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Abstract

Purpose: To improve image quality and CT number accuracy of fast-scan low-dose cone-beam 

computed tomography (CBCT) through a deep-learning convolutional neural network (CNN) 

methodology for head-and-neck (HN) radiotherapy.

Methods and Materials: Fifty-five paired CBCT and CT images from HN patients were 

retrospectively analysed. Among them, 15 patients underwent adaptive replanning during 

treatment, thus had same-day CT/CBCT pairs. The remaining 40 patients (post-operative) had 

paired planning CT and 1st fraction CBCT images with minimal anatomic changes. A 2D U-Net 

architecture with 27-layers in 5 depths was chosen for the CNN. CNN training was performed 

using data from 40 post-operative HN patients with 2080 paired CT/CBCT slices. Validation and 

test datasets were from patients undergoing adaptive replanning and include 5 same-day datasets 

with 260 slice pairs and 10 same-day datasets with 520 slice pairs, respectively. To examine the 

impact of differences in training dataset selection and network performance as a function of 

training data size, additional networks were trained using 30, 40 and 50 datasets. Image quality of 

enhanced CBCT images were quantitatively compared against the CT image using mean absolute 

error (MAE) of Hounsfield units (HU), signal-to-noise ratio (SNR) and structural similarity 

(SSIM).

Results: Enhanced CBCT images reduced artifact distortion and improved soft tissue contrast. 

Networks trained with 40 datasets had imaging performance comparable to those trained with 50 

datasets and outperformed those trained with 30 datasets. Comparison of CBCT and enhanced 

CBCT images demonstrated improvement in average MAE from 172.73 to 49.28 HU, SNR from 

8.27 to 14.25 dB, and SSIM from 0.42 to 0.85. The image processing time is 2 seconds per patient 

using a NVIDIA GeForce GTX 1080 Ti GPU.
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Conclusion: The proposed deep-leaning methodology was both fast and effective for image 

quality enhancement of fast-scan low-dose CBCT. This method has potential to support fast 

online-adaptive re-planning for HN cancer patients.

Keywords

fast-scan low-dose; cone-beam CT; image quality enhancement; head and neck; deep learning 
convolutional neural network

1. Introduction

Cone-beam CT (CBCT) has been widely used for inter-fractional daily patient positioning 

and tumor target alignment verification in radiotherapy treatments (Verellen et al 2007, 

Simpson et al 2010). In addition, similar to the planning CT, CBCT images provide a 3D 

representation of patients’ organs and tumors. CBCT images further support online 

evaluation of treatment delivery accuracy and the necessity of treatment plan adaptation 

during the course of treatment (Jaffray et al 2002, Hvid et al 2018). CBCT images may also 

allow early assessment of treatment response and be prognostic of treatment outcomes (Shi 

et al 2019, van Timmeren et al 2017). However, parameters for acquiring CBCT images are 

often chosen for fast scanning to increase high clinical throughput and low imaging dose to 

patients to avoid any long term risks (de Gonzalez and Darby 2004). The resultant fast-scan 

low-dose (FSLD) CBCT images are associated with poor image quality (high noise, low 

contrast, scatter artifacts, etc.) (Sykes et al 2005) which precludes the use of these images for 

adaptive re-planning during the course of radiotherapy (Kurz et al 2015).

Adaptive re-planning is particularly important in patients receiving head and neck (HN) 

radiotherapy as weight loss and tumor regression may result in large anatomic changes that 

could affect accurate dose delivery to radiotherapy targets, organs at risk (OARs), or both 

(Simone et al 2011). Numerous mathematical algorithms have been proposed to improve 

FSLD CBCT image quality, including iterative reconstruction (IR) with compressed sensing 

(CS) algorithms (Sidky et al 2006, Tian et al 2011, Yu and Wang 2010, Jia et al 2011, Chen 

et al 2008, Xu et al 2014). CS-based IR algorithms reconstruct CBCT images from under-

sampled projections, using a priori sparsity properties of the images by total variation (TV) 

regularization (Sidky et al 2006, Tian et al 2011), soft-thresholding regularization (Yu and 

Wang 2010), tight frame (TF) regularization (Jia et al 2011), or prior images (Chen et al 
2008, Xu et al 2014). The resulting image quality is improved and is comparable to images 

with high imaging dose (Sidky et al 2006, Tian et al 2011, Yu and Wang 2010, Jia et al 2011, 

Chen et al 2008, Xu et al 2014). However, IR algorithms have high computational 

complexity, thus have not been commonly implemented for clinical use. Alternatively, 

conventional analytic reconstruction algorithms, such as filtered back-projection, remain the 

mainstream due to fast computation. Deep learning approaches, particularly convolution 

neural networks (CNNs), have emerged as a potential solution to overcome both the 

computational complexity of prior reconstruction algorithms and the inherent poor image 

quality of CBCT (Kida et al 2018, Hansen et al 2018, Landry et al 2019, Liang et al 2019). 

These approaches have demonstrated promising results for CBCT by applying denoising 

networks to generate synthetic CT images.
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Most CNN-based approaches using supervised training for CBCT mainly focus on prostate 

cancer (Kida et al 2018, Hansen et al 2018, Landry et al 2019), whereas the only one study 

for HN used an unsupervised network CycleGAN (Liang et al 2019). In this work, we 

present an efficient method to improve FSLD CBCT image quality for HN cancer patients 

using a U-Net CNN. The scope of the present study is primarily on the network 

construction, feasibility assessment, and image quality improvement evaluation. Herein, a 

deep learning U-Net CNN is constructed through direct mapping from the CBCT images to 

the corresponding CT images in order to generate high quality CBCTs, a.k.a. synthetic CTs. 

The main challenge of the present study is that the FSLD CBCT images that we used are 

with low signal-to-noise ratio, low soft tissue contrast, and high scatter artifacts.

2. Methods and Materials

2.1 Network Design and Architecture

The present study used a U-Net (Ronneberger et al 2015) architecture with an encoder-

decoder path. As shown in Fig.1, the network is built with a series of convolution layers 

involving stride 1×1 convolutional layers, stride 2×2 convolutional layers (down-sampling 

process), and transposed convolutional layers (up-sampling process) with skip connections 

(add operation). The kernel size is 3×3 in all convolutional layers except in the last one, 

where the kernel size is 1×1. The root filter number is 32 and the filter number is doubled 

after each down-sampling process. Batch normalization (BN) (Ioffe and Szegedy 2015) and 

rectified linear units (ReLU) (Nair and Hinton 2010) are used after each convolutional layer.

Compared with the architecture of the original published U-Net (Ronneberger et al 2015), 

our approach differed in several key areas: (1) the max-pooling layers were replaced by 

convolution kernels of stride 2 to keep more subtle features in the down-sampling process 

(Springenberg et al 2014); (2) the up-convolution 2×2 was replaced with bilinear 

interpolation up-sampling with a 3×3 convolution layer to avoid checkerboard artifacts 

(Odena et al 2016); (3) the skip-add operation was used instead of the skip-concatenation to 

be GPU memory efficient.

2.2 Network Training

For all experiments the networks were trained using a full-size CBCT slice and two adjacent 

slices, i.e., 3-channel data were used as the network input. The original CBCT used for the 

study is denoted as oCBCT, while the network output is denoted as enhanced CBCT 

(eCBCT). Mean absolute error (MAE) was used as the loss function (Zhao et al 2016), 

which measures the pixel-wise difference between eCBCT images IeCBCT ∈ Rm×n and the 

label CT images ICT ∈ Rm×n :

LossMAE = 1
m × n ∑∑ IeCBCT − ICT 1 (1)

The adaptive moment estimation (Adam) algorithm (Kingma and Ba 2014) was used as the 

optimizer. The initial learning rate was 0.001, which was then automatically reduced by 80% 
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once the training loss stopped reducing for 20 epochs. The mini-batch size is 2. The number 

of total epochs in each training was 1000.

The network was implemented using Tensorflow (Martín Abadi et al 2015) 1.8.0 and Keras 

(Chollet and others 2015) 2.2.4, and trained using an NVIDIA GeForce GTX 1080 Ti GPU. 

Training a single network took approximately 25 hours for 1000 epochs.

2.3 Metrics for evaluation

In this study, MAE, Signal-to-Noise Ratio (SNR) and Structural Similarity (SSIM) (Wang et 
al 2004) were used to evaluate the performance of the prediction from different trained 

networks between eCBCT IeCBCT and CT ICT slices. The definition of MAE is given in (1).

SNR is defined as the ratio of signal power to the noise power with a unit of decibels (dB). It 

is defined as

SNR = 10 ⋅ log10
∑ ∑ ICT(x, y) 2

∑ ∑ ICT(x, y) − IeCBCT (x, y) 2 (2)

SSIM is a perceptual metric that quantifies image quality degradation. It is used for 

measuring the similarity between two images and is calculated as

SSIM = 2μeCBCTμCT + C1 2δeCBCT &CT + C2
μeCBCT 2 + μCT2 + C1 δeCBCT

2 + δCT
2 + C2

(3)

where μ denotes the mean value, δ2 denotes the variance and the parameters C1 = (k1Q)2 and 

C2 = (k2Q)2 are two veriables to stabilize the division with weak denominators, where k1 = 

0.01 and k2 = 0.02. Q is the dynamic range of the pixel-values.

2.4 Experimental Datasets

2.4.1 CT and CBCT image acquisition.—This retrospective study was approved by 

the institutional review board (IRB) and a total of 55 HN cancer patients who completed 

radiotherapy treatment with daily CBCT image guidance were identified. Among these 55 

patients, the planning-CT and first fraction CBCT (one to three weeks apart) from the 40 

post-operative HN patients were rigid registered. Anatomic similarity was visually and 

quantitatively confirmed based on a criterion that boundary differences between the two 

images were < 5mm (5 pixels) for the external contour, bony anatomy, and internal cavities 

(nasal cavity, oral cavity, etc.). The 15 remaining CT/CBCT pairs were from patients who 

received offline adaptive re-planning during the treatment process. In these 15 patients, a 

new simulation CT (re-sim CT) was obtained during the course of treatment typically due to 

tumor shrinkage and/or subsequent changes in adjacent organs. Therefore, these patients had 

the re-sim CT and a CBCT acquired on the same day. The pairing of re-sim CT and same-

day CBCT ensured minimal anatomic variation between the two imaging studies. The 

CBCT and re-sim CT images for these 15 patients were also rigid registered and confirmed 

<5 mm anatomic deviation.
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CT simulation images were obtained on a Brilliance Big Bore CT scanner (Philips Health) 

using the following parameters: 120 kVp tube voltage and 400–500 mAs exposure. The 

matrix size of simulation CT images was 512 × 512 × 144 with a pixel size of 1.17 

mm×1.17 mm and slice thickness of 3.00 mm. CBCT images were acquired with the XVI 

onboard imager system on an Elekta Synergy Linac (Ekekta, Sweden) using a tube voltage 

of 100kVp and an exposure of 18.2 mAs (10 mA and 10 ms per projection). The number of 

projections per scan was 182 frames for a 205-degree (−45°~160°) rotation. The mode of 

reconstruction was set to fast reconstruction (< 60s). The matrix size of raw CBCT images 

was 270 × 270 × 88 with a pixel size of 1.00 mm×1.00 mm and slice thickness of 3.00 mm.

2.4.2 Image pre-processing.—The data pre-processing workflow is shown in Fig.2. 

For each patient, the CT and CBCT images were co-registered through grey scale rigid 

transformation. The matrix size of aligned CT and CBCT images was 270×270×88. Pixel 

values outside the field of view (FOV) were set to the Hounsfield unit (HU) of air (−1000). 

The images were further center-cropped to 256×256 pixels in the transverse plane. In the Z 

dimension, only the center 52 slices were used and the rest were discarded due to the severe 

CBCT photon scatter artifacts at the superior and inferior extent of the image stack.

2.4.3 Training, validation, and testing datasets.—Data were divided into three 

subsets for (1) network training, (2) validation, for monitoring the training process and 

tuning network hyper-parameters and (3) testing, for evaluating the network performance. 

The evaluation results were not boot-strapped for network re-optimization.

2.4.4 Datasets arrangement.—The network was trained using different size datasets 

and combinations to verify training sufficiency. Specifically, among the 55 datasets, five 

from the same-day CT/CBCT pairs were used for validation, which include a wide spectrum 

of variable head positions (as shown in supplementary materials Fig.S1). The remaining 50 

datasets were divided amongst five groups, with Group 1 containing the rest of 10 same-day 

CT/CBCT datasets and Group 2–5 containing the 40 post-operative patient datasets (10 

datasets per group, as shown in the first row in Table 1). A total of 15 networks were trained 

using 30, 40, and 50 datasets formed from various combinations of dataset groups, as 

indicated by Table 1. The five networks trained using five groups differ only by the random 

initialization of the network weights and have different shuffling of the batches. In order to 

eliminate the impact of loss fluctuations, the average evaluation loss of the last 100 epochs 

(No. 900–1000) was calculated.

3. Results

3.1 Network optimization

The results of the average evaluation loss are shown in Fig.3. A lower evaluation loss value 

is indicative of improved/superior network training performance. The worst values are seen 

in the three-group data training, indicating 30 datasets are insufficient to obtain a well-

trained network (paired t-test with four-group and five-group, p < 0.05). Lower evaluation 

loss can be achieved by both four-group and five-group datasets, with no significant 

difference (paired t-test, p > 0.1). This indicates that an improved network can be obtained 
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using four groups of datasets with less training time. Therefore, in the subsequent study, 

Network 6 with four-group datasets setup was used for generating the main results unless 

noted otherwise. In this setting, patient images from 40 post-operative patient datasets (73%) 

were used for training, 5 same-day CT/CBCT datasets (9%) for validation, and 10 remaining 

same-day CT/CBCT datasets (18%) for testing.

3.2 Quantitative Assessment for the Enhanced CBCT Image Quality

Fig.4a shows the testing results of all 50 patients using five-fold cross-validation (exclude 

five same-day patients used in network optimization) from networks trained by four groups 

(Networks 6–10) in Table 1. All eCBCT images had significant improvement in MAE, SNR, 

and SSIM compared with the oCBCT (in all paired t-test, p ≪ 0.01). As shown in Fig 4b 

based on 50 patients, the average MAE of HU improved from 167.46 to 49.24 HU, the 

average SNR improved from 8.5 to 14.54 dB and the average SSIM increased from 0.44 to 

0.84. Using the 10 same-day testing patients (main results, network 6), the average MAE of 

HU improved from 172.73 to 49.28 HU, the average SNR from 8.27 to 14.25 dB, and the 

average SSIM from 0.42 to 0.85. Fig 5 shows the histograms of oCBCT, eCBCT, and re-sim 

CT for the 10 testing datasets. The range of the HU value is from −1000 to 1000 with 512 

bins. The HU histogram of oCBCT displays significant shifts in low density/air and soft 

tissue/muscle regions, whereas the HU histogram of eCBCT is much closer to that of re-sim 

CT for both regions. The Chi-squared distance of the histograms (Zhang et al 2007) was 

suppressed from 9.46 × 106 (oCBCT) to 1.26 × 106 (eCBCT).

3.3 Qualitative Assessment for the Enhanced CBCT Image Quality

Seven representative image slices from a testing dataset are shown in Fig.6. The display 

window is W=950 HU, L=181 HU. The values of MAE, SNR and SSIM are shown at the 

bottom of each panel. The trained network significantly improved the SNR and SSIM of 

eCBCT compared with oCBCT images. The HU difference between eCBCT and CT were 

reduced to 25% of those values for oCBCTs. Overall image quality seemed much improved 

from a representative slice shown in Fig.6, a, –c. Small but critical structures, i.e. the optic 

nerves, were enhanced in eCBCT (Fig.6, d–f). High-Z streak artifacts were reduced in the 

dental regions in eCBCTs (Fig.6, g–i). Soft tissue contrast of parotid regions was improved 

(Fig.6, j–l); however, surgical clips (small white dots in the image) may also be suppressed 

in the denoising process of the network (Fig.6, m–o). Soft tissue contrast was greatly 

enhanced with corrected HU values for regions of brainstem (Fig.6, p–r) and cord (Fig.6, s, 

–u). HU-line profiles were taken for Fig 6 (a–c), (p–l), and (s–u) and shown in Fig.7 (a), (b) 

and (c), respectively. As the network removed most artifacts on the oCBCT images and 

minimize the differences of HU values between oCBCT and CT images, eCBCT HU 

profiles are much smoother and closer to the corresponding CT HU profiles, especially in 

the soft-tissue areas.

3.4 Computation time

After training, the average time to enhance a single oCBCT image slice is 13 ms. Complete 

processing of a CBCT dataset for one patient takes less than 15 s, which includes loading the 

oCBCT raw data, pre-processing, network computing (13 ms × all slices), and saving the 

network predictions.
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4. Discussions

The CNN-based method we developed in this study aims to improve image quality of FSLD 

CBCTs obtained from routine image-guided radiotherapy and daily treatment verification. 

The improvement was evaluated for image uniformity, SNR, contrast resolution, and image 

similarity in comparison with standard-dose CT. Networks were trained to map from 

oCBCT to CT images, in order to create an eCBCT. Compared with oCBCT images, eCBCT 

images demonstrated a substantial improvement in HU number accuracy and small 

anatomical structure integrity. Furthermore, for eCBCT images, the CNN visually 

suppressed noise and scatter artifacts, as well as streaky beam hardening artifacts in dental 

areas, which is consistent with the previous publication from our group (Yuan et al 2019). 

Most recently, Liang et al. published a similar study on CBCT image improvement for HN 

cancer using CycleGAN (Liang et al 2019), which showed CBCT image quality 

improvement, but was unable to suppress metal and dental artifacts because they were 

shown in both CT and CBCT images.

As shown in Fig.3, the three-group training data demonstrated suboptimal results with high 

validation loss. When using the four-group training dataset, evaluation loss decreased 

significantly (paired t-test, p < 0.05). When five groups of datasets were used for training, 

there was no significant improvement (paired t-test, p > 0.1), with a slight increase in the 

average loss. Therefore, the four-group dataset including 40 independent sets was an optimal 

and sufficient size for training in this study.

For this supervised CNN, CT and CBCT image pairs with matching anatomy were used to 

train the network. Identifying matched CT/CBCT pairs is extremely challenging in a 

retrospective setting. Table 2 summarized the number of training data and imaging 

parameters in previous publications with the same aim in improving CBCT image quality 

based on deep-learning CNN methods (Kida et al 2018, Hansen et al 2018, Landry et al 
2019, Liang et al 2019) and CT-assisted intensity correction methods (Xu et al 2015, Park et 
al 2015, Hu et al 2008). Our study used the highest number of datasets for training, 

compared to the other three supervised deep-learning CNN-based studies (Kida et al 2018, 

Hansen et al 2018, Landry et al 2019). In addition, the present study also utilized a relatively 

large sample size for testing with the same-day CT/CBCT, which includes a wide range of 

variable treatment positioning in terms of head tilt, treatment region size, and dental 

artifacts. Most importantly, the re-sim CT represents the ground truth of patients’ anatomy 

on the day when the corresponding CBCT was taken, which serves as a precise image 

verification.

The training data used in this study are from post-operative patients and include the planning 

CT and CBCT performed on the first day of treatment. Non-operative patients were 

excluded in order to ensure minimal anatomic differences between the CT and CBCT. As 

validated in (Dinkla et al 2019), acceptable results were achieved using up to a maximum of 

28 days separation between the CT and MR image pairs, which were aligned by deformable 

image registration (DIR) to prevent mismatch between the image pairs. For our study, grey-

scale-based rigid registration was considered sufficient in registering each image pair, given 

careful dataset screening as we mentioned above. In addition, we preliminarily evaluated a 
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pixel-value based commercial DIR algorithm in the initial phase of our study, but concluded 

that it was not superior to the rigid registration due to inherent deformation errors associated 

with significant image artifacts from the FSLD CBCT images. Furthermore, to assess test 

dataset performance, Network 6 trained with all post-operative image pairs was compared 

with Network 7–10 trained with both same-day and post-operative image pairs. Based on the 

four-group dataset cross validation experiments shown in Table 1 and Fig. 3, no significant 

difference was noted in terms of the network performance. Therefore, the training dataset 

obtained from post-operative patient datasets is comparable to the same-day dataset for this 

study.

The most challenging aspect of this study is the use of FSLD CBCTs. The oCBCT images 

were acquired with a very low scanning mAs parameters, in order to reduce daily patient 

imaging dose. Images were acquired for each patient using the XVI S10 filter and 10×10 

protocol, which used exposures of 10 ms and x-ray tube current of 10 mA per projection for 

182 projections. Table 2 compared the CBCT imaging parameters of the present work with 

previous publications on prostate (Kida et al 2018, Hansen et al 2018, Landry et al 2019) 

and HN (Xu et al 2015, Park et al 2015, Hu et al 2008) cancer sites. Amongst the three deep-

learning CNN-based studies, Landry et al. (Landry et al 2019) used 20×20 protocol for 

CBCT acquisition and the number of projections was between 346 and 357, whereas Hansen 

et al. [22] used 40×40 protocol and the number of projections was between 350 and 717. 

Amongst the studies using conventional algorithms for HN CBCT (Xu et al 2015, Park et al 
2015, Hu et al 2008), Xu et al. (Xu et al 2015) adopted the CBCT scanning protocol of 0.4 

mAs/projection and 364 projections; Park et al. (Park et al 2015) used 0.1 mAs/projection 

and 343 projections; Hu et al. (Hu et al 2008) acquired CBCT with 0.1 mAs/projection and 

650 projections. In all, the FSLD protocol (0.1 mAs, 182 projections) that we used in the 

present study is beneficial to patients, but resulted in large image quality degradation for 

oCBCTs (average HU difference in oCBCT vs. CT in our study: 167 [130 ~ 209] HU; 

average HU difference in (Landry et al 2019): 104 [91 ~ 119] HU). Nevertheless, the image 

quality improvement shown in eCBCT is slightly better in HU number corrections compared 

to Landry et al. (Landry et al 2019) (the present study: 49 [31 ~ 74] HU, Unet1 in (Landry et 
al 2019): 51 [43 ~ 62] HU, Unet2 in (Landry et al 2019): 88 [75 ~ 105] HU, Unet3 in 

(Landry et al 2019): 58 [49 ~ 69] HU).

Our present study showed promising results using a U-Net CNN for creating synthetic CT 

with FSLD CBCTs; however the limitations of the study should be noted. A multi-slice 2D 

CNN was used in this study due to the limitation of the GPU memory. Given the 3D nature 

of CBCT images, a 3D CNN may have greater capability to remove noise and streaky 

artifacts in CBCT images (Çiçek et al 2016, Milletari et al 2016). One way to reduce the 

memory requirement of a 3D CNN is to use patch-based training. However, 3D patch-based 

training may not have equivalent performance with the full-image/volume-based training 

due to the receptive fields being limited to the patch size. Additionally, long streaky or 

scatter artifacts can cause long-range correlations, which may not be captured by patch-

based training. Therefore, the performance of a patch-based 3D network is not necessarily 

superior to a 2D network. To demonstrate this, two 3D U-Net networks, (1) a depth-5 U-Net 

trained using patch-based data (32 × 32 × 32, 50% overlap) and (2) a simpler depth-3 U-Net 

trained using full-size 3D volume, were evaluated as part of our preliminary assessment. The 
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former has four down-sampling processes and the latter only has two. As shown in the Fig.8, 

3D patch-based training has a bias issue as the intensity of the entire image can be 

mismatched. This mismatch may result in degraded image quality compared to 2D-UNet 

results. In comparison, volume-based training shows in general equivalent image quality 

metrics compared to that of the 2D-UNet with slightly inferior soft-tissue contrast and 

spatial resolution due to its simpler architecture. Our future study will include setting up 

multi-GPUs in order to further explore 3D volume-based training network for improving 

FSLD CBCTs. The second limitation is that very small structures, such as surgical clips, 

were not well preserved in eCBCT. As shown in Fig.6, the spatial resolution in eCBCT is 

inferior compared to the reference CT. One possible solution is to modify the loss functions 

to focus on very small structures, image boundary, and soft tissue. Finally, soft tissue 

contrast improvement of the tumor areas in the test datasets is limited due to the use of post-

operative patients (tumor regions removed after surgery) for network training. Fig.9(a–d) 

show an example from the testing dataset with tumors present. Our trained CNN provided 

little enhancement in the gross tumor areas compared to the original CBCT. This could be a 

limitation of the FSLD CBCT. For those oCBCT from non-operative HN cancer patients, 

tumor area enhancement would require matching training data and more optimized imaging 

scanning parameters. A prospective clinical trial is underway to include non-operative HN 

cancer patients for network training and to explore the clinical feasibility of applying the 

proposed method to facilitate online evaluation of treatment delivery accuracy for plan 

adaptation during treatment. Future work will also include testing the feasibility and 

accuracy of direct dose calculation on eCBCT given improved image quality in tumor area 

and normal tissues.

5. Conclusions

The proposed deep-leaning based method is demonstrated to be fast and effective for 

enhancing FSLD CBCT. Quantitative and qualitative comparisons showed improved image 

quality in terms of soft tissue contrast, SNR, and HU number accuracy with the eCBCT 

datasets. This study has its potential utility for fast online-dose verification and adaptive re-

planning of radiotherapy for HN cancer patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
U-Net architecture. Grey boxes correspond to multi-channel feature maps. The numbers of 

channels are shown. Arrows denote convolution layers or operations.
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Fig. 2. 
Workflow for image pre-processing of CT and CBCT datasets.
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Fig. 3. 
Average evaluation loss of 900–1000 epochs using three-, four- and five-group training data. 

X-axis denotes five models shown in the Table 1 and Y-axis denotes the loss.
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Fig. 4. 
Quantitative measures in image quality of eCBCT and oCBCT against the corresponding CT 

image. (a) spider charts showing all 50 patients. Grey lines: oCBCT; Orange lines: eCBCT; 

(b) histogram figure showing average all 50 patients and the 10 patients with same-day 

images. Grey bars: oCBCT; Orange bars: eCBCT.
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Fig. 5. 
HU Value histograms of oCBCT (grey), eCBCT (orange), and re-sim CT (blue) for all 10 

testing patients (each with paired same-day CT/CBCT).
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Fig. 6. 
The oCBCT images (left column), eCBCT images (middle column) and reference CT 

images (right column). (a), (b), (c) the representative image slices which have similar 

metrics to the average of the full testing data; (d), (e), (f) optic nerve regions; (g), (h), (i) 

dental regions; (j), (k), (l) parotid regions; (m), (n), (o) submandibular gland (SMG) regions; 

(p), (q), (r) Brainstem regions; (s), (t), (u) cord regions.
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Fig. 7. 
HU line profiles taken at three regions at (a) Fig 6(a–c), (b) Fig 6(p–l), (c) Fig 6(s–u). The 

right column shows HU profiles of the red dashed lines in the left column. Y axes: HU; X 

axes: pixels
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Fig. 8. 
(a) oCBCT and processed CBCT images using (b) image-based 2D depth-5 U-Net, (c) 

patch-based 3D depth-5 U-Net and (d) volume-based 3D depth-3 U-Net, in comparison with 

(e) the reference CT.
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Fig. 9. 
Tumor area comparison on a testing dataset with same-day CBCT/CT: (a) oCBCT, (b) 

eCBCT, (c) re-sim CT, and (d) mask areas for gross tumor volumes.
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Table 1.

The dataset arrangements for cross evaluation. Network 6 (four groups training) is the main result in this work.

Group 1 (same-
day)

Group 2 (post-
operative)

Group 3 (post-
operative)

Group 4 (post-
operative)

Group 5 (post-
operative)

Five groups, network 1 ★ ★ ★ ★ ★

Five groups, network 2 ★ ★ ★ ★ ★

Five groups, network 3 ★ ★ ★ ★ ★

Five groups, network 4 ★ ★ ★ ★ ★

Five groups, network 5 ★ ★ ★ ★ ★

Four groups, network 6 - ★ ★ ★ ★

Four groups, network 7 ★ - ★ ★ ★

Four groups, network 8 ★ ★ - ★ ★

Four groups, network 9 ★ ★ ★ - ★

Four groups, network 10 ★ ★ ★ ★ -

Three groups, network 11 - - ★ ★ ★

Three groups, network 12 - ★ - ★ ★

Three groups, network 13 - ★ ★ - ★

Three groups, network 14 - ★ ★ ★ -

Three groups, network 15 ★ ★ ★ - -

★: used in the training;

-: not used in the training
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Table 2.

The comparison between our method and Ref (Kida et al 2018, Hansen et al 2018, Landry et al 2019, Liang et 
al 2019) and (Xu et al 2015, Park et al 2015, Hu et al 2008).

Image processing 
method

Training 
dataset size

Testing 
dataset 

size

oCBCT scan 
dose (mAs)

oCBCT MAE 
(HU)

eCBCT MAE 
(HU)

Current study (HN) Supervised CNN 40 10 18.2 167 [130 – 209] 49 [31 – 74]

(KIDA ET AL 2018) 
(prostate) Supervised CNN 16 4 350 - -

(HANSEN ET AL 2018) 
(prostate) Supervised CNN 15 8 560 – 1147.2 144 46

Net1 in (LANDRY ET AL 
2019) (prostate) Supervised CNN 27 8 138 – 142 104 [91 – 119] 51 [43 – 62]

Net2 in (LANDRY ET AL 
2019) (prostate) Supervised CNN 27 8 138 – 142 104 [91 – 119] 88 [75 – 105]

Net3 in (LANDRY ET AL 
2019) (prostate) Supervised CNN 27 8 138 – 142 104 [91 – 119] 58 [49 – 69]

(LIANG ET AL 2019) (HN) Unsupervised CNN 81 20 - 69 [80 – 68] 30 [35 – 25]

(XU ET AL 2015) (HN) Monte Carlo 
simulation-based - - 145.6 - -

(PARK ET AL 2015) (HN) CT-prior-based - - 34 – 69 - -

(HU ET AL 2008) (HN) ROI mapping - - 65 - -
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