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Coordination or local environments have been used to describe, analyze and

understand crystal structures for more than a century. Here, a new tool called

ChemEnv, which can identify coordination environments in a fast and robust

manner, is presented. In contrast to previous tools, the assessment of the

coordination environments is not biased by small distortions of the crystal

structure. Its robust and fast implementation enables the analysis of large

databases of structures. The code is available open source within the pymatgen

package and the software can also be used through a web app available on http://

crystaltoolkit.org through the Materials Project.

1. Introduction

Inorganic crystal structures are typically described by their

structure prototype or by a more local concept of ‘coordina-

tion environment’ (Müller, 2007; Allmann & Hinek, 2007).

Coordination environments or local environments (e.g. octa-

hedral, tetrahedral, etc.) are often used in structure visuali-

zation as they clarify the crystal arrangement. These

environments can also be used to understand crystal structures

and their properties. P. Pfeiffer was the first to transfer this

concept of coordination environments from coordination

complexes to crystals to rationalize crystals as large molecules

(Pfeiffer, 1915, 1916). Very often these coordination envir-

onments are determined in a non-automatic manner by the

individual researcher. Local environments play a major role in

solid state chemistry and physics as well as materials science.

For instance, the famous Pauling rules, which have been used

to understand and rationalize crystal structures for 90 years,

rely heavily on this concept (Pauling, 1929). In the Pauling

rules, the analysis of the coordination environments is used to

determine the stability of a material. Electronic, optical,

magnetic and other properties of crystals have also been

related to and explained by local environments (Hoffmann,

1987, 1988; Lueken, 2013; Peng et al., 2015). In recent years,

coordination environments have been discussed and used as

structural descriptors to derive structure–property relation-

ships via machine-learning methods (Jain et al., 2016;

Zimmermann et al., 2017). Some of us have analyzed the

coordination environments present in oxides in a statistical

manner (Waroquiers et al., 2017). Such large-scale analyzes
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require an easily reproducible, robust and automatic deter-

mination of coordination environments. Since the transfer of

the concept of coordination environments from coordination

complexes to crystals, various approaches to determine coor-

dination numbers, coordination environments, or the distor-

tion of coordination environments have been developed

(Frank & Kasper, 1958; Brunner & Schwarzenbach, 1971;

Carter, 1978; O’Keeffe, 1979; Hoppe, 1979; Pinsky & Avnir,

1998; Guńka & Zachara, 2019; Stoiber & Niewa, 2019).

However, the methods mentioned so far are not well suited for

a robust and automatic assessment of coordination environ-

ments in very large databases consisting of several thousands

of crystal structures such as the Inorganic Crystal Structure

Database (Bergerhoff & Brown, 1987, Zagorac et al., 2019),

Pearson’s database (Villars & Cenzual, 2018) or the

Cambridge Structural Database (Groom et al., 2016). Indeed,

some of these methods can be sensitive to small distortions

due to predefined cut-offs while others rely on additional

chemical information that is not directly available from the

sole consideration of the geometry of the crystal. Moreover,

some of these methods only deal with the identification of the

coordination number without assigning a specific environment

to a given site. To fill this gap we developed ChemEnv, a fast

and robust tool to identify coordination environments. It has

already been applied in the study of coordination environ-

ments of oxides (Waroquiers et al., 2017) and in a rigorous

assessment study of the Pauling rules (George et al., 2020). It is

embedded in pymatgen – a Python library for materials

analysis which is part of the Materials Project that aims at the

accelerated design of new materials (Ong et al., 2013; Jain et

al., 2013). Our approach relies on the similarity of such

distorted polyhedra present in the crystal structure to ideal

reference polyhedra. After a neighbor analysis, we identify

potential local environments and compare them through a

distance metric to a database of perfect local environments.

Different algorithms called strategies are then used to decide

on a local environment assignment and the final result can

present a unique environment or a mixture of several envir-

onments. This approach which is robust to distortion will be

described in detail in this paper.

2. Method/algorithm

2.1. Aspects of coordination environments identification

In the process of identifying coordination environments of a

given atom, two main questions have to be considered:

(a) What are the neighbors of this atom?

(b) What is the overall arrangement of these neighbors

around this atom?

The first question refers to what is called the coordination

number while the second corresponds to the coordination or

local environment. The answer to these questions is very clear

when the local structure of the atom is close to a perfect

environment. However, when relatively large distortions are

present, the identification can be much more difficult. In

particular, a given local environment can be identified as a mix

of two or more coordination environments (which can be of

the same coordination number or not).

2.2. Voronoı̈ analysis

The neighbors of a given atom in a given structure are

determined using a modified Voronoı̈ approach similar to

what was proposed by O’Keeffe (1979). The Voronoı̈ analysis

allows for the splitting of the space into regions that are closer

to one atom than to any other one. In the standard Voronoı̈

approach for determining the neighbors of a given atom X, all

the atoms {Y1, . . . ,Yn} whose regions are contiguous to the

region of atom X are considered as coordinated to atom X.

The distances between atom X and each of its neighbors are

written fdX
Y1
; . . . dX

Yn
g. The common faces ff X

Y1
; . . . f X

Yn
g between

the region of atom X and each of the regions of atoms

{Y1, . . . ,Yn} define solid angles f�X
Y1
; . . . �X

Yn
g subtended by

these faces at atom X.

The Voronoı̈ regions are easily understood by drawing the

perpendicular area bisectors for each pair of atoms X and Y.

Fig. 1 illustrates the concept in two dimensions (in which area

bisectors are thus replaced by line bisectors). The example

shown is a slightly distorted square lattice [see Fig. 1(a)] where

the atoms at the corners (atoms 1, 3, 6 and 8) are displaced

towards the central green atom (atom 0). The perfect square

lattice is shown by the gray atoms. In Fig. 1(b), the perpen-

dicular line bisectors (in red) are drawn for each segment from

the central (green) atom and all other (black) atoms around it.

The Voronoı̈ region of the central atom corresponds to the

region in light green in Fig. 1(c). Fig. 1(d) shows the faces

ff 0
1 ; . . . f 0

8 g attributed to each pair of atoms 0–i with i = 1 . . . 8.

The solid angle is illustrated for neighbors 1 and 5 by �0
1 and

�0
5, respectively.

In our modified approach, two additional cut-offs can be

added as shown schematically in two dimensions in Fig. 2:

(a) The first cut-off excludes neighbors on the basis of the

distance [Fig. 2(a)]. Let dX
min ¼ minðfdX

Y1
; . . . dX

Yn
gÞ be the

distance to the closest neighbor of atom X and � � 1.0 be the
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Figure 1
Voronoı̈ construction.



distance cut-off parameter. All atoms lying inside the sphere

of radius �� dX
min are considered as coordinated neighbors

while those lying outside are disregarded. We define the

normalized distance dX
Yi

of each neighbor Yi as dX
Yi
=dX

min.

(b) The second cut-off is based on the solid angles

f�X
Y1
; . . . �X

Yn
g introduced before [Fig. 2(b)]. Let

�X
max ¼ maxðf�X

Y1
; . . . �X

Yn
gÞ be the biggest solid angle to a

neighbor for atom X and � � 1.0 be the angle cut-off para-

meter. All neighboring atoms with a solid angle smaller than

� ��X
max are not considered as coordinated to atom X. We

define the normalized angle �X
Yi

of each neighbor Yi as

�X
Yi
=�X

max.

It is possible to use both cut-offs at the same time in which

case a given atom is not considered as a coordinated neighbor

if either one of the cut-offs disregards it as a coordinated

neighbor.

The modified Voronoı̈ procedure presented above allows

for the determination of the coordinated neighbors of a given

atom X for a given set of distance/angle parameters. The

identification of the coordinated neighbors of atom X defines

the local environment of this atom. The identification of the

model environment which this local environment resembles

the most is described in the next section.

2.3. The shape recognition problem and the continuous
symmetry measure

The shape recognition problem consists in the identification

of the model environment to which a local and possibly

distorted environment resembles the most. Fig. 3 illustrates

this problem. A distorted octahedron is shown in Fig. 3(a).

Whether this distorted octahedron is more similar to a perfect

octahedron [see Fig. 3(b)] than to any other (model) shape is

precisely the purpose of the shape recognition. This inherently

implies that a list of model polyhedra to be compared to is

known a priori. We stick to the list of coordination environ-

ments recommended by the IUPAC (Hartshorn et al., 2007)

and by the IUCr (Lima-de Faria et al., 1990). This list of

environments, their symbol, coordinates and additional meta-

information are given as supplementary information.

In order to measure the closeness of a local environment to

each perfect model environment, the Continuous Symmetry

Measure (CSM) is used, as proposed by Pinsky & Avnir

(1998). This CSM can be interpreted as a measure of similarity

between shapes. For a given structureQ composed of N ¼ NQ
atoms (vertices) with coordinates {qk, k = 1, 2, . . . , N}, the

CSM SP Q½ � with respect to a model polyhedron P with

N ¼ NP ¼ NQ vertices {pk, k = 1, 2, . . . , N} is defined as:

SP Q½ � ¼ min

PN
k¼1

qk � pk

�� ��2
PN
k¼1

qk � q
�� ��2 � 100 ð1Þ

with q ¼ 1
N

PN
k¼1 qk.

With this definition, the value of the CSM is guaranteed to

be in the [0.0, 100.0] interval. A value of 0.0 for the CSM

indicates that the two shapes are identical, i.e. the structure Q

corresponds to the perfect structure P. Instead, when the

structure is distorted, the value of the CSM gives a degree of

distortion of the structure Q with respect to the perfect

structure P. As such, the CSM can be understood as one

definition of a distance to a shape.

In equation (1), the minimization has to be performed with

respect to four different degrees of freedom:

(i) Translation [see Fig. 4(a)]. This minimization is easily

addressed by translating the local structures to their center of

mass.

(ii) Ordering of the atoms [see Fig. 4(b)]. The simplest

method is to test all possible permutations of indices. This

guarantees a correct value for the CSM but the number of

permutations scales as N! making it time-consuming for large

(N > 6) coordination numbers. The symmetry of the model

polyhedra is used to reduce the number of independent
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Figure 3
The shape recognition problem. It consists in identifying whether the
distorted octahedron in (a) is more similar to the perfect (model)
octahedron in (b) than to any other model polyhedron. This presupposes
that there exists a list of model polyhedra to be compared to.

Figure 2
Schematic representation of the cut-off parameters used in the Voronoı̈
analysis of neighbors: (a) distance cut-off and (b) angle cut-off. (a)
Distance cut-off parameter �. dX

min is the distance to the closest neighbor
(one of the dark blue atoms). Any atom that lies outside the sphere of
radius �� dX

min (in dashed orange) is not considered as a coordinated
neighbor. Atoms at the corner (in light blue) are not considered as
neighbors. (b) Angle cut-off parameter �. �X

max is the largest solid angle to
a neighbor atom. Any atom for which the solid angle is smaller than
� ��X

max (in orange) is not considered as a coordinated neighbor. Atoms
at the corner (in light blue) are not considered as neighbors. [Adapted
with permission from D. Waroquiers et al. (2017).]



permutations for N � 6. For larger N, a different approach is

adopted (see Section 2.4).

(iii) Orientation of the structure [see Fig. 5(a)]. The local

(distorted) structure is rotated in order to minimize the

numerator in equation (1) by using an alignment procedure

based on the singular value decomposition (Kabsch, 1976;

Kabsch, 1978).

(iv) Size of the structure [see Fig. 5(b)]. A scaling factor is

applied to the local structure to avoid size effects: the local

structure is normalized to the root-mean square distance from

the center of mass of the structure to all vertices.

The minimization process presented above is equivalent to

the point set registration algorithms used in shape or pattern

recognition (Pomerleau et al., 2015). The main challenge

comes from the fact that the correspondence between points

in Q and P (i.e. the ordering problem described above) is

unknown. In pattern recognition in which the number of

points is usually large, algorithms based on pair correlation

functions combined with statistical analysis are widely used

[see Maiseli et al. (2017) and references therein]. In contrast,

for small number of points, a different approach has to be

adopted. As briefly outlined above, the simplest solution

(which is used for N � 6) is to test all possible permutations of

indices (ignoring symmetrically identical ones), while for

larger N the number of permutations is reduced using the

separation-plane algorithm (see Section 2.4). In any case, for a

given permutation of points, the CSM can be obtained thanks

to algorithm 1 (see Fig. 6, points in Q have been translated

such that their center of mass coincide with that of P). The

exact CSM is then the smallest one of all the CSM computed

for each permutation considered.

2.4. Separation-plane algorithm

When the number N of coordinated neighbors increases, the

number of permutations needed to minimize equation (1)

scales as N!. When the correspondence of vertices between the

local distorted structure and the perfect model polyhedron is

not known (which is usually the case for the application of the

procedure to large databases of structures), this makes the

computation of the CSM almost infeasible for N > 10 and very
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Figure 5
Rotational and size degrees of freedom for the minimization in
equation (1). (a) Orientation and (b) size.

Figure 6
Algorithm 1. Computation of the CSM for a given permutation.

Figure 4
Translational and ordering degrees of freedom for the minimization in
equation (1). (a) Translation of the polyhedron and (b) ordering of the
vertices.



time-consuming for 6 > N � 10 with the standard procedure

(e.g. 9! = 362 880, 12! = 479 001 600).

In order to overcome this difficulty, the separation plane

algorithm has been devised to drastically reduce the compu-

tational time needed. The basic idea is to identify possible

planes in the distorted structure that can be assigned to a

plane in the model polyhedron in order to reduce the number

of permutations needed to find the right correspondence

between points and hence the correct CSM. This idea is illu-

strated in Fig. 7 for a two-dimensional case. The points of the

perfect model shape are separated into three different groups:

the set of points supposed to lie within the plane and the two

sets of points on either side of the plane. The permutation

space is thus reduced because N! is always larger than

N1!N2!N3! if at least two of N1, N2, N3 are larger than or equal

to 1. For the example in Fig. 7, the number of permutations is

reduced from 6! = 720 to 2! � 2! � 2! = 8. Additionally, for

larger environments in which the separating plane contains

more than three points, these can be ordered using clockwise

or counterclockwise ordering, hence reducing the number of

permutations even further.

A separation is defined by its separation plane Pperf passing

through at least three points of the perfect polyhedron P and

by the two separated groups of points Sperf and Tperf located

on either side of the plane. The set of points in the plane is

written as P = {pj, j = 1, . . . NP} while S = {sm, m = 1, . . . NS} and

T = {tn, n = 1, . . . NT} stand for the two sets of points on either

side of the plane. By construction, {qk} = {pj} [ {sm} [ {tn} and

N = NP + NS + NT. We use �perf = (NS, NP, NT) as an abridged

notation for the separation. For the example illustrated in

Fig. 7, the separation is noted (2, 2, 2). An illustration of two

separation planes for the cubic and cuboctahedral environ-

ments is provided in Fig. 8.

The procedure for the computation of the CSM of envir-

onments with more than six atoms is described in algorithm 2

which is shown in Fig. 9. Separation planes have been defined
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Figure 8
Examples of separation planes. (a) Separation (2, 4, 2) in the cubic
environment: points A, B, H and E (in red) belong to the plane that
separates points D and F (in green) from points C and G (in blue). (b)
Separation (3, 6, 3) in a cuboctahedron: points A, I, G, D, L and F (in red)
belong to the plane that separates points C, E and J (in blue) from points
H, K and B (in green).

Figure 7
Illustration of the separation plane algorithm. (a) Model and local
(distorted) structure, (b) first trial for separation plane algorithm and (c)
second trial for separation plane algorithm.

Figure 9
Algorithm 2. The separation plane algorithm.



for all the perfect model environments above six atoms.

Usually, more than one separation plane can be defined in a

given model polyhedron. In practice, the overall algorithm

tests all the available separation planes that have been defined

for the polyhedron under consideration. The list of separation

planes for each coordination environment is available as SI

and is also easily viewable with a script provided in the

ChemEnv subpackage of pymatgen.

The algorithm has been optimized by ordering the points of

the separation plane in a clockwise or counterclockwise

direction whenever possible. This makes it possible to reduce

the number of permutations related to the separation plane.

For example, for the separation (3, 6, 3) of the cuboctahedron

shown in Fig. 8(b), the number of permutations of the points in

the plane is 6! = 720. Ordering the points in the perfect and

local environments makes it possible to reduce the number of

trials to six. A similar optimization is also possible for the two

separated groups of points for the separations in which these

groups contain a sufficient number of points (e.g. in the

icosahedral environment, the separation plane contains four

points and splits the other points into two groups of four

points each).

2.5. Neighbor sets and distance/angle parameters maps

The distance and angle parameters defined in Section 2.2

are very sensitive parameters for the determination of the

neighbors of a given atom. Indeed, a very slight change in one

of the parameters can change the atoms considered as

neighbors and hence the coordination. Each neighbor set of

atom A with coordination N is denoted by �N, j(A). The j

index comes from the fact that two different neighbor sets can

have the same coordination N. A two-dimensional example of

such a case is illustrated in Fig. 10 in which two sets of distance

and angle cut-off parameters result in two different neighbor

sets of the same coordination.

In order to ensure robustness with respect to the distance

and angle cut-off parameters, the identification procedure is

performed in two steps. First, all sets of neighbors �N, j(A) are

obtained for all possible distance/angle parameters in the

Voronoı̈ analysis. For each neighbor set, CSMs are computed

with respect to each model polyhedron of the same coordi-

nation. This can be represented by a map of distance/angle

parameters with regions defined for each neighbor set (see

Fig. 11 for examples of such maps for Si and O sites in SiO2 as

well as for Cr and Te sites in Cr2Te4O11). The second step
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Figure 11
Examples of distance/angle parameters maps for Si and O in �-SiO2

(Materials Project id: mp-7000) and Cr and Te in Cr2Te4O11 (Materials
Project id: mp-540537): (a) Si site in �-SiO2, (b) O site in �-SiO2, (c) Cr
site in Cr2Te4O11 and (d) Te site in Cr2Te4O11. Each neighbor set
corresponds to a region in which any distance/angle parameters
combination result in the same set. The color level of each region gives
an indication of the CSM value of the model polyhedron to which the
corresponding neighbor set resembles the most (i.e. for which the CSM is
the lowest). For the larger regions, this model polyhedron is indicated by
its symbol. The square and triangle symbols correspond to fixed distance
and angle parameters respectively of 1.3/0.6 and 1.6/0.4, showing a clear
ambiguity for the Te site in Cr2Te4O11 (see Section 2.6 on how to clarify
such cases).

Figure 10
Illustration in two dimensions of two sets of neighbors having the same
coordination number. (a) Local environment of atom 0. Normalized
distances to neighbors 1, 2, 3 and 4 are d0

1 ¼ d0
3 ¼ 1:0, d0

2 = 1.15 and d0
4 =

1.35. Normalized angles to neighbors 1, 2, 3 and 4 are �0
4 = 1.0,

�0
1 ¼ �0

3 � 0:924 and �0
2 � 0:42. (b) Set of neighbors (1, 2 and 3) of atom

0 with N = 3. This set of neighbors is obtained with e.g. � = 1.25 and � = 0.3
cut-offs. (c) Another set of neighbors (1, 3 and 4) of atom 0 with N = 3.
This set of neighbors is obtained with e.g. � = 1.4 and � = 0.5 cut-offs.



allows one to test the sensitivity of the distance/angle para-

meters by means of strategies (see Section 2.6). While for the

three first cases in Fig. 11, the ‘correct’ environment is

reasonably clear by just looking at the figure (assigning

tetrahedral (T:4), angular (A:2) and octahedral (O:6) envir-

onments, respectively, to Si in SiO2, O in SiO2 and Cr in

Cr2Te4O11), the situation is more complex and the identifica-

tion is not so evident for Te in Cr2Te4O11. In this case, the

environment could be seen as an intermediate between two

different environments. The use of strategies can clarify such

ambiguous cases.

The neighbors in each set, the CSMs for each model poly-

hedron in each set, and other data related to each neighbor set

are stored in a so-called StructureEnvironments (see also

Section 3) or SE (hereafter also symbolized by �A for atom A)

object. As exemplified in Fig. 11, this SE is not very useful as

such as it contains a lot of information that is difficult to

interpret directly. In the second step presented below, strate-

gies are used to analyze the SE and extract usable and valu-

able information from the SE.

2.6. Strategies

For the final step of the identification procedure, strategies

are used to reliably analyze the SE object and extract a usable

and meaningful result. Reliability refers to the robustness of

our algorithm in which the sensitivity of the identification to

the distance/angle parameters is tested and challenged. Hence,

the local environments can be interpreted as one unique

environment or as an intermediate between two (or more)

coordination environments, each of which being attributed a

fraction or percentage. Different strategies can be used

depending on the goals, needs and constraints required by the

user. This flexibility provided by the strategies is one of the

strengths of our identification procedure. For visualization

purposes, a strategy resulting in the identification of a single

coordination environment for each site has to be used while

reviewing the most commonly observed environments can be

done with a strategy allowing for multiple environments for

the same site. One can also favor specific or larger/smaller

environments depending on the project. In the following, two

strategies are developed further.

2.6.1. Fixed distance/angle cut-offs strategy. The simplest

way to identify the environment is to use fixed distance and

angle cut-off parameters. In this SimplestChemenvStrategy, the

set of neighbors is thus unique and the environment is iden-

tified as the one for which the CSM is the lowest. The

advantage of such a simple procedure is that it makes it

possible to describe a local environment by its unique corre-

sponding model environment, which is easier to use for

visualization purposes. However, some (distorted or very

distorted) local environments can be considered to be an

intermediate between two or more model coordination poly-

hedra. In such cases, this strategy will simply ‘choose’ one

environment, depending on the distance and angle para-

meters. As a simple illustration, Fig. 12 shows the sudden

switch from the square-pyramidal environment to the octa-

hedral environment when the distance cut-off is increased.

Similarly, for fixed distance and angle cut-offs, when an octa-

hedron is smoothly distorted by moving away one of the

atoms, the resulting environment from this simplest strategy

changes abruptly from octahedral to square-pyramidal as

shown in Fig. 13 (thin lines correspond to the SimplestCh-

emenvStrategy). It is thus very sensitive to small changes in the

positions of the atoms. Nevertheless, with decent distance and

angle parameters (e.g. � = 1.4 and � = 0.3), the identified

environment is reasonably correct in about 85% of the cases.
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Figure 12
Coordination environments for a distorted octahedron in which the
bottom atom is at distance 1.45 times larger than the other five neighbors.
When the distance cut-off is lower than 1.45, the bottom atom is not
considered as a neighbor and the environment is identified as a square
pyramid. When the distance cut-off is larger than 1.45, the bottom atom is
taken into account and the environment is identified as an octahedron.

Figure 13
Smooth distortion from octahedral to square-pyramidal environment by
moving away the bottom atom. The deformation parameter � = 0
corresponds to the perfect octahedron while for � = 1, the bottom atom
has been moved to a distance that is twice that of the distance to the other
neighbors. The thin lines gives the fractions of octahedral and square-
pyramidal environments obtained with the SimplestChemenvStrategy
(with a distance cut-off of 1.4) while the thick lines correspond to the
fractions obtained with the MultiWeightsChemenvStrategy. Octahedral
and square-pyramidal are respectively shown as solid and dashed lines.



Another illustration of this strategy is shown in Fig. 14 in

which a triangular prism is smoothly distorted towards an

octahedron by rotating the upper and lower triangular planes

in opposite directions (thin lines correspond to the

SimplestChemenvStrategy). In this case, the number of

neighbors remains the same while the actual identified envir-

onment switches abruptly from triangular prismatic to octa-

hedral when the CSM of latter becomes smaller than that of

the former. Once again, the sensitivity with respect to small

changes in the positions of the atoms is critical in this strategy.

2.6.2. Strategy based on multiple weights. A second

strategy is developed hereafter, in which special care has been

taken to remove the artificial abrupt transitions observed with

the SimplestChemenvStrategy. The idea is to smooth these

transitions using a combination of smooth step functions. A

given local environment can thus be identified either as one

unique coordination environment if distortions are small, or as

a mix of two or more environments for larger distortions. In

practice, the local environment is described as a list of envir-

onments, each being assigned a fraction or percentage.

The percentage or fraction f"(A) of a given model coordi-

nation environment " depends on the results (CSMs, Voronoı̈

parameters, . . . ) for each possible set of neighbors contained

in �A.

f"ðAÞ ¼ f ½�A�ð"Þ ð2Þ

The procedure used to get the fraction of a model polyhedron

" for a given local environment is then obtained as the product

of two terms. Suppose " occurs in a given neighbor set �. The

first term results from the relative weight of the neighbor set

(as compared to the other neighbor sets) displaying model

environment ". The second term comes from the relative

weight of the model polyhedron " within that specific neighbor

set.

f ½�A�ð"Þ ¼ f outer
½�A� � f inner

½�N
A�ð"Þ ð3Þ

In the following, the first term is referred to as the outer weight

(i.e. the weight that depends on other so-called outer neighbor

sets) and the second term is referred to as the inner weight (i.e.

the weight inside a specific neighbor set).

Inner weight. For a given neighbor set �N
A of atom A in a

given coordination N, the relative weight (and hence fraction)

of each model polyhedron is not straightforward. Let �N be

the set of K model environments with coordination N:

�N
¼ f"N

1 ; . . . ; "N
i ; . . . ; "N

Kg ð4Þ

For example, the set �6 of six-coordinated model polyhedra

[as reported by Hartshorn et al. (2007) and Lima-de Faria et al.

(1990) and implemented in the ChemEnv package] is

composed of the octahedron (symbolized O:6), the trigonal

prism (symbolized T:6) and the pentagonal pyramid (symbo-

lized PP:6).

For each model polyhedron "N
i , the CSM S"N

i
½�N

A � with

respect to the local environment �N
A is used to assign a weight

to each model polyhedron thanks to the use of an adequately

shaped function. Model environments with a lower CSM (i.e.

more similar to the local environment) are assigned a larger

weight. In particular, if one of the model environments has a

CSM of 0.0 (i.e. the local environment is perfect), its weight

should be infinite so that it is the only model environment

identified. The function should also allow for the assignment

of a zero weight to a model polyhedron for which the CSM is

larger than a given maximum value Smax. One example of such

a function is the ‘modified’ inverse function defined in equa-

tion (5) and shown in Fig. 15.
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Figure 15
Weight function for the inner weight of model polyhedra. In this example,
Smax is set to 8.0, so that the weight of any model polyhedron with a CSM
larger than 8.0 is zero.

Figure 14
Smooth distortion from triangular prismatic to octahedral environment
by twisting the triangular prism around the principal axis. The
deformation parameter � = 0 corresponds to the perfect trigonal prism
while for � = 1, the upper (red ! orange) and lower (green ! cyan)
triangles have been rotated respectively clockwise and counterclockwise
by 30	, corresponding to an octahedron. The thin lines gives the fractions
of triangular prismatic and octahedral environments obtained with the
SimplestChemenvStrategy while the thick lines correspond to the fractions
obtained with the MultiWeightsChemenvStrategy. Octahedral and trian-
gular prismatic are respectively shown as solid and dashed lines.



wSmax ðSÞ ¼
1=Smax �

ðS�SmaxÞ
2

S if S � Smax;
0:0 if S > Smax:

�
ð5Þ

in which the numerator (S � Smax)2 ensures the continuity at

S = Smax while the prefactor 1/Smax arises from the normal-

ization of the [0, Smax] to [0, 1].

Fractions of each model environment "i are then obtained

from these weights using equation (6):

f inner½�N
A�ð"iÞ ¼

wSmax ðS"i
ÞPj¼K

j¼1 wSmax ðS"j
Þ

ð6Þ

A small example is also given in Fig. 15 in which CSMs for a

fictitious six-coordinated case are provided.

When the coordination is clearly defined (i.e. when only one

neighbor set is identified using the procedure outlined in 2.5),

the fractions of each model polyhedron are solely determined

by this inner weight. On the other hand, when different

neighbor sets are identified, an additional complexity arises

from the fact that smaller environments usually tend to be

more easily recognized as similar (i.e. having smaller CSMs).

The extreme case is the single neighbor which is always

assigned a CSM of zero. For cases in which more than one

neighbor set is present, the outer weight is used to determine

the relative predominance of each of the neighbor sets (and

hence their corresponding model polyhedron).

Outer weight. The outer weight or neighbor set weight refers

to the weight of a given neighbor set with respect to the other

neighbor sets. This outer weight is defined as a product of

several ‘partial weights’ (the definition being general enough

to allow for flexibility in the choice of the weights):

wouter½�A�ð�AÞ ¼
Yi¼nw

i¼1

bwiwi½�A�ð�AÞ ð7Þ

in which nw is the number of partial weights used.

Some of the partial neighbor set weights compare the CSMs

of this neighbor set with the ones for the other neighbor sets.

The simplest approach is to take the smallest CSM for each of

the neighbor sets. In practice, to ensure continuity, an effective

CSM is defined. The effective CSM of a given neighbor set �N
A ,

denoted Seffð�
N
AÞ, is obtained from a weighted average using

the ‘modified’ inverse function defined in equation (5)

Seffð�
N
AÞ ¼

P
"2�N

wSmax ðS"Þ � S"P
"2�N

wSmax ðS"Þ
ð8Þ

in which S" is a short form for S"ð�
N
AÞ, i.e. the CSM of the

neighbor set with respect to the perfect environment ".
Partial weights. In the following, the partial weights used in

the ‘default’ multi-weights strategy [used in a previous publi-

cation (Waroquiers et al., 2017)] are described. The strategy

with these default parameters is easily obtained with the

following class method (see examples in the tutorials provided

in the supplementary material):

MultiWeightsChemenvStrategy:stats:article�weights�parametersðÞ

Other weights have also been implemented in the ChemEnv

package in pymatgen.

‘Distance–angle area’ weight. The idea is to restrict the

neighbor sets to those originating from a specific range of

values for the distance and angle cutoffs. For example, one

might only consider distance cutoffs between 1.2 and 1.8. One

might also consider that the Voronoı̈ angle towards a neighbor

should always be between 0.3 and 0.8. In practice, a special

area of distance–angle parameters is defined such as the one

shown in Fig. 16. Indeed, there is not much sense to allow for

neighbors with a small angle parameter and a small distance

parameter or with a large angle parameter and a large distance

parameter. If the region of a given neighbor set (as defined in
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Figure 16
Schematic of the distance–angle area weight. The shaded area is used to
determine which neighbor sets are considered. If the region of a given
neighbor set is crossing the shaded area, the set is assigned a ‘distance–
angle area’ weight of 1.0. In the opposite case, the set is assigned a weight
of 0.0 (white regions).

Figure 17
Weight function for the Self-CSM outer weight of neighbor sets as defined
in equation (9). The default parameters for this weight are shown as blue
while the green and purple curves illustrate other parameters. Arrows
indicate thresholds above which values (i.e. Smax) of the effective CSM
Seff each of the weight functions are set to zero.



Section 2.5) is crossing the above-mentioned area, the weight

of this neighbor set is 1.0 (indicated in white on Fig. 16),

otherwise it is set to 0.0. An extension of this weight could be

to ensure it is continuous.

‘Self CSM’ weight

This weight makes use of the effective CSM Seff of each

neighbor set defined in equation (8). Each neighbor set is

assigned a weight depending on the value of this effective Seff.

The idea is to disfavor neighbor sets that are globally more

distorted than others. One example function used to estimate

this weight is defined in equation (9) and shown in Fig. 17.

wSmax;�ðSeffÞ ¼
ðSeff � 1:0Þ2 � e��Seff if Seff � 1:0;

0:0 if Seff > 1:0:

�
ð9Þ

where Seff is the normalized effective CSM defined as Seff

Smax
.

Delta CSM’ weight. The goal of this neighbor set weight is

to reduce the importance of a given neighbor set �N1 if

another neighbor set �N2 of larger coordination number N2 >

N1 is present and not too distorted with respect to the first one.

In practice, this weight depends on the difference �Seff

between the effective CSMs [as defined in equation (8)] of the

neighbor sets �N2 and �N1 :

�Seffð�
N1 ;�N2 Þ ¼ Seffð�

N2Þ � Seffð�
N1 Þ ð10Þ

The Delta CSM weight is defined as:

w�
�;�min;�max ½�A�ð�AÞ¼ min

�i2�A; Nð�iÞ>Nð�AÞ
��min;�max �Seffð�A;�iÞð Þ

ð11Þ

in which � is a sigmoid-like function (e.g. a smooth step or

smoother step function), N(�) is the coordination of neighbor

set � and �min, �max are the edges used in the � function.

An example of a � function is the smoother step function

shown in Fig. 18 and defined as:

�smootherstep
a;b ðxÞ ¼

0:0 if x � a;
6x5 � 15x4 þ 10x3 if a < x < b;

1:0 if x � b:

8<
: ð12Þ

in which x ¼ ðx� aÞ=ðb� aÞ is the scaled value of x mapping

the [a,b] interval to the [0, 1] interval.

Choice of partial weights. The default list of outer weights

consists of the three above-mentioned partial weights. As an

example and in particular to illustrate the need to use both the

Self CSM weight and the Delta CSM weight, Fig. 19 shows the

fractions of environments obtained for different choices of

weights in the case of the smooth distortion from octahedral to

square-pyramidal environment (see Fig. 13).

The upper left panel shows the CSM of the octahedral

(increasing with the distortion) and square-pyramidal (always

equal to 0.0). The middle left and lower left panels show the

Self CSM and Delta CSM weights for both environments. The

Self CSM weight for the square-pyramidal environment is

always 1.0 as its CSM is always 0.0. Conversely, the Delta CSM

weight for the octahedral environment is always 1.0 as there is

no larger neighbor set to be compared to. As shown in the

upper right panel, when the sole Self CSM weight is included,

the fractions obtained are 50% octahedral and 50% square-

pyramidal when no or little distortion is applied (while one

would expect to have 100% octahedral and 0% square-pyra-

midal). Indeed, for both environments, the value of the CSM is

0.0 and hence the Self CSM weight is 1.0. At variance, the

middle right panel illustrates the fractions obtained when the

sole Delta CSM weight is included. In that case, for large

distortions, the fractions obtained are also 50% for each

environment. Indeed, when the distortion is large, the Delta
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Figure 18
Smoother step function used in the Delta CSM weight. The ‘Delta CSM’
weight assigned to the �1 neighbor set is equal to 0.0 if the difference
�Seff(�1, �2) between the effective CSM Seff(�2) of the �2 neighbor set
and its own effective CSM Seff(�1) is lower than �min. If the difference
�Seff(�1, �2) is larger than �max, the �1 set is assigned a weight of 1.0.
The smoother step function is used between these two extremes. The �min

and �max values can be changed if needed and examples of smoother step
functions for different values are shown.

Figure 19
Choice of partial weights: comparison and combination of Self CSM and
Delta CSM weights in the case of the smooth distortion from octahedral
to square-pyramidal environment. Curves in blue (green) correspond to
the octahedral (square-pyramidal) environment. See text for details.



CSM weight for the square-pyramidal environment reaches

1.0 as the larger environment is too distorted to disfavor the

square-pyramidal environment. The lower right panel illus-

trates the case when both the Self CSM and Delta CSM

weights are included.

3. Description of the package

The ChemEnv module is written in Python and can be found

in the pymatgen package (Ong et al., 2013) as part of the

analysis submodule. The organization of the package is

shown diagrammatically in Fig. 20. The description of each of

the objects referenced as circled numbers in this figure is given

hereafter:


1 LocalGeometryFinder

Main class used to identify the local environments in a

structure.


2 AllCoordinationGeometries

Class containing the list of all the available model coordi-

nation geometries (as CoordinationGeometry objects, see 
3


3 CoordinationGeometry

Generic class for the description of all the model coordi-

nation geometries. An instance of this class is created for each

model environment (from the json files stored in the

coordination�geometry�files directory). It contains

information about its perfect coordinates as well as its edges

and faces, name(s), symbol(s), technical details for the iden-

tification procedure, . . . .


4 StructureEnvironments

Class containing the information (CSMs, neighbors, . . . ) on

all possible neighbor sets for all sites in the structure as

introduced in Section 2.5. This object is meant to be post-

processed with a strategy in order to get relevant and usable

data about the local environments of the structure.


5 LightStructureEnvironments

Class containing the processed data from the Structure-

Environments class using one strategy. This object lists the

environment(s) and their corresponding fractions (in case of a

strategy allowing for mixtures of environments) for each site

of the structure.


6 DetailedVoronoiContainer

Class containing the information on the Voronoı̈ analysis

(see Section 2.2) performed at the beginning of the identifi-

cation procedure in order to define the different possible

neighbor sets.


7 SimplestChemenvStrategy

Class used to apply the fixed distance/angle cutoff strategy

introduced in Section 2.6.1.


8 MultiWeightsChemenvStrategy

Class used to apply the strategy based on multiple weights

as introduced in Section 2.6.2.

The most relevant objects needed for the user of ChemEnv

package are illustrated in Fig. 21.

The LocalGeometryFinder object is the main class used to

initialize and set up the structure as well as to compute the

StructureEnvironments object (containing the raw coordina-

tion environments data as introduced in Section 2.5).
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Figure 20
Organization of the ChemEnv package. Directories are indicated in black
and surrounded by a rectangle. Files are indicated in typewriter (blue for
python files, purple for other files). The most important python objects
are indicated in italic (green). See text for more information.



Combining this StructureEnvironments object with a strategy

(e.g. SimplestChemenvStrategy or MultiWeightsChemenv-

Strategy) leads to the LightStructureEnvironments object. This

latter object contains the usable information about the

environments in a structure, i.e. the environment or mix of

environments (with their corresponding fractions) that is

identified for each site.

4. Interactive web app

An interactive web app has been developed to improve

accessibility of the ChemEnv algorithms as part of the Mate-

rials Projects Crystal Toolkit platform. While the Python

interface is intuitive and well documented, not all scientists are

Python users, and the web app enables use of ChemEnv by any

user without installing custom software. The web app supports

uploading of any file format supported by the pymatgen code,

including Crystallographic Information Format (CIF). Alter-

natively, structures can be loaded directly from the Materials

Project database containing more than 100 000 inorganic

materials.

The web app is designed to offer one-to-one equivalent

functionality to ChemEnv by directly calling the corre-

sponding pymatgen interface, specifically using the Light-

StructureEnvironments and SimplestChemenvStrategy, and

allowing the user full interactive control over the distance and

angle cut-offs. Each symmetrically distinct chemical environ-

ment is shown in 3D using a custom atomic visualizer, along

with Wyckoff label, IUPAC symbol, CSM, and human-read-

able environment label. Oxidation states will be used in the

analysis if atoms are appropriately annotated in the uploaded

file or, if these are not supplied, oxidation states can be

guessed on-the-fly using pymatgen’s bond valence analysis

algorithms. It will be hosted by the Materials Project, and is

available at http://crystaltoolkit.org.

5. Conclusion

We have developed a tool that can analyze coordination or

local environments of large numbers of crystal structures in a

fast and robust manner. The analysis of the neighboring atoms

relies on a modified Voronoı̈ approach based on a grid of

distance. From this grid of different distance and angle cutoffs,

the coordination environments are determined with the help

of a similarity metric to the shape of ideal polyhedra. Two

different strategies are implemented to arrive at the final

assignment of the coordination environments. One of these

strategies is especially robust against small distortions of the

crystal structures making the algorithm particularly useful for

automatic, unsupervised, local environment assignment. This

new tool can be used as part of the open-source Python library

(pymatgen) and within an interactive web app available on

http://crystaltoolkit.org through the Materials Project.

6. Supporting information

A tutorial for the ChemEnv package, in both pdf and jupyter-

notebook format, is available in the supporting information.

The list of all environments as well as some details about the

implementation are also available in the supporting

information.
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(1990). Acta Cryst. A46, 1–11.
Lueken, H. (2013). Magnetochemie: Eine Einführung in Theorie und
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Rosowski, F., Göbel, M., Schenk, S., Degelmann, P., André, R.,
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