary Table 3. Score – Blockwise mean and standard deviation (in points). 
Block Mean SD 
1 34.667 41.213 
2 28.433 28.727 
3 -2.867 19.472 
4 -19.900 16.099 
5 -1.300 21.201 
6 14.967 22.439 
7 52.200 30.480 
8 -0.500 16.367 
9 -16.600 17.335 
10 51.600 27.651 
11 31.233 21.691 
 
Supplementary Table 4. Score – Uncertainty level Komolgorov Smirnov test statistic 
values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test 
comparing similarity between uncertainty level as reported by KS test statistic. 
Uncertainty No Low Mod High 
No 0.000 0.494 0.733 0.817 
Low   0.000 0.522 0.733 
Mod     0.000 0.400 
High       0.000 
 
Supplementary Table 5. Score – Uncertainty level Komolgorov Smirnov p-values. The 
results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between uncertainty level as reported by p-value. 
Uncertainty No Low Mod High 
No 1 <0.001 <0.001 <0.001 
Low  1 <0.001 <0.001 
Mod   1 <0.001 
High    1 
 
Supplementary Table 6. Score – Uncertainty level mean and standard deviation (in 
points). 
Uncertainty Mean SD 
No 46.156 34.417 
Low 24.878 25.372 
Mod -1.556 19.037 
High -18.250 16.740 
 
Supplementary Table 7. Observe use (all trials) – Uncertainty level Komolgorov 
Smirnov test statistic values. The results of the two-sample Komolgorov-Smirnov (KS) 
hypothesis test comparing similarity between uncertainty levels as reported by KS test 
statistic. 
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Uncertainty No Low Mod High 
No 0.000 0.086 0.197 0.300 
Low  0.000 0.117 0.214 
Mod   0.000 0.125 
High    0.000 
 
Supplementary Table 8. Observe use (all trials) – Uncertainty level Komolgorov 
Smirnov p-values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis 
test comparing similarity between uncertainty levels as reported by p-value. 
Uncertainty No Low Mod High 
No 1.000 0.640 0.006 <0.001 
Low  1.000 0.161 0.002 
Mod   1.000 0.196 
High    1.000 
 
Supplementary Table 9. Observe use (all trials) – Uncertainty level mean and standard 
deviation (in # observes). 
Uncertainty Mean [#] SD 
No 9.400 13.710 
Low 9.706 12.855 
Mod 11.789 13.219 
High 15.042 14.908 
 
Supplementary Table 10. Observe use (by half block). The results of the two-sample 
Komolgorov-Smirnov (KS) hypothesis test comparing similarity between uncertainty 
levels, mean and standard deviation of each half block (in proportion of trials using 
observe). The first block did not feature the option to observe. 
Block Mean 

[1st] 
Mean 
[2nd] 

SD [1st] SD [2nd] P-value KS-
statistic 

1 N/A N/A N/A N/A N/A N/A 
2 0.092 0.114 0.162 0.199 0.911 0.100 
3 0.154 0.189 0.216 0.243 0.784 0.117 
4 0.243 0.287 0.284 0.298 0.629 0.133 
5 0.254 0.272 0.293 0.298 0.981 0.083 
6 0.258 0.219 0.290 0.279 0.911 0.100 
7 0.157 0.181 0.261 0.279 0.981 0.083 
8 0.251 0.295 0.288 0.302 0.911 0.100 
9 0.329 0.345 0.334 0.334 0.911 0.100 
10 0.211 0.203 0.293 0.297 0.999 0.067 
11 0.244 0.238 0.306 0.307 0.999 0.067 
 
Supplementary Table 11. Run of Observes – Blockwise Komolgorov Smirnov test 
statistic values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis 
test comparing similarity between blocks as reported by KS test statistic. The first block 
did not feature the option to observe. 



154	

Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1  N/
A 

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

N/A
  

2   0.000 0.063 0.308 0.348 0.407 0.351 0.392 0.332 0.295 0.360 
3     0.000 0.301 0.346 0.348 0.291 0.366 0.307 0.297 0.335 
4       0.000 0.127 0.140 0.084 0.164 0.104 0.055 0.135 
5         0.000 0.119 0.164 0.101 0.133 0.128 0.154 
6           0.000 0.138 0.109 0.130 0.140 0.188 
7             0.000 0.173 0.131 0.121 0.159 
8               0.000 0.102 0.113 0.146 
9                 0.000 0.107 0.126 
10                   0.000 0.154 
11                     0.000 
 
Supplementary Table 12. Run of Observes – Blockwise Komolgorov Smirnov p-values. 
The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between blocks as reported by p-value. The first block did not feature the 
option to observe. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1  N/
A 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

2   1.000 1.000 0.029 0.015 0.002 0.022 0.003 0.018 0.058 0.011 
3     1.000 0.024 0.011 0.010 0.071 0.005 0.026 0.043 0.015 
4       1.000 0.853 0.751 0.999 0.549 0.953 1.000 0.794 
5         1.000 0.929 0.690 0.982 0.832 0.884 0.708 
6           1.000 0.864 0.961 0.849 0.805 0.443 
7             1.000 0.612 0.888 0.946 0.731 
8               1.000 0.973 0.950 0.756 
9                 1.000 0.964 0.873 
10                   1.000 0.708 
11                     1.000 
 
Supplementary Table 13. Run of Observes – Blockwise mean and standard deviation (in 
average # of observes per run). The first block did not feature the option to observe. 
Block Mean 

[length] 
SD 

1 N/A N/A 
2 3.469 8.093 
3 2.571 3.011 
4 3.842 4.613 
5 3.708 4.158 
6 4.224 7.022 
7 4.423 5.818 
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8 5.189 10.478 
9 5.678 10.225 
10 5.506 10.797 
11 6.544 13.136 
 
Supplementary Table 14. Run of Observes – Uncertainty level Komolgorov Smirnov test 
statistic values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis 
test comparing similarity between uncertainty level as reported by KS test statistic. The 
first block did not feature the option to observe. 
Uncertainty No Low Mod High 
No 0.000 0.181 0.138 0.093 
Low   0.000 0.202 0.187 
Mod     0.000 0.127 
High       0.000 
 
Supplementary Table 15. Run of Observes – Uncertainty level Komolgorov Smirnov p-
values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test 
comparing similarity between uncertainty level as reported by p-value. The first block 
did not feature the option to observe. 
Uncertainty No Low Mod High 
No 1.000 0.780 0.927 0.998 
Low   1.000 0.652 0.681 
Mod     1.000 0.934 
High       1.000 
 
Supplementary Table 16. Run of Observes – Uncertainty level mean and standard 
deviation (in average # of observes per run). The first block did not feature the option to 
observe. 
Uncertainty Mean SD 
No 4.673 6.959 
Low 3.702 3.732 
Mod 3.537 3.651 
High 4.710 5.789 
 
Supplementary Table 17. Win Stay – Blockwise Komolgorov Smirnov test statistic 
values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test 
comparing similarity between blocks as reported by KS test statistic. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1 0.000 0.359 0.224 0.427 0.333 0.233 0.300 0.317 0.283 0.291 0.371 
2   0.000 0.220 0.475 0.428 0.197 0.081 0.127 0.262 0.109 0.097 
3     0.000 0.339 0.229 0.097 0.232 0.147 0.107 0.279 0.256 
4       0.000 0.127 0.295 0.506 0.403 0.265 0.520 0.538 
5         0.000 0.267 0.444 0.353 0.233 0.487 0.464 
6           0.000 0.239 0.162 0.083 0.268 0.260 
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7             0.000 0.155 0.276 0.068 0.071 
8               0.000 0.190 0.185 0.162 
9                 0.000 0.308 0.287 
10                   0.000 0.098 
11                     0.000 
 
Supplementary Table 18. Win Stay – Blockwise Komolgorov Smirnov p-values. The 
results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 

similarity between blocks as reported by p-value. 
 
Supplementary Table 19. Win Stay – Blockwise mean and standard deviation (in 
proportion of stay trials after a winning trial).  
Block Mean SD 
1 0.846 0.254 
2 0.890 0.211 
3 0.862 0.216 
4 0.732 0.257 
5 0.745 0.281 
6 0.832 0.243 
7 0.896 0.218 
8 0.903 0.184 
9 0.833 0.238 
10 0.920 0.171 
11 0.918 0.201 
 
Supplementary Table 20. Win Stay – Uncertainty level Komolgorov Smirnov test 
statistic values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis 

Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1 1.000 <0.00
1 

0.087 <0.00
1 

0.002 0.064 0.007 0.004 0.014 0.011 <0.00
1 

2   1.000 0.098 <0.00
1 

<0.00
1 

0.177 0.988 0.708 0.029 0.865 0.938 

3     1.000 0.002 0.075 0.928 0.073 0.519 0.873 0.017 0.038 
4       1.000 0.693 0.009 <0.00

1 
<0.00
1 

0.026 <0.00
1 

<0.00
1 

5         1.000 0.022 <0.00
1 

<0.00
1 

0.069 <0.00
1 

<0.00
1 

6           1.000 0.058 0.389 0.984 0.024 0.033 
7             1.000 0.454 0.019 0.999 0.998 
8               1.000 0.222 0.252 0.411 
9                 1.000 0.006 0.014 
10                   1.000 0.939 
11                     1.000 
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test comparing similarity between uncertainty level as reported by KS test statistic. 
Uncertainty No Low Mod High 
No 0.000 0.131 0.228 0.361 
Low   0.000 0.210 0.310 
Mod     0.000 0.162 
High       0.000 
 
Supplementary Table 21. Win Stay – Uncertainty level Komolgorov Smirnov p-values. 
The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between uncertainty level as reported by p-value. 
Uncertainty No Low Mod High 
No 1.000 0.089 <0.001 <0.001 
Low   1.000 <0.001 <0.001 
Mod     1.000 0.045 
High       1.000 
 
Supplementary Table 22. Win Stay – Uncertainty level mean and standard deviation (in 
proportion of stay trials after a winning trial). 
Uncertainty Mean SD 
No 0.887 0.219 
Low 0.879 0.221 
Mod 0.835 0.239 
High 0.782 0.252 
Supplementary Table 23. Lose Shift – Blockwise Komolgorov Smirnov test statistic 
values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test 
comparing similarity between blocks as reported by KS test statistic. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 

1 0.000 0.200 0.150 0.217 0.217 0.180 0.144 0.198 0.215 0.119 0.131 
2   0.000 0.267 0.367 0.350 0.363 0.167 0.331 0.348 0.169 0.222 
3     0.000 0.200 0.167 0.163 0.294 0.125 0.188 0.206 0.100 
4       0.000 0.117 0.119 0.310 0.092 0.173 0.302 0.228 
5         0.000 0.070 0.263 0.086 0.156 0.254 0.224 
6           0.000 0.259 0.108 0.136 0.298 0.229 
7             0.000 0.293 0.277 0.088 0.199 
8               0.000 0.132 0.260 0.204 
9                 0.000 0.281 0.226 
10                   0.000 0.130 
11                     0.000 
 
Supplementary Table 24. Lose Shift – Blockwise Komolgorov Smirnov p-values. The 
results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between blocks as reported by p-value. 
Bloc
k 

1 2 3 4 5 6 7 8 9 10 11 
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1 1.000 0.160 0.477 0.103 0.103 0.263 0.543 0.177 0.112 0.794 0.679 
2   1.000 0.022 <0.00

1 
<0.00
1 

<0.00
1 

0.351 0.002 0.001 0.363 0.104 

3     1.000 0.160 0.345 0.374 0.009 0.720 0.218 0.159 0.926 
4       1.000 0.784 0.770 0.005 0.956 0.309 0.009 0.089 
5         1.000 0.998 0.028 0.975 0.432 0.042 0.099 
6           1.000 0.032 0.862 0.618 0.010 0.089 
7             1.000 0.011 0.018 0.976 0.193 
8               1.000 0.659 0.037 0.171 
9                 1.000 0.018 0.097 
10                   1.000 0.725 
11                     1.000 
 
Supplementary Table 25. Lose Shift – Blockwise mean and standard deviation (in 
proportion of shift trials after a losing trial).  
Block Mean SD 
1 0.748 0.174 
2 0.801 0.168 
3 0.719 0.166 
4 0.694 0.126 
5 0.680 0.177 
6 0.695 0.157 
7 0.763 0.206 
8 0.695 0.159 
9 0.659 0.193 
10 0.745 0.208 
11 0.722 0.198 
 
Supplementary Table 26. Lose Shift – Uncertainty level Komolgorov Smirnov test 
statistic values. The results of the two-sample Komolgorov-Smirnov (KS) hypothesis 
test comparing similarity between uncertainty level as reported by KS test statistic. 
Uncertainty No Low Mod High 
No 0.000 0.117 0.204 0.243 
Low   0.000 0.143 0.199 
Mod     0.000 0.090 
High       0.000 
 
Supplementary Table 27. Lose Shift – Uncertainty level Komolgorov Smirnov p-values. 
The results of the two-sample Komolgorov-Smirnov (KS) hypothesis test comparing 
similarity between uncertainty level as reported by p-value. 
Block No Low Mod High 
No 1.000 0.177 0.001 <0.001 
Low   1.000 0.051 0.006 
Mod     1.000 0.585 
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High       1.000 
 
Supplementary Table 28. Lose Shift – Uncertainty level mean and standard deviation (in 
proportion of shift trials after a losing trial). 
Uncertainty Mean SD 
No 0.752 0.195 
Low 0.740 0.180 
Mod 0.698 0.168 
High 0.676 0.163 
 
Supplementary Table 29. Probability Matching (all trials) – Blockwise t-test statistics. 
The results of the one-sample t-test comparing similarity between proportion of feature 
selection and ground truth as reported by t statistic, degrees of freedom, mean, 
standard deviation, and p-value. 
Rule Block T-stat DF Mean SD P-value 
Top 1 -12.279 59 0.673 0.206 <0.001 
Top 2 -8.765 59 0.710 0.168 <0.001 
Top 3 -10.339 59 0.574 0.132 <0.001 
Top 4 -8.044 59 0.452 0.143 <0.001 
Top 5 -7.588 59 0.568 0.186 <0.001 
Top 6 -9.060 59 0.684 0.185 <0.001 
Top 7 -7.800 59 0.794 0.204 <0.001 
Top 8 -7.183 57 0.606 0.153 <0.001 
Top 9 -4.860 58 0.491 0.172 <0.001 
Top 10 -8.065 57 0.818 0.172 <0.001 
Top 11 -5.340 56 0.773 0.180 <0.001 
Mid 1 11.025 59 0.159 0.112 <0.001 
Mid 2 6.236 59 0.140 0.086 <0.001 
Mid 3 3.398 59 0.235 0.080 0.001 
Mid 4 1.222 59 0.316 0.102 0.227 
Mid 5 3.224 59 0.251 0.123 0.002 
Mid 6 6.888 59 0.175 0.118 <0.001 
Mid 7 6.954 59 0.105 0.117 <0.001 
Mid 8 2.898 57 0.239 0.102 0.005 
Mid 9 0.006 58 0.300 0.155 0.995 
Mid 10 9.239 57 0.078 0.064 <0.001 
Mid 11 3.734 56 0.111 0.082 <0.001 
Bottom 1 10.220 59 0.168 0.127 <0.001 
Bottom 2 9.709 59 0.150 0.096 <0.001 
Bottom 3 12.229 59 0.191 0.090 <0.001 
Bottom 4 9.350 59 0.232 0.110 <0.001 
Bottom 5 8.508 59 0.181 0.119 <0.001 
Bottom 6 8.504 59 0.142 0.102 <0.001 
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Bottom 7 5.488 59 0.100 0.142 <0.001 
Bottom 8 9.112 57 0.155 0.088 <0.001 
Bottom 9 5.741 58 0.209 0.146 <0.001 
Bottom 10 6.173 57 0.105 0.129 <0.001 
Bottom 11 4.535 56 0.117 0.144 <0.001 
 
Supplementary Table 30. Probability Matching (all trials) – Uncertainty level t-test 
statistics. The results of the one-sample t-test comparing similarity between proportion 
of feature selection and ground truth as reported by t statistic, degrees of freedom, 
mean, standard deviation, and p-value. 
Rule Uncertainty T-stat DF Mean SD P-value 
Top No -15.618 177 0.761 0.204 <0.001 
Top Low -13.168 176 0.721 0.180 <0.001 
Top Mod -14.117 177 0.582 0.159 <0.001 
Top High -8.856 118 0.471 0.159 <0.001 
Mid No 14.422 177 0.114 0.106 <0.001 
Mid Low 9.609 76 0.142 0.100 <0.001 
Mid Mod 5.413 177 0.242 0.103 <0.001 
Mid High 0.684 118 0.308 0.130 0.496 
Bottom No 12.240 177 0.124 0.136 <0.001 
Bottom Low 12.251 176 0.136 0.116 <0.001 
Bottom Mod 16.708 177 0.176 0.101 <0.001 
Bottom High 10.224 118 0.221 0.129 <0.001 
 
Supplementary Table 31. Probability Matching (last 10 trials of block) – Blockwise t-test 
statistics. The results of the one-sample t-test comparing similarity between proportion 
of feature selection and ground truth as reported by t statistic, degrees of freedom, 
mean, standard deviation, and p-value. 
Rule Block T-stat DF Mean SD P-value 
Top 1 -13.559 48 0.940 0.031 <0.001 
Top 2 -0.255 51 0.897 0.075 0.800 
Top 3 3.350 44 0.813 0.126 0.002 
Top 4 -2.759 53 0.529 0.189 0.008 
Top 5 2.430 46 0.805 0.154 0.019 
Top 6 0.098 49 0.901 0.083 0.922 
Top 7 -6.690 50 0.975 0.027 <0.001 
Top 8 3.250 44 0.820 0.144 0.002 
Top 9 0.721 53 0.623 0.238 0.474 
Top 10 -6.579 52 0.973 0.030 <0.001 
Top 11 2.152 51 0.920 0.068 0.036 
Mid 1 8.013 48 0.028 0.025 <0.001 
Mid 2 -2.908 51 0.050 0.049 0.005 
Mid 3 -5.148 44 0.108 0.120 <0.001 
Mid 4 -0.181 53 0.295 0.186 0.857 
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Mid 5 -5.263 46 0.117 0.109 <0.001 
Mid 6 -2.724 49 0.049 0.054 0.009 
Mid 7 5.871 50 0.018 0.022 <0.001 
Mid 8 -5.813 44 0.098 0.118 <0.001 
Mid 9 -1.305 53 0.259 0.233 0.198 
Mid 10 4.314 52 0.011 0.018 <0.001 
Mid 11 -6.168 51 0.035 0.041 <0.001 
Bottom 1 7.340 48 0.032 0.031 <0.001 
Bottom 2 3.739 51 0.052 0.043 <0.001 
Bottom 3 3.181 44 0.080 0.062 0.003 
Bottom 4 4.415 53 0.176 0.126 <0.001 
Bottom 5 2.166 46 0.079 0.091 0.036 
Bottom 6 2.115 49 0.049 0.065 0.040 
Bottom 7 3.105 50 0.007 0.016 0.003 
Bottom 8 2.067 44 0.082 0.105 0.045 
Bottom 9 1.248 53 0.118 0.106 0.217 
Bottom 10 4.602 52 0.017 0.027 <0.001 
Bottom 11 2.147 51 0.045 0.051 0.037 
 
Supplementary Table 32. Probability Matching (last 10 trials of block) – Uncertainty 
level t-test statistics. The results of the one-sample t-test comparing similarity between 
proportion of feature selection and ground truth as reported by t statistic, degrees of 
freedom, mean, standard deviation, and p-value. 
Rule Uncertainty T-stat DF Mean SD P-value 
Top No -13.813 152 0.963 0.033 <0.001 
Top Low 1.030 153 0.906 0.076 0.305 
Top Mod 5.167 136 0.812 0.141 <0.001 
Top High -1.129 107 0.576 0.219 0.261 
Mid No 10.237 152 0.019 0.023 <0.001 
Mid Low -6.487 153 0.045 0.048 <0.001 
Mid Mod -9.412 136 0.108 0.115 <0.001 
Mid High -1.133 107 0.277 0.211 0.260 
Bottom No 8.456 152 0.018 0.027 <0.001 
Bottom Low 4.418 153 0.049 0.053 <0.001 
Bottom Mod 4.050 136 0.080 0.087 <0.001 
Bottom High 4.079 107 0.147 0.119 <0.001 
 




