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Emergence and Frustration of
Magnetism with Variable-Range
Interactions in a Quantum Simulator
R. Islam,1* C. Senko,1 W. C. Campbell,1† S. Korenblit,1 J. Smith,1 A. Lee,1 E. E. Edwards,1

C.-C. J. Wang,2‡ J. K. Freericks,2 C. Monroe1§

Frustration, or the competition between interacting components of a network, is often responsible
for the emergent complexity of many-body systems. For instance, frustrated magnetism is a
hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin
ices, whose ground states can be massively degenerate and carry high degrees of quantum
entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored
in a crystal of up to 16 trapped 171Yb+ atoms. We control the amount of frustration by
continuously tuning the range of interaction and directly measure spin correlation functions
and their coherent dynamics. This prototypical quantum simulation points the way toward a new
probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

Predicting the behavior of many-body quan-
tum materials such as frustrated magnets
is difficult because the number of relevant

configurations scales exponentially with the num-
ber of particles (1–3). Feynman proposed the use
of a quantum simulator for the task. Here, in-
teractions are engineered in a “standard” quan-
tum system to illuminate the physics behind the
real material (4). Cold atoms are excellent stan-
dards for quantum simulations of magnetism,
with the ability to tailor frustrated magnetic in-
teractions and measure the individual atomic
spins (5, 6). Neutral atomic systems are typi-
cally limited to nearest-neighbor interactions (7),
although geometrically frustrated interactions can
be realized in certain optical lattice geometries
(8). The strong Coulomb interaction between cold
atomic ions (9) has led to the realization of long-
range Ising couplings between individual trapped
ion spins (10–14) and the observation of spin frus-
tration and quantum entanglement in the smallest
system of three spins (15).

Here, we report the implementation of variable-
range antiferromagnetic (AFM) Ising interactions
with up to 16 atomic ion spins, using optical di-
pole forces. We directly measure the emergence
and frustration of magnetic ordering through spa-
tially resolved imaging of the ions. The spins are
initially polarized along a strong effective mag-

netic field transverse to the Ising couplings, and
when the field is lowered, the spins order them-
selves according to the characterstics of the Ising
interactions. We can increase the level of frustra-
tion by increasing the range of the interactions,
which results in a more equitable balance of com-
peting interactions and a suppression of magnetic
order. The quantum coherence in the system is
characterized by reversing the transverse field
back to its initial value and comparing the result-
ing state with the initial state. These experiments
present simulations in a nontrivial quantum sys-
tem that approaches a complexity level at which
it becomes difficult or impossible to calculate the
spin dynamics.

Model
We simulate the quantum transverse Ising mod-
el with long-range AFM interactions in a one-
dimensional spin chain, given by the Hamiltonian

H ¼ S
j<i

Jijs
ðiÞ
x sðjÞx − BS

i
sðiÞy ð1Þ

where the Planck constant h is set to 1, sðiÞg ðg ¼
x, y, zÞ are the spin-1/2 Pauli operators for the
ith spin (i = 1,2,…N), B is the effective trans-
verse magnetic field, and Jij > 0 is the Ising cou-
pling between spins i and j, falling off with the
lattice spacing |i − j| approximately as

Jij ≈
J0

ji − jja ; ð2Þ

where 0 < a < 3 (8).
For B >> Jij on all pairs, the spins are po-

larized along the effective transverse magnetic
field in the ground state |↑y ↑y ↑y …〉 of the
Hamiltonian in Eq. 1, where |↑y〉 denotes a spin
along the +y direction of the Bloch sphere. As
the ratio of B to the Ising couplings is reduced,
the system crosses over to an ordered state dic-
tated by the form of the Ising couplings, and the
spectrum of energy levels depends on the range
of the interactions. For any finite a > 0, we find
by direct calculation that the staggered AFM states
|↑↓↑↓ …〉 and |↓↑↓↑ …〉 constitute the doubly
degenerate ground state manifold at B = 0, with
the degeneracy arising from the time reversal or
the global spin flip symmetry of the Hamiltonian.
Here |↑〉 and |↓〉 are spin states oriented along the
Ising or x direction of the Bloch sphere. Thus, the
system exhibits nearest-neighbor AFM or Néel
ordering at sufficiently low temperatures. When
the interactions are uniform over all pairs of spins
(a→ 0), the system becomes maximally frustrated

RESEARCHARTICLE

Fig. 1. Theoretical energy spectrum and critical gap in the long-range antiferromagnetic Ising
model (Eq. 1) forN= 10 spins. (A) Low-lying energy states for a = 1 (characteristic range of x = 5 sites)
as a function of the dimensionless parameter B/J0. The spacing between the ground state at E = E0 and the
first coupled excited state (black lines) reaches a bottleneck at a critical value Bc/J0 with critical gap Dc. (B)
Theoretical dependence of Bc/J0 (dotted line) and Dc/J0 (solid line) on the range of the interaction. As the
interaction range increases, the competing long-range couplings make it easier to create excitations and
the critical gap is reduced, so a relatively small effective transverse field can break the spin ordering. Both
parameters approach zero as a→ 0 or x→∞. Present experiments are performed with parameters in
the shaded region.
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and the excitation gap (Fig. 1A) closes, leading
to a finite entropy density in the ground state.
In this case, any spin configuration with a net
magnetization of zero (1/2) for even (odd) num-
bers of spins belongs to the ground state.

Between the limits B = 0 and B >> Jij, the
energy spectrum features a minimum gap, whose
position and size depends on the degree of frus-
tration in the system, or the interaction range.
(The interaction range is defined as the number of
lattice spacings xwhere the interaction falls off to
20% of the nearest-neighbor Ising coupling: x ≡
51/a.) Figure 1A shows a few low-lying energy
states of the Hamiltonian in Eq. 1 for an in-

teraction range of x = 5 (corresponding to a = 1).
The first excited eigenstate merges with the ground
state for smallB/J0 and has the same spin order as
the ground state near B/J0 = 0. The critical gap Dc

between the ground and the first coupled excited
state determines the adiabaticity criterion (16).
Figure 1B compares the position (dotted line)
and size (solid line) of the critical gap of the
Hamiltonian for various ranges. As the range and
hence the amount of frustration increases, the crit-
ical field is pushed toward zero, and the gap
closes. To observe the effects of frustration, re-
flected in the density of states near the ground
state, we quench the system by ramping the ef-

fective transverse magnetic field faster than the
critical gap (jḂ=Bj > DcÞ to populate the lowest
coupled excited states. The observed spin order
depends on the resulting degree of excitation and
hence on the level of frustration.

Experiment
The spins are realized in a collection of 171Yb+

ions confined in a linear radiofrequency (Paul)
trap, with the effective spin-1/2 system repre-
sented by two hyperfine “clock” states within
each ion |↑z〉 and |↓z〉, separated by the hyper-
fine frequency nHF = 12.642819 GHz (17). The
variable-range AFM Ising interactions are gen-
erated by applying off-resonant spin-dependent
optical dipole forces (11) that drive stimulated
Raman transitions between the spin states while
modulating the Coulomb interaction between the
ions in a controlled way (18). The effective mag-
netic field is generated by simultaneously driving
coherent transitions between the spin states with
a p/2-phase shift with respect to the dipole force
beams. At any time, we measure the state of the
spins by illuminating the ions with resonant ra-
diation and collecting state-dependent fluorescence
on an imager with site-resolving optics (17). From
this information, we can extract all spin correla-
tion functions (18).

The quantum simulation begins by optically
pumping all spins to the |↓z〉 state and then co-
herently rotating them all about the x axis of the
Bloch sphere to initialize each spin in state |↑y〉
along the effective transverse magnetic field.

Fig. 2. Spin order versus
speed of ramp, for N = 10
spins. The spins are initial-
ized with B/J0 = 5 and the
transverse field is ramped
exponentially down for six
time constants, and the ex-
periment is repeated for var-
ious values of time constant t.
Symbols (solid line) indicate
the scaled staggered Binder
cumulant gs, versus the to-
tal duration 6t of the ramp
measured (expected from
theory). As the Hamiltonian evolves more slowly, the observed spin order shows more ground state
order, and less excitation for ramp times under ∼ 2.5 ms. For longer times, the spins become disordered,
implying external decoherence in the system. Here (and in the following figures) the error bars include
statistical fluctuations and estimated detection uncertainties.

Fig. 3. Quantum phase transition from a paramagnet to an antifer-
romagnet (Eq. 1), with Jij ≈ |i − j|−1.05 in a system of 10 spins. The
exponent (a = 1.05) is estimated from the average couplings between spins in
this inhomogeneous system. (A) Image of 10 trapped ions, with a distance of
22 mm between the first and last ion. (B) Measured two-point correlation
function between a chosen spin (on the edge) and the other spins separated
by r lattice sites, C1,1þr ¼ 〈sx(1)sx(1þr)〉 − 〈sx(1)sx(1þr)〉, averaged over 4000 ex-
periments for each value of the parameter B/J0. For B/J0 = 5, the spins are
initially polarized along the transverse y field with little correlation along
the Ising x direction. As the field is reduced, the spins cross over to pre-

dominantly AFM states |↑↓↑↓…〉 and |↓↑↓↑…〉, resulting in alternating
signs in the two-point correlations with separation. The solid lines are shown to
guide the eye. (C) Measured occurrence probability of all 210 = 1024 states at
B/J0 ≈ 5 (paramagnetic state, red trace) and B/J0 ≈ 0.01 (AFM phase, black
trace). The states are listed in binary order, with spin |↓〉 ≡ 0 and |↑〉 ≡ 1. The
residual peaks in the red trace are consistent with detection errors biased
toward states with many |↑〉 spins such as 127, 511, and 1023. The two tall
peaks in the black trace at 341 (0101010101) and 682 (1010101010)
correspond to two Néel-ordered staggered AFM states, shown with camera
images of these cases and contributing ∼17% to the population.
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B
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The Hamiltonian (Eq. 1) is then switched on with
an initial field B0 ≈ 5 J0, where J0 (∼1 kHz) is
the average nearest-neighbor Ising coupling, thus
preparing the spins in the ground state of the
initial Hamiltonian with a fidelity better than
97%. The effective magnetic field is ramped
down exponentially in time with a time constant
of 400 ms to a final value B of the transverse field,
but no longer than 2.4 ms overall, to avoid de-
coherence effects present in the system (see
Fig. 2). At this point, the Hamiltonian is switched
off, freezing the spins for measurement. We then
measure the x or y component of each spin sðiÞx
or sðiÞy by first rotating our measurement axes
with an appropriate global p/2 pulse similar to
the initialization procedure, before capturing
the spin-dependent fluorescence on the im-
ager. The experiments are repeated 2000 to 4000
times to measure expectation values of certain
spin operators and correlation functions (denoted
by 〈... 〉).

Order Parameters and Correlation Functions
From these measurements, we can construct
order parameters appropriate for observing low-
energy AFM states. Various moments of the
staggered magnetization operator

ms ¼ 1
N S

N

i¼1
ð−1ÞisðiÞx distinguish between para-

magnetic and AFM order, and also quantify spin
flip excitations. In particular, the normalized fourth
moment of this magnetization, known as the
Binder cumulant (19) gs = 〈(ms − 〈ms〉)

4〉/〈(ms −
〈ms〉)

2〉2, scaled to gs ¼ ðg0s − gsÞ=ðg0s − 1Þ to
remove finite size effects, varies from gs ¼ 0
to gs ¼ 1 as the paramagnetic state gives way
to AFM order (see Fig. 2). Here g0s ¼ 3 − 2=N
is the Binder cumulant in a perfect paramag-
netic state of the N spins. We can also form any
correlation function of the spins such as the two-
point correlation Ci;j ¼ 〈sðiÞx sðjÞx 〉 −〈sðiÞx 〉〈sðjÞx 〉, al-
lowing a direct probe of spin order for each
experimental realization. The Fourier transform

of this correlation function is the structure func

tion SðkÞ ¼ 1
N − 1 j S

N�1

r¼1
CðrÞeikrj , where CðrÞ¼

1
N − r S

N�r

m¼1
Cm;mþr is the average correlation over r

sites in the chain. The structure function shows
spin order versus wave number k, with S(k = p)
singling out the presence of the nearest-neighbor
Néel AFM order.

Figure 3 shows the onset of AFM ordering in
the quantum simulation of the frustrated trans-
verse field Ising model in a system of 10 spins.
Two-point spin correlations C1, r between a cho-
sen edge spin and the other spins are presented in
Fig. 3B at various stages in the ramp B/J0 = 5,
0.25, and 0.01. For larger transverse magnetic
fields, there are no appreciable correlations be-
tween the spin components along the Ising di-
rection. As the ratio of B/J0 is lowered, however,
a zig-zag pattern emerges, with negative (posi-
tive) correlations between spins separated by odd
(even) lattice spacings. For B/J0 ≈ 0.01, the
nearest-neighbor spin correlation reaches about
60%, and the correlation length (defined to be the
distance at which the absolute correlation drops
to 1/e of the nearest neighbor value) reaches
about six lattice sites. The effective field was
ramped exponentially down from B/J0 ≈ 5 with a
time constant of 400 ms in this experiment. This
ramping is not slow enough to be adiabatic, and
the diabatic effects prevent the spin ordering from
reaching a perfect AFM phase. Figure 3C shows
the measured probabilities of all 210 = 1024 pos-
sible spin states measured along the Ising x direc-
tion, sorted in binary order with spin |↓〉 ≡ 0 and
|↑〉 ≡ 1. The net detection fidelity of each spin is
~97%, after postfiltering the measurements based
on calibrating the known detection errors for each
spin (18, 20). The initial paramagnetic phase shown
in red (B/J0 ≈ 5) exhibits a roughly uniform
probability of 1/1024 ≈ 0.1% for each state (the
residual peaks in the red trace are consistent with
detection errors). The spin-ordered phase shown

in black (B/J0 = 0.01) displays the emergence
of the two AFM states, each with an occupation
probability of about 8.5%. Other prominent peaks
correspond to single spin-flips and other low-
lying excitations from the two ground states.

In Fig. 4, we probe the frustration in the sys-
tem for various ranges of interactions. Here, we
look at the spin order achieved in the quantum
simulation when the external magnetic field is
ramped down to B/J0 ≈ 0.01 for four different
ranges of interactions. In Fig. 4A, we show the
measured structure function S(k) at wave vector
values k ¼ p

10 ;
2p
10 ; :::; p from the measured two-

point correlation functions. To directly compare
the different interaction ranges, we choose the
same external magnetic field ramp time constant,
t = 0.4/J0. As the range of interaction increases,
the ground state AFM order (given by the struc-
ture function peak at k = p) disappears, reflecting
increased occupation of the excited states as the
frustration grows. Figure 4B displays the ob-
served distribution of energy P(Ei) for a = 1.05
(shorter range) and a = 0.76 (longer range) power-
law exponents, along with the cumulative energy
distribution function. The eigenenergies of each
configuration are calculated using Eq. 1 with
B = 0. For the longer-range interactions, exci-
tations are more prevalent, and the energy gap
between the ground and the first excited state is
reduced, both of which are signatures of increas-
ing frustration in the system. The observed final
entropy per particle S ¼ − 1

N
S
i
PðEiÞlogPðEiÞ is

seen to increase from 0.832 to 0.903 as the in-
teraction range grows from a = 1.05 (x = 4.6 sites)
to a = 0.67 (x = 11 sites), which is also a signa-
ture of the increased frustration in the system. As
a reference, the paramagnetic state distribution
shows an entropy per particle of 0.959, which is
slightly less than unity because of detection errors.

Quantum Coherence
The above measurements of the state distribu-
tion concern only the diagonal components or

Fig. 4. (A) Structure function S(k) versus wave vector k for various ranges
of AFM interactions, for B/J0 = 0.01 in a system of N = 10 spins. The
increased level of frustration for the longer-range interactions reduces the
observed antiferromagnetic spin order. The detection errors may be larger than
shown here for the longest range of interactions, owing to spatial crosstalk

from their closer spacing. (B) Distribution of observed states in the spin sys-
tem, sorted according to their energy Ei that was previously calculated by
diagonalizing Eq. 1 with B = 0. Data are presented for two ranges (red for
a = 1.05 and blue for a = 0.76). The dashed lines indicate the cumulative
energy distribution functions for these two ranges.
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populations of the density matrix. To character-
ize the quantum coherence in the simulation, we
retrace the external magnetic field back to its ini-
tial value after ramping it down to almost zero
and measure each spin along the transverse ( y)
magnetic field. Figure 5 shows the distribution of
the measured valuemy of the total transverse spin
operatorSy ¼ S

i
sðiÞy at three different times: first

at the beginning of the simulation, second when
the transverse field has been ramped down to
nearly zero, and third after the transverse field
returns to its initial value (a = 0.92 for these
data). The initial state is ideally a delta function
at 〈Sy〉 = 10, but finite detection efficiency broad-
ens the distribution. At the lowest value of the
field (B/J0 ≈ 0.01), the transverse magnetiza-
tion is distributed near 〈Sy〉 = 0, as the spins are
presumably ordered along the Ising x direction.
When the external field is ramped back to its ini-
tial state, the distribution of the total spin returns
toward the initial distribution, with an averagemag-
netization that is approximately 〈Sy〉 = 68(4)% of

its initial value, indicating that some level of
quantum coherence is maintained throughout the
simulation. This number is in agreement with the
theoretically estimated average magnetization of
〈Sy〉 ≈ 70% of its initial value, obtained by nu-
merically integrating the Schrödinger’s equation
without any decoherence.

To probe decoherence in the simulation, we
repeat the experiment with various ramping speeds
of the effective magnetic field. In Fig. 2, we plot
the AFM order parameter gs versus the total du-
ration for the experiment for a long-range cou-
pling (a = 1.05) forN = 10 spins. Each data point
represents the spin order achieved after ramping
the magnetic field B down exponentially from
5J0 for a total duration of six time constants. The
AFM order grows with slower ramping, as ex-
pected, for up to t = 400 ms. But we also observe
a saturation and then decay in the spin order,
which might indicate the presence of decoher-
ence in the system at long times. During the sim-
ulation, spontaneous Raman scattering from the

optical beams is expected to occur at a rate of less
than 6 s−1 per spin (21), which is consistent with
separate measurements of the spin relaxation
from a single spin and is therefore not expected
to contribute to decoherence given the time scales
in the experiment. The phonon population is
expected to be well under 10% for all the data
presented here (22). A principal source of deco-
herence appears to be the intensity fluctuations
in the Raman beams, from beam pointing in-
stabilities and fluctuations in the optical power.

Maintaining adiabaticity while ramping the
magnetic field down is more difficult when the
Ising interactions in the experiment are frustrated,
because the relevant energy gaps are smaller. To
directly compare frustrated versus nonfrustrated
systems, we execute quantum simulations of both
long-range AFM and ferromagnetic (FM) Ising
models in a system of N = 16 spins (Fig. 6). For
the FM experiment (Fig. 6C), we initialize the
spins in the highest-energy state with respect to
the transverse field |↓y↓y↓y…〉 and ramp the field
down as before (10, 15). For the AFM experi-
ment with the same ramp rate, we find that the best
AFM nearest-neighbor correlation (Fig. 6A) is
only 30(3)%, corresponding to a staggered mag-
netization of about 30(2)%, whereas the simu-
lation of the FM model shows a clear FM spin
order across the chain (Fig. 6B), reaching 73(3)%
magnetization. We have also observed a level of
70(10)% FMmagnetization emerging in N = 18
spins (18).

The interacting spin system that we study is
approaching a complexity level at which it be-
comes difficult or impossible to predict its be-
havior. Static properties such as the ground state
order or the excited state energies can be cal-
culated for hundreds of spins using Monte Carlo
methods (23); however, the calculation of dynam-
ics of fully connected spin models is currently
limited to approximately N = 30 spins (24, 25).

Fig. 6. Magnetic or-
dering in N=16 spins.
(A) Image of 16 trapped
ions, with a distance of
30 mm between the first
and last ion. (B) Pair cor-
relation function mea-
sured at various stages
of the quantum simula-
tion, for B/J0 = 5 (red)
and B/J0 = 0.01 (blue)
in an AFM coupling fall-
ing off with distance as
Jij ∼ |i − j|−1 among N =
16 spins. Small amounts
of staggered order are
seen, tempered by the
small gaps and frustra-
tion in the low-energy
states. (C) In contrast,
for all FM couplings (again with Jij ∼ |i − j|−1), the gaps are large and clear FM
order is seen. Here the measured distribution of magnetization is plotted. The
paramagnetic phase of 16 spins is indicated in red, and after the field is

ramped to nearly zero, the distribution clearly bifurcates, indicating popula-
tion weighted heavily toward the FM states |↓↓↓…〉 and |↑↑↑…〉, indicated
in blue. The resulting magnitude magnetization is ~73%.

A

B C

Fig. 5.Quantumcoher-
ence in the simulation,
in a system of N = 10
spins. Probabilities of
different values of the
total spin component
along y in the initial
polarized state (red),
when the transverse field
is ramped to ≈0.01 J0
(black), and when the
transverse field is reversed
back to its initial value
(green). After reversal, the
y magnetization returns
to ∼68(4)% of its initial value, indicating quantum coherence in the evolution. The trajectory of the
transverse field (B, in green) and all the Ising couplings ( J, in blue) are shown in the inset. a = 0.92 for
these data.
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Small ion trap quantum simulators such as that
reported here may soon reach this milestone with
technical upgrades in the hardware, including
lower vacuum chamber pressures to prevent col-
lisions with the background gas, better stability of
the optical intensities, and higher optical power
so that fluctuations in the beam inhomogeneities
can be suppressed.
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Kepler-62: A Five-Planet System
with Planets of 1.4 and 1.6 Earth
Radii in the Habitable Zone
William J. Borucki,1* Eric Agol,2 Francois Fressin,3 Lisa Kaltenegger,3,4 Jason Rowe,5

Howard Isaacson,6 Debra Fischer,7 Natalie Batalha,1 Jack J. Lissauer,1 Geoffrey W. Marcy,6

Daniel Fabrycky,8,9 Jean-Michel Désert,3 Stephen T. Bryson,1 Thomas Barclay,10 Fabienne Bastien,11

Alan Boss,12 Erik Brugamyer,13 Lars A. Buchhave,14,15 Chris Burke,5 Douglas A. Caldwell,5

Josh Carter,3 David Charbonneau,3 Justin R. Crepp,16,17 Jørgen Christensen-Dalsgaard,18

Jessie L. Christiansen,5 David Ciardi,19 William D. Cochran,13 Edna DeVore,5 Laurance Doyle,5

Andrea K. Dupree,3 Michael Endl,13 Mark E. Everett,20 Eric B. Ford,21 Jonathan Fortney,8

Thomas N. Gautier III,22 John C. Geary,3 Alan Gould,23 Michael Haas,1 Christopher Henze,1

Andrew W. Howard,24 Steve B. Howell,1 Daniel Huber,1 Jon M. Jenkins,5 Hans Kjeldsen,18

Rea Kolbl,6 Jeffery Kolodziejczak,25 David W. Latham,3 Brian L. Lee,2 Eric Lopez,8 Fergal Mullally,5

Jerome A. Orosz,26 Andrej Prsa,27 Elisa V. Quintana,5 Roberto Sanchis-Ojeda,30 Dimitar Sasselov,3

Shawn Seader,5 Avi Shporer,8,28 Jason H. Steffen,29 Martin Still,10 Peter Tenenbaum,5

Susan E. Thompson,5 Guillermo Torres,3 Joseph D. Twicken,5 William F. Welsh,26 Joshua N. Winn30

We present the detection of five planets—Kepler-62b, c, d, e, and f—of size 1.31, 0.54, 1.95,
1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and
267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super–Earth-size
(1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively
receiving 1.2 T 0.2 times and 0.41 T 0.05 times the solar flux at Earth’s orbit. Theoretical models
of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could
be solid, either with a rocky composition or composed of mostly solid water in their bulk.

Kepler is a NASA Discovery-class mission
designed to determine the frequency of
Earth-radius planets in and near the hab-

itable zone (HZ) of solar-like stars (1–6). Planets
are detected as “transits” that cause the host star to
appear periodically fainter when the planets pass
in front of it along the observer’s line of sight.
Kepler-62 [Kepler Input Catalog (KIC) 9002278,
Kepler Object of Interest (KOI) 701] is one of about

170,000 stars observed by the Kepler spacecraft.
On the basis of an analysis of long-cadence photo-
metric observations from Kepler taken in quarters
1 through 12 (13 May 2009 through 28 March
2012), we report the detection of five planets or-
biting Kepler-62, including two super–Earth-size
planets in the HZ as well as a hot Mars-size planet
(Fig. 1 and Table 1). Before validation, three of
these objects were designated as planetary candi-

dates KOI-701.01, 701.02, and 701.03 in the Kepler
2011 catalog (7) and the Kepler 2012 catalog (8).
KOI-701.04 and 701.05 were subsequently iden-
tified using a larger data sample (9).

Analysis of high-resolution spectra indicates
that Kepler-62 is a K2V spectral type with an
estimated mass and radius (in solar units) of
0.69 T 0.02 M⊙ and 0.63 T 0.02 R⊙ (9). Exam-
ination of the sky close to Kepler-62 showed the
presence of only one additional star that con-
tributed as much as 1% to the total flux (figs. S3
and S4) (9). Warm-Spitzer observations (fig. S9)
and the analysis of centroid motion (table S1)
were consistent with the target star as the source
of the transit signals (Fig. 1 and fig. S1). We com-
puted the radius, semimajor axis, and radiative
equilibrium temperature of each planet (Table 1)
on the basis of light curve modeling given the
derived stellar parameters (table S3).

The masses of the planets could not be di-
rectly determined using radial velocity (RV) mea-
surements of the host star because of the planets’
low masses, the faintness and variability of the
star, and the level of instrument noise. In the
absence of a detected signal in the RV measure-
ments (9), we statistically validated the plane-
tary nature of Kepler-62b through -62f with the
BLENDER procedure (10–13) by comparing the
probability of eclipsing binaries and other false-
positive scenarios to bona fide transiting planet
signals (14–18).

To systematically explore the different types
of false positives that can mimic the signals, we
generated large numbers of synthetic light curves
that blend together light from multiple stars and
planets over a wide range of parameters, and then
compared each blend with the Kepler photom-
etry (Fig. 2). We rejected blends that resulted in
light curves inconsistent with the observations.
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Supplementary Materials

Generating variable-range AFM Ising interactions The Ising interaction is generated by

globally addressing the ions with two off-resonant laser beams at λ = 355 nm (21), intersecting

at right angles with wavevector difference ∆k = 2π
√

2/λ along a principal axis of transverse

ion motion (26). These beams have beatnote frequencies νHF±µwhich drive stimulated Raman

transitions near the upper and lower motional sidebands of transverse motion in order to impart

a spin-dependent optical dipole force (27). By setting the beatnotes sufficiently far from the

sidebands, motional excitations can be made negligible, resulting in a nearly pure spin-spin

coupling mediated by the Coulomb interaction (11). The effective transverse magnetic field is

generated by simultaneously driving a resonant stimulated Raman transition between the spin

states with a beatnote frequency νHF and a phase that is shifted by π/2 with respect to the mean

phase of the sideband fields. The resulting Ising coupling matrix Jij is given by a sum over

contributions from each normal mode of collective motion at frequency νm,

Jij = Ω2νR

N∑
m=1

bi,mbj,m
µ2 − ν2m

(S1)

where νR = h/Mλ2 = 18.5 kHz is the recoil frequency associated with the dipole force on

a single 171Yb+ion of mass M , bi,m is the orthonormal component of ion i with mode m, and

Ω is the (uniform) single spin flip Rabi frequency, proportional to the laser intensity at each

ion. The symmetric detuning µ of the beatnote from the spin-flip transition controls the sign

and range of the interactions (11). When µ is set larger than the highest (center-of-mass or

COM) mode frequency ν1, every interaction is AFM, and we can empirically approximate Eq.

S1 as falling off with distance as a power law Jij ≈ J0/|i − j|α with 0 < α < 3 (9) and

J0 ∝ 1/N . While the COM mode mediates a uniform interaction between all pairs of spins,

the other modes introduce non-uniformity in the interactions, and effectively reduce the range

of AFM interaction. In practice, we control the interaction range by changing the bandwidth of

the transverse mode spectrum, achieved by varying the axial confinement of the ions in the Paul

trap. The Ising couplings Jij depend not only on the spatial separation |i − j|, but also on the
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site i itself due to the finite size of the system, with ∼ 10% inhomogeneities across the chain.

We average over all the couplings between spins separated by a given number of lattice sites to

estimate the power law range exponent α in Eq. 2 (13).

In the experiment we use global Raman beams each with an optical power of approximately

1W, having horizontal and vertical waists of about 150 µm and 7 µm respectively, to address

the ions. This produces a spin-flip Rabi frequency Ω ≈ 600 kHz on resonance, with less than

5% inhomogeneity across the chain. We set the beatnote detuning to µ ≈ ν1 + 3ηΩ, where

η =
√
νR/ν1 is the single ion Lamb-Dicke parameter. This keeps the (primarily COM) phonon

excitation probabilities sufficiently low for any setting of the range. The typical nearest neighbor

Ising coupling is J0 ∼ 1 kHz for N = 10 spins. In principle, the Ising interaction range can be

varied from uniform to dipolar (0 < α < 3), but in this experiment the axial frequency was only

varied between 0.62 MHz and 0.95 MHz, and given the COM transverse frequency of ν1 = 4.8

MHz, this results in a range of Ising power-law exponents 0.7 < α < 1.2, or a variation of the

range of interactions between ξ = 4 to ξ = 10 sites.

Accounting for finite detection efficiency of N-particle correlations We detect the spin

states using spin-dependent fluorescence collected through f/2.1 optics onto an intensified charge-

coupled-device (ICCD) camera or a photomultiplier tube (PMT). The spin state |↑z〉 fluoresces

from the near-resonant detection beam and appears bright, while the spin state |↓z〉 scatters

little from the off-resonant detection beam and appears dark. The imager has single-site reso-

lution, allowing us to directly measure the two point correlations to probe the AFM order. The

spin detection efficiency is the symmetric probability of correctly diagnosing a particular spin

state from measurement, and is typically limited by the residual overlaps in the bright and dark

flourescence count distribution (28).

The detection efficiency for a single spin is observed to be ε ≈ 95% on the ICCD imager,

which is lower than the 98% efficiency on the PMT, due to additional electronic and readout

noise. For a crystal of N = 10 ions, the spatial overlap between the ion images degrades the

3



detection efficiency even further. To account for this spatial crosstalk, we fit each single shot

image in the experiment to a sum of N Gaussians, where N is the number of ions. The center

and width of the Gaussians are pre-calibrated from images of all spins prepared in their bright

states, with background subtraction from all spins prepared in their dark states. This results in

a spread of detection efficiencies between 93 − 97% per spin, depending upon the state of the

neighboring spins. The probability of correctly identifying a N = 10-body spin state is thus

in the range of εN ∼ 50 − 75%, so we post-process the detected states to improve this value,

following the ideas in Ref. (20). The probability of incorrectly assigning an N -qubit state |i〉 to

the actual underlying state |j〉 is Mij = (1 − ε)βijεN−βij , where βij is the number of positions

that theN -qubit state |j〉 differs from |i〉 through bit flips. The observed probability distribution

of all 2N states is then given by P ′i =
∑

jMijPj , where Pj is the underlying actual distribution

of states, which can be obtained by simply inverting the experimentally measured matrix Mij

and forming Pi =
∑

jM
−1
ij P

′
j . This increases the effective detection fidelity per spin to roughly

97%, similar to that of a single ion with a PMT. Detection errors are included in all the error

bars presented, and represent the range of measurements expected from a representative range

of detection efficiencies. Some entries of the post-processed probabilities are slightly negative,

due to fluctuations in absolute fluorescence levels that impact the values in the matrixMij during

measurement.
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N=18 spin ferromagnetic simulation
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Figure S1: Distribution of magnetization in a collection of N = 18 spins under the influence of
ferromagnetic Ising couplings that fall off as Jij ∼ |i − j|−1. The paramagnetic phase of the
spins is indicated in red, and after the field is ramped to nearly zero, the distribution splits into
population weighted heavily towards the FM states |↓↓↓ · · · 〉 and |↑↑↑ · · · 〉, indicated in blue.
The resulting magnitude magnetization is approximately 70(10)%. The clear bias toward the
state |↑↑↑ · · · 〉 may be due to a background effective field along the Ising (axial) direction.
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