
Lawrence Berkeley National Laboratory
LBL Publications

Title
SDT: A Database Schema Design and Translation Tool Reference Manual Draft 4.1

Permalink
https://escholarship.org/uc/item/74c406f0

Authors
Markowitz, V M
Fang, W

Publication Date
1991-05-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74c406f0
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

)
..

. ' ~:<~ .
. ! ..

. ·, \i
~

LBL-27843
UC-405

IT[1 Lawrence Berkeley Laboratory ,
~ UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

SDT: A Database Schema Design and Translation Tool

Reference Manual

Draft 4.1

V.M. Markowitz and W. Fa~g

May 1991

U. C. Lawrence Berkeley Laboratory
Library, Berkeley

FOR REFERENCE
Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

0::1
1-'
0.

IQ

Ul
s
r
1-'-
o-n
'1 0
lll'O
'1'<
"<

r
0::1
r
I

co
,r:..
w

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain cmTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or. represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. ·qj

lB -
SDT

A DATABASE SCHEMA DESIGN AND TRANSLATION TOOL*

Reference Manual

DRAFf 4.1

Victor M. Markowitz t

Weiping Fang*

Data Management Group

Information and Computing Sciences Division

Lawrence Berkeley Laboratory

1 Cyclotron Road

Berkeley, CA 94720

May 1, 1991

Copyright © 1991 Lawrence Berkeley Laboratory

Do not redistribute without written permission from V. M. Markowitzt or A. Shoshani§

* Issued as Technical Report LBL--27843. This work is supported by the Office of Health and Environmental Research
Program and the Applied Mathematical Sciences Research Program, of the Office of Energy Research, U.S. Department of Ener
gy, under Contract DE-AC03-76SF00098.

t Author's E-mail address: V Markowitz@lbl.gov Office phone number:(415) 486-6835
:1: Author's E-mail address: W Fang@lbl.gov
§ E-mail address: A Shoshanf@lbl.gov Office phone number:(415) 486-5171

..

SDT 4.1 Abstract

ABSTRACT

In this document we describe a database schema design and translation tool called SDT. SDT takes as

input Extended Entity-Relationship (EER) schemas and generates relational database management

(RDBMS) schemas. SDT consists of three main parts:

1. the first part maps EER schemas into abstract relational schemas,

2. the second part maps abstract relational schemas into schema definitions for RDBMSs; and

3. the third part generates the metadata regarding EER schemas, relational schemas, and their mappings.

SDT 4.1 targets SYBASE 4.0, INGRES 6.3, and INFORMIX 4.0. - .

NEW FEATURES Compared with SDT 3.1, SDT 4.1 has the following additional features:

I. a graphical editor for specifying and modifying EER schemas, called ERDRAW, can be used in con

junction with SDT 4.1. ERDRAW is described in technical report LBL-PUB-3084.

2. SDT 4.1 generates procedures for verifying the consistency of an existing database with regard to a

set of referential integrity constraints associated with that database; such a verification is required

when databases are loaded using RDBMS provided bulk copy utilities that bypass the referential

integrity constraints, such as those of SYBASE 4.0 and INGRES 6.3.

3. Attributes and object-sets (entity-sets or relationship-sets) can be described using new description

fields.

4. SDT 4.1 allows the specification of hierarchically organized subject terms for object-sets, attributes,

and the association of subject terms with object-sets and attributes.

5. SDT 4.1 generates metadata describing EER schemas, relational schemas and their mappings; these

metadata is embedded in appropriate insert operations ready for loading into a predefined metadata

base.

SDT was implemented using C, LEX, and Y ACC on Sun 3 and Sun 4 workstations under Sun Unix

OS 4.0.3. and Sun Unix OS 4.1.

NOTE. This is a working, and therefore incomplete, document.

·Technical Report LBL-27843 May 1991

CONTENTS

I. Introduction .. 1
II Overview ... 2
2.1 Outline of SDT ... 2
2.2 An Ex:unple •...•••.•.••••...••..••..••..•..•..••.••.••.•••.•••.••••••••••••••••••••••.••••••••••••••••..••.•••.•••••..•••••••..••.•••...•••• 2

ill Input Formats ... 3

3.1 Input Fonnat for EER Schemas ··:············ 3
3.1 Input Fonnat for Abstract Relational Schemas ••.••••••••••••••••••••...•••••... 6

IV Execution ... 8
4.1 Commat1d••................•.•....•.......•...•.••.••••••••..•........••...••.••.••.•.•••••••••••••••••.................................. 8
4.2 Intennediary Output Files Generated by SDT for EER Input Schemas 8

4.2.1 Abstract Relational Schema .. 8

4.2.2 Abstract Relational Schema after Merging •..•.••••.••••.•••••.•••••••••••••.••••••••..•.••••..•••..•••••••..••.••....... 10

4.3 Output Files Generated by SDT •.••..••••••••••••.•••.••••••.••••..•••••••••...•••.•.•..••..•.••••••••..••••••••••••...•.••••.•••• 11
4.3.1 SYBASE/SQL Schema •..••.••.••••..•.•••••.••.••••••.•••..•••••.•.••••.•••...•••...••••••.•••••••.••••.•••...••••.•••...•..•..••. 11

4.3.2 INGRES/SQL Schema •••.•••••..••...•.•••.•.•••.••.••.••••.•.•.••••.•••.••••••.•••..•••.••.•••••.•.•.••..••••.••.•••••....•••...•• 18
4.3.3 INFORMIX/SQL Schema ••••••..•..•••••••••••..•.•••.••••.••••.•••.••.•.•••••.•••.••••.•••••••.••.••••..••••...•••••...•.••...•• 24

4.3.4 Referential Integrity Verification Procedures •.•••••••.•••••.•••••••••.•••••••••••.••••••••.•••..••••••••••.••..••...... 25

V The Metadatabase .•.••...••.•••..••••.••.•.•••.••.••.••.•••.•••.•••.••.•.•••••••••...••..••.•••••••.••••.•••.•••••.•.•••..•••••.•..•••... 30

5.1 Schemas and Mappings .. 30

5.2 Subject Tenns .•••••.....•••••...•.•.•••.••.••.•••••••••••••••••••.••..•••••••••••••••••••.•••.••••••••••••.••.•.••.••••••••.•••••••..•••.•• 30

5.3 The SDT File for Metaschema Definition •...••..•..••••.••.•••••.•••..••••.••..••..•.•..•.•••...••••.••••••.•.•.••.•...••.. 33

5.4 The SDT Metadata Output File ••••••..••.••.••.••..••••••.•••.•••••••••.•••••••••••••••••..•••.•••.••..•.••...••••....•.••••..•••• 35
VI The Program Structure of SDT •••..••..•.••.•••.•••.•..•••.••••..•••••••.••••••••••.••••.•••..•.•••.•.•••.••••••••••••••.•..••• 4 2

References •.•••.•.•••...•..•...•••...•.•...•.••..••.••.....•............•...•..•••...••...•••...•••.•••••••..••...••..•...•••...••••.•...••••...••• 45
A The Extended Entity-Relationship Model .•••..•..•••.•••..•••••••.•.••••.•••..••••.••.•••.•...•••••...••••...•.•.•.•..•.• 46

A.1 Fund:unental Concepts .. 46
A.1.1 Object -Sets •.••••.•.•••••.....•.•.••••.••..•.••.•••.••.••.••.••.••••.••••.•••••••••.•••••.••..•••••••..•••.••..••••••••••••.•.••.••...•.•. 46

A.1.2 Value-Sets •••.•.••...•••...••..••..•.•..••.••.•.•••..•..•.••..••..•••.•••..•••.•.•...••••.•••.•••..•••.•••.••••••••...•••.•.....•••...••.• 46

A.1.3 Entity-Relationship Diagr:un .. .
A.1.4 Entity-Identifier ...•••••.•••...•..••..•..••.••.•.........••••....•...•••...•.•.••.•.••••.•••.••••.••.••••.••.•.•••..•..••.•...••.....•••

A.1.5 Existence Dependency .. .

A.1.6 Association and Involvement Cardinality••......••..•••.....•..•••.•••.••••••••••••.••••••••..••••••..•••••..•••••

A.1. 7 Mandatory Involvement .. .

A.1.8 Role

A.2 Extended Concepts ••..••••••••.•.•..•...•.••..•..•..••...•••.•.•.•••.••••.••...••••.•.••..••..••.•••••.••.••..•••••.••••••.•.•••••..••••

A.2.1 Generalization ••••••..•••.•••..•.••••••••.••.••.•••••..•.•........••.••••.••••.••......•..••...••••••.•••.•••.•••••.•••..•...•••••...••.

A.2.2 Types of Generalization .. .
A.2.3 Extended Entity-Relationship Diagr:un

A.2.4 Role Revisited

47
47
48

48

49
49
50
50

50
51

51

A.2.5 Aggregation •••••••••.•.•...•••••.•••.••.•••.••••••.••.•••.••••..••.•••.•.•••.••••••••••.••••••••.•••.•••••.•••••.•••••••.•••••••••••••... 51

...

SDT 4.1 Introduction

I. INTRODUCTION

We describe in this document a database schema design and translation tool (SDT) developed at

Lawrence Berkeley Laboratory. The purpose of SDT is to provide a pc,werful and easy to use design

interface for non-technical users, and to increase the productivity of the database design process. This

entails insulating the schema designer from the underlying database management system (DBMS).

For the schema design interface we have chosen a version of the Extended Entity-Relationship

(EER) model for the specification of the structure of information systems. The EER model we use

includes, in addition to the basic construct of object (entity and relationship), both generalization and full

aggregation abstraction capabilities. Once an EER schema is specified, SDT is employed in order to gen

erate the corresponding relational DBMS (RDBMS) schema.

SDT consists of four main modules. The first SDT module takes EER schemas as input and gen

erates abstract relational schemas. This module consists of three parts: the canonical mapping of EER

schemas into normalized relational schemas; the assignment of names to relational attributes; and merg

ing relations. The canonical mapping generates relational schemas, including key and referential integrity

constraints. The high normal form (BCNF) of this schema ensures efficient update performance by the

RDBMS. Name assignment can be customized in order to meet the needs of the user (e.g. short names,

etc.). Finally, merging of relations reduces the number of relations, thus improving query performance.

The second SDT module takes abstract relational schemas as input and generates schema definitions

for specific RDBMS, such as SYBASE, INGRES, and INFORMIX. For an RDBMS that supports the

specification of triggers , such as SYBASE, or rules, suchas INGRES, the main part of this module con

sists of generating the appropriate insert, delete, and update triggers or rules corresponding to the referen

tial integrity constraints associated with the abstract relational schema.

The third SDT module generates procedures for verifying the consistency of a database with regard

to a set of referential integrity constraints. Finally, the fourth SDT module generates metadata describing

the EER and relational schemas and their mappings; these metadata is embedded in appropriate insert

operations ready for loading into a predefined metadatabase.

Various research results related to the development of SDT are presented in references [3] to [9].

Most of the algorithms underlying SDT are described in [9].

Technical Report LBL-27843 May 1991 1

SDT 4.1 Overview

ll. OVERVIEW

2.1 Outline of SOT

Input : EER schema.

Output SQL database definition for SYBASE 4.0, INGRES 6.3, or INFORMIX 4.0.

Steps : 1. Map the EER schema into an equivalent abstract relational schema.

1.1 Check the correctness of the input EER schema; incorrect schemas are rejected.

1.2 Map the EER schema into an abstract relational schema, with relations and relational

attributes having symbolic (internal) names.

1.3 Assign (externally meaningful) names to relations and relational attributes.

1.4 Merge relations in the abstract relational schema.

2. Translate the abstract relational schema into database definition statements.

3. Generate procedures for verifying the consistency of a database· with regard to the set of

referential integrity constraints associated with the abstract relational schema associated

with that database.

4. Generate the metadata information regarding the EER and relational schemas.

2.2 An Example

For illustration purposes, we use the EER schema represented in figure 2.1: PERSON, COURSE, and

DEPARTMENT are independent entity-sets; FACULTY is a specialization of PERSON, OFFER is a

relationship-set representing courses offered by departments, such that a course is offered by at most one

department; and TEACH is a relationship-set representing the assignment of faculty members to teach

courses offered by departments, such that a course is taught by at most one faculty member.

Figure 2.1 An Extended Entity-Relationship Schema.

Technical Report LBL-27843 May 1991 2

, ..

,..

SDT 4.1 Input Formats

ITI. INPUT FORMATS

3.1 Input Format for EER Schemas (Figure 3.1)

The syntax for specifying EER schemas is given in figure 3.1. A BNF-like notation is used in order

to describe this syntax. Words in italic lower case letters denote non-terminals, while words in italic

upper case letters and roman lower case letters denote terminals. Single-quoted characters are terminal

delimiters whereas the rest are meta characters.

Notes:

1. A number must be in the syntax for a constant integer in C.

2. size is an upper bound on the number of objects in EER schema.

3. A domain must be in the form accepted by SYBASE/SQL, INGRES/SQL, or

INFORMIX/SQ;!--. respectively; the correct specification of the domain is the responsibil

ity of the user.

4. An identifier is a letter or an underscore('_'), possibly followed by a combined string of

letters, underscores, and digits. Keywords are reserved identifiers.

5. The default for the null_rule when it is not specified, is NO NULLS.

6. For arc_type : /D, /SA, and /SA*, represent the arc types exactly as they appear in the

EER schema; ONE represents a relationship cardinality of one and M represents a rela

tionship cardinality of many; D 1 represents both a relationship cardinality of one and

mandatory involvement, and DM represents both a relationship cardinality of many and

mandatory involvement.

Technical Report LBL-27843 May 1991 3

SDT 4.1 Input Formats

specification ::=size object _subject _list

size ::=number

object_subject_list ::= object_subject I object_subject_list object_suhject

object subject ::=object I subject

object ::= obj_head obj_tail ';'

obj_head ::=obj_name '(' obj_type ')'

obj_name ::=identifier

obj_type ::=entity I relationship

entity ::= E I ENTITY

relationship ::= R I RELATIONSHIP

obj_tail ::=attr_clause arc_clause descr clause

attr _ clau..ve ::=A TTRS ' :' attr _list I empty string

attr _list ::= attr I attr _list ',' attr

attr ::=attr_name '(' attr_type ',' descr ',' attr_subjects ','domain null_rule')'

attr name ::=identifier

attr _type ::= ID I empty string

attr_subjects ::=subj_name I attr_subjects subj_name

domain ::= data_type I data_type '('number')'

data_type ::=identifier

null _rule ::=NO NUlLS I NUlLS ALLOWED I empty string

arc _clause ::=ARCS ':' arc _list I empty string

arc _list ::=arc I arc _list ',' arc

arc ::=obj_name '(' arc_type ','role')' I subj_name '(' ST ')'

arc type ::=ID liSA liSA* I ONE I M I D 1 I DM

role ::=identifier I empty string

descr clause ::= DESCR ':' descr

descr : := ""text""

subject ::= subj_head subj_tail ';'

subj_head ::= subj_name '(' subj_type ')'

subj_name ::=identifier

subj_type ::=SO I SA

subj_tail ::=broader _terms descr clause

broader _terms ::=ARCS ':' subject_list I empty string

subject_list ::=subj_name (!SA,) I subject_list ',' subj_name (!SA,)

Figure 3.1 The Syntax for EER Schemas.

Technical Report LBL-27843 May 1991 4

..

...

SDT 4.1 Input Formats

For example, the input file for the EER schema shown in figure 2.1, following the syntax given in

figure 3.1, is given below:

8

PERSON (E)

ATIRS: SSN(ID, "Social Security Number; Used as unique identifier.",, int NO NULLS),

NAME(, "First and Last Name", , char(50) NULLS ALLOWED)

DESCR: '"';

FACULTY (E)

A TIRS: RANK(. "Rank of faculty members", , char(25) NULLS ALLOWED)

ARCS: PERSON(ISA,), Course_Teaching(ST,)

DESCR: "Faculty members";

DEP ARTMENT(E)

A TIRS: NAME(ID, "Name of Department", , char(30) NO NULLS)

ARCS: Course_Offering(ST,)

DESCR: "";

COURSE(E)

A TIRS: NUMBER(ID, "Course number", , int NO NULLS)

ARCS: Course_Offering(ST,)

DESCR: "";

TEACH(R)

ARCS: FACULTY(ONE,), OFFER(M,), Course_Teaching(ST,)

DESCR: "Assignment of faculty members to teach offered courses";

OFFER(R)

ARCS: DEPARTMENT(ONE,), COURSE(M,), Course_Offering(ST,), Course_Teaching(ST,)

DESCR: "Offering of courses by departments";

Course_Offering (SO)

DESCR: "";

Course_ Teaching (SO)

DESCR: "";

Technical Report LBL-27843 May 1991 5

SDT 4.1 Input Formats

3.2 Input Format for Abstract Relational Schemas (Figure 3.2)

The syntax of the language used for specifying input abstract relational schemas is given in figure 3.2. A

BNF-like notation is used in order to describe this syntax. Non-terminals and terminals are denoted as

specification ::=size relations

size ::=number

relations ::=relation I relations relation

relation ::=RELATION relation name

'(' attributes primary_ key alternate_ keys foreign _keys ')'

relation name ::=identifier

attributes ::=attribute I attributes attribute

attribute ::=attribute name domain null rule

attribute name ::=identifier

domain ::= data_type I data_type '('number')'

data_type ::=identifier

null _rule ::=NO NULLS I NULLS ALWWED I empty string

primary_key ::=PRIMARY KEY'(' attribute_names ')'

attribute_names ::= attribute_name I attribute_names ',' attribute_name

alternate_keys ::=empty string I alternate_keys alternate_key

alternate_key ::=ALTERNATE KEY'(' attribute_names ')'

foreign_keys ::=empty string I foreign_keys foreign_key

foreign_key ::=FOREIGN KEY'(' attribute_names ')'

REFERENCES relation name

INSERT option

DELETE option

option ::=RESTRICTED

Figure 3.2 Syntax for Abstract Relational Schemas.

Technical Report LBL-27843 May 1991 6

SDT 4.1 Input Formats

above. Notes 1 to 5 above also apply for this definition.

For example, the abstract relational schema below follows the syntax given in figure 3.2:

3
RELATION DEPARTMENT (

NAME char(50) NO NULLS
PRIMARY KEY (NAME)

)
RELATION COURSE (

)

NUMBER int NO NULLS
PRIMARY KEY (NUMBER)

RELATION OFFER (

)

D~PARTMENT_NAME char(30) NO NULLS
COURSE_NUMEBR int NO NULLS
PRIMARY KEY (COURSE_NUMEBR)
FOREIGN KEY (DEPRTMENT_NAME)

REFERENCES DEPARTMENT
INSERT RESTRICTED
DELETE RESTRICTED

FOREIGN KEY (COURSE_NUMBER)
REFERENCES COURSE

INSERT RESTRICTED
DELETE RESTRICTED

Technical Report LBL-27843 May 1991 ·7

SDT 4.1 Execution

IV. EXECUTION

4.1 Command

sdt [-sT] [-eX] [-mY] [-tZ] file

where

T can be either e (for EER) or r (for relational), and specifies the type of input schema for

SDT; parameters X, Y, and Z below are ignored when T = r.
If the -s option is not specified, EER schema is assumed by default.

X can be either a (for association) or i (for involvement) and specifies the type of relationship

cardinality used in the EER schema~

If the -c option is not specified, association cardinality is assumed by default.

Y can be either r (for restricted) or n (for no merging) and specifies the type of merging to be

performed.

If the -m option is not specified, the no merging is assumed by default.

Z can be either s (for SYBASE), i (for INGRES 6.3), or x (for INFORMIX 4.0), and specifies

the target RDBMS.

If the -t option is not specified, SYBASE is assumed by default.

file is the input file containing (1) an EER schema specification following the syntax given in

Figure 3.1, or (2) an abstract relational schema specification following the syntax given in

Figure 3.2.

4.2 Intermediary Output Files Generated by SDT for EER Input Schemas

4.2.1 Abstract Relational Schema

This file contains the abstract relational schema before merging. The file name consists of the name

of the file containing the input EER schema, followed by '' .r''.

For example, the abstract relational schema generated for the EER schema of figure 2.1, when no

merging is requested, is given below. Note that names are assigned according to a Name Assignment algo

rithm selected by us, and which is designed to assign relations and relational attributes names as close as

possible to the names ofEER object-sets and attributes.

Technical Report LBL-27843 May 1991 8

SDT 4.1

RELATION PERSON(

)

SSN int NO NULLS
NAME char (50) ~LS ALLOWED
PRIMARY KEY (SSN)

RELATION FACULTY (
SSN int NO NULLS

)

RANK char (20) NO ~LS
PRIMARY KEY (SSN)
FOREIGN KEY (SSN)

REFERENCES PERSON
INSERT RES1RICTED
DELETE RES1RICTED

RELATION DEPARTMENT(
NAME char(30) NO NULLS
PRIMARY KEY (NAME)

)
RELATION COURSE (

)

NUMBER int NO NULLS
PRIMARY KEY (NUMBER)

RELATION OFFER (

)

DEPARTMENT_NAME char(30) NO NULLS
COURSE_NUMBER int NO NULLS
PRIMARY KEY (COURSE_NUMBER)
FOREIGN KEY (DEPARTMENT_NAME)

REFERENCES DEPARTMENT
INSERT RES1RICTED
DELETE RES1RICTED

FOREIGN KEY (COURSE_NUMBER)
REFERENCES COURSE

·INSERT RES1RICTED
DELETE RES1RICTED

RELATION TEACH (

)

FACULTY _SSN int NO NULLS
COURSE_NUMBER int NO NULLS
PRIMARY KEY (COURSE_NUMBER)
FOREIGN KEY (FACULTY _SSN)

REFERENCES FACULTY
INSERT RES1RICTED
DELETE RES1RICTED

FOREIGN KEY (COURSE_NUMBER)
REFERENCES OFFER

INSERT RES1RICTED
DELETE RES1RICTED

Technical Report LBL-27843 May 1991

Execution

9

SDT 4.1 Execution

4.2.2 Abstract Relational Schema after Merging

This file contains the abstract relational schema after merging relations, if such a merging is

requested. If merging is done at all, a file with name being the input EER schema, followed by '' .m' '.

For example, the abstract relational schema generated for the EER schema of figure 2.1, if merging

is requested, is given below. Note that SDT first finds the relations that can be merged and then performs

their merging.

Merged Relations : course, offer, teach

RELATION PERSON (

)

SSN int NO NULLS
NAME char (50) NULLS ALLOWED
PRIMARY KEY (SSN)

RELATION FACULTY (
SSN int NO NULLS

)

RANK char (20) NO NULLS
PRIMARY KEY (SSN)
FOREIGN KEY (SSN)

REFERENCES PERSON
INSERT RESTRICTED
DELETE RESTRICTED

RELATION DEPARTMENT (
NAME char(30) NO NULLS
PRIMARY KEY (NAME)

)
RELATION COURSE(

)

FACULTY _SSN int NULLS ALLOWED
DEPARTMENT_NAME char (30) NULLS ALLOWED
NUMBER int NO NULLS
PRIMARY KEY (NUMBER) ·

FOREIGN KEY (FACULTY _SSN)
REFERENCES FACULTY

INSERT RESTRICTED
DELETE RESTRICTED

FOREIGN KEY (DEPARTMENT_NAME)
REFERENCES DEPARTMENT

INSERT RESTRICTED
DELETE RESTRICTED

Technical Report LBL-27843 May 1991 10

SDT 4.1 Execution

4.3 Output Files Generated by SDT

The database definition generated by SDT is contained in three files consisting of (1) the table (rela

tion) definitions; (2) the index (key) definitions; and (3) the referential integrity constraints in declarative

or procedural fonn. Two additional files contain (4) the procedures for vt:rifying the referential integrity

of an existing database, and (5) the metadata loading operations. The five file names containing the SDT

output, consist of the name of the file containing the input EER schema, followed by (1)

"_relations.[Z]", (2) "_keys.[Z]", (3) "_refint.[Z]", (4) "_check.[Z]", and (5) "_meta.[Z]", respec

tively, where Z is either s (for SYBASE), i (for INGRES), or x (for INFORMIX).

Note : for INFORMIX only three files are currently generated, namely (1), (2), and (5).

The files generated by SDT can be loaded together. However, if data loading utilities provided by

RDBMSs (such as the bcp utilitY of SYBASE) are going to be employed for loading data into the data

base, then for efficiency reasons it is preferable to load only the table definitions, then load the data into

the database, and then load the index and referential integrity definitions (for more details consult the

manuals of the RDBMS used).

4.3.1 SYBASE/SQL Schema

The SYBASE database definition is contained in three files consisting of (1) the table (relation)

definitions; (2) the index (key) definitions; and (3) the trigger (referential integrity) procedures. , The file

names consist of the name of the file containing the input EER schema, followed by (1) "_relations.s",

(2) "_keys.s", and (3) "_~fint.s", respectively. The files are in ready-to-be-input-to-SYBASE fonn.

Examples for these files are given below.

The SYBASE schema definition corresponding to the merged abstract relational schema in section

4.2.2 above is given below:

File ExSybase_relations.s

create database ExSybase
go
use ExS ybase
go
create table PERSON (

)

SSN int not null,
NAME char(SO) null

create table FACULTY (
SSN int not null,
RANK char(25) null

)

Technical Report LBL-27843 May 1991 11

SDT 4.1

create table DEPARTMENT (
NAME char(30) not null

t
create table COURSE (

)
go
quit

File ExSybase_keys.s:

FACULTY_SSN int null,
DEPARTMENT_NAME char(30) null,
NUMBER int not null

use ExS ybase
go
create unique clustered index indexPERSON on PERSON (SSN)
create unique clustered index indexFACULTY on FACULTY (SSN)
create unique clustered index indexDEPARTMENT on DEPARTMENT (NAME)
create unique clustered index indexCOURSE on COURSE (NUMBER)
go
sp_primarykey PERSON, SSN
go
sp_primarykey FACULTY, SSN
go
sp_primarykey DEPARTMENT, NAME
go
sp_primarykey COURSE, NUMBER
go
sp_foreignkey FACULTY, PERSON, SSN
go
sp_foreignkeyCOURSE;FACULTY,FACULTY_SSN
go
sp_foreignkeyCOURSE, DEPARTMENT, DEPARTMENT_NAME
go
quit

File ExSybase _refint.s :

use ExSybase
go
create trigger deletePERSON on PERSON
for delete as
begin

declare @delFACULTY int
select @de IF ACUL TY = count(*) from deleted, FACULTY

where deleted.SSN = FACULTY.SSN
if@delFACULTY > 0
begin

raiserror 70002 "Cannot delete from PERSON because of'
print "existing reference from FACULTY"
select * from deleted

where exists

Technical Report LBL-27843 May 1991

Execution

12

SDTA.l

end
go

end

(select* from FACULTY
where deleted.SSN = FACULTY.SSN)

rollback transaction

create trigger updatePERSON on PERSON
for update as

begin
declare @row int, @delFACULTY int
select @row = @@rowcount
if update (SSN)
begin

end
end
go

select @delFACULTY =count(*) from FACULTY
where exists

(select * from deleted
where deleted.SSN = FACULTY.SSN)

and not exists
(select * from inserted
where inserted.SSN = FACULTY.SSN)

ifO !=@delFACULTY
begin

end

raiserror 70003 "Cannot update PERSON because of'
print "existing reference from FACULTY"
select * from deleted

where exists
(select* from FACULTY
where deleted.SSN = FACULTY.SSN)

and not exists
(select * from inserted
where deleted.SSN = inserted.SSN)

rollback transaction

create trigger insertFACULTY on FACULTY
for insert as
begin

declare @row int, @ insPERSON int, @nullPERSON int
select @row = @@rowcount
select @nullPERSON = 0
select @insPERSON =count(*) from inserted, PERSON

where. inserted.SSN = PERSON.SSN
if @nullPERSON + @insPERSON != 1 * @row
begin

raiserror 70001 "Cannot insert into FACULTY because of'
print "missing reference to PERSON"
select * from inserted

where not exists
(select * from PERSON

Technical Report LBL-27843 May 1991

Execution

13

SDT 4.1

end
go

end

where inserted.SSN = PERSON.SSN)
rollback transaction

create trigger deleteFACULTY on FACULTY
for delete as
begin

end
go

declare @delCOURSE int
select @del COURSE = count(*) from deleted, COURSE

where deleted.SSN = COURSE.FACUL TY _SSN
if @delCOURSE > 0
begin

end

raiserror 70002 "Cannot delete from FACULTY because or'
print "existing reference from COURSE"
select * from deleted

where exists
(select * from COURSE
where deleted.SSN = COURSE.F ACUL TY _SSN)

rollback transaction

create trigger updateFACULTY on FACULTY
for update as
begin
declare @row int, @delCOURSE int, @insPERSON int, @nullPERSON int
select @row = @@rowcount
if update (SSN)
begin

select @del COURSE = count (*) from COURSE
where exists

(select * from deleted
where deleted.SSN = COURSE.FACULTY_SSN)

and not exists
(select * from inserted
where inserted.SSN = COURSE.FACULTY _SSN)

select @nullPERSON = 0
select @insPERSON =count(*) from inserted, PERSON

where inserted.SSN = PERSON.SSN
if @nullPERSON + @insPERSON
!= 1 *@row + @delCOURSE
begin

raiserror 70003 "Cannot update FACULTY because or'
if @delCOURSE != 0
begin

print "existing reference from COURSE"
select * from deleted

where exists
(select * from COURSE

Execution

where deleted.SSN = COURSE.FACULTY_SSN)

Technical Report LBL-27843 May 1991 14

...

SDT 4.1

end
end
go

end

and not exists
(select * from inserted
where deleted.SSN = inserted.SSN)

end
if @nullPERSON + @insPERSON !=@row
begin

end

print "missing reference to PERSON"
select * from inserted

where not exists
(select * from PERSON
where inserted.SSN = PERSON.SSN)

rollback transaction

create trigger deleteDEPARTMENT on DEPARTMENT
for delete as
begin

declare @delCOURSE int
select @delCOURSE = count(*) from deleted, COURSE

where deleted.NAME = COURSE.DEPARTMENT_NAME
if @delCOURSE > 0
begin

raiserror 70002 "Cannot delete from DEPARTMENT because of'
print "existing reference from COURSE"
select * from deleted

where exists
(select * from COURSE

Execution

where deleted.NAME = COURSE.DEPARTMENT_NAME)
rollback transaction

end
go

end

create trigger updateDEPARTMENTon DEPARTMENT
for update as
begin
declare @row int, @delCOURSE int
select @row = @@rowcount
if update (NAME)
begin

select @del COURSE = count (*) from COURSE
where exists

(select * from deleted
where deleted.NAME = COURSE.DEPARTMENT_NAME)

and not exists
(select * from inserted
where inserted.NAME = COURSE.DEPARTMENT_NAME)

if 0 != @delCOURSE
begin

Technical Report LBL-27843 May 1991 15

SDT 4.1

end
end
go

raiserror 70003 "Cannot update DEPARTMENT because of'
print "existing reference from COURSE"

select * from deleted
where exists

(select * from COURSE

Execution

where deleted.NAME = COURSE.DEPARTMENT_NAME)
and not exists

end

(select * from inserted
where deleted.NAME = inserted.NAME)

rollback transaction

create trigger insertCOURSE on COURSE
for insert as
begin

begin

end

end

declare @row int, @insFACUL TY int,
@nullFACULTY int,@insDEPARTMENT int,@nullDEPARTMENT int

select @row = @@rowcount
select @nullFACUL TY = count(*) from inserted

where inserted.FACUL TY _SSN = null
select @insFACUL TY = count(*) from inserted, FACULTY

where inserted.FACUL TY _SSN = FACUL TY.SSN
select @nullDEP ARTMENT = count(*) from inserted

where inserted.DEPARTMENT_NAME =null
select @insDEPARTMENT =count(*) from inserted, DEPARTMENT

where inserted.DEP ARTMENT_NAME = DEP ARTMENT.NAME
if@nullFACULTY +@insFACULTY +
@nullDEPARTMENT + @insDEPARTMENT != 2 *@row
begin

end

raiserror 70001 '.'Cannot insert into COURSE because of'
if@nullFACULTY +@insFACULTY !=@row

print "missing reference to FACULTY"
select * from inserted

where not exists
(select* from FACULTY
where inserted.FACULTY_SSN = FACULTY.SSN)

if @nullDEP ARTMENT + @insDEP ARTMENT !=@row
begin

end

print "missing reference to DEPARTMENT"
select * from inserted

where not exists
(select* from DEPARTMENT
where inserted.DEPARTMENT_NAME=DEPARTMENT.NAME)

rollback transaction

Technical Report LBL-27843 May 1991 16

SDT4I

go
create trigger updateCOURSE on COURSE

for update as
begin
declare @row int, @insFACULTY int, @nullFACULTY int,

@insDEPARTMENT int, @nullDEPARTMENT int
select @row = @@rowcount -
if update (NUMBER) or

begin

update (FACULTY _SSN) or
update (DEPARTMENT_NAME)

select @nullF ACUL TY = count(*) from inserted
where inserted.FACULTY_SSN =null

select @insFACUL TY = count(*) from inserted, FACULTY
where inserted.FACUL TY _SSN = FACUL TY.SSN

select @nullDEPARTMENT= count(*) from inserted
where inserted.DEPARTMENT_NAME =null

select @insDEPARTMENT =count(*) from inserted, DEPARTMENT
where inserted.DEPARTMENT_NAME = DEPARTMENT.NAME

if@nullFACULTY +@insFACULTY
+ @nullDEPARTMENT + @insDEPARTMENT
!= 2 *@row
begin

raiserror 70003 "Cannot update COURSE because of'
if@nullFACULTY +@insFACULTY !=@row
begin

print "missing reference to FACULTY"
select * from inserted

where not exists
(select* from FACULTY

Execution

where inserted.FACULTY_SSN = FACULTY.SSN)

end
end
go
quit

end

end

if @nullDEPARTMENT + @insDEPARTMENT !=@row
begin

end

print "missing reference to DEPARTMENT"
select * from inserted

where not exists
(select* from DEPARTMENT

where inserted.DEPARTMENT_NAME=DEPARTMENT.NAME)

rollback transaction

Technical Report LBL-27843 May 1991 17

SDT 4.1 Execution

4.3.2 INGRES/SQL Schema

The INGRES database definition is contained in three files consisting (1) the table (relation)

definitions; (2) the index (key) definitions; and (3) the trigger (referential integrity) procedures. The file

names consist of the name of the file containing the input EER schema, followed by (1) "_relations.i",

(2) "_keys.i", and (3) "_refint.i", respectively. The files are in ready-to-be-input-to-INGRES form.

Examples for these files are given below.

The INGRES schema definition corresponding to the merged abstract relational schema in section

4.2.2 above is given below:

File Exl ngres _relations .i

CREATE TABLE PERSON(

);

SSN integer NOT NULL,
NAME char(SO) WITH NULL

CREATE TABLE FACULTY{

);

SSN integer NOT NULL,
RANK char(25) WITH NULL

CREATE TABLE DEPARTMENT(
NAME char(30) NOT NULL

);
CREATE TABLE COURSE(

);
\go
\quit

File Exlngres_keys.i:

FACULTY _SSN integer WITH NULL,
DEPARTMENT_NAME char(30) WITH NULL,

NUMBER integer NOT NULL

CREATE UNIQUE INDEX idxPERSON on PERSON (SSN);
CREATE UNIQUE INDEX idxFACULTY on FACULTY (SSN);
CREATE UNIQUE INDEX idxDEPARTIMENT on DEPARTMENT (NAME);
CREATE UNIQUE INDEX idxCOURSE on COURSE (NUMBER);

\go
\quit

Technical Report LBL-27843 May 1991 18

.SDT 4.1

File Exlngres_refint.i ·= ·

CREATE PROCEDURE p_delPERSON (o_SSN integer, o_NAME char(50)) AS

DECLARE
msg V ARCHAR(256) NOT NULL; check_ val INTEGER;

BEGIN

END;

\go

SELECT COUNT(*) INTO :check_ val FROM FACULTY
WHERE SSN = :o_SSN;

IF check_ val > 0 THEN

END IF;

msg ='Error 1: FACULTY"'+ :o_SSN +'"found.';
RAISE ERROR 1 :msg;
RETURN;

msg = 'PERSON deleted' +
'(SSN = "' + :o_SSN +'",NAME='"+ :o_NAME + '")';

MESSAGE :msg;

CREATE RULE r_delPERSON AFTER DELETE FROM PERSON
EXECUTE PROCEDURE p_delPERSON

(o_SSN = old.SSN, o_NAME = old.NAME);
\go .

CREATE PROCEDURE p_updPERSON (o_SSN integer, o_NAME char(SO),

n_SSN integer, n_NAME char(50)) AS
DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

SELECT COUNT(*) INTO :check_ val FROM FACULTY
WHERE SSN = :o_SSN;

IF check_ val > 0 THEN

END IF;

msg ='Error 1: FACULTY'"+ :o_SSN +'"found.';
RAISE ERROR 1 :msg;
RETURN;

msg = 'PERSON updated' +
'(SSN = "' + :n_SSN +'",NAME="'+ :n_NAME + '")';

MESSAGE :msg;

CREATE RUL.E r_updPERSON AFTER UPDATE OF PERSON
EXECUTE PROCEDVR.E p_updPERSON

\go

. (o_SSN = old.SSN, o_NAME = old.NAME,
n_SSN = new.SSN, n_NAME = new.NAME);

Technical Report LBL-27843 May 1991

Execution

19

SDT 4.1

CREATE PROCEDURE p_insFACULTY (n_SSN integer, n_RANK char(25)) AS
DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

IF n_SSN IS NOT NULL THEN

ELSE

END IF;

SELECT COUNT(*) INTO :check_ val FROM PERSON
WHERE SSN = :n_SSN;

IF check_ val= 0 THEN

END IF;

msg = 'Error 1: PERSON"' + :n_SSN + '" not found.';
RAISE ERROR 1 :msg;
RETURN;

msg ='Error 2: FACULTY: nulls in SSN not allowed.';
RAISE ERROR 2 :msg;
RETURN;

msg ='FACULTY inserted'+
'(SSN = "' + :n_SSN +"',RANK='"+ :n_RANK + "')';

MESSAGE :msg;

CREATE RULE r_insFACULTY AFTER INSERT INTO FACULTY
EXECUTE PROCEDURE p_insFACULTY

{n_SSN = new.SSN, n_RANK = new.RANK);
\go
CREATE PROCEDURE p_delFACULTY (o_SSN integer, o_RANK char(25)) AS
DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

SELECT COUNT(*) INTO :check_ val FROM COURSE
WHERE FACULTY_SSN = :o_SSN;

IF check_ val > 0 THEN

END IF;

msg ='Error 1: COURSE'"+ :o_SSN +"'found.';
RAISE ERROR 1 :msg;
RETURN;

msg = 'FACULTY deleted' +
'(SSN = '" + :o_SSN +"',RANK='"+ :o_RANK + "')';

MESSAGE :msg;

CREATE RULE r_delFACUL TY AFTER DELETE FROM FACULTY
EXECUTE PROCEDURE p_delFACULTY

(o_SSN = old.SSN, o_RANK = old.RANK);
\go

Technical Report LBL-27843 May 1991

Execution

20

SDT 4.1 · ·

CREATE PROCEDURE p_updFACULTY (o_SSN integer, o_RANK char(25),
n_SSN integer, n_RANK char(25)) AS

DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

SELECT COUNT(*) INTO :check_ val FROM COURSE
WHERE FACULTY _SSN = :o_SSN;

IF check_ val > 0 THEN

END IF;

msg = 'Error 1: COURSE "' + :o_SSN + '"found.';
RAISE ERROR 1 :msg;
RETURN;

IF n_SSN IS NOT NULL THEN

ELSE

END IF;

SELECT COUNT(*) INTO :check_ val FROM PERSON
WHERE SSN = :n_SSN;

IF check_ val = 0 THEN

END IF;

msg ='Error 1: PERSON"'+ :n_SSN +'"not found;';
RAISE ERROR 1 :msg;
RETURN;

msg ='Error 2: FACULTY: nulls in SSN not allowed.';
RAISE ERROR 2 :msg;
RETURN;

msg= 'FACULTY updated'+
'(SSN = "' + :n_SSN +'",RANK="'+ :n_RANK + "')';

MESSAGE :msg;

CREATERULEr_updFACULTY AFTER UPDATEOFFACULTY
EXECUTEPROCEDUREp_updFACULTY

(o_SSN = old.SSN, o_RANK = old.RANK,
n_SSN = new.SSN, n_RANK = new.RANK);

\go
CREATE PROCEDURE p_delDEPARTMENT (o_NAME char(30)) AS

DECLARE

BEGIN

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

Technical Report LBL-27843 May 1991

Execution

21

SDT 4.1

MESSAGE :msg;
END;
\go
CREATE RULE r_delDEPARTMENT AFfER DELETE FROM DEPARTMENT

EXECUTE PROCEDURE p_delDEP ARTMENT
(o_NAME = old.NAME);

\go
CREATE PROCEDURE p_updDEPARTMENT (o_NAME char(30),

n_NAME char(30)) AS
DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

SELECT COUNT(*) INTO :check_ val FROM COURSE
WHERE DEPARTMENT_NAME = :o_NAME;

IF check_ val > 0 THEN

END IF;

msg = 'Error 1: COURSE'" + :o_NAME + '" found.';
RAISE ERROR 1 :msg;
RETURN;

msg= 'DEPARTMENT updated'+
'(NAME='" + :n_NAME + '")';

MESSAGE :msg;

CREATERULEr_updDEPARTMENT AFIER UPDATEOFDEPARTMENT
EXECUTE PROCEDURE p_updDEPARTMENT

(o_NAME = old.NAME,
n_NAME = new.NAME);

\go
CREATE PROCEDURE p_insCOURSE

Execution

(n_FACULTY _SSN integer, n_DEPARTMENT_NAME char(30), n_NUMBER integer) AS
DECLARE

BEGIN

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

IF n_FACUL TY _SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_ val FROM FACULTY

WHERE SSN = :n_FACULTY _SSN;
IF check_ val = 0 THEN

END IF;

msg ='Error 1: FACULTY'"+ :n_FACULTY_SSN +'"not found.';
RAISE ERROR 1 :msg;
RETURN;

END IF;
IFn_DEPARTMENT_NAMEISNOTNULLTHEN

SELECT COUNT(*) INTO :check_ val FROM DEPARTMENT
WHERE NAME= :n_DEPARTMENT_NAME;

IF check_ val= 0 THEN
msg = 'Error 2: DEPARTMENT"' + :n_DEPARTMENT_NAME + '"not found.';
RAISE ERROR 2 :msg;

Technical Report LBL-27843 May 1991 22

SDT 4.1

END;

\go

RETURN;
END IF;

END IF;
msg ='COURSE inserted'+

Execution

'(FACULTY_SSN="' + :n_FACULTY_SSN + "', DEPARTMENT_NAME= "'
+ :n_DEPARTMENT_NAME +'",NUMBER='"+ :n_NUMBER + "')';

MESSAGE :msg;

CREATE RULE r_insCOURSE AFTER INSERT INTO COURSE

\go

EXECUTE PROCEDURE p_insCOURSE (n_FACULTY _SSN = new.FACUL TY _SSN,
n_DEPARTMENT_NAME = new.DEPARTMENT_NAME, n_NUMBER = new.NUMBER);

CREATE PROCEDURE p_updCOURSE
{o_FACULTY_SSN integer, o_DEPARTMENT_NAME char(30), o_NUMBER integer,
n_FACULTY_SSN integer, n_DEPARTMENT_NAME char(30), n_NUMBER integer) AS

DECLARE

BEGIN

END;
\go

msg V ARCHAR(256) NOT NULL;
check_ val INTEGER;

IF n_FACUL TY _SSN IS NOT NULL THEN
SELECT COUNT(*) INTO :check_ val FROM FACULTY

WHERE SSN = :n_FACULTY _SSN;
IF check_ val= 0 THEN

END IF;
END IF;

msg= 'Error 1: FACULTY'"+ :n_FACULTY_SSN +'"not found.';
RAISE ERROR 1 :msg;
RETURN;

IF n_DEP ARTMENT_NAME IS NOT NULL THEN
SELECT COUNT(*) INTO :check_ val FROM DEPARTMENT

WHERE NAME= :n_DEPARTMENT_NAME;

IF check_ val = 0 THEN

END IF;
END IF;

msg ='Error 1: DEPARTMENT"'+ :n_DEPARTMENT_NAME +'"not found.';
RAISE ERROR 1 :msg;
RETURN;

msg = 'COURSE updated' +
'(FACULTY_SSN = "' + :n_FACULTY_SSN + '", DEPARTMENT_NAME = "'

+ :n_DEPARTMENT_NAME +'",NUMBER="'+ :n_NUMBER + '")';
MESSAGE :msg;

CREATE RULE r_updCOURSE AFTER UPDATE OF COURSE

\go
'quit

EXECUTE PROCEDURE p_updCOURSE (o_FACULTY _SSN = old.FACULTY _SSN,
o_DEPARTMENT_NAME = old.DEPARTMENT_NAME,
o_NUMBER = old.NUMBER, n_FACUL TY _SSN = new.FACULTY _SSN,
n_DEPARTMENT_NAME = new.DEPARTMENT_NAME, n_NUMBER = new.NUMBER);

Technical Report LBL-27843 May 1991. 23

SDT 4.1 Execution

4.3.3 INFORMIX/SQL Schema

The INFORMIX database definition is contained in two files consisting of (1) the table (relation)

definitions; and (2) the index (key) definitions. An additional file contains the (3) metadata loading opera

tions. The file names consist of the name of the file containing the input EER schema, followed by (1)

"_relations.i", (2) "_keys.i", and (3) "_meta.x", respectively. The files are in ready-to-be-input-to

INFORMIX form. Examples of the files containing the table and index definitions are given below.

The INFORMIX schema definition corresponding to the merged abstract relational schema in sec

tion 4.2.2 above is given below:

File Exlnformix_relations.x

create database Exlnformix;
database Exlnformix;

create table PERSON (
SSN int not null,
NAME char(50)

);
create table FACULTY (

SSN int not null,
RANK char(25)

);
create table DEPARTMENT (

NAME char(30) not null
);
create table COURSE (

FACULTY _SSN int,
DEPARTMENT_NAME char(30),
NUMBER int not null

);
close Exlnformix;

File Exlnformix keys.x:

database Exlnformix;
create unique cluster index indexPERSON on PERSON (SSN);
create unique cluster index indexFACULTY on FACULTY (SSN);
create unique cluster index indexDEPARTMENT on DEPARTMENT (NAME);
create unique cluster index indexCOURSE on COURSE (NUMBER);
close Exlnformix;

Technical Report LBL-27843 May 1991 24

SDT 4.1' Execution

4.3.4 Referential Integrity Verification Procedures

SDT generates procedures for verifying the referential integrity of an existing database. For every

relation (table) in a database, a procedure for verifying the integrity of data in that relation is generated;

the name of the procedure is of the fonn check _[T) where T is the name of the corresponding relation. For

verifying the integrity of an en?re database, a global procedure called check_all is provided.

4.3.4.1 Verification Procedures for SYBASE

The procedures for verifying the referential integrity of an existing SYBASE database defined as in

section 4.3.1 above are given below:

File ExSybase_check.s :

use ExSybase
go
create procedure check_FACULTY as
begin

if (select count(*) from PERSON) = 0
·; begin

select* into#l from FACULTY
if (select count(*) from #1) != 0
begin

print "The following tuples in FACULTY do not have references in PERSON"
select* from #1

end
else
begin

end

select * into #2 from FACULTY
where not exists (select * from PERSON

where FACULTY.SSN = PERSON.SSN)
if (select count(*) from #2) != 0
begin

print "The following tuples in FACULTY do not have references in PERSON"
select * from #2

end
go

end
end

create procedure check_ COURSE as
begin

if (select count(*) from FACULTY)= 0
begin

select* into #1 from COURSE
where COURSE.FACUL TY _SSN is not null

if (select count(*) from #1) != 0
begin

print "The following tuples in COURSE do not have references in FACULTY"

Technical Report LBL-27843 May 1991 25

SDT 4.1

end
go

end
else
begin

end

select* from #1
end

select * into #2 from COURSE
where COURSE.FACUL TY _SSN is not null
and not exists (select* from FACUL1Y

Execution

where COURSE.FACULTY _SSN = FACULTY.SSN)
if (select count(*) from #2) != 0
begin

end

print "The following tuples in COURSE do not have references in FACULTY"
select * from #2

if (select count(*) from DEPARTMENT) = 0
begin

end
else
begin

end

select * into #3 from COURSE
where COURSE.DEP ARTMENT_NAME is not null

if (select count(*) from #3) != 0
begin

end

print "The following tuples in COURSE do not have references in DEPARTMENT"
select * from #3

select * into #4 from COURSE
where COURSE.DEPARTMENT_NAME is not null
and not exists (select* from DEPARTMENT

where COURSE.DEPARTMENT_NAME = DEPARTMENT.NAME)
if (select count(*) from #4) != 0
begin

end

print "The following tuples in COURSE do not have references in DEPARTMENT"
select * from #4

create procedure check_all as
begin

end
go
quit

exec check_FACULTY
exec check_ COURSE

Technical Report LBL-27843 May 1991 26

SDT·4.1 Execution

4.3.4.2 Verification Procedures for INGRES

The procedures for verifying the referential integrity' of an ~xi sting INGRES database defined as in

section 4.3.2 above are given below:

File Exlngres_check.i :

CREATE PROCEDURE check_FACUL TY AS
DECLARE ,

msg V ARCHAR(256) NOT NULL;
BEGIN

END;

,\go .

IF (SELECT COuNT(*) FROM PERSON)= 0
BEGIN

END
ELSE
BEGIN

END;

SELECT* INTO xxxx FROM FACULTY;
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

END;

msg ='The following tuples in FACULTY'+
'do not have references in PERSON';

MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;

SELECT* 'INTO xxxx FROM FACULTY
WHERE NOT EXISTS (SELECT * FROM PERSON

WHERE FACULTY.SSN = PERSON.SSN);
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

END;

msg ='The following tuples in FACULTY'+
'do not have references in PERSON';

MESSAGE :msg;
SELECT* FROM xxxx;
DROP TABLE xxxx;

CREATE PROCEDURE check_ COURSE AS
DECLARE

msg V ARCHAR(256) NOT NULL;
BEGIN

IF (SELECT COUNT(*) FROM FACULTY) = 0
BEGIN

SELECT* INTO xxxx FROM COURSE
WHERE COURSE.FACULTY _SSN IS NOT NULL;
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

msg = 'The following tuples in COURSE' +

Technical Report LBL-27843 May 1991 27

SDT 4.1

END;
\go

END
ELSE
BEGIN

END;

END;

'do not have references in FACULTY';
MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;

SELECT * INTO xxxx FROM COURSE
WHERE COURSE.FACUL TY _SSN IS NOT NULL
AND NOT EXISTS (SELECT* FROM FACULTY

Execution

WHERE COURSE.FACULTY_SSN = FACULTY.SSN);
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

END;

msg ='The following tuples in COURSE'+
'do not have references in FACULTY';

MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;

IF (SELECT COUNT(*) FROM DEPARTMENT)= 0
BEGIN

END
ELSE
BEGIN

END;

SELECT* INTO xxxx FROM COURSE
WHERE COURSE.DEPARTMENT_NAME IS NOT NULL;
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

END;

msg = 'The following tuples in COURSE' +
'do not have references in DEPARTMENT';

MESSAGE :msg;
SELECT * FROM xxxx;
DROP TABLE xxxx;

SELECT* INTO xxxx FROM COURSE
WHERE COURSE.DEPARTMENT_NAME IS NOT NULL
AND NOT EXISTS (SELECT * FROM DEPARTMENT

WHERE COURSE.DEPARTMENT_NAME = DEPARTMENT.NAME);
IF (SELECT COUNT(*) FROM xxxx) != 0
BEGIN

END;

msg ='The following tuples in COURSE'+
'do not have references in DEPARTMENT';

MESSAGE :msg;
SELECT* FROM xxxx;
DROP TABLE xxxx;

Technical Report LBL-27843 May 1991 28

SDT 4.1.

CREATE PROCEDURE check_all AS
BEGIN

EXECUTE PROCEDURE check_FACUL TY;
' EXECUTE PROCEDURE check_ COURSE;

END;
\go
'quit

Technical Report LBL-27843 May 1991

Execution

29

SDT 4.1 The Metadatabase

V. THE METADATABASE

The metadatabase schema consists of four main parts regarding: (1) the description of EER sche

mas; (2) the description of relational schemas; (3) the mapping of EER into relational schemas; and (4)

subject term structures and associations.

5.1. Schemas and Mappings.

The metadatabase schema part regarding the description of EER schemas, the description of rela

tional schemas, and the mapping of EER into relational schemas is shown in figure 5.1 and is self

explanatory.

5.2. Subject Terms.

Let DB denote a relational database associated with an EER schema. Object-sets, attributes, and

object instances represented in DB can be associated with subject terms as follows:

1. The subject terms related to object-sets are grouped into an object-set called OBJECT-SET SUBJECT

TERMS represented in the metadatabase associated with DB, as shown in figure 5.2. The subject

terms related to attributes are grouped into an object-set called ATfRIBUTE SUBJECT TERMS

represented in the metadatabase associated with DB, as shown in figure 5.2.

2. An object-set or attribute represented in DB, can be associated with one or several subject tenns

from OBJECT-SET SUBJECT TERMS or ATfRffiUTE SUBJECT TERMS, respectively. These associa

tions are specified during the process of defining the schema for DB, and are stored in the metadata

base as instances of the relationship-sets OBJECT SUBJECT ASSOCIATION and ATfRIBUTE SUB

JECT ASSOCIATION, respectively.

3. Subject terms of both object-set OBJECT-SET SUBJECT TERMS and object-set ATfRIBUTE SUB

JECT TERMS can be organized in a classification hierarchy by associating every subject term with its

broader and narrower terms. These classifications are represented as instances of relationship-sets

OBJECT SUBJECT CLASSIFICATION and ATfRIBUTE SUBJECT CLASSIFICATION, respectively, as

shown in figure 5.2.

4. Object-set and attribute subject tenns are grouped together into an object-set called GLOBAL SUB

JECT TERMS as shown in figure 5.2. Global subject tenns can also be organized in a classification

hierarchy by associating every global subject term with its broader and narrower terms, where these

classifications are represented as instances of relationship-set GLOBAL SUBJECT CLASSiFICATION

(see figure 5.2).

Technical Report LBL-27843 May 1991 30

SDT 4.1

EER Schema

M

Name

Description

Null Rule

Description

Description

Description

OBJECf

Lower Bound

Upper Bound

Description

Mapping

The Metadatabase

Relational Schema

RELATION

lD

M

RELATION
KEYS

M HAS

Number

Type

Figure 5.1. The Metadatabase: Information on the EER and Relational Schemas, and their Mapping.

Technical Report LBL-27843 May 1991 31

SDT 4.1 The Metadatabase

5. The' instances of an entity-set E represented in DB can be associated with subject tenns by grouping

these instances into specialization entity-sets of E. Accordingly, the classification of subject terms

associated with entity-set instances is represented by relationships of the relationship-set OBJECT

SET CONNECTIONS of the metadatabase associated with DB (see figure 5.2), where attribute TYPE

is equal to !SA.

Subject terms are used for grouping related object-sets or attributes together by subject term, and are

employed for schema browsing.

BROADER

TERM

M
OBJECf-SET

SUBJECf TERMS

BROADER

TERM

M

'NARROWER

TERM

M

/SA /SA

ID

NARROWER

TERM

M

BROADER

TERM

M

Figure 5.2. The Metadatabase: Subject Terms and Classifications.

Technical Report LBL-27843 May 1991

NARROWER

TERM

M

32

"'·

SDT 4.1 The Metadatabase

5.3. The SDT File for Metaschema Definition.

The input file ·for SDT containing the (fixed) definition of the metadatabase schema is provided as

part of the SDT package. The only part of this definition that must be adapted to the underlying DBMS

are the attribute datatypes. For example, the SDT input file contatining the schema definition of a meta

database intended for SYBASE is given below:

28
RELA TION_KEYS(E)

HAS(R)

A TIRS: Number{ID, "", , int NO NULLS), Type(, "", , char(30) NO NULLS)

ARCS: RELATION_SCHEME(ID,)

DESCR:"";

ARCS: OBJECT_ATIRIBUTE(DM,), V ALUE_SET(ONE,)

DESCR: "";

OBJECT _SET(E)

ATIRS: NAME(ID, "",, char(30) NO NULLS), Description(,'"',, varchar(255) NULLS ALLOWED)

DESCR: "Entity and Relationship Sets.";

RELA TION_SCHEME(E)

ATIRS: NAME{ID, '"',, char(30) NO NULLS)

DESCR: "";

REFERENTIAL_IN1EGRITY(R)

A TIRS: Insert_ Rule(, "", , char(30) NULLS ALLOWED), Delete_Rule(, "", , char(30) NULLS ALLOWED),

Update_Rule(, "", , char(30) NULLS ALLOWED)

ARCS: RELATION_SCHEME(M, TO), RELATION_KEYS(M; FROM)

DESCR: "";

OBJECT_CONNECTION(R)

ATIRS: Role(ID, "",, char(30) NO NULLS), Connection_ Type(,"",, char(30) NO NULLS),

Existence_ Type(,"",, char(30) NULLS ALLOWED)

ARCS: OBJECT_SET(M, FROM), OBJECT_SET(M, TO)

DESCR: "";

CONNECTION_MAPPING(R)

ARCS: OBJECT_CONNECTION(ONE,), REFERENTIAL_IN1EGRITY(Dl,)

DESCR: "";

V ALUE_SET(E)

ATIRS: Name(ID, '"',, char(30) NO NULLS), Description(,"",, varchar(255) NULLS ALLOWED)

DESCR: "";

OBJECT_SET _MAPPING(R)

ARCS: OBJECT_SET(M,), RELATION_SCHEME(Dl,)

DESCR: "";

Technical Report LBL-27843 May 1991 33

SDT 4.1 The Metadatabase

OBJECT _A TIRIBUTE(E)

ATIRS: NAME(ID, "",, char(30) NO NULLS), Nuli_Rule(, "",, char(30) NULLS ALLOWED),

Description(, "", , varchar(255) NULLS ALLOWED)

ARCS: OBJECT_SET(ID,)

DESCR: "Attributes for Entity and Relationship Sets.";

RELA TIONAL....:A TTRIBUTE(E)

ATTRS: NAME(ID, "",, char(30) NO NULLS), Nuli_Rule(, "",, char(30) NULLS ALLOWED)

ARCS: RELATION_SCHEME(ID,)

DESCR: "";

DOMAIN (E)

A TTRS: NAME(ID, "", , char(30) NO NULLS), Description(, "", , char(120) NULLS ALLOWED)

DESCR: '"';

WITH_A(R)

ARCS: RELATIONAL_ATTRIBUTE(DM,), OOMAIN(ONE,)

DESCR: "";

A TTRIBU1E_MAPPING(R)

ARCS: OBJECT_ATTRIBUTE(ONE,), RELATIONAL_ATTRIBUTE(DM,)

· DESCR: "";

V ALUE_SET_MAPPING(R)

ARCS: V ALUE_SET(ONE,), OOMAIN(Dl,)

DESCR: "";

KEY _A TTRIBUTE(R)

ARCS: RELATIONAL_ATTRIBUTE(M,), RELATION_KEYS(DM,IN)

DESCR: "";

WITH_FORMA T(R)

ARCS: V ALUE_SET(M,), V ALUE_FORMA T(M,)

DESCR: "";

CONSISTS_OF(R).

ARCS: V ALUE_SET(M,), V ALUE_RANGES(M,)

DESCR: "";

V ALUE_FORMAT(E)

A TTRS: Code(ID, "", , char(30) NO NULLS), Description(, "", , varchar(255) NO NULLS)

DESCR: "Format of Value Set.";

V ALUE_RANGES(E)

ATTRS: Code(ID, "",, char(30) NO NULLS), Upper_Bound(, "",, varchar(255) NULLS ALLOWED),

Lower_Bound(, "",, varchar(255) NULLS ALLOWED),

Description(,"",, varchar(255) NULLS.ALLOWED)

DESCR: "Ranges of Value Set.";

GLOBAL_SUBJ_1ERM(E)

A TTRS: NAME(ID, "", , char(30) NO NULLS)

DESCR: "";

Technical Report LBL-27843 May 1991 34

....

. !jl

SDT 4.1 The Metadatabase

OBJ_SUBJ_TERM(E)

ATTRS: Description(, "Description of object subject term.",, varchar(255) NULLS ALLOWED)

ARCS: GLOBAL_SUBJ_TERM(ISA,)

DESCR: "Object Set Subject Term";

A TTR_SUBJ_TERM(E)

ATTRS: Description(, "Description of attribute subject term.",, varchar(255) NULLS ALLOWED)

ARCS: GLOBAL_SUBJ_TERM(ISA,)

DESCR: "Attribute Subject Terms";

OBJ_SUBJ_CLASS(R)

ARCS: OBJ_SUBJ_TERM(M, BROADER), OBJ_SUBJ_TERM(M, NARROWER)

DESCR: "";

A TTR_SUBJ_CLASS(R)

ARCS: ATTR_SUBJ_TERM(M, BROADER), ATTR_SUBJ_TERM(M, NARROWER)

DESCR:"";

OBJ_SUBJ_ASSOC(R)

ARCS: OBJ_SUBJ_TERM(M,), OBJECT_SET(M,)

DESCR: "";

A TTR_SUBJ_ASSOC(R)

ARCS: ATTR_SUBJ_TERM(M,), OBJECT_ATTRIBUTE(M,)

DESCR: "";

GLOBAL_SUBJ_CLASS(R)

ARCS: GLOBAL_SUBJ_TERM(M, BROADER), GLOBAL_SUBJ_TERM(M, NARROWER)

DESCR: '"';

5.4. The SDT Metadata Output File.

As mentioned in the previous section, SDT generates a file containing metadata embedded in inser

tion operations appropriate for the underlying DBMS. The name of this file is ''* _meta.s'' for SYBASE,
I

'' * _meta.i'' for INGRES, and '' * _meta.x'' for INFORMIX, respectively.

For example, the metadata file corresponding to the EER schema described in section 2, and the

abstract relational schema described in section 4.2.2, for a SYBASE metadatabase is given below:

File ExSybase_meta.s

use Meta_ExSybase
go
insert OBJECT_SET(NAME, Description)

values("PERSON", "")
go
insert OBJECT_SET(NAME, Description)

values("FACULTY", "Faculty members")
go
insert OBJECT_SET(NAME, Description)

values("DEPARTMENT", '"')
go

Technical Report LBL-27843 May 1991 35

SDT 4.1 The Metadatabase

insert OBJECT_SET(NAME, Description)
values(" COURSE", "")

go
insert OBJECT_SET(NAME, Description)

values("TEACH", "Represents assignments of faculty members to offered courses")

go
insert OBJECT_SET(NAME, Description)

values("OFFER", "Represents offering of courses by departments")

go
insert OBJECT_ATTRffiUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)

values("PERSON", "SSN", "NO NULLS", "Social Security Number; Used as unique identifier.")
go
insert OBJECT_ATTRffiUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)

values("PERSON", "NAME", "NULLS ALLOWED", "First and Last Name")

go
insert OBJECT _A TTRffiUTE(OBJECT _SET _NAME, NAME, Null_Rule, Description)

values("FACULTY", "RANK", "NULLS ALLOWED", "Rankoffaculty members")
go
insert OBJECT_ATTRffiUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)

values("DEPARTMENT", "NAME", "NO NULLS", "Name of Department")

go
insert OBJECT_ATTRffiUTE(OBJECT_SET_NAME, NAME, Null_Rule, Description)

values("COURSE", "NUMBER", "NO NULLS", "Course number")
go
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET _NAME, Role,

Connection_ Type, Existence_ Type)
values("FACULTY", "PERSON:', "!NONE!", "ISA", null)

go
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT_SET _NAME, Role,

Connection_ Type, Existence_ Type)
values("TEACH", "OFFER", "!NONE!", "REL", null)

go

insert OBJECT _CONNECTION (FROM_ OBJECT_SET_NAME, TO_OBJECT_SET_NAME, Role,
Connection_ Type, Existence_ Type)

values("TEACH", "FACULTY", "!NONE!", "REL", null)
go
insert OBJECT _CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT _SET _NAME, Role,

Connection_ Type, Existence_ Type)
values("OFFER", "COURSE", "!NONE!", "REL", null)

go
insert OBJECT_CONNECTION(FROM_OBJECT_SET_NAME, TO_OBJECT _SET _NAME, Role,

Connection_ Type, Existence_ Type)
values("OFFER", "DEPARTMENT", "!NONE!", ·:R£L;', null)

go
insert RELA TION_SCHEME(NAME)

values("PERSON")
go
insert RELA TION_SCHEME(NAME)

values("FACUL TY"}
go
insert RELA TION_SCHEME(NAME)

Technical Report LBL-27843 May 1991 36·

t'

SDT 4.1 The Metadatabase

values("DEP ARTMENT")
go
insert RELA TION_SCHEME(NAME)

values("COURSE") .
go
insert RELA TION_SCHEME(NAME)

values("TEACH")
go
insert RELA TION_SCHEME(NAME)

values(" OFFER")
go
insert RELA TIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("PERSON", "SSN", "not null")
go
insert RELA TIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("PERSON", "NAME", "null")
go
insert RELATIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("FACULTY", "SSN", "not null")
go
insert RELA TIONAL_A TTRIBUTE(RELATION_SCHEME_NAME, NAME, Null_Rule)

values("FACULTY", "RANK", "null")
go
insert RELA TIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("DEPARTMENT", "NAME", "not null")
go
insert RELATIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("COURSE", "FACULTY_SSN", "null")
go
insert RELA TIONAL_A TTRIBUTE(RELA TION_SCHEME_NAME, NAME, Null_Rule)

values("COURSE", "DEPARTMENT_NAME", "null")
go
insert RELA TIONAL_A TTRIBUTE(RELA TION_SCHEME.:.NAME, NAME, Null_Rule)

values("COURSE", "NUMBER", "not null")
go
insert OBJECT_SET_MAPPING(OBJECT _SET _NAME, RELA TION_SCHEME_NAME)

values("PERSON", "PERSON")
go
insert OBJECT_SET _MAPPING(OBJECT _SET _NAME, RELA TION_SCHEME_NAME)

values("FACUL TY", "FACULTY")
go
insert OBJECT _SET _MAPPING(OBJECT _SET _NAME, RELA TION_SCHEME_NAME)

values("DEPARTMENT", "DEPARTMENT")
go
insert OBJECT _SET _MAPPING(OBJECT_SEt _NAME, RELA TION_SCHEME_NAME)

values("COURSE", "COURSE")
go
insert OBJECT _SET _MAPPING(OBJECT_SET _NAME, RELA TION_SCHEME_NAME)

values("TEACH", "TEACH")
go
insert OBJECT _SET _MAPPING(OBJECT_SET_NAME, RELA TION_SCHEME_NAME)

Technical Report LBL-27843 May 1991 37

SDT 4.1 The Metadatabase

values("OFFER", "OFFER")

go
insert A TIRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TIRIBU1E_NAME,

RELATION_SCHEME_NAME, RELA TIONAL_A TTRIBU1E_NAME)
values("PERSON", "SSN", "PERSON", "SSN")

go
insert A TIRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELA TION_SCHEME_NAME, RELA TIONAL_ATTRIBU1E_NAME)
values("PERSON", "NAME", "PERSON", "NAME")

go
insert A TIRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBU1E_NAME)
values("PERSON", "SSN", "FACULTY", "SSN")

go
insert A TIRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBU1E_NAME)
values("FACULTY", "RANK", "FACULTY", "RANK")

go
insert A TIRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELATION_SCHEME_NAME, RELATIONAL_ATTRIBU1E_NAME)

values("DEPARTMENT", "NAME", "DEPARTMENT", "NAME")
go
insert ATTRIBU1E_MAPPING(OBJECT_SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBU1E_NAME)
values("PERSON", "SSN", "COURSE", "FACULTY_SSN")

go
insert A TIRIBU1E_MAPPING(OBJECT _SET_NAME, OBJECT_A TTRIBU1E_NAME,

RELA TION_SCHEME_NAME, RELATIONAL_A TTRIBU1E_NAME)
values("DEPARTMENT", "NAME", "COURSE", "DEPARTMENT_NAME")

go
insert A TIRIBU1E_MAPPING(OBJECT _SET_NAME, OBJECT_ATTRIBUTE_NAME,

_ RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME)
values(" COURSE", "NUMBER", "COURSE", "NUMBER")

go
insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)

values("PERSON", 0, "PRIMARY")
insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)

values("FACULTY", 0, "PRIMARY")
insert RELA TION_KEYS(RELA TION_SCHEME_NAME, Number, Type)

values("FACULTY", 1, "FOREIGN")
go
insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)

values("DEP ARTMENT", 0, "PRIMARY")
insert RELATION_KEYS(RELATION_SCHEME_NAME, Number, Type)

values("COURSE", 0, "PRIMARY")
insert RELATION_KEYS(RELATION_SCHEME_NAME, Number, Type)

values("COURSE", 1, "FOREIGN")
go
insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)

values("COURSE", 2, "FOREIGN")

go

Technical Report LBL-27843 May 1991 38

..

SDT 4.1 · The Metadatabase

insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)
values("TEACH", 0, "PRIMARY';)

insert RELATION_KEYS(RELA TION_SCHEME_NAME, Number, Type)
values(" OFFER", 0, "PRIMARY")

insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,
IN_RELA TION_SCHEME_NAME, IN_RELATION_KEYS_Number)

values("PERSON", "SSN", "PERSON", 0)
go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_ATTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELA TION_KEYS_Number)
values("FACULTY", "SSN", "FACULTY", 0)

go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELA TION_KEYS_Number)
values("FACULTY", "SSN", "FACULTY", I)

go
insert KEY _A TTRIBUTE(RELATION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELATION_KEYS_Number)
values("DEPARTMENT", "NAME", "DEPARTMENT", 0)

go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_ATTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELA TION_KEYS_Number)
values(" COURSE", "NUMBER", "COURSE", 0)

go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELATION_KEYS_Number)
values("COURSE", "FACULTY_SSN", "COURSE", I)

go
insert KEY _A TTRIBUTE(RELATION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME,·IN_RELA TION_KEYS_Number)
values("COURSE", "DEPARTMENT_NAME", "COURSE", 2)

go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELATION_KEYS_Number)
values("TEACH", "COURSE_NUMBER", "TEACH", 0)

go
insert KEY _A TTRIBUTE(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME,

IN_RELA TION_SCHEME_NAME, IN_RELA TION_KEYS_Number)
values("OFFER", "COURSE_NUMBER", "OFFER", 0)

go
insert REFERENTIAL_INTEGRITY(TO_RELATION_SCHEME_NAME, FROM_RELA TION_SCHEME_NAME,

FROM_RELATION_KEYS_Number, Insert_Rule, Delete_Rule, Update_Rule)
values("PERSON", "FACULTY", I, "RESTRICTED", "RESTRICTED", null)

go
insert REFERENTIAL_INTEGRITY(TO_RELA TION_SCHEME_NAME, FROM_RELATION_SCHEME_NAME,

FROM_RELATION_KEYS_Number, Insert_Rule, Delete_Rule, Update_Rule)
values("FACULTY", "COURSE", I, "RESTRICTED", "RESTRICTED", null)

go
insert REFERENTIAL_INTEGRITY(TO_RELA TION_SCHEME_NAME, FROM_RELA TION_SCHEME_NAME,

FROM_RELATION_KEYS_Number, Insert_Rule, Delete_Rule, Update_Rule)
values("DEPARTMENT", "COURSE", 2, "RESTRICTED", "RESTRICTED", null)

Technical Report LBL-27843 May 1991 39

SDT 4.1 The Metadatabase

go
insert CONNECTION_MAPPING(OBJECT_CONNECTION_Role, FROM_OBJECT_SET_NAME,

TO_OBJECT_SET_NAME, TO_RELA TION_SCHEME_NAME,
FROM_RELATION_SCHEME_NAME, FROM_RELATION_KEYS_Number)

values("!NONE!", "FACULTY", "PERSON", "PERSON", "FACULTY", 1)

go
insert CONNECTION_MAPPING(OBJECT_CONNECTION_Role, FROM_OBJECT_SET _NAME,

TO_OBJECT_SET_NAME, TO_RELATION_SCHEME_NAME,
FROM_RELATION_SCHEME_NAME, FROM_RELATION_KEYS_Number)

values("!NONE!", "COURSE", "FACULTY", "FACULTY", "COURSE", 1)

go
insert CONNECTION_MAPPING(OBJECT_CONNECTION_Role, FROM_ OBJECT _SET _NAME,

TO_OBJECT_SET_NAME, TO_RELA TION_SCHEME_NAME,
FROM_RELA TION_SCHEME_NAME, FROM_RELA TION_KEYS_Number)

values("!NONE!", "COURSE", "DEPARTMENT", "DEPARTMENT", "COURSE", 2)

go
insert DOMAIN (NAME)

values("int")

go
insert OOMAIN(NAME)

values(" char(50)")
go
insert DOMAIN (NAME)

values(" char(25) ")
go
insert DOMAIN (NAME)

values(" char(30) ")
go
insert WITH_A(RELA TION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE-'-NAME, DOMAIN_ NAME)

values("PERSON", "SSN", "int")
go
insert WITH_A(RELATION_SCHEME_NAME, RELA TIONAL_A TTRIBUTE_NAME, DOMAIN_ NAME)

values("PERSON", "NAME", "char(SO)")
go
insert WITH_A(RELA TION_SCHEME_NAME, RELA TIONAL_ATTRIBUTE_NAME, OOMAIN_NAME)

values("FACULTY", "SSN", "int'')
go
insert WITH_A(RELA TION_SCHEME_NAME, RELATIONAL_ A TTRIBUTE_NAME, DOMAIN_ NAME)

values("FACULTY", "RANK", "char(25)")
go
insert WITH_A(RELATION_SCHEME_NAME, RELATIONAL_ A TTRIBUTE_NAME, OOMAIN_NAME)

values("DEPARTMENT", "NAME", "char(30)") i-

go
insert WITH_A(RELATION_SCHEME_NAME, RELATIONAL_ A TTRIBUTE_NAME, OOMAIN_NAME)

values(" COURSE", "FACULTY _SSN", "int")
go
insert WITH_A(RELA TION_SCHEME_NAME, RELATIONAL_A TTRIBUTE_NAME, OOMAIN_NAME)

values("COURSE", "DEPARTMENT_NAME", "char(30)")
go
insert WITH_A(RELA TION_SCHEME_NAME, RELATIONAL_A TTRIBUTE_NAME, OOMAIN_NAME)

values(" COURSE", "NUMBER", "int'')

Technical Report LBL-27843 May 1991 40

.. ,

SDT 4.1

go
insert GLOBAL_SUBJ_1ERM(NAME)

values("Course_Teaching")
go
insert GLOBAL_SUBJ_1ERM(NAME)

values('' Course_ Offering")
go
insert OBJ _SUBJ _1ERM{NAME, Description)

values("Course_Teaching", "")
go
insert OBJ_SUBJ_1ERM(NAME, Description)

values("Course_Offering", "")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_1ERM_NAME, OBJECT_SET_NAME)

values(" Course_ Teaching", "OFFER")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_TERM_NAME, OBJECT_SET _NAME)

values(" Course_ Teaching", "1EACH")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_1ERM_NAME, OBJECT_SET_NAME)

values("Course_Teaching", "FACULTY")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_ TERM_ NAME, OBJECT_SET _NAME)

values(''Course_Offering", "OFFER")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_ TERM_ NAME, OBJECT_SET_NAME)

values(" Course_ Offering", "COURSE")
go
insert OBJ_SUBJ_ASSOC(OBJ_SUBJ_ TERM_NAME, OBJECT_SET_NAME)

values(" Course_ Offering", "DEPARTMENT")
go
quit

Technical Report LBL-27843 May 1991

The Metadatabase

41

SDT 4.1 Program Structure

VI. THE PROGRAM STRUCTURE OF SDT

The program structure of SDT is shown in Figure 6.1, and consists of the following modules:

main.c

parser.y

scanner .I

build.c

wfcheck.c

mapping.c

assign.c

convert.c

merge.c

tosybase.c

toisql.c

The main module reads the command line and accordingly invokes the functions in the

following modules.

The parser is written in Y ACC; it parses the input EER schema specification and

builds the internal structure corresponding to the EER schema.

The scanner is written in LEX; it is used by the parser to read the input EER schema

tokens.

This module contains the semantic functions used by the parser in order to build the

internal structure representing the EER schema.

This module consists of functions used to check whether an EER schema is well

formed. This module also assigns a level number to each object representing the partial

order of the object in the EER schema.

This module consists of the functions that comprise the mapping of an EER schema

into an abstract relational schema in Boyce-Codd Normal Form.

This module performs the assignment of local names to relational attributes.

(Local names are unique only within a given relation-scheme.)

This module reads the internal form of an abstract relational schema and prints it out in

a readable form.

Merging can be either skipped (no merging option) or performed.

This module translates the abstract relational schema into its equivalent SYBASE

schema, consisting of table, key, and index definitions, and trigger specifications.

This module translates the abstract relational schema into its equivalent INGRES

6.3/SQL schema, consisting of table and index definitions, and rule specifications.

toinformix.c This module translates the abstract relational schema into an INFORMIX 4.0/SQL

veref s.c

schema consisting oftable and index definitions.

This module generates SYBASE procedures for verifying the integrity of a SYBASE

database with regard to the referential integrity constraints of the abstract relational

schema.

Technical Report LBL-27843 May 1991 42

..

. SDT 4.1.

EER Schema

Internal EER Schema

Well-Formed Internal EER Schema

Merge

Internal Relational Schema

(Attribute Placeholders)

Internal Relational Schema

(Assigned Attribute Names)

Merged Internal Relational Schema

(Assigned Attribute Names)

INFORMJX Schema
& Metadata

INGRES Schema
Verification Procedures

& Metadata

· Incorrect
EER Schema

Program Structure

Error
Message

SYBASE Schema.
Verification Procedures

& Metadata

Figure 6.1 The Structure of SDT.

Technical Report LBL-27843 May 1991 43

SDT 4.1

veref i.e

metadb s.c

metadb i.e

. metadb x.c

common.h

Makefile

Program Structure

This module generates INGRES procedures for verifying the integrity of a INGRES

database with regard to the referential integrity constraints of the abstract relational_

schema.

This module generates the metadata describing the EER and abstract relational sche

mas, and their mappings; these metadata can be loaded into a .predefined SYBASE

metadatabase.

This module generates the metadata describing the EER and abstract relational sche

mas, and their mappings; these metadata can be loaded into a predefined INGRES

metadatabase.

This module generates the metadata describing the EER and abstract relational sche

mas, and their mappings; these metadata can be loaded into a predefined INFORMIX

metadatabase.

This file contains the definitions of constants, data types; and declarations of external

variables and functions.

This file is the input to the make UNIX program; the execution of make generates the

executable binary code. As a byproduct, this file also specifies how the various

modules are related to each other.

Technical Report LBL-27843 May 1991 44

SDT 4.1 References

REFERENCES

[1] P.P. Chen, "The entity-relationship model- towards a unified view of data", ACM Trans. on Database

Systems 1,1 (March 1976), pp. 9-36.

[2] T.J. Teorey, D. Yang, and J.P. Fry, "A logical design methodology for relational databases using the

extended entity-relationship model", Computing Surveys 18,2 (June 1986), pp. 197-222.

[3) V.M. Markowitz and A. Shoshani, "On the Correctness of Representing Extended Entity-Relationship

Structures in the Relational Model", Proc. of the 1989 International SIGMOD Conference, pp. 430-

439.

[4] V.M. Markowitz and A. Shoshani, "Name Assignment Techniques for Relational Schemas Represent

ing Extended Entity-Relationship Structures", Proc. of the 8th International Conference on Entity

Relationship Approach, Toronto, October 1989.

[5] V.M. Markowitz, "Merging Relations in Relational Databases", Technical Report LBL-27842, Janu

ary 1990.

[6] V.M. Markowitz, "Referential Integrity Revisited", Proc. of the 16th International Conference on

Very Large Data Bases, August 1990.

[7] V.M. Markowitz, "Problems Underlying the Use of Referential Integrity Mechanisms in Relational

Database Management Systems", Proc. of the 7th International Conference on Data Engineering,

April1991.

[8] V.M. Markowitz, "Safe Referential Integrity Structures", Proc. of the 17th International Conference

on Very Large Data Bases, September 1991.

[9] V.M. Markowitz and A. Shoshani, "Representing object structures in relational databases: A modular

approach", Technical Report LBL-28482, January 1991.

Technical Report LBL-27843 May 1991 45

SDT 4.1 The Extended Entity-Relationship Model

APPENDIX A. THE EXTENDED ENTITY-RELATIONSHIP MODEL

The concepts of the Entity-Relationship model have been defined originally in [6] and have been

repeatedly reviewed since then. The Extended Entity-Relationship model is surveyed in [7]. We follow,

in general, the definitions of [6] and [7], with slight modifications. Unlike [6] and [7], however, we

represent Entity-Relationship structures by directed, rather than undirected, diagrams.

A.1 Fundamental Concepts

A.l.1 Object-Sets

The first stage of Entity-Relationship (ER) modeling consists of detennining the principal objects

about which infonnation is collected, called entity-sets. Entity-sets are qualified by attributes, that

represent their descriptive properties. For instance, PERSON could be an entity-set with attributes

SOCIAL-SECURITY-NUMBER, NAME, JOB-TITLE, and SALARY. Associations of entity-sets are represented

by relationship-sets. For instance WORK could be a relationship-set associating entity-sets PERSON and

PROJECT. A relationship-set may have attributes, just like an entity-set, such as the

PERCENT AGE-OF-TIME a person WORKs on each project. Individual instances of entity-sets and

relationship-sets are called entities and relationships, respectively. In the following we shall refer com

monly to entities and relationships as objects, and to entity-sets and relationship-sets as object-sets.

A.l.2 Value-Sets

Attributes take their values from underlying domains called value-sets. Examples of value-sets

could be CHARACfER, INTEGER. Value-sets can be associated with a format describing the structure of

their elements (e.g. six-digit character). Attributes provide an interpretation of a given value-set in the

context of some object-set. For instance, attribute NAME gives the interpretation of value-set CHARACfER

in the context of entity-set PERSON. The independent identity of attribute values is of no interest in the

modeled environment, but only when coupled with some object. For instance a value of attribute

SOCIAL-SECURITY-NUMBER is of interest only as characterizing an instance of entity-set PERSON. Value

sets are the basis of correlating attributes: attributes associated with the same value-set, are said to be

compatible, that is, can be compared. When vatue-sets are uni~terpreted, that is, devoid of any semantic

meaning (e.g. sets of integers or characters), the attribute compatibility has no real significance. For

instance, although two attributes, such as AGE and HEIGHT, could be based on a same value-set (e.g.

numbers) their comparison could be meaningless. Value-sets can be interpreted by associating them with

units. Then two attributes are said to be compatible only if the units of their underlying value-sets are the

same or can be converted to a common unit~ For instance the value-set underlying attributes AGE and

HEIGHT could be associated with years and kilograms as units, respectively. Interpreted value-sets allow

Technical Report LBL-27843 May 1991 46

"')

I
n

SDT 4.1 The Extended Entity-Relationship Model

the specification of two kinds of constraints: (i) value constraints restrict the the values that an attribute

can take from a value-set (e.g. the value-set of attribute AGE can be specified as consisting of integers

between 13 and 65); and (ii) operational constraints restrict the operations allowed on the attribute values

(e.g. AGE values could be added and subtracted, while NAMES values could be compared but not added).

Generally attributes can be associated not only with single value-sets, but also with the cartesian product

of several value-sets.

A.1.3 Entity-Relationship Diagram

ER structures are expressible in a diagrammatic form called ER Diagram (ERD). Entity-sets,

relationship-sets, and attributes, are represented graphically by rectangles, diamonds, and ellipses, respec

tively. Every vertex is labeled by the name of the object-set or attribute; entity, and relationship vertices

are uniquely identified by their labels globally, while attribute vertices are uniquely identified by their

labels only locally, with respect to their object-set (that is, within the set of attribute vertices connected to

some object-set vertex). Edges in an ER diagram represent the interaction of the various object-sets and

attributes. The ER diagram is a directed graph, that is, it has directed edges. In figure A.l we present an

example of an ER diagram consisting of the following main components: PERSON, PROJECf, DIVISION

and DEPARTMENT are entity-sets, relationship-set EMPLOYED represents the employment of persons by

departments, relationship-set ASSIGNMENT represents the assignment of projects to departments, and KIN

SHIP represents the kinship relation between persons.

A.1.4 Entity-Identifier

A subset ofthe attributes associated with an entity-set is specified as the entity-identifier. Entity

identifiers are used to distinguish among the instances of an entity-set. For instance

SOCIAL-SECURITY-NUMBER could be an identifier for entity-set PERSON, as shown in the ER diagram of

figure A.l where attributes belonging to identifiers are underlined. However, entity-identifiers are not

always enough to uniquely distinguish among the instances of an entity-set. For example, there may be a

Service department in both the Appliance and Automotive divisions of some company. In that case, the

entity-identifier NAME of entity-set DEPARTMENT is not enough to uniquely distinguish between the vari

ous instances of departments with the same name in different divisions. Such entity-sets are called weak,

and said to depend for identification (ID-dependent) on other entity-sets. In ER diagrams, vertices that

represent weak entity-sets are connected by directed edges, labeled /D , to the vertices representing the

entity-sets on which the weak entity-sets depend. For instance, in the former example DEPARTMENT could

be made ID-dependent on entity-set DIVISION, as shown in the ER diagram of figure A.l. We assume that

there is a single identifier specified for every entity-set, although other alternate identifiers can be also

Technical Report LBL-27843 May 1991 47

SDT 4.1 The Extended Entity-Relationship Model

specified.

A.1.S Existence Dependency

ER structures imply certain existence dependencies among interacting objects. An object-set 0; is

said to depend existentially on an object-set Oj if any object of 0; exists only if a related object of Oj

also exists. Accordingly, relationships depend on the existence of the associated entities. For example, an

ASSIGNMENT relationship can be specified only if the corresponding involved DEPARTMENT and PROJEcr

entities also exist. Similarly, weak entities depend on the existence of the entities needed for their

identification. For example, a DEPARTMENT entity can be specified only if the corresponding DIVISION

entity needed for its identification, also exists. In ER diagrams edges represent not only the interaction of

the various ER objects, but also their mutual existence dependencies. Thus, there will be directed edges

(i) from relationship-sets to the entity-sets they associate; and (ii) from weak entity-sets to the entity-sets

on which they depend for identification.

A.1.6 Association and Involvement Cardinality

Association-cardinality and involvement-cardinality are restrictions placed on an entity-set with

respect to a relationship-set. Association and involvement-cardinalities can be either one or many. For

example, in the relationship-set EMPLOYED associating the DEPARTMENT and PERSON entity-sets, the

DEPARTMENT entity-set would have an association-cardinality of many if each person is allowed to be

employed in several departments, and of one if we wish to express the restriction of each person being

employed in one department only. Conversely, the same restrictions are expressed by involvement

cardinalities of many, respectively one, of entity-set PERSON. Formally, if Rk is a relationship-set that

involves entity-set E; , then (i) an association-cardinality of one for E; in Rk means that, given any ele

ment of the cross-product of all the entity-sets involved in Rk except E;, there is at most one instance of

Figure A.l An Entity-Relationship Diagram Example.

Technical Report LBL-27843 May 1991 48

....

J...

SDT 4.1 The Extended Entity-Relationship Model

Ei that can be associated by Rk with that element; and (ii) an involvement-cardinality of one for Ei in

Rk means that an entity of Ei can be involved in at most one relationship of Rk. This definition applies

to any relationship-set, irrespective of the number of entity-sets it associates.

In ER diagrams association and involvement-cardinalities are represented by labels. Thus, if entity

set Ei has an association (resp. involvement) cardinality of one with respect to Rko then the edge con

necting the vertices representing Ei and Rk is associated with label 1 (resp. Inv 1); and if entity-set Ei

has an association (resp. involvement) cardinality of many with respect to Rk, then the edge connecting

the vertices representing Ei and Rk is associated with label M (resp. lnvM). Edges that connect entity

vertices with relationship vertices, and that are not associated with such a label, are assumed to

correspond to cardinalities of many. In the ER structure represented in figure A.1, for example, the

involvement-cardinalities of relationship-set EMPWYED represent the restriction of a person being

employed by at most one department, and the involvement-cardinalities of relationship-set ASSIGNMENT

represent the restriction of a project being assigned to at most one department.

A.1.7 Mandatory Involvement

The involvement of objects in relationships is, by default, optional. For example, the entities of

entity-set PROJECf may or may not be involved in relationships of relationship-set ASSIGNMENT, which

means that there could be projects that are not assigned to any department (e.g. because the department is

not yet known). Conversely, the involvement of an object-set in a relationship-set can be specified as

mandatory, which means that an object of that object-set must be involved, at any time, in at least one

relationship of the respective relationship-set. Mandatory involvement of entity-sets in relationship-sets

is represented graphically by double-line edges instead of the regular edges representing the non

mandatory (optional) involvements. For example, the mandatory involvement of entity-set PROJECf in

relationship-set ASSIGNMENT is represented as shown in the ER diagram of figure A.1, and means that

each project must be assigned, at any time, to at least one department.

A.1.8 Role

An entity-set involved in a relationship-set is said to have a role in that relationship-set. Roles are

essential in distinguishing the multiple involvements of an entity-set in a relationship-set (represented in

the corresponding ER diagram by parallel edges from the relationship-set vertex to the entity-set vertex).

Roles are represented in ER diagrams by labels on the edges connecting the corresponding object-sets.

For example, the two involvements of entity PERSON in relationship-set KINSIDP are characterized by dis

tinct two roles, PARENT and CHILD, respectively, which are represented as shown in figure A.l.

Technical Report LBL-27843 May 1991 49

SDT 4.1 The Extended Entity-Relationship Model

A.2 Extended Concepts

The concepts of entity-set, relationship-set, attribute, and value-set are fundamental in the ER

model. Two abstraction capabilities that were not included in the original ER model and have been subse

quently added are generalization and aggregation. The ER model extende.d with generalization and aggre

gation is called the Extended ER (EER) model.

A.2.1 Generalization

Generalization emphasizes the similarities of entities, while abstracting away their differences.

Thus, generalization views a set of entity-sets (e.g. employees, students, scientists, secretaries) as a single

generic entity-set (e.g. persons). The attributes which are common to the entity-sets that are generalized

(such as name and age) are then represented only once, associated with the generic entity-set. Similarly,

relationship-sets that are common to the entity-sets that are generalized are associated with the generic

entity-set. The entity-sets that are generalized can have additional attributes of their own (e.g. scientists

can have degrees) and can be involved in relationship-sets in which the generic entity-set is not involved

(e.g. scientists may be related to projects, while secretaries are not). The inverse of generalization is

called specialization. A specialization entity-set inherits all the attributes of any of its generic entity-sets,

including the entity-identifier.

A.2.2 Types of Generalization

Generalization can abstract either homogeneous or heterogeneous entity-sets. In the first case gen

eralization is called homogeneous generalization, and in the second case generalization is called hetero

geneous kind. For homogeneous generalization, the type of the generic entity-set unifies and replaces the

types of the specialization entity-sets, while for heterogeneous generalization the type of the generic

entity-set is a new virtual type and the types of the specialization entity-sets are preserved. While entity of

any homogeneous-specialization entity-set is allowed to migrate to any other homogeneous-specialization

of the same generic entity-set (that is, is allowed to change roles), entities of heterogeneous-specialization

entity-sets are not allowed to migrate to any other entity-set. For instance, entity-sets STUDENT and

EMPLOYEE can be homogeneous-generalized by generic entity-set PERSON; then a STUDENT entity is

allowed to migrate to entity-set EMPLOYEE (i.e. a person can cease to be a student and become an

employee, or be both a student and an employee). In contrast, entity-sets GOV.OFFICE and COMPANY can

be heterogeneous-generalized by generic entity-set SPONSOR; then a COMPANY entity is not allowed to

migrate to entity-set GOV.OFFICE (i.e. a company cannot 'become' a government office). Typically (but

not necessarily), heterogeneous-generic entity-sets are required to be covered by their heterogeneous

specializations.

Technical Report LBL-27843 May 1991 50

SDT 4.1 The Extended Entity-Relationship Model

A.2.3 Extended Entity-Relationship Diagram

We must extend the definition of the ER diagram in order to represent the new generalization con

struct; the extended ER diagram is called EER diagram. The vertices representing specializations are con

nected by directed edges labeled /SA to the vertices representing the corresponding generic entity-sets; for

heterogeneous-generalizations the edges are double-shafted and the label is !SA *.

The EER diagram of figure A.2 extends the ER diagram of figure A.l, with two generalization

hierarchies, namely the PERSON homogeneous-generalization of entity-set EMPLOYEE and and the SPON

SOR heterogeneous-generalization of entity-sets COMPANY and GOV. OFFICE. The second generalization

allows the association of entity-set PROJECI' with SPONSOR by relationship-set SPONSORS, which

represents the sponsoring of projects by government offices and private companies. Without the generali

zation capability PROJECI' would be associated by two different relationship-sets with the entity-sets

GOV. OFFICE and COMPANY, resJ)ectiv.ely, although these relationship-sets express the same kind of asso

ciation.

A.2.4 Role Revisited

Homogeneous-generalization implies the specification of new roles for the homogeneous-generic

entity-sets. Thus, if entity-set Ei is a homogeneous-specialization of entity-set Ej, then Ei and Ej

assume two distinct roles in their involvements with other entity-sets or relationship-sets. For example,

the involvement of entity-set PERSON in relationship-set EMPLOYED in figure A.l, is replaced in figure A.2

by the involvement of entity-set EMPLOYEE in EMPLOYED, so that only a PERSON in the role of EMPLOYEE

is associated by relationship-set EMPLOYED.

A.2.5 Aggregation

Aggregation is intended as a construct that can be applied over previously aggregated objects as

many times as one wishes. For example, suppose that a relationship-set ASSIGNMENT associates entity

sets PROJECI' and DEPARTMENT, as shown in figure A.2. We wish to relate PERSON (EMPLOYEE) and

ASSIGNMENT. We could define a ternary relationship-set WORKS between entity-sets PROJECI', DEPART

MENT, and PERSON, but then relationships of this ternary relationship-set could associate PROJECT and

DEPARTMENT entities that are not associated by any ASSIGNMENT relationship, contrary to our intention.

The obvious and natural solution is to specify the relationship-set WORKS between relationship-set

ASSIGNMENT and entity-set EMPLOYEE, as shown in figure A.2. Note that no extension is needed for the

EER diagram in order to accommodate this new aggregation construct because of the use of directed

edges.

Technical Report LBL-27843 May 1991 51

SDT 4.1 The Extended Entity-Relationship Model

lnvl

!SA"
COMPANY

!SA"
GOV. OFFICE

Figure A.2 An Extended Entity-Relationship Diagram Example.

Technical Report LBL-27843 May 1991 52

~~ ~

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

,.,

:...ilili:::Dt~~·

-l

