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Abstract

Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and lactation is of 

increasing public health concern, but little is known about longitudinal changes in maternal PFAS 

concentrations from pregnancy to a few years postpartum. We quantified eleven PFAS in 251 

serum samples prospectively collected from 42 Northern California mothers during the 1st, 2nd, 

and 3rd trimesters of pregnancy and at 3, 6, and 24 months after delivery over 2009–2017. 

We fit separate linear mixed models during pregnancy, early postpartum, and late postpartum 

to estimate percent changes of PFAS for each sub-period. Among five PFAS detected in more 

than 99% of samples, linear and branched perfluorooctane sulfonate (n- and Sm-PFOS), linear 

perfluorooctanoate (n-PFOA), and perfluorononanoate (PFNA) concentrations changed −4% to 

−3% per month during pregnancy. During early postpartum, perfluorohexane sulfonate (PFHxS) 

and n-PFOA concentrations changed −6% and −5%, respectively, per month, and Sm-PFOS 

and PFNA concentrations changed −1% per month. During late postpartum, n-PFOS, Sm-PFOS, 

and PFNA concentrations changed −1% per month. Breastfeeding duration was the primary 

determinant of n-PFOA and PFNA concentrations during late postpartum, showing negative 

associations. Our findings might be useful for reconstructing reliable prenatal or early-life PFAS 

exposures for offspring.

Graphical Abstract
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I. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that exhibit 

both hydrophilic and hydrophobic properties and thus are widely used in various industrial 

and consumer applications, such as fire-fighting foams and coatings of cookware, textiles, 

carpet, and food contact materials.1 Humans are exposed to certain PFAS primarily via 

ingestion of contaminated food and water as well as non-dietary dust ingestion.2–4 Since 

the early 2000s, serum concentrations of the two most studied PFAS, perfluorooctane 

sulfonate (PFOS) and perfluorooctanoate (PFOA), have consistently decreased in the United 

States (U.S.), following regulatory and voluntary phase-out, while those of other long-

alkyl chain PFAS showed less consistent trends, in some cases increasing, decreasing, or 

having mixed results.5–8 However, widespread detection of common long-alkyl chain PFAS 

in environmental media, including food, drinking water, soil, and house dust, suggests 

continued exposure of the general population to these compounds.3, 4, 9–12

Prenatal and early-life exposure to PFAS is of particular concern due to PFAS’s potential 

adverse effects on child’s health. In laboratory animals, PFAS are shown to have liver 

toxicity, metabolic toxicity, reproductive and developmental toxicity, neurotoxicity, and 

immunotoxicity.13, 14 Epidemiologic studies reported that prenatal or lactational exposure 

to PFAS was associated with reduced fetal or infant growth,15–17 immune dysfunction,18 

neurodevelopmental disorders,19–22 and thyroid disruption.23, 24 PFAS have been commonly 

detected in blood of pregnant women,25–34 the placenta,35, 36 cord blood,23, 37–39 and breast 

milk.40–42 Moderate to high correlations of PFAS concentrations in maternal serum with 

those in paired cord serum and breast milk demonstrated that PFAS are transported from 

mother to child through the placenta during pregnancy and through breast milk during 

lactation.23, 27, 37–39, 43–46
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Changes in maternal PFAS concentrations may differ not only between pregnancy and 

postnatal periods but also among individual PFAS. Several studies quantified PFAS in 

serial blood samples collected from the same women during pregnancy or early postpartum 

period.16, 25, 34, 47 In these studies, maternal concentrations of several long-alkyl chain 

PFAS, including PFOA, PFOS, and perfluorononanoate (PFNA), decreased at different 

rates during pregnancy. Only one of the studies further collected postnatal samples and 

observed significant declines in mean PFOA concentrations and nonsignificant declines 

in mean PFOS concentrations between 3 weeks and 3 months postpartum, while mean 

PFNA concentrations did not change.25 However, little is known about changes in maternal 

PFAS concentrations from early pregnancy to the postnatal period, especially during late 

postpartum when mothers are expected to cease exclusive breastfeeding.48 As placental 

and lactational transfers of PFAS occur during pregnancy and breastfeeding, respectively, 

and the transfer efficiencies of PFAS are different across the compounds,42, 49, 50 maternal 

PFAS concentrations are expected to change with different rates during pregnancy, early 

postpartum, and late postpartum periods.

In the present study, we quantified eleven PFAS in 251 blood serum samples prospectively 

collected from 42 mothers during the 1st, 2nd, and 3rd trimesters of pregnancy and 3, 6, and 

24 months after delivery. Then, we separately examined changes in maternal serum PFAS 

concentrations and their potential determinants for three sub-periods: (1) during pregnancy 

(from 1st to 3rd trimesters), (2) early postpartum (from delivery to 6 months postpartum) and 

(3) late postpartum (from 6 to 24 months postpartum). We also investigated the influence 

of breastfeeding on maternal serum PFAS concentrations during the postnatal period. We 

anticipate that improved understanding of PFAS changes during pre- and postnatal periods 

from the current study will help future studies reconstruct PFAS exposure for pregnant 

women and their offspring.

2. Methods

2.1. Study population

This current study includes participants drawn from the MARBLES (Markers of Autism 

Risk in Babies – Learning Early Signs) study. Launched in 2006, MARBLES is an ongoing 

prospective birth cohort study that enrolls pregnant women who previously had a child 

who developed autism spectrum disorder (ASD).51 The MARBLES families are primarily 

recruited from those who receive state-funded services for ASD in Northern California. 

Mothers are eligible if they have a child or other first degree relative with ASD, are 

pregnant and 18 years old or older, speak, read and understand English, and live within 2.5 

hours of the Davis/Sacramento region at the time of enrollment. Details of study design, 

study population, eligibility criteria, and data collection are available elsewhere.51 Any 

information or biological specimens were collected after completing informed consent. This 

study was approved by the institutional review boards for the State of California and the 

University of California Davis (UC Davis). The analysis of coded samples at the Centers for 

Disease Control and Prevention (CDC) laboratory did not constitute engagement in human 

subjects’ research.
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The MARBLES study started collecting serum in 2009, thus we included 42 mothers 

who prospectively provided six blood samples (during the 1st, 2nd, and 3rd trimesters of 

pregnancy and at 3, 6, and 24 months after delivery) since 2009 and conceived their baby by 

2014. One of the 42 mothers did not provide the 1st trimester sample but was included in this 

study, thus a total of 251 maternal blood samples were used for statistical analyses.

2.2. Serum sample collection and PFAS quantification

Maternal blood was collected at home visits conducted during pregnancy and the first year 

after delivery and at visits to UC Davis Medical Investigations of Neurodevelopmental 

Disorders (MIND) Institute at two years postpartum.51 After collection, whole blood 

was centrifuged to separate serum, stored at −80 °C and shipped to the CDC for PFAS 

quantification.

PFAS in maternal serum were quantified using online solid-phase extraction coupled 

to reversed-phase high-performance liquid chromatography-isotope dilution tandem mass 

spectrometry, as described elsewhere.52 Eleven PFAS quantified include linear PFOA isomer 

(n-PFOA), branched PFOA isomers (Sb-PFOA), linear PFOS isomer (n-PFOS), branched 

PFOS isomers (Sm-PFOS), perfluorohexane sulfonate (PFHxS), PFNA, perfluorodecanoate 

(PFDA), perfluoroundecanoate (PFUnDA), perfluorododecanoate (PFDoDA), 2-(N-methyl-

perfluorooctane sulfonamido) acetate (MeFOSAA), and 2-(N-ethyl-perfluorooctane 

sulfonamido) acetate (EtFOSAA). The limit of detection (LOD), defined as 3 times the 

standard deviation as the concentration approaches zero, for all PFAS was 0.1 ng/mL; PFAS 

concentrations below the LOD were replaced with a value of the LOD divided by the square 

root of two.53 Blank samples and low- and high-concentration quality control (QC) samples 

were analyzed with the study samples, following the approach used for the analysis of 

thousands of National Health and Nutrition Examination Survey (NHANES) samples.54 The 

coefficient of variation of low- and high- QC materials ranged from 6% to 12%, depending 

on the analyte. We also included 25 blind duplicate samples that were analyzed along with 

study samples for quality assurance, and their median coefficient of variation ranged from 

0% to 11% depending on the PFAS (Table S1).

2.3. Potential determinants

Based on the literature review, we considered various maternal prenatal, perinatal, and 

demographic factors that were prospectively collected during our study period as potential 

determinants of maternal serum PFAS concentrations. Prenatal and perinatal factors 

included parity, maternal body mass index (BMI) at pre-pregnancy (kg/m2), maternal weight 

gain during pregnancy (kg), birthweight (kg), total breastfeeding duration (month; until 

when a mother completely stopped breastfeeding), and exclusive breastfeeding duration 

(month; until when formula, solids, or liquids was introduced). Demographic factors 

included child’s birth year (year), maternal age at delivery (year), maternal birthplace 

(U.S., non-U.S.), maternal race/ethnicity (non-Hispanic white, Hispanic/Asian/multiracial), 

maternal education (no bachelor’s degree, bachelor’s degree or higher), and homeownership 

(owner, non-owner).
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2.4. Statistical analysis

All statistical analyses were performed using R version 4.1.0 (R Foundation for Statistical 

Computing, Vienna, Austria). For eight PFAS detected in greater than 50% of all samples, 

we computed pairwise Spearman correlation coefficients among the six time points. We 

computed intraclass correlation coefficients (ICCs) and 95% confidence intervals (CIs) 

using ICCest() function in R to assess within-subject variability of ln-transformed PFAS 

concentrations.55 An ICC is a ratio of between-subject variance to the sum of between- and 

within-subject variance, and a higher ICC indicates smaller within-subject variability.56 We 

calculated maternal serum concentration ratios by dividing the PFAS concentrations at each 

point (i.e., 2nd and 3rd trimesters of pregnancy, 3, 6, and 24 months postpartum) by the 1st 

trimester concentration. For one mother who did not provide the 1st trimester sample, the 

concentrations at each point were divided by the 2nd trimester concentration. In order to 

account for right-skewed distributions, PFAS concentrations and concentration ratios were 

natural log (ln)-transformed in subsequent regression analyses.

To examine changes in maternal PFAS serum concentrations from pregnancy to two years 

postpartum, we used only five PFAS detected in more than 99% of the whole study samples 

(i.e., n-PFOS, Sm-PFOS, PFHxS, n-PFOA, and PFNA). We grouped our study samples into 

three sub-periods: (1) pregnancy included samples from the 1st, 2nd, and 3rd trimesters of 

pregnancy, (2) early postpartum included samples from 3rd trimester and 3 and 6 months 

postpartum, and (3) late postpartum included samples from 6 and 24 months postpartum. 

For each sub-period, we investigated univariate associations between average concentrations 

of each compound and a priori selected potential determinants by performing the Spearman 

correlation test for continuous variables and the Wilcoxon rank-sum test for binary variables.

Based on the univariate analyses, we included covariates that were associated with PFAS 

concentrations in all sub-periods (p < 0.05). Accordingly, child’s birth year (centered to 

2012), maternal age at delivery, parity, and maternal birthplace were adjusted in all models, 

and exclusive breastfeeding duration was additionally included in the late postpartum 

models. Prenatal maternal weight gain, which may represent early postnatal weight loss, was 

inversely associated with n-PFOS during early postpartum, but not during pregnancy, thus it 

was not included in the models. Then, we fitted the covariate-adjusted linear mixed models 

with random intercepts for maternal-child dyads to estimate changes in ln-transformed 

maternal serum PFAS concentrations for each sub-period. Given our small sample size, 

we performed parametric bootstrapping with 1000 replications and computed 95% bias 

corrected and accelerated confidence intervals (Cis) using bootMer() function in R.57 We 

calculated percent changes in geometric mean maternal serum PFAS concentrations per one-

unit increase in time as well as each covariate using the following equation [(eβ – 1) × 100, 

where β is a regression coefficient for time and each covariate]. As a sensitivity analysis, we 

used ln-transformed concentration ratios of PFAS at each sample collection point to those 

at the 1st trimester of pregnancy as a dependent variable (instead of ln-transformed PFAS 

concentrations) in the linear mixed models to account for different initial concentrations. We 

also combined all three sub-periods (i.e., from the 1st trimester to 2 years postpartum) to 

estimate the monthly percent changes of PFAS for the whole period.
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Maternal plasma volume increases approximately 45% throughout the pregnancy and returns 

to pre-pregnancy levels within 6 weeks postpartum.58, 59 To account for the dilution effect 

in pregnancy and early postpartum models, we additionally adjusted for maternal BMI at 

pre-pregnancy, maternal weight gain during pregnancy, and child’s birthweight, which are 

potential predictors for plasma volume expansion.60, 61 To assess the effect of exclusive 

breastfeeding duration in the early postpartum models, we additionally adjusted for a binary 

exclusive breastfeeding duration variable (< 6, ≥ 6 months).We also investigated the effect 

of total breastfeeding duration in the late postpartum models by alternatively adjusting 

for total breastfeeding duration, instead of exclusive breastfeeding duration. To evaluate 

whether changes in ln-transformed maternal serum PFAS concentration differ by exclusive 

breastfeeding duration, we divided the mothers into two groups: women who exclusively 

breastfed their child longer or shorter than 4 months. For each group, we fitted a postpartum 

model to the PFAS concentrations at 3-, 6-, and 24-months postpartum without adjusting for 

exclusive breastfeeding duration and compared the monthly percent changes of PFAS. We 

also tested the postpartum model for an interaction term between time from conception (to 

the child’s age at sample collection) and a binary exclusive breastfeeding duration variable 

(< 4, ≥ 4 months).

3. Results

3.1. Population characteristics

Approximately half of the mothers gave birth in the later study period (2014–2015), and 

overall, their average age at delivery was 34.9 years (range: 22.4 to 42.8) (Table 1). On 

average, their pre-pregnancy BMI was 25.1 kg/m2 (range: 18.9 to 39.9) and they gained 14.4 

kg of weight during pregnancy (range: 1.4 to 26.1). More than half of the mothers were 

non-Hispanic white (57%), born in the U.S. (67%), had a bachelor’s degree or higher (67%) 

or owned a home (67%). After delivery, all mothers breastfed their child, and the average 

duration was 14.2 months (range: 2.8 to 36.7). Their exclusive breastfeeding duration ending 

with introduction of formula, solids, or liquids was an average of 3.8 months (range: 0.0 to 

9.6).

3.2. Maternal serum PFAS concentrations

During the whole study period, n-PFOS, Sm-PFOS, n-PFOA, and PFNA were detected in all 

study samples, and PFHxS, PFDA, PFUnDA, and MeFOSAA were detected in 99%, 81%, 

57%, and 52% of the samples, respectively (Table 2). Sb-PFOA, PFDoDA, and EtFOSAA 

were detected in less than 50% of the study samples. The medians of n-PFOS, Sm-PFOS, 

n-PFOA, PFHxS, and PFNA were 2.0, 0.7, 0.3, 0.7, and 0.4 ng/mL, respectively, while those 

of PFDA, PFUnDA, and MeFOSAA were similar to the LOD (i.e., 0.1 ng/mL). Compared to 

the 1st trimester of pregnancy, the GMs of concentration ratios for PFAS detected in greater 

than 50% of the samples ranged from 0.79 to 1.01 during pregnancy and from 0.57 to 0.92 

during a postnatal period (Table S2).

Concentrations of the eight PFAS detected in more than 50% of the samples showed 

moderate to high positive pairwise correlations across the six sample collection time points 

(rsp [Spearman’s correlation coefficient] = 0.56 to 0.97) (Table S3). PFAS concentrations 
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during the 1st, 2nd, and 3rd trimesters of pregnancy were more strongly correlated with each 

other (rsp = 0.62 to 0.97) as well as with those at 3 and 6 months postpartum (rsp = 0.57 

to 0.96) than with those at 24 months postpartum (rsp = 0.58 to 0.85). The ICCs of eight 

ln-transformed PFAS ranged from 0.63 to 0.92 for the whole study period, 0.67 to 0.94 for 

pregnancy, 0.65 to 0.97 for early postpartum, and 0.60 to 0.88 for late postpartum, indicating 

relatively small within-subject variability of maternal PFAS serum concentrations (Figure 

S1). Among three sub-periods, the smallest ICCs were observed during the late postpartum 

period.

3.3. Univariate associations of maternal serum PFAS concentrations with potential 
determinants

Among the five PFAS detected in more than 99% of the whole study samples, child’s 

birth year was negatively correlated with maternal serum n-PFOS, Sm-PFOS, n-PFOA, 

PFHxS, and PFNA concentrations during all sub-periods (rsp = −0.73 to −0.35), except 

for PFNA during pregnancy (Table S4). Mother’s age at delivery was positively correlated 

with n-PFOS and PFHxS during pregnancy (rsp = 0.31), n-PFOA during early postpartum 

(rsp = 0.37), and n-PFOS, Sm-PFOS, PFHxS, n-PFOA and PFNA during late postpartum 

(rsp = 0.32 to 0.53). Parity was negatively correlated with n-PFOA during pregnancy and 

early postpartum (rsp = −0.39 and −0.33, respectively) and PFHxS during early postpartum 

and late postpartum (rsp = −0.36 and −0.50, respectively). During late postpartum, total 

breastfeeding duration was negatively correlated with n-PFOA (rsp = −0.59) and PFNA (rsp 

= −0.36), and exclusive breastfeeding duration was negatively correlated with n-PFOA only 

(rsp = −0.32). During all three sub-periods, mothers who were born in the U.S. had lower 

PFNA concentrations than those who were not.

3.4. Monthly percent changes in maternal PFAS serum concentrations over time and by 
potential determinants

Maternal serum concentrations of n-PFOS showed the fastest decreasing rate during 

pregnancy (percent change per month: −3.0%), while they rarely changed during early 

postpartum and relatively slowly decreased during late postpartum (−1.0%) (Figure 1). 

Sm-PFOS concentrations decreased with similar rates during pregnancy (−3.3%) and late 

postpartum (−1.2% per month), but further decreased during early postpartum (−1.4%). 

PFHxS concentrations decreased most rapidly during early postpartum (−5.6%), whereas 

they rarely changed during pregnancy and late postpartum. N-PFOA concentrations 

decreased rapidly during pregnancy (−4.0%) and early postpartum (−4.5%), while they 

did not change during late postpartum. PFNA showed the fastest decreasing rate during 

pregnancy (−4.3%), compared to early postpartum (−1.2%) and late postpartum (−0.8%).

During all three sub-periods, Sm-PFOS and PFHxS showed the fastest decline rates per 

child’s birth year (−17.8% and −13.8% per year, respectively), and n-PFOS, n-PFOA, 

and PFNA concentrations decreased relatively slowly (−11.3%, −8.9, and −6.4% per 

year, respectively) (Table 3). Throughout the whole period, mothers who were born 

outside the U.S. had 50.3% to 52.9% higher PFNA than the U.S.-born mothers. With 

increasing parity, n-PFOA concentrations during pregnancy changed −11.4%, and PFHxS 

concentrations during early and late postpartum changed −14.5% and −16.8%, respectively. 
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During late postpartum, n-PFOA concentrations changed 5.3% per year with increasing 

maternal age at delivery. With increasing exclusive breastfeeding duration, n-PFOA and 

PFNA concentrations changed −5.1% and −4.1% per month, respectively, with borderline 

significance.

When using ln-transformed concentration ratios of PFAS at each time point to those at the 

1st trimester of pregnancy as a sensitivity analysis, most monthly percent changes remained 

similar (Figure S2). When combining all sub-periods, the decreasing rates of five PFAS 

from the 1st trimester to 2 years postpartum were similar (−1.7% to −1.2% per month) 

(Table S5). When additionally adjusting for maternal BMI at pre-pregnancy, maternal 

weight gain during pregnancy and child’s birthweight in pregnancy and early postpartum 

models to account for maternal plasma volume expansion, monthly percent changes did 

not change (Table S6). When additionally adjusting for a binary exclusive breastfeeding 

duration variable (< 6, ≥ 6 months) in early postpartum models, monthly percent changes 

did not change (Table S7). When adjusting for total breastfeeding duration, instead of 

exclusive breastfeeding duration, in late postpartum models, monthly percent changes were 

similar, and n-PFOA and PFNA concentrations significantly decreased with increasing total 

breastfeeding duration (Table S8).

When stratifying postnatal samples (i.e., 3, 6, and 24 months) by median exclusive 

breastfeeding duration (> 4 months, ≤ 4 months), n-PFOA concentrations significantly 

decreased (−1.4% per month) among the mothers who exclusively breastfed longer than 

4 months, while they did not decrease among the mothers who did not (Table S9). 

Concentrations of n-PFOS, Sm-PFOS, and PFNA changed −1.3%, −1.4%, and −1.4% per 

month among the mothers who exclusively breastfed longer than 4 months and −0.7%, 

−1.0%, and −0.4% per month among the mothers who exclusively breastfed shorter than 4 

months, respectively. The decreasing rates of n-PFOA and PFNA were significantly greater 

among the mothers with exclusive breastfeeding duration longer than 4 months (p-value for 

interaction ≤ 0.01).

4. Discussion

In this study, we quantified eleven PFAS in prospectively collected maternal blood during 

the 1st, 2nd, and 3rd trimesters of pregnancy and at 3, 6, and 24 months after delivery 

and examined changes in PFAS concentrations for three sub-periods (i.e., pregnancy, early 

postpartum, and late postpartum). Maternal serum concentrations of n-PFOS, Sm-PFOS, 

n-PFOA, and PFNA decreased 3% to 4% per month during pregnancy, those of Sm-PFOS, 

PFHxS, n-PFOA, and PFNA declined 1% to 6% per month during early postpartum, and 

those of n-PFOS, Sm-PFOS, and PFNA declined 1% per month during late postpartum. 

We also explored prenatal, perinatal, and demographic factors affecting maternal serum 

PFAS concentrations. In all sub-periods, mothers who gave birth in a later study period 

had lower n-PFOS, Sm-PFOS, PFHxS, n-PFOA, and PFNA concentrations, and mothers 

who were born outside the U.S. had higher PFNA concentrations. During late postpartum, 

we identified that higher n-PFOA and PFNA concentrations were associated with shorter 

exclusive breastfeeding duration, which was confirmed by stratified analysis.

Oh et al. Page 9

Environ Sci Technol. Author manuscript; available in PMC 2023 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Decreases in our maternal serum PFAS concentrations from pregnancy to postnatal periods 

are consistent with those from other studies that repeatedly measured PFAS concentrations 

during pregnancy and/or early postpartum within the same women. Two previous studies 

collected three maternal blood samples during the 1st, 2nd, and 3rd trimesters of pregnancy 

and observed decreases in most of the PFAS concentrations, including PFOS, PFOA, 

PFNA, PFDA, PFUnDA, and PFDoDA, while PFHxS concentrations did not change, as 

in the current study.16, 47 Kato et al. collected two maternal blood samples at 16 weeks of 

pregnancy and at delivery from 71 women.34 They observed 25% to 43% decreases in GM 

serum concentrations of PFOS and PFOA (sum of linear and branched isomers), PFHxS, 

and PFNA between the two time points, and the unadjusted monthly percent changes during 

pregnancy (when assuming 6 months interval) were −7% for PFOS and PFOA, −4% for 

PFHxS, and −5% for PFNA, which showed faster decreasing rates than this study. We did 

not quantify PFAS in serum collected shortly after delivery, but the GM concentration ratios 

of Kato et al. (0.71 for PFOS, 0.79 for PFHxS, 0.70 for PFOA, and 0.77 for PFNA) were 

comparable to those between the 1st trimester of pregnancy and 3 months postpartum in our 

study (0.85 for n-PFOS, 0.79 for Sm-PFOS, 0.73 for PFHxS, 0.66 for n-PFOA, and 0.78 for 

PFNA) (Table S2). Glynn et al. serially collected maternal blood samples during the 1st and 

3rd trimesters of pregnancy and at 3 weeks and 3 months after delivery from 19 women.25 

They observed 11% to 33% decreases in mean serum concentrations of PFOS (sum of linear 

and branched isomers), PFOA, and PFNA between the 1st and 3rd trimester of pregnancy, 

and the unadjusted monthly percent changes (when assuming 6 months interval) were −3% 

for PFOS, −2% for PFOA, and −6% for PFNA. Only maternal mean PFOA concentrations, 

but not PFOS and PFNA, further decreased between 3 weeks and 3 months postpartum.

Although we did not use direct evidence of placental transfer of PFAS such as 

concentrations in umbilical cord blood, placental transfer from mother to fetus may 

explain declines in maternal serum PFAS concentrations during pregnancy because PFAS 

concentrations in maternal serum have been shown to be moderately to highly correlated 

with those in cord blood23, 27, 37–39, 43–46 and fetal tissues.62 Specifically, Mamsen et al. 

observed that PFOS, PFOA, and PFNA in maternal serum were positively correlated with 

those in placenta, fetal liver, lung, heart, and adipose tissue, while they did not observe 

significant correlations for PFHxS, PFDA, and PFUnDA.62 Previous studies also suggested 

that maternal blood volume expansion during pregnancy can also explain decreases in PFAS 

concentration16, 25 because blood volume increases approximately 45% throughout the 

pregnancy.58 However, we observed that changes in maternal serum PFAS concentrations 

during pregnancy remained similar after adjusting for potential predictors of maternal blood 

volume expansion (Table S6).

Breastfeeding is a major PFAS excretion route for lactating mothers.40, 63, 64 We observed 

that maternal serum concentrations of n-PFOS, PFHxS, n-PFOA, and PFNA decreased 

from the 3rd trimester to 6 months postpartum and that longer breastfeeding duration was 

negatively associated with n-PFOA and PFNA after 6 months postpartum. Moreover, the 

decreasing rates of postnatal n-PFOA and PFNA concentrations were greater among mothers 

who exclusively breastfed their child longer than 4 months, compared to those who did 

not. This finding suggests that breastfeeding may be an important exposure route for 

nursing infants and thus those who are longer breastfed may experience higher postnatal 
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exposure to PFOA and PFNA. In a study that quantified PFOA and PFOS in breast 

milk serially collected during one year of breastfeeding, PFOA showed −7.7% of monthly 

percent changes in breast milk, which was 2.5 times greater than PFOS (−3.1% per month), 

indicating its greater excretion rate through the breastfeeding.40 Several mother-child studies 

observed higher concentration ratios of breast milk to maternal serum for PFOA and PFNA 

compared to PFOS and PFHxS.38, 42 We also observed that Sm-PFOS, but not n-PFOS, 

decreased during early postpartum, and our differences in monthly percent changes between 

two PFOS isomers were greater during early postpartum compared to pregnancy and late 

postpartum. Although previous studies reported higher placental transfer efficiency of Sm-

PFOS than n-PFOS due to the weaker protein binding affinity,44, 45, 50 little is known about 

the differences in lactational transfer rates of PFOS isomers, thus further studies are needed 

to confirm our findings. This study did not quantify PFAS concentrations in breast milk and 

child serum during early postpartum, thus future studies may benefit by collecting PFAS 

measurement in breast milk to gain insight on lactational transfer of PFAS during early 

postpartum.

Unlike the other four PFAS, maternal PFHxS did not decrease significantly during 

pregnancy, although its coefficient was negative, consistent with other PFAS. In addition 

to the possibility of placental transfer and plasma volume expansion, these results can be 

partly explained by a longer half-life of PFHxS. The serum half-life of PFHxS ranged 

from 5.3 to 15.5 years and is longer than PFOA (2.3 to 3.8 years) and PFOS (3.4 to 5.4 

years).65–70 As indicated by the positive monthly percent change of PFHxS during late 

postpartum, the slower elimination of PFHxS, in conjunction with a continued exposure, 

might have obscured any decreases from the effects of placental transfer and plasma volume 

expansion. On the other hand, we observed that maternal PFHxS decreased with the highest 

percent change during early postpartum but was not associated with breastfeeding duration 

during late postpartum. As observed for PFOA, maternal serum concentrations of PFHxS 

appeared to stabilize after 6 months postpartum. Several previous studies reported that 

longer breastfeeding duration was associated with lower PFHxS in the serum of mothers 

of 2- to 5-year-old children63, 71 or higher PFHxS in the serum of exclusively breastfed 

2- to 4-month-old infants.72 However, another study observed decreases in child’s serum 

PFHxS concentrations during the first year of life, suggesting that early postnatal exposure 

to PFHxS may relate to sources other than breast milk.64 As the evidence on the lactational 

transfer of PFHxS is still inconclusive, further studies are needed.

From pregnancy through two years postpartum, maternal serum PFAS concentrations 

were negatively associated with child’s birth year, ranging from 6% to 18% decreases 

per year. Previous studies examined temporal trends of PFAS in the serum of pregnant 

women28, 29, 33, 73 as well as mothers of 2 to 5 years old.71 Because there were nationwide 

efforts to phase out PFOS, PFOA and related compounds in early 2000s, the studies dealing 

with trends after 2000 reported decreased serum PFAS concentrations over calendar years. 

Kim et al., who investigated similar periods (i.e., 2009–2017) in the same study region, 

reported similar annual percent changes for PFOS (−10.8%) and PFOA (−10.7%) and 

smaller annual percent change for PFHxS (−8.0%), compared to our study.71 We also 

compared the annual percent changes in PFAS concentrations in this study with those in 

the 2009–2016 NHANES female population who were pregnant and/or breastfeeding at 

Oh et al. Page 11

Environ Sci Technol. Author manuscript; available in PMC 2023 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the sample collection. Compared to our study, their unadjusted annual decreasing rates 

were comparable for PFOS (−13.8%) and PFOA (−10.2%), smaller for PFHxS (−0.5%), 

and greater for PFNA (−15.8%) (Table S10). Furthermore, we observed that mothers who 

were born outside the U.S. had approximately 50% higher PFNA concentrations than the 

U.S.-born mothers throughout the whole study period. Similarly, Park et al. observed lower 

PFNA concentrations in midlife women (45–56 years old) born in the U.S. than those 

who are not.74 Other European studies also reported differences in PFAS concentrations of 

pregnant women according to country of birth.27, 30, 75 This suggests that the countries of 

birth can affect a mother’s diet and lifestyle, which can further result in different patterns of 

exposure to PFAS.4, 76

To our knowledge, this is the first study that examined changes in maternal serum 

PFAS concentrations from pregnancy to two years postpartum by using repeated serum 

samples within the same women and adjusting for relevant covariates for each sub-

period. Despite the relatively small sample size, the longitudinal study design with six 

specimens per mother-child dyad enabled us to estimate decreasing rates of maternal 

PFAS concentrations during each sub-period with precision. Furthermore, according to 

the Third Unregulated Contaminant Monitoring Rule, the drinking water of the catchment 

areas of the MARBLES study was rarely contaminated by PFAS during 2013–2015 

(https://www.waterboards.ca.gov/pfas/docs/3_pfas_in_california.pdf). Therefore, out study 

population may represent the PFAS levels in the U.S. general population. However, some 

limitations should be noted. First, the current study did not collect the maternal blood 

samples during a pre-pregnancy period and at delivery. Aversion to foods and morning 

sickness may affect dietary choices and intake and therefore, associated PFAS exposure 

between a pre-pregnancy period and pregnancy for some mothers. We used maternal serum 

PFAS concentrations at the 3rd trimester of pregnancy as surrogates of those at delivery, 

but there may be additional decreases in certain PFAS concentrations due to blood loss 

at delivery, which was not considered in this study.77 Second, the mothers in this study 

population were recruited from those who received state-funded services for ASD and 

had longer breastfeeding duration compared to those in the NHANES.48 As this study 

population may not be generalizable, our results should be interpreted with caution.

From this study, we observed decreases in serum concentrations of n-PFOS, Sm-PFOS, 

n-PFOA, and PFNA during pregnancy, Sm-PFOS, PFHxS, n-PFOA, and PFNA during early 

postpartum, and n-PFOS, Sm-PFOS, and PFNA during late postpartum. Throughout the 

whole study period, later child’s birth year was associated with decreased concentrations of 

n-PFOS, Sm-PFOS, PFHxS, n-PFOA, and PFNA which appear to reflect regulations and 

manufacturing changes for these compounds. Longer breastfeeding duration was associated 

with decreased n-PFOA and PFNA concentrations during late postpartum. Maternal serum 

PFAS concentration changes from pregnancy to two years postpartum may improve 

understanding of pregnancy and lactational transfers. Furthermore, our findings might be 

useful for reconstructing reliable pregnancy or early-life PFAS exposure for case-control or 

cross-sectional epidemiologic studies with only postpartum PFAS serum concentrations.78
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Synopsis:

This study showed that maternal body burdens of five individual PFAS decreased at 

different rates and patterns during pregnancy, early postpartum, and late postpartum 

periods.
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Figure 1. 
Adjusted monthly percent changes and 95% Cis in maternal serum PFAS concentrations 

during pregnancy, early postpartum, and late postpartum. Thick lines in blue, red and 

purple represent adjusted mean concentrations during pregnancy, early postpartum (3rd 

trimester to 6 months postpartum), and late postpartum (6 to 24 months postpartum), 

respectively, and shaded areas represent corresponding 95% Cis. Thin lines and dots 

represent individual trajectory of PFAS concentrations. Asterisk represents significant 

changes in PFAS concentrations over time. All models were adjusted for child’s birth 
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year, maternal age at delivery, parity, and maternal birthplace. Late postpartum models were 

additionally adjusted for exclusive breastfeeding duration.
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Table 1.

Demographic and other characteristics of the study participants (n = 42).

Characteristics n %

Child’s birth year

 2009 2 5%

 2010 7 17%

 2011 6 14%

 2012 2 5%

 2013 5 12%

 2014 10 24%

 2015 10 24%

Maternal race/ethnicity

 Non-Hispanic white 24 57%

 Hispanic/Asian/multiracial
a 18 43%

Maternal birthplace

 United States 28 67%

 Non-United States 14 33%

Maternal education

 No bachelor’s degree 14 33%

 Bachelor’s degree or higher 28 67%

Homeownership

 Non-owner 14 33%

 Owner 28 67%

Mean ± SD Range

Maternal age at delivery (year) 34.9 ± 4.3 22.4 – 42.8

Maternal BMI at pre-pregnancy (kg/m2) 25.1 ± 4.8 18.9 – 39.9

Maternal weight gain during pregnancy (kg) 14.4 ± 5.4 1.4 – 26.1

Birthweight (kg) 3.4 ± 0.5 1.6 – 4.3

Parity 2.1 ± 1.4 1 – 7

Total breastfeeding duration (month) 14.2 ± 8.3 2.8 – 36.7

Exclusive breastfeeding duration (month) 3.8 ± 2.7 0.0 – 9.6

a
Hispanic (19%), Asian (21%) and multiracial (2%).
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Table 2.

Distribution of PFAS concentrations in 251 serum samples collected from 42 mothers during the 1st, 2nd, and 

3rd trimesters of pregnancy and 3, 6, and 24 months after delivery.

Whole period 1Trim 2Trim 3Trim 3Mon 6Mon 24Mon

DF
a

Percentiles (ng/mL)

25th 50th 75th 50th 50th 50th 50th 50th 50th

n-PFOS 100 1.40 2.00 2.60 2.20 2.40 2.00 1.95 1.95 1.50

Sm-PFOS 100 0.50 0.70 1.10 0.90 0.85 0.70 0.75 0.70 0.60

PFOS
b 100 1.95 2.80 3.60 3.20 3.20 2.70 2.85 2.75 2.35

PFHxS 99 0.20 0.30 0.50 0.40 0.40 0.40 0.30 0.20 0.30

n-PFOA 100 0.50 0.70 1.00 1.00 0.85 0.80 0.60 0.55 0.50

Sb-PFOA 0 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

PFNA 100 0.30 0.40 0.60 0.60 0.50 0.40 0.40 0.40 0.30

PFDA 81 0.10 0.10 0.20 0.20 0.20 0.10 0.10 0.10 0.10

PFUnDA 57 <LOD 0.10 0.10 0.10 0.10 0.10 0.10 <LOD 0.10

PFDoDA 26 <LOD <LOD 0.10 <LOD <LOD <LOD <LOD <LOD <LOD

MeFOSAA 52 <LOD 0.10 0.10 0.10 0.10 <LOD <LOD 0.10 <LOD

EtFOSAA 2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD

a
Detection frequency. The limit of detection is 0.1 ng/mL for all PFAS.

b
Sum of n-PFOS and Sm-PFOS.

Note: One of the 42 mothers did not provide the 1st trimester sample but was included in this study.
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