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AFE-GAN: Synthesizing Electrocardiograms with Atrial Fibrillation
Characteristics Using Generative Adversarial Networks*

Xianglong Wang1, Berkman Sahiner2, Christopher G. Scully2, and Kenny H. Cha2

Abstract— Labeled ECG data in diseased state are, however,
relatively scarce due to various concerns including patient
privacy and low prevalence. We propose the first study in its
kind that synthesizes atrial fibrillation (AF)-like ECG signals
from normal ECG signals using the AFE-GAN, a generative
adversarial network. Our AFE-GAN adjusts both beat mor-
phology and rhythm variability when generating the atrial
fibrillation-like ECG signals. Two publicly available arrhythmia
detectors classified 72.4% and 77.2% of our generated signals
as AF in a four-class (normal, AF, other abnormal, noisy)
classification. This work shows the feasibility to synthesize
abnormal ECG signals from normal ECG signals.

Clinical significance - The AF ECG signal generated with our
AFE-GAN has the potential to be used as training materials
for health practitioners or be used as class-balance supplements
for training automatic AF detectors.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common type of cardiac
rhythm disorder with an increasing prevalence [1]. The esti-
mated prevalence of AF is 2.8% globally and 1-2% in both
Europe and North America, leading to the presence of AF in
3-6% of hospital patients with acute conditions [1]. Presence
of AF is linked to higher mortality rates [2] and an increased
risk of stroke [3] and dementia [4]. Current diagnosis of
AF is largely based on electrocardiogram (ECG) analysis
by medical practitioners [5]. In this paper, we propose a
method for synthesizing atrial fibrillation-like ECGs since
the prevalence of AF in real data sets is low.

The earliest model of ECG synthesis used a set of
dynamics-based differential equations with user-set charac-
teristics such as the mean and standard deviation of the
heart rate [6]. An extended version of the above method
was implemented as the ECG-SYN [7]. Another model by
Cao et al. [8] examined the feasibility of synthesizing 12-
lead ECG from 3-lead ECG signals and electrode placing
data. These modeling equation-based methods offer great
insights to visual characteristics of ECG, but are not capable
of accounting for noise that presents in real signals and
synthesizing ECG signals in a particular kind of diseased
state, such as AF.

Generative adversarial networks (GANs) [9], along with
its variants, is one successful technique to generate new
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samples from the distribution learned from a given training
set. GANs typically contain two networks: a generator that
produces new data, and a discriminator that attempts to
discriminate the generated data from real training samples
[10]. The two networks are trained in unison, with the
goal of generating data that shares characteristics of the
training samples as described in section II. Recently, GANs
have been applied towards generating ECG signals, including
synthesizing Lead-V ECG from Lead-I [11] or synthesizing
whole ECG signals from small databases [12], [13].

We present the AFE-GAN (Atrial Fibrillation-like ECG
Generative Adversarial Network), which generates AF-like
ECG from normal ECGs by using a GAN. Unlike previous
studies based on the MIT-BIH arrhythmia database that only
contain 8 AF records, our approach is based on a large
database of 5,442 signals collected by a modern portable
ECG recording system. In addition, our model does not
require pairing normal and AF ECG from the same patient
and works with general pools of normal and AF ECG signals.
Our approach will have more potential to scale and translate
to real-life applications. We envision our generated signals
to be potentially used in clinical training situations and/or
supplementing the development of automatic AF detectors.
In this paper, section II highlights the characteristics of AF
and normal ECGs, followed by our strategy and methods of
generating AF ECG from normal ECG signals. We present
the results of our generated ECG signals and evaluate them
on a beat-by-beat basis and on a record basis in section III.
We discuss our results and evaluations in section IV and
conclude our paper in section V.

II. METHODS

There are three main morphological waveform compo-
nents in ECG: the P wave from atrial depolarization, the
QRS complex from ventricular depolarization, and the T
wave from ventricular repolarization [14]. In a normal ECG
signal, all components of the ECG are clearly visible and
the RR intervals are regular. Two main visual differences
separate AF ECG from normal ECG, summarized below:

1) Beat-wise: The P wave is suppressed or completely
absent. The T wave is suppressed and fibrillatory f
waves are present.

2) Record-wise: The interval between the R-peaks (RR
interval) is more irregular, indicating irregular heart
rate. Although not present on all AF signals, the overall
heart rate often appears faster.

Features from above and are the main features used for
visual and conventional algorithmic AF detection [15], [16].



The objective of the AFE-GAN is to transform normal ECG
into “AF-like” ECG. The differences between normal ECG
and AF ECG signals set two main goals for AF ECG
synthesis: beat morphology and RR-interval variability. Shi
et al.’s WarpGAN model [17], which performed style transfer
and warping to convert photos into caricature images in 2D,
inspired our design of the AFE-GAN.

A. Network Structure

The AFE-GAN is effectively a WarpGAN [17] adapted
for 1D ECG conversion. The AFE-GAN consists of a de-
formable generator, a style encoder, and a discriminator. An
overview of the generator can be found in Figure 1. The
generator consists of a content encoder, a decoder, and a
warp controller.

Fig. 1. Generator of 1D-adapted WarpGAN. Given a normal ECG signal,
the generator performs a style transfer and learns the control points and their
corresponding displacements for the input signal. The post-style transfer
signal is then warped with a differentiable warping module and generates a
synthetic AF ECG signal. Data and parameters are represented by rectangle
nodes without borders and neural network components are represented with
rounded rectangle nodes.

The encoder-decoder network fulfills our first requirement
to transform normal beats to AF-like ones by perform-
ing local style transfer. The content encoder Ec has three
convolutional layers of kernel size 7, 4, 4, followed by
three residual blocks with size 4. The decoder R contains
three residual blocks with Adaptive Instance Normalization
(AdaIN), followed by two transpose convolutional layers
with kernel size 4 and a convolutional layer with size 7 to
generate the output. The content encoder Ec transforms the
input signals into feature maps. A normally-distributed style
code s ∼ N (0, 1) is drawn for each input signal and fed
into the decoder. The decoder R processes the feature maps
and the style code to perform style transfer and generate an
unwarped signal.
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Fig. 2. Generator of the AFE-GAN. The content encoder includes
the input to rese 3; the decoder consists of the resd 1 to the generated
(unwarped) ECG waveform. The residual blocks resd in the decoder use
AdaIN normalization with parameters fed from the style encoder/controller.

The warp controller, which is not present in most GANs,

addresses the second requirement so that RR variability is in-
troduced to the generated signals. The warp controller learns
a fixed number of control points and their corresponding dis-
placements using the feature maps from the content encoder.
The control points are locations on the signals that are placed
equally across the time axis. Following the style transfer, the
control points are modified by their displacements provided
by the warp controller using a differentiable warping module.
Warping is performed by displacing the region of a signal
associated with a given control point in the time axis. The
warping points are generated using three fully connected
layers. The displacement generated by the warping controller
is amplified by a constant scaling factor α at the end.

During each step of training, we randomly select an AF
ECG signal xA from all AF ECG signals XA and a normal
ECG signal xN from all normal ECG signals XN in our
database. Each signal in training is randomly assigned a
style code s ∼ N (0, 1), which is used as the parameters
of the AdaIN layers in R that has been shown to effectively
control the visual styles [18]. In our case, the style code
is used to control the amplitude of each component in
the generated ECG and potential absence of beats. The
style encoder Es, a three-layer convolutional network with
the same structure as our conv1-conv3 layers in Figure 2
followed by a fully connected layer, learns the mapping
between each ECG signal and the randomly-drawn style code
s as an unsupervised way to learn the time trends. The style
encoder Es will generate the style code s during testing
(signal generation) so that we could obtain variations on
visual styles. To avoid losing semantic information during
style transfer, we require the AF and normal signals to be
capable of being reconstructed from the feature maps. We
adopt the identity loss Lidt for this purpose.

LA
idt = ExA∈XA

[||R(Ec(xA), Es(xA))− xA||1]
LN
idt = ExN∈XN

[||R(Ec(xN ), Es(xN ))− xN ||1].
(1)
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Fig. 3. Discriminator of the AFE-GAN. The discriminator contains
7 convolutional layers of kernel size 4 and step 2. The output of the
discriminator is a 46-by-3 matrix for calculating the patch loss and an overall
predictor for the global loss. We selected 7 layers to allow a window size
of more than 300, which is enough for covering at least one beat.

The structure of the discriminator of the AFE-GAN can
be seen in Figure 3. The discriminator is a straightforward
7-layer convolutional neural network for classification. The
goal of the training process is to produce a model that applies
both style transfer and warping of a normal ECG to generate



an ECG with AF characteristics. A patch-based discriminator
and a global discriminator classify the input and generated
signals into one of three categories: normal, AF, generated.
The global discriminator classifies the whole signal while
the patch discriminator classifies continuous samples of a
fixed window size. In our case, the global discriminator is
charged with identifying the overall appearance as AF; the
patch discriminator is used for identifying beat morphol-
ogy. Let DpA, DpN , DpG denote the logits of AF, normal,
and generated signals from the patch-based discriminator;
DgA, DgN , DgG from the global discriminator. The patch
adversarial losses Lp and the global adversarial losses Lg

can be written as follows:

LG
p =− ExN∈XN ,s∈S [logDpA(G(xN , s))]

LD
p =− ExA∈XA

[logDpA(xA)]− ExN∈XN
[logDpN (xN )]

− ExN∈XN ,s∈S [logDpG(G(xN , s))]

LG
g =− ExN∈XN ,s∈S [logDgA(G(xN , s))]

LD
g =− ExA∈XA

[logDgA(xA)]− ExN∈XN
[logDgN (xN )]

− ExN∈XN ,s∈S [logDgG(G(xN , s))].
(2)

The network is optimized end-to-end with the following
overall cost functions:

G∗ =argmin
G

[λpLG
p + λgLG

g + λidt(LA
idt + LN

idt)]

D∗ =argmin
D

[λpLD
p + λgLD

g ].
(3)

B. Dataset and Training

We used a subset of the publicly available training set
from the 2017 Physionet Challenge as our training set [15],
[19]. The challenge dataset consists of 8,528 short (9-61s)
single-lead ECG records from one of three portable ECG
devices. All the records are recorded at a sampling frequency
fs = 300 Hz. These records are labeled as one of the four
classes: normal, AF, other abnormal, and noisy, mainly by
a single expert. For the current work we only used records
labeled as either normal or AF [15] of the reference labels
and were longer than 20 seconds. Our dataset contains 87.6%
(4768) normal signals and 12.4% (674) AF signals out of the
5,442 signals that satisfy our criteria.

Twenty (20) seconds of each ECG signal is extracted.
Since the beginning of these handheld ECG recordings are
often noisy, we extracted the last 20 seconds from signals
of length 20-25 seconds and 5th to 25th second on signals
longer than 25 seconds. In addition, the complexity of the
signal that would need to be generated could be reduced
by shortening the signal in this preliminary study. The
extracted signal is then filtered with a bandpass filter with
cutoff frequencies at 0.25 and 55 Hz to remove baseline
wander and power line noise. We inverted signals that have
larger negative amplitudes since these signals are likely
to have been inverted during recording with the portable
machine. The filtered signals make up our database and were
consumed as the training set.

We optimized the GAN using an ADAM [20] optimizer.
Results presented below use data trained at 130,000 steps
with a learning rate of 2.5 × 10−5. We set λp = 2.0,
λg = 1.0, and λidt = 10.0 for the components of the cost
function. We used 12 control points for the warp controller to
allow approximately 1-2 beats between each control point.
A scaling factor α = 2.5 was chosen to obtain the most
AF-like results.

C. Results Analysis
We performed beat-wise and signal-level characterizations

for the generated AF-like signals. For beat-wise analysis, we
detected the locations of the QRS complexes in all real and
generated signals with the XQRS algorithm in the wfdb-
python package from PhysioToolkit [19]. Each RR interval
is then split in a 2:1 ratio to obtain the individual beats. Each
beat is resampled to 250 time points using cubic interpolation
and normalized to the amplitude of the R peak. An overall
median beat is extracted for each of the three categories
of signals, namely normal, real AF, and generated AF. The
median beats are obtained by taking the median value at all
250 time points for every beat from each type of record. We
then extracted a median beat for each generated AF signal
and compared the signal-level median beats to the overall
median beat of normal and real AF signals. We also extracted
numerical values of the RR intervals from XQRS detector.
In our analysis, we excluded the RR intervals that are less
than 0.167s, more than 2.33s, or not within 1.66 [21] and
1/1.66 times of the average RR interval of the signal. 97.8%
of normal, 97.4% of real AF, and 83.8% of generated AF
RR-intervals remained after this exclusion.

On a signal level, we first analyzed the QRS data obtained
above to compare the signal-level distribution of the RR
intervals. To evaluate the overall quality of our generated sig-
nals, we analyzed the sensitivity on two of the four winning
AF detectors in the 2017 Physionet Challenge [15]. These
detectors classify each signal into one of four categories:
normal (N), AF (A), other abnormal (O), or noisy (∼). We
selected Hong et al.’s [22] and Datta et al’s [16] detectors
due to limitations of the computing environment. We also
evaluated the normal and real AF signals in our training
set with these two detectors for comparison. The reported
accuracy values on our training set are slightly different from
the reported training set accuracy due to our using 20-second
segments instead of the whole signals during evaluation.

III. RESULTS

Figure 4 illustrates sample AF-like ECGs that we were
able to obtain from our network. In this section, we present
the beat-level and signal-level results that we obtained.

A. Beat-Level Analysis
The overall median beats for all three types of ECG signals

are shown in Figure 5 (one median beat is computed from
all signals from the same category, e.g. normal). The PQRST
components of ECG beats are clearly visible in the normal
median beat. The overall median beats of real and generated
AF signals, as expected, show no P and suppressed T waves.



(a) Source Normal ECG

(b) Generated AF-like ECG

Fig. 4. Generated AF-like ECG (b) from source normal ECG signal (a).
The 10-15th seconds of the signals are shown. The GAN is capable of
introducing new QRS complexes and adjust the R-R variability.

(a) Normal (b) Real AF (c) Generated AF

Fig. 5. Median beat from (a) Normal, (b) Real AF, (c) Generated AF ECG
Signals. The real AF and generated AF median beats have absent P waves
and suppressed T waves compared to the normal median beat.

B. Signal-Level Analysis

We analyzed the whole generated signals with two distinct
measures: distribution of RR intervals and sensitivity (posi-
tive AF rates) by two challenge-winning AF detectors from
Physionet Challenge 2017 [15].

The Poincaré plot maps out the relationship between con-
secutive RR intervals [23]. We also calculated the goodness
of fit r with a fixed model RRn = RRn+1 for all three kinds
of signals. The real and generated AF signals show desirably
similar R2 values: real AF R2 = 0.924; generated R2 =
0.906. The normal signals have fairly regular RR intervals
and mostly cluster around the diagonal line (R2 = 0.995).

Fig. 6. Poincaré plot for all three types of signals - an RR interval RRn is
plotted against the next interval RRn+1. Diagonal clusters depict regular
RR intervals. The goodness of fit R2 with respect to a fixed model RRn =
RRn+1 is provided on the figure.

The two AF detectors detected 95.4% and 96.5% of
normal ECG as normal, but after applying the AFE-GAN,
most (77.2% and 72.4%) of the generated signals were
detected as AF, as shown in Table I. Table I indicates that
the sensitivity on the generated AF signals is approximately
13% lower compared to real AF signals. Only about 1% of

the generated signals are still identified as normal, while the
rest are identified as other or noisy.

TABLE I
EVALUATION OF NORMAL, GENERATED AF, AND REAL AF DATA ON

HONG AND DATTA DETECTORS. BOLDED MEANS DESIRED CATEGORY.

Hong Detector
Normal Generated AF Real AF

Count % Count % Count %
Normal 4547 95.4% 39 0.8% 11 1.6%

AF 17 0.4% 3682 77.2% 610 90.5%
Other 178 3.7% 749 15.7% 48 7.1%
Noisy 26 0.5% 298 6.2% 5 0.7%
Total 4768 100.0% 4768 100.0% 674 100.0%

Datta Detector
Normal Generated AF Real AF

Count % Count % Count %
Normal 4598 96.4% 66 1.4% 28 4.2%

AF 14 0.3% 3452 72.4% 575 85.3%
Other 131 2.7% 742 15.6% 61 9.1%
Noisy 25 0.5% 508 10.7% 10 1.5%
Total 4768 100.0% 4768 100.0% 674 100.0%

IV. DISCUSSION

We were able to transform a normal ECG signal into mul-
tiple AF-like ECG signals with a GAN. We characterized the
generated signals considering both the beat morphology and
rhythm variability. The median beat from the generated AF-
like signals resembles the median beat of true AF visually,
while the mean and variability of record-level RR interval
distributions resembles the real AF signals more than the
normal signals. 85% of the generated signals are identified
as AF by at least one of the two challenge-winning detectors,
while the corresponding percentage is 92% for real AF.

During the generation of the AF-like signals, we manually
amplified the amount of warping by a scaling factor of α =
2.5, since we thought that the resulting signals are visually
the best. Investigation of a single optimal scaling factor, or
even an optimal scaling factor for each of the source normal
signals, may be needed to achieve a better synthetic data set.
We will now provide some of our insights to possibly achieve
a better scaling factor without using visual inspection.

We use a warp controller to learn the location of 12
control points for a signal 6000 samples long along with
their displacements. With 12 control points and 20 seconds
of data, it is almost guaranteed to have more than one
beat in some of the segments being warped. Unsurprisingly,
warping segments containing one beat or more will lengthen
or shorten the various interval measurements. This is a limita-
tion on our model since we do not control where the control
points lie. The scaling factor also has a tremendous effect
on the variability of RR intervals. A possible criterion for
selecting an appropriate α may be to check the distributions
of the RR intervals on the generated AF signals using a
reliable QRS detector.

The results from the AF detectors reveal an additional
area of concern for our generated AF signals: noise. 6.2%



and 10.7% of the generated signals are identified as noisy,
and about 5% of the signals are identified as too noisy
by both detectors. A clean-up routine may be added to
remove these noisy signals. The signals identified as “other
abnormal” also warrant additional investigation. They may
contain physiologically unrealistic signals that we should
try to remove. Additional work is needed to potentially
restrict the warping to limit the number of “other” and
“noisy” detection, potentially by using initial morphology
and rhythm-based analysis. These clean-up routines and
additional observations may help with the higher fraction
of failure by the XQRS algorithm. Naturally, the scaling
factor affects the RR variability in the generated signals and
will give different sensitivity results in the AF detectors. The
sensitivity results from the AF detectors may also be used
as a criterion for selecting appropriate α.

There are limitations to the data sets and tools we used
in the GAN model and the evaluations: the training ECG
were labeled by a single expert without knowing the actual
diagnosis [15], potentially affecting network training and
generation; the QRS detector can be thrown off by large noise
peaks; the two AF detectors we used won the challenge with
an overall F1-score (a harmonic average of precision and
recall) of 0.83. Our AFE-GAN currently can only generate
ECG signals of 20 seconds (native) or less (by cropping),
although the duration can be extended by providing more
computational resources. All of these factors may affect
the overall observed performance of a generated data set.
However, the best-level and signal-level characterizations we
presented here help us to assess of the generated signals more
comprehensively to understand AFE-GAN’s limitations.

V. CONCLUSION

We successfully generated AF-like ECG signals from
normal ECG signals using the AFE-GAN. Multiple AF-
like signals can be generated from a source normal signal
with different styles and scaling factors. The morphology
of generated beats resemble more to real AF beats visually.
The variability of RR intervals is similar to real AF signals
on Poincaré plots. A high percentage of our generated
signals are identified as AF (77.2%/72.4%) by two challenge-
winning AF detectors. For next steps, we would like to use
our synthesized data to supplement training of ECG detectors
to potentially improve deep-learning ECG algorithms.
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