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AMNALYZING COOPERATIVE COMPUTATION

Geoffrey E. Hinton
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

ABSTRACT

Making a perceptual interpretation can be viewed as a
computational process in which a plausible combination is
chosen from among a large set of interdependent
hypotheses. In a cooperative computation the hypotheses
are implemented by units that interact non-linearly and in
paralle] via excitetory and inhibitory links (Julesz, 1971;
Marr & Poggio, 1976; Scjnowski, 1976). A particular
perceptual Lask is specified by external inputs to some of the
units and the whole system must then discover a stable state
of activity in which the active units represent the hypotheses
that are tzaken as true. We describe a search procedure based
on statistical mechanics that finds near optimal combinations
of hypotheses with high probability, and we show that the
hardware units required for its efficient implementation are
similar to ncurons. Even though the individual units are
non-lincar, there is a linear relationship between the synaptic
weights and the logarithmis of the probabilitics of global
states into which the system settles. This niakes it possible to
implement a convergent learning procedure which specifies
just how the synantic weights nced to be changed in order to
learn the constraints in a given domain.

Introduction

Consider the preblem of making a 3-D interpretation of a
2-D line drawing. Each line in the picture, considered in
isolation, could depict any one of a large set of 3-D edges.
People resolve this local ambiquity by using assumptions
aboul the ways in which edges go together in the 3-D world,
These assumptions make some combinations of edges far
more plausible than others. There are two roughly separable
problems in understanding the use of assumplions in
perception. The first is to specify clearly what the
assumptions are, and the second is to find a search procedure
that can discover interpretations which optimally fit the
input data and the assumpticns, even when some of the
assumpltions conflict with one another (Attneave 1982). Our
concern here is with the second problem: How can we
discover interpretlations that optimally fit a large set of
plausible assumptions?
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Auneave (1982) and others (Hinton 1977) have proposed
cooperative models in which neuron-like hardware units
represent particular 3-D  edges and the rules are
implemented by excitatory and inhibitory interactions
between these units. Each line in the drawing provides input
to the whole set of 3-D edges which are consistent with it,
and under the influence of this input the whole system
settles into a stable state of activity which represents the
interpretation. It is not obvious that such a search process
can be made to work. The apparent difficulty of analyzing
the bechaviour of cross-coupled, non-linear systems makes it
lempting to belicve that the only way to make progress is
through computer simulation. In this paper we attempt to
show that mathematical analysis is possible and illuminating,

Most of the existing proposals for cooperative search
mechanisms assume that there are real-valued activity levels
which change smoothly during the search (Rosenfeld,
Huminel & Zucker, 1976). These activity levels are often
associated with the firing rates of neurons, and they are
normally used to represent the value of a physical parameter
such as slope in depth, or the current probability that a
hypothesis is correct. The method we shall describe uses a
very different representation, The units that stand for
hypotheses only have two states, true and false. However, the
decision rule which determines which state they enter is
probabilistic, so they can change their state even if they are
receiving constant input. The use of a probabilistic decision
rule makes the cooperative search easier (o analyze than with
a deterministic rule because it makes it possible to apply
methods from statistical mechanics.  Instead of being a
drawback, the non-determinism has the advantage of
allowing the system to escape from sub-optimal states. We
start by describing a system in which there is a deterministic
decision rule that is applied at random moments and then we
generalize this case to a non-delerministic rule.

Cooperative search with
deterministic binary units

Hopfield (1982) postulates a system with a large number of
binary units. The units are reciprocally connected, with the



strength of the connection being the same in both directions.
Given the current inpuls from outside (he system, any
particular state of the system has an associated "energy"” and
the whale system behaves in such a way as to minimize its.
energy. The energy of a stale can be interpreted as the extent
to which it violates a set of plausible constraints, so in
minimizing its energy it 1s maximizing the extent to which it
satisfies the constraints.

The total encrgy of the system is defined as
> T IR M
i i

where 7; is the external input o the @ unit, wy; is the
strength of connection (synaptic weight) from the fd' to the
" unit, 5, is a boolean truth value (0 or 1), and 0, is a
threshold.

A simple algorithm for finding a combination of truth values
that is a Jocal minimum is to swilch each hypothesis into
whichever of its lwo states yields the lower total energy given
the current states of the other hypotheses. If hardware units
make their decisions asynchronously, and if transmission
times are negligible, then the system always settles into a
local erergy minimum. Because the connections are
symmetrical, the difference between the energy of the whole
system with the k™ hypothesis false and its energy with the
k'™ hypothesis truc can be determined locally by the k™ unit
(Hopficld, 1982), and is just

AEg= Z(kaffHle—gk )

Therefore, the rule for minimizing the energy contributed by
a unit is to adopt the true state if its total input exceeds its
threshold, which is the familiar rule for binary threshold
units (Minsky & Papert, 1968).

Using probabilistic decisions to
escape from local minima

The deterministic algorithm suffers from the standard
weakness of gradient descent methods: It gets stuck at local
minima that are not globally optimal. This is an inevitable
consequence of only allowing jumps to states of lower
energy. If, however, jumps to higher energy states
occasionally occur, it is possible to break out of local
minima. An algorithm with this nroperty wes introduced by
Metropolis et. al (1953) o study average properties of

thermodynamic systems (Binder, 1978) and has recently
been applied to problems of constraint satisfaction
(Kirkpatrick, Gelatt & Vecci, in press). We adopt a form of
the Metropolis algorithm that is suitable for parallcl
computation: If the energy gap between the true and false
states of the k™" unit is AEj then regardless of the previous
state set 53 =1 with probability

1

g o= 3
Qa _|_e'ﬁ|'a;‘/?) ( )

Pk

where T is a parameter which acts like lemperature (see fig.
1). This parallel algorithm ensures that in thermal
cquilibrium the relative probability of two global states is
determined solely by their cnergy difference, and follows a
Boltzmann distribution.

£1_=e-(Ea-Eﬁ)fT (4)
Pp

At low temperatures there is a strong bias in favor of states
with low encrgy, but the time required to reach equilibrium
may be long. At higher temperatures the bias is not so
favorable but equilibrium is reached faster.
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Figure 1

Probability p(AE) that a unit is in its "true" state as a
function of its energy gap AE plotted for T=1 (Eq. 3).
As the temperature is lowered to zero the sigmoid
approachcs a step function.



Reducing the time to reach
equilibrium

One technique that can be used to reach a good equilibrium
distribution quickly is to start at a high temperature and then
1o cool down (Kirkpatrick er. al, in press). This type of
search by "simulated annealing™ initially finds a large-scale
minimum but fluctuates around it because of the high
temperature.  As the temperature is reduced, a good
minimum will be found within the large-scale minimum, and
so on. In gencral, it is impossible lo guarantee that a global
minimum will be found, but a nearly global minimum can
be found with high probability.

We are investigating an additional technique which we shall
only mention here. Energy bamiers are what prevent a
system from reaching equilibrium rapidly at low
temperature, and if they can be temporarily suppressed,
cquilibrium can be achieved rapidly at a temperature at
which the distribution strongly favors the lower minima. The
energy barriers cannot be permanently removed, because
they correspond to states that violatc the constraints, and the
energies of these states must be kept high to prevent the
system from settling into them. However, for special cases it
is possible o design units which are aclive during the search
process bul are quiescent in the final state. When one of
these special units is active it lowers the energy of a state that
would have been an energy barrier between two local
minima. The spccial units are a way of implementing
heuristic knowledge about how 1o search the space. They
have no effect on the energies of final states, and in this
respect they are like catalysts. '

Learning

So far, we have ussumed that the interactions between the
units implement the correct constraints, and we have
focussed on Lhe scarch problem. However, in a system where
the weights represent many plausible assumptions that
interact, it is not obvious how lo choose the weights to
produce the desired behavior. We will show that, as a
consequence of the probabilistic decision rule, it is possible
for a cooperative module Lo internalize the constraints in any
domain simply by being lold whether the solutions it settles
into are right or wrong. When the module settles to the
wrong solution, it modifies the weights so as o raise the
energy of that state and thus make it less likely to be found
in future. Similarly, good solutions that are not found often
enough have their energies lowered when they are found.
This simple procedure is effective because of the linear
relationship between the synaplic weights and the logs of

probabilities of whole states at thermal equilibrium. If we
temporarily ignore the thresholds and the external inputs to
the units and assume a temperature of 1, we have:

P,
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where
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and s is the state of the fm unit in the arh global state.

To explain the learning procedure, we invent a hypothetical
ideal system which settles into global states with exactly the
probabilities required. We then show that if the actual
system is told whether its current probabilities for particular
states are Loo high or too low, it can modify its weights so
that they more closely resemble the weights in  the
hypothetical ideal system.

Suppose that under the influence of a constant external
input vector, the actual system settes into two different
states, S,,Sp with probabilily ratio Po/Pg. Suppose that
the probability ratio demanded by the evaluation function
(and achicved by the ideal system) is P’,/P’g which is
higher. The actual system can increase its probability ratio by
increasing the energy difference, Eﬁ —E,. This can be done
by adding 8 (o each weight belween a pair of aclive units in
S, and subtracting § from each weight between a pair of
active unils in S‘G‘ The net change in a weight is then 8.A ﬁﬁ
. We now prove that, provided § is sufficiently small, each
application of this learning procedure is guarantced to
reduce the Euclidean distance, D, between the current set of
weights, wy;, and the ideal cnes, w’;;. Assume that the actual
and ideal systems have the same ecxternal inputs and
thresholds, and that T = 1. If the error, , in the probability
ratio achieved by the actual system is

P! P
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then from equations 4 and 5, we have;

r=—(E'y=E'g)+ (Eq—Ep)
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Before applying the learning rule we have

D 1bf'fr:w_' = Z (Wy'_‘ W’[;)z
]

and afterwards

Df)ﬁr_‘r = Z (Wjj“’ 8.h ;ﬂ = wa‘b‘)l
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So the distance is reduced iff § <2r/n

where n'--Z(hg,’a )} = the number of weights that are
changed. ¥

Having a simple convergent learning procedure for a non-
linear system is important because it allows the synaptic
weights that implement the energy function to be
determined by feedback from the correciness of the
interpretation that the system setdes into. Thus the
constraints implicit in the task can be programmed into the
system simply by telling it how well it is doing.

The learning procedure assumes that the system rcceives
feedback from an evaluator that tells it whether the current
value of In(P /P ) is greater or less than the ideal value
!;:(I"'GIP’ ). This places a very stringent requircment on
the evaluator since it must know about the desired
probabilities of whole global states like Sc. To build these
desired probabilitics into the evaluator, the representations
that the system should use must be decided in advance. A
less omniscient evaluator would only know whut some of the
units should do for each input vector and would leave the
system 1o decide for itself how to use the remaining,
"hidden" units to achieve this. Suppose, for example, that
there is a set of global states Qa which only differ from one

another in the hidden units that the evaluator cannot see.
The evalualor specifies required probabilities of the form:

Prﬂa: Z Py

acll,
but it does not specify how the total probability should be
distributed over the various states in Qa. The different ways
of distributing the probability correspond to using different
representations in the hidden units,

If there are units that are hidden from the evaluator, it is
impossible to define a single hypothetical ideal set of
weights. There may be many different complete sets of
weights which would yield the required behaviour for the
“visible” units, and these scets do not, in general, form a
convex set. In travelling towards one suitable set of weights,
the system may travel away from other equally suitable sets,
SO convergence on any one set is not guaranteed. This means
we need a different imeasure of the progress of learning in
order lo prove convergence. A suitable measure is the
information theoretic distance. G, between the actual and
required probability distributions over all 2" suates of the n
visible units;

. gy
G= Xajpﬂam{-ﬁéﬂ

The value for G depends implicitly on the W and so G can
be reduced by changing each weight by an amount that is
proportional to the partial derivative of G with respect to
that weight. We describe this learning rule further in Hinton
and Sejnowski (1983). It is guaranteed to find a minimum of
G. but it may only be a local minimum rather than a global
ore. Local mimima occur vwheh the system is doing the best
that it can given the representations it has learnt in the
hidden units. To do better it has to change these
representations which involves a temporary setback in how
well it micets ine requirements on the probabilities of the
states of the visible units. Of course, if the medifications to
the weights are probabilistic so that G can somelimes
increase, it is possible to escape from local minima and
ensure Lhat after enough learning there 15 a bias in favor of
the better local minima.

Relation to the brain

There are two different ways to interpret the input-output
function that hardware units should have to implement the
parallel search ([Fig. 1). During a short interval the sigmoid
curve describes the probability of a unit being in the uue
state as a functiion of the encrgy gap between the false and
true states. For much longer ume intervals the curve



describes the proportion of time that the unit is in ils true
state. If we assume that a hypothesis which is true all the
time is represented by a neuron firing at its maximum rate,
then the curve in Fig. 1 can be interpreted as the finng rate
of a neuron as a function of its average input (Sejnowski,
1977). However, the way in which truth values are
represented by action potentials is not the kind of simple
encoding in which (wo different voltage levels stand for the
two truth values. Instead, it appears that an action potential
only provides a delta-function type of signal that drives
integrative processes in the recipient neurons. This amounts
to treating a hypothesis as "true” for a whole refractory
period after an action potential has been emitted.

The parallel algorithm for cooperative search depends on the
computation of energy gaps AE; In the case of
symmetrically connected units the global energy gaps can be
computed locally by single units. It seems unlikely that
neurons in cerebral cortex are symmetrically connected, but
if a neuron receives many inpults it can still estimate what its
contribution to the total energy would be if all the
connections had been symmectrical. In simulations,
asymmetric networks behave like symmelric ones with
added noise (Hopfield, 1982), and time delays in
transmission have a similar effect. Provided that the task
requires symmelric connections, as is the case for problems
of constraint satisfaction, an asymmetric network can closely
approximate the performance of a symmetric one.

The computational model analyzed in this paper is not a
realistic model of processing in cerebral cortex, for it falls far
short of explaining the known anatomical and physiclogical
facts. The analysis may, however, provide insight inlo a class
of computational devices that depend on probabilistic
parallel processing. Understanding general properties of this
class may be a useful first step in understanding particular
highly-evolved members of the class. For example, the
probabilistic nature of electrical responses of single ncurons
is well-known, but has generally been regarded as evidence
of imprecision. Probability, however, may be a central
design principle of cerebral corlex (Sejnowski, 1981). A very
close approximation to the function in Fig. 1 can be
implemented by simply adding Gaussian noise to a binary
threshold unit, with the standard deviation of the noise
acting like temperature. We suggest that fluctuations may be
deliberately added to neural signals o avoid locking the
network into unwanted local optima and to provide the
linear conditions needed for efficient learning. The issue of
noise in the nervous system deserves renewed experimental
investigation and further theorctical analysis.
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