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Abstract

We investigate optimal rewards in an R&D model where substitute ideas for innovation
arrive to random recipients at random times. By foregoing investment in a current idea,
society as a whole preserves an option to invest in a better idea for the same market niche,
but with delay. Because successive ideas may occur to di¤erent people, there is a con�ict
between private and social optimality. We investigate the optimal policy when the social
planner learns over time about the arrival rate of ideas, and when private recipients of ideas
can bank their ideas for future use. We argue that private incentives to create socially
valuable options can be achieved by giving higher rewards where "ideas are scarce."

JEL Classi�cations: O34, K00, L00

Keywords: Scarce ideas; imagination; innovation; real options; search models; rewards to
R&D; unknown hazard rate



1 Introduction

Optimal rewards for R&D depend on how the innovative environment is conceptualized.

We consider an innovative environment where di¤erent agents have substitute ideas for how

to �ll a given market niche. The purpose of the reward system is to choose among the

substitute ideas.

Many models of R&D begin from a concept that opportunities are common knowledge

and eternally present, but progress can nevertheless be slow because R&D is costly and

resources are scarce.1 However, there is another reason that progress can be slow: Ideas

for investment are themselves scarce, not only from an individual�s point of view, but also

for society as a whole. Even if a market niche or economic need is known, there may be

considerable delay before someone realizes how to �ll it at reasonable cost. In addition to

the scarcity of resources, the scarcity of ideas is another constraint on progress.

In the innovative environment we study, investment opportunities are not common

knowledge. Ideas for how to �ll the market niche have random cost, and arrive at random

times to random individuals. If the recipient of an idea invests the cost, the idea becomes

an innovation that �lls the market niche. Most importantly, innovative environments are

distinguished by the arrival rate (scarcity) of ideas.

Our objective is to show how rewards should re�ect the scarcity of ideas. The social

planner does not know the ideas that have arrived, and does not know who received them.

If all ideas were available at the same time, the goal of the social planner would be to �nd

the minimum cost idea. However, that is not possible because the ideas arrive at random

times. The planner can weed out high-cost ideas by o¤ering limited rewards, but he still

faces a trade-o¤ between cost and delay. To ensure that the market niche is �lled at low

cost, he may have to endure a costly delay.

We show that

� optimal rewards should increase with the scarcity of ideas;
1This is implicitly the premise of a large literature on patent races that builds on models surveyed by

Reinganum (1989).
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� optimal rewards should increase with delay in �lling the market niche; and

� the pro�t on R&D investments will be positive in equilibrium due to the scarcity of

ideas.

Our conclusions about the optimal reward structure are tied to the notion that ideas

are scarce, so that the reward policy must mediate between cost and delay. Society should

be willing to tolerate higher cost in environments where ideas are scarce (the arrival rate

is low). The second conclusion arises when the social planner does not know the scarcity

(arrival rate) of ideas, but must make inferences about it as time passes. As time passes

with no innovation, the planner becomes more pessimistic about the arrival rate, and will

tolerate higher cost in order to reduce delay. We do not know of other papers where the

reward policy changes dynamically.2

As in O�Donoghue, Scotchmer and Thisse (OST, 1998) and Scotchmer (1999), our model

distinguishes between ideas and innovations. However, delay is never optimal in these

papers. OST (1998) address environments where the ideas are complements in the sense

that each idea builds on previous ideas, and Scotchmer (1999) addresses environments where

ideas serve di¤erent market niches, but there are no substitute ideas for a given market niche.

In the model we discuss here, it is because ideas are substitutes that a certain amount of

delay should be tolerated. One of the ideas that arrives during the delay may have low cost.

Our model is a real options model in the spirit of MacDonald and Siegel (1986) and Dixit

and Pindyck (1994). An investment is irreversible and could turn out to be a mistake. To

avoid mistakes, there is a value to delay. In many real options models, the value of the

option is internalized by the �rm. In our model, ideas (investment opportunities) accrue

to random �rms, which means that although waiting is valuable to society, the value of

2A dynamically changing reward policy would presumably be optimal in any model where learning takes
place about something relevant to rewards. Although the authors do not analyze this aspect, two papers
where that might be true are Choi (1991) and Malueg and Tsutsui (1997). In those papers, there is an
unknown parameter that governs the hazard rate of success in a production function for R&D that is
common knowledge among the �rms in a race. In our model below, the planner is learning about the hazard
rate at which the population as a whole receives ideas for investment. There is no commonly known but
uncertain production function for R&D.
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waiting is not internalized by any potential innovator. The problem of the social planner is

to ensure that private recipients of ideas preserve socially optimal options.

Our modeling apparatus is reminiscent of search models (see McCall and McCall, 2008),

although we do not interpret our random process as search. In search models, all opportu-

nities arrive to a single searcher who sets an optimal stopping policy. In our model, ideas

are so scarce that no individual is likely to receive more than one idea. The planner knows

that the population as a whole is receiving ideas, and knows something about the stochastic

process, but does not know who receives ideas or when. Nevertheless, the planner must set

the reward policy. Despite this fundamental di¤erence, the planner�s reward policy in the

case of a known arrival rate is similar to the stopping rule that emerges in search models.

Although some search models involve learning, we do not know of results in the search

literature that are analogous to our results for the case that the planner is learning about

the arrival rate.

The paper is structured as follows. In section 2, we set forth a simple model of scarce

ideas. In sections 3 and 4, we characterize the optimal cost threshold that the planner

would like to implement at each date. The optimal cost threshold is a cost such that the

possessor of a lower-cost idea should invest. The planner realizes that, if someone invests,

society is giving up an option, namely, the option to wait for a better idea. The option that

is preserved by not investing is a social option, not internalized by any potential investor.

The stochastic process that determines the option value depends on whether rejected

ideas are lost forever (�use it or lose it�) or banked for future use (�use it or bank it�).

We treat these two cases in sections 3 and 4. Banking is attractive to the social planner

when he does not know the arrival rate of ideas. As time passes, the planner becomes more

pessimistic about the arrival rate. An idea that seemed too costly a year ago will seem

more attractive at present because more delay is predicted. The planner will therefore want

access to the banked idea with lowest cost.

In section 5, we show how the planner can implement the optimal cost threshold with

and without banking of ideas. The optimal reward policy plays on the fact that banking
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is attractive to the recipient of an idea whenever the reward function is increasing. The

recipient of the idea may be willing to forego the pro�t available by investing at present in

order to gamble on a higher reward in the future. Of course, the recipient may be preempted

in the meantime.

We conclude in section 6 by mentioning some ways that the optimal reward policy

corresponds to legal institutions.

2 A Model of Scarce Ideas

We assume there is market niche that may be �lled with an innovation. The social value of

�lling the market niche is v=r, where r is the discount rate.

There is an exogenous process by which the potential innovators receive ideas for �lling

this market niche. To innovate, the inventor must �rst have an idea, which we interpret

as an act of imagination, and then have an incentive to invest in it. Each idea occurs at a

random time, to a random recipient. Each idea has associated to it an R&D cost that is

drawn independently from a common distribution F with support in [0;1) and density f .

To create an innovation, the recipient of an idea must invest the cost. We assume that the

ideas rain down on the population as a whole according to a Poisson process with parameter

�, and we take the parameter � as a measure of scarcity. If the hit rate � is low, ideas are

scarce.

The recipient of an idea can invest in it, discard it, or bank it, which means to remember

it for future use. If the recipient of an idea invests in it, the process stops because the market

niche has been �lled. The optimal policy will therefore operate by getting the population

of potential innovators to screen their ideas and then to discard or bank those with costs

that are too high. The value of the social option created by not investing is that another

idea might entail a lower cost. There is thus a social trade-o¤ between cost and delay. The

policy objective is to manage this trade-o¤ in a way that is socially optimal.

We assume that each agent receives at most one idea. This is an intentionally extreme

assumption that highlights the main premise of the paper. Ideas are scarce, not only for
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society as a whole, but especially from the perspective of any individual.

The social policy is described by a threshold function c : R+ ! R+ such that the

recipient of an idea at time t invests if the cost of the idea is less than c (t). A threshold

function is stationary if there exists �c in R+ such that c (t) = �c for all arrival times t. We

say an idea at time t is viable if it has cost less than c (t). The expected cost of a random

viable idea that arrives at time t is

EF (c (t)) =
R c(t)
0 ĉ

f (ĉ)

F (c (t))
dĉ. (1)

We say that the investment process survives to t if there is no viable idea before t:

We now consider two versions of the ideas process. In the �use it or lose it�model, an

idea that is not used immediately is lost. For example, an idea may be lost or forgotten if

the recipient moves on to other projects. However, not all ideas will be lost, especially if

there is an incentive to remember them. We consider this in the �use it or bank it�model.

The truth is probably somewhere between these two models for most R&D environments.

We study the two extreme cases in order to show their implications for optimal rewards.

3 Use it or lose it

In this section, we assume that, if the recipient of an idea decides not to invest, the idea is

lost to everyone, including the recipient, and cannot be reclaimed later.

Let P (tj�; c) be the probability of surviving to time t, as seen from time 0, when the

threshold function is c and the arrival rate of ideas is �: The survival probability P di¤ers

according to whether ideas can be banked, but in both models, the probability distribution

on survival times is stochastically larger at smaller arrival rates.

When recipients either use their ideas or forget them immediately, the instantaneous

arrival rate of viable ideas at time t is �F (c (t)). As seen from time t = 0, the probability

of survival to time t with no viable idea is P (tj�; c) ; de�ned as follows.

P (tj�; c) = e��(t;c) where � (t; c) =
Z t

0
�F

�
c
�
~t
��
d~t (2)
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(See, for example, Snyder and Miller, 1991, p. 51.) The probability of surviving to t̂;

conditional on surviving to an earlier time t; is P
�
t̂j�; c

�
=P (tj�; c) : As seen from time t;

the probability that the �rst viable idea arrives at t̂ > t is

d

dt̂

"
1�

P
�
t̂j�; c

�
P (tj�; c)

#
= �F

�
c
�
t̂
��
e��(t̂;c)+�(t;c) (3)

We study both the case that the arrival rate � is known, and the case that the arrival

rate is unknown. We now show for the case when � is known, the optimal threshold function

is stationary, and further, that the optimal stationary value decreases with the arrival rate

of ideas, �:

Conditional on an arbitrary threshold function c; and assuming that no viable idea has

occurred before t; social welfare measured from time t is V; de�ned by

V (t; c; �) =

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

�F
�
c
�
t̂
��
e��(t̂;c)+�(t;c)dt̂

=

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

�F
�
c
�
t̂
�� P �t̂j�; c�
P (tj�; c) dt̂ (4)

If the threshold function c is optimal, the following condition holds at each t.�v
r
� c (t)

�
= V (t; c; �) (5)

The left hand side is the net social value of investing in the threshold idea at time t. The

right hand side is the expected, discounted value of waiting for a better idea. If the left

hand side were greater than the right hand side, then social welfare could be improved by

increasing the threshold cost. If the right hand side were greater than the left hand side,

then social welfare could be increased by decreasing the threshold cost.

It is well known in the search literature that, because this is a stationary problem,

the optimal threshold is a stationary value, say �c: Welfare as a function of the stationary

threshold �c can be written as

�V (t; �c; �) =
�v
r
� EF (�c)

�Z 1

t
e�r(t̂�t)�F (�c) e��F (�c)(t̂�t)dt̂

=
�v
r
� EF (�c)

� �F (�c)

�F (�c) + r
(6)
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This expression shows the trade-o¤ faced by the policy maker. If a higher stationary cost

threshold �c is tolerated, the innovation will arrive sooner since the hit rate of viable ideas,

�F (�c), is then higher, and the discounting expression, �F (�c)
(�F (�c)+r) , is larger.

Since the optimal threshold function is stationary, we can conceive of the optimal pol-

icy as a value c� (�) 2 R+, where c (t) = c� (�) for each t. The �rst order condition for

maximizing (6) can be written for each � as�v
r
� c� (�)

�
� �F (c� (�))

(�F (c� (�)) + r)

�v
r
� EF (c� (�))

�
= 0. (7)

The (unique) solution c� (�) has the property that investing in the marginal innovation

today, and receiving net value
�
v
r � c

� (�)
�
, is as valuable as waiting for the next viable

idea. The next viable idea will arrive with delay, but may have a lower cost. With a higher

arrival rate �, the cost of waiting is reduced, and it is optimal to be more selective in

choosing an idea for investment.

We summarize these conclusions in the following proposition. Part (a) is proved in the

appendix in a di¤erent way than in the search literature. Part (b) follows from di¤erentiating

(7) implicitly.

Proposition 1 Suppose that the recipient of an idea must use it or lose it. Suppose that

the arrival rate of ideas, �, is �xed and known. Then (a) given �; the optimal cost threshold

is stationary; and (b) the optimal stationary threshold c� (�) is decreasing with �.

We now turn to the more realistic case that � is unknown. Like all contracts, R&D

incentives must depend on things that are veri�able. A prize or patent authority knows

whether the market niche has been �lled, but does not observe the hypothetical distribution

of arrival times, and does not observe the arrival of ideas that are rejected.

The length of time without arrival of a viable idea is a signal of �. A long period

with no arrival should make the observer more pessimistic about � �it shifts the posterior

distribution on � toward lower values. However, the posterior distribution on � must also

account for the fact that some ideas are rejected. Thus, the threshold function for accepting

or rejecting ideas is an ingredient to forming a posterior belief on �.
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We show that, when the posterior distribution on � is changing as time passes, neither

the optimized value function nor the optimal investment strategy is stationary. Because the

posterior distribution on � shifts toward lower values as time passes with no viable idea,

the (optimized) value of waiting for a better idea decreases with time. This implies that

society should optimally be less discriminating about which idea is accepted. In particular,

the socially optimal cost threshold is increasing instead of being stationary.

Let ~h be the prior density function for the distribution of � with support [0;1). Then

the posterior density, conditional on a threshold function c; and conditional on no viable hit

having arrived by time t̂, is h
�
�jt̂; c

�
with cumulative distribution H

�
�jt̂; c

�
; where h

�
�jt̂; c

�
satis�es

h
�
�jt̂; c

�
=

~h (�)P
�
t̂j�; c

�R
~h (�)P

�
t̂j�; c

�
d�

for each � 2 (0;1) (8)

The posterior depends on the threshold function c up to time t̂; through the values of

P (�j�; c), and more speci�cally in the �use it or lose it� model, through �
�
t̂; c
�
. Let

E
�
�jt̂; c

�
be the expected value of �:

E
�
�jt̂; c

�
=

Z 1

0
�h
�
�jt̂; c

�
d�

Lemma 1 If t1 < t2; the distribution H (�jt1; c) stochastically dominates H (�jt2; c). More-

over, E (�jt; c) decreases with t.

Seen from t = 0; and accounting for the uncertainty on �; the probability of survival to

time t is

~P
�
t̂jc
�
=

Z 1

0
P
�
t̂j�; c

�
~h (�) d� =

Z 1

0
e��(t̂;c)~h (�) d� (9)

Similarly, the probability of surviving to t̂; conditional on surviving to t is

~P
�
t̂jc
�

~P (tjc)
=

Z 1

0

P
�
t̂j�; c

�
P (tj�; c) h (�jt; c) d� =

Z 1

0
e��(t̂;c)+�(t;c)h (�jt; c) d�

The probability that the �rst viable idea arrives at t̂; conditional on surviving to t < t̂; is

given by

d

dt̂

"
1�

~P
�
t̂jc
�

~P (tjc)

#
=
F
�
c
�
t̂
�� R

�e��(t̂;c)~h (�) d�

~P (tjc)
=
~P
�
t̂jc
�

~P (tjc)
F
�
c
�
t̂
��
E
�
�jt̂; c

�
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The social value of continuing from time t is given by a function ~V de�ned in the �rst

line of (10). Substituting for V (t; c; �) from (4) gives the expression in the second line,

which shows more explicitly the probabilities of investing at each time t̂, as they depend on

the underlying �. The rewriting in the third line focuses on the fact that it is the beliefs

E
�
�jt̂; c

�
that matter at each t̂. The instantaneous probability of receiving a viable idea is

E
�
�jt̂; c

�
F
�
c
�
t̂
��
. As seen from t, the probability of arriving at time t̂ in the �rst place is

~P(t̂jc)
~P (tjc) .

~V
�
t; c; ~h

�
=

Z 1

0
V (t; c; �)h (�jt; c) d� (10)

=

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
��� Z 1

0
�F

�
c
�
t̂
��
e�[�(t̂;c)��(t;c)]h (�jt; c) d�dt̂

=

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

E
�
�jt̂; c

�
F
�
c
�
t̂
�� ~P �t̂jc�
~P (tjc)

dt̂

Let c : R+ ! R+ be the threshold function that maximizes ~V
�
0; �; ~h

�
. Then, analogous

to (5), the optimal threshold function c satis�es the following at each t:

v

r
� c (t) = ~V

�
t; c; ~h

�
(11)

To show that the optimal c is increasing, it is enough to show that ~V
�
�; c; ~h

�
is decreasing.

Intuitively, ~V is decreasing because the observer becomes more and more pessimistic about

the arrival rate of ideas as time continues without a viable hit. Because of this pessimism,

more delay is expected. To mitigate delay, it is optimal to tolerate higher cost.

In the appendix we prove the following result.

Proposition 2 Suppose that the recipient of an idea must use it or lose it. Suppose that

the arrival rate of ideas, �, has a prior distribution ~h with support [0;1). Let c be the

threshold function that maximizes ~V
�
0; �; ~h

�
. Then c is increasing.

In section 5, we discuss how the optimal cost threshold can be implemented. In the

�use it or lose it�model, it is easy to implement the optimal cost threshold by setting the

reward equal to the cost threshold. This is because each recipient of an idea has a single

9



opportunity to invest. He will not receive another idea (ideas are scarce), and he must

either invest in the idea immediately or lose it forever.

4 Use it or Bank it

When the reward is equal to the cost threshold, and therefore (with unknown �) increasing,

the possessor of an idea may have an incentive to delay investment to get a higher reward.

If the recipient can bank his idea for later use, the social planner needs to take this into

account in choosing the optimal cost threshold as well as a reward policy to implement it.

How should the planner view banking? The social planner does not want to delay

investments that should be viable under his optimal cost threshold. His reward function

should ensure that this does not happen. At the same time, banking ideas for future use is

tantamount to increasing the arrival rate of ideas in the future. Since this is valuable, the

optimal cost threshold should take it into account.

With banking, the social policy is again a threshold function c. Ideas accumulate over

time and are banked by the recipients. An idea that is converted to an innovation can either

be a banked idea or a new idea.

The marginal probability of investment at time t must be described di¤erently according

to whether the threshold function c is increasing or decreasing at that t: If decreasing, the

banked ideas are irrelevant. Any banked idea that would be chosen at t would also have

been chosen at t� dt: If there is investment at t; it is because a viable idea materializes at

that moment. On the other hand, if c is increasing at t; then banked ideas may become

viable. If c is increasing, both the banked ideas and the increasing cost threshold a¤ect the

probability of investment at time t:

We will describe the probabilities of survival at each t by reference to Figure 1, which

shows an arbitrary cost threshold function. To describe the probability of investing in an

idea at any t where c is decreasing, such as t1 in Figure 1, let tm be the largest value smaller

than t where c is nonincreasing. On the domain [tm; t], there are no viable banked ideas.

Let Q (tmj�; c) be the probability of surviving to tm. Then the probability of survival to t;

10



tm t0(t2) t1 t2 t3t0(t3)=0 tm t0(t2) t1 t2 t3t0(t3)=0

Figure 1: The stochastic process with banking

(that is, the probability that there is no viable idea by time t) is similar to the case without

banking:

Q (tmj�; c) e��(t;c)+�(tm;c)

where

� (t; c) =

Z t

0
�F

�
c
�
~t
��
d~t

This is the probability of survival to tm times the probability that no viable idea arrives in

the interval [tm; t] :

To describe the probabilities of survival at t where c is increasing, let t0 (t) be the largest

value smaller than t such that c (t0 (t)) = c (t) : If there is no such value, let t0 (t) = 0:

Two such points are t2 and t3 in Figure 1. At t2; the relevant banked ideas have been

accumulating for a shorter period of time than at t3: At t2; any ideas below the cost threshold

c (t2) that were received before t0 (t2) would have been used before t0 (t2) : Therefore the

relevant banked ideas are those which accumulated between t0 (t2) and t2: At t3; there may

11



be relevant ideas with cost near c (t3) that accumulated very early, since there was never a

time when such high-cost ideas were below the cost threshold.

The probability of survival to t (that is, the probability that there is no viable idea by

time t) is

Q(t0 (t) j�; c)e��F (c(t))[t�t0(t)]

This is the probability of survival to t0 (t) times the probability that no viable idea arrives

in the interval [t0 (t) ; t] :

Thus, if ideas are banked, the stochastic process that determines the probability of

survival until t satis�es

Q (tj�; c) =

8<:
Q (tmj�; c) e��(t;c)+�(tm;c) if c is decreasing in [tm; t]

Q(t0 (t) j�; c)e��F (c(t))[t�t0(t)] if c is increasing at t
(12)

It is useful in the following analysis to de�ne

F (tjc) =

8<:
F (c (t)) if c0 (t) � 0

[F (c (t)) + f (c (t)) (t� t0 (t)) c0 (t)] if c0 (t) > 0

As seen from time t; the probability of arriving at t̂ is
Q(t̂j�;c)
Q(tj�;c) : The probability that

the �rst viable idea becomes available at t̂ is the probability of arriving there, times the

instantaneous probability that a viable idea arrives at time t̂, namely,

d

dt̂

"
1�

Q
�
t̂j�; c

�
Q (tj�; c)

#
= �F

�
t̂jc
� Q �t̂j�; c�
Q (tj�; c)

When c is decreasing, the instantaneous probability of an innovation, �F
�
t̂jc
�
= �F

�
c
�
t̂
��
;

is the same as in the �use it or lose it�model, namely, the probability that a viable idea

occurs in the interval
�
t̂; t̂+ dt̂

�
: But when c is increasing, the innovation may result from

a banked idea rather than from an idea that occurs in the interval
�
t̂; t̂+ dt̂

�
. The instan-

taneous probability of innovation is therefore larger, namely, �F
�
t̂jc
�
> �F

�
c
�
t̂
��
: The

instantaneous probability of innovation has two parts. First is the probability that a viable

idea arrives to someone in dt̂, namely �F
�
c
�
t̂
��
dt̂: Second is the probability that a banked

12



idea is called into play. When the threshold rises by c0
�
t̂
�
dt̂; the probability that there is

a banked idea in the cost band c0
�
t̂
�
dt̂ is �f

�
c
�
t̂
�� �

t̂� t0
�
t̂
��
:

Conditional on surviving to time t; social welfare measured from time t is B de�ned by

B (t; c; �) =

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

�F
�
t̂jc
� Q �t̂j�; c�
Q (tj�; c) dt̂

If the threshold function c is optimal, the following condition holds at each t.�v
r
� c (t)

�
= B (t; c; �) (13)

When ideas can be banked, it remains true that the optimal cost threshold is stationary.

If the threshold is stationary, then the probability distribution Q (�j�; �c) is the same as

P (�j�; �c) ; so �B (t; �c; �) = �V (t; �c; �) : Thus, the �rst order condition is the same as in the

�use it or lose it�model, namely (7). Therefore, as recorded in the next proposition, the

stationary cost thresholds are the same in both cases.3

Proposition 3 Suppose that the recipient of an idea can use it or bank it. Suppose that

the arrival rate of ideas, �; is �xed and known. Then, given �; the optimal cost threshold

is stationary, has the same value c� (�) as in the �use it or lose it� model, and is thus

decreasing with �:

We now turn to the case that ideas can be banked, and the hit rate of ideas, �; is

unknown. The prior is again ~h; and using the survival probabilities described in (12), the

posterior distribution on � is again described by (8), substituting Q for P: The analog

to Lemma 1 holds for the distribution Q, by the same proof as for the distribution P .4

E
�
�jt̂; c

�
decreases with t̂.

3Banking is the same as recall in the search literature. See McCall and McCall (2008) for similar results
in search theory with and without recall. As in the �use it or lose it�model, we give a di¤erent proof, using
our social welfare function. The social welfare function is useful for understanding the case of unknown �:

4Lemma 1 is proved by using Claim 2 in the proof. Claim 2 applies here because, for the distribution Q;

d

dt
h (�jt; c) = F (c (t))h (�jt; c) [E (�jt; c)� �] .

13



We de�ne ~Q
�
t̂jc
�
analogously to (9), except that the stochastic process underlying

Q
�
t̂j�; c

�
is de�ned by (12) instead of (2). The social value of continuing from time t is

given by a function ~B, which we write in two ways. The �rst line is the de�nition, and the

second line is equivalent, emphasizing that the belief on � is updated at each t̂.

~B
�
t; c; ~h

�
=

Z 1

0
B (t; c; �)h (�jt; c) d� (14)

=

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

E
�
�jt̂; c

�
F
�
t̂jc
� ~Q �t̂jc�
~Q (tjc)

dt̂

The optimal c satis�es
v

r
� c (t) = ~B

�
t; c; ~h

�
(15)

The following proposition shows that the optimal cost threshold with banking is still in-

creasing when the social planner is continuously updating his posterior about �.

Proposition 4 Suppose that the recipient of an idea can use it or bank it. Suppose that the

arrival rate of ideas, �, has a prior distribution ~h with support [0;1). Let c be the threshold

function that maximizes ~B
�
0; �; ~h

�
. Then c is increasing.

We conclude from Propositions 1 and 2, together with Propositions 3 and 4, that it is

learning about � that causes the optimal threshold to be increasing. It is not the banking

of ideas per se.

Finally we show that the optimized social welfare is higher with banking than without.

When ideas are banked, the social planner is more pessimistic about � at each t for a given

c. At the same time, the arrival rate of viable ideas is higher when some of ideas may come

from the idea bank. The next proposition shows that the latter e¤ect dominates.

Proposition 5 Let C be the set of threshold functions c that are increasing. Then for each

t > 0; maxc2C ~B
�
t; c; ~h

�
> maxc2C ~V

�
t; c; ~h

�
.

From (11) and (15), this proposition implies the following:

Corollary 1 Let cV be the optimal threshold function in the �use it or lose it�model, and

let cB be the optimal threshold function in the �use it or bank it�model. Then cV > cB:

14



The social planner prefers to be more selective when he can rely on banked ideas, even

if he is more pessimistic about � at each t.

5 Implementing the Optimal Cost Threshold

The social planner cannot implement the optimal cost threshold directly, because the social

planner is not the recipient of the ideas. Ideas for R&D are widely dispersed within the

population of potential innovators. At best the social planner can try to implement the

optimal threshold by setting rewards.

We suppose that the social planner sets a reward function � : R+ ! R+. For example,

the reward function can represent patent policy or a prize system. The reward function �

implements the threshold function c if the possessor of an idea with cost c0 at time t invests

in the idea if and only if his idea satis�es c0 � c (t). In the �use it or lose it�model, the

only relevant ideas are those that just arrived, but in the �lose it or bank it�model, the

relevant idea might previously have been banked.

We already pointed out how to implement the optimal cost threshold in the �use it or

lose it�model. We record it formally here.

Proposition 6 Suppose that c is the optimal cost threshold in the �use it or lose it�model.

Then c can be implemented by setting � (t) = c (t) for all t:

Implementation is also easy whenever the optimal cost threshold is stationary. This

occurs in both models when � is known:

Proposition 7 Let c be the optimal threshold function when the hit rate of ideas, �; is

�xed and known. Then c is stationary, and can be implemented by a reward function that

satis�es � (t) = c (t) for all t: This applies in both the �use it or lose it�model and the �use

it or bank it�model. In both cases, the optimal stationary reward decreases with �:

We interpret this proposition to mean that rewards should be higher when ideas are

scarce.
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Implementation is not as easy in the �use it or bank it�model when the hit rate of

ideas is unknown. The optimal cost threshold is increasing, which implies that the reward

must be greater than the implemented cost threshold at each t. If equal, the recipient of

a marginal idea (with cost equal to c (t)) would not invest as intended, since investing in

the marginal idea would lead to zero pro�t. Since the reward function is increasing, the

possessor of the marginal idea might make positive pro�t by waiting for some period until

the reward is higher. Even if the possessor of the idea might be preempted during the delay,

the expected pro�t with delay is still larger than zero.5

We suppose that the social planner chooses a reward function �, and the recipients

of ideas choose investment strategies. Each recipient�s investment strategy is a threshold

function that indicates whether, when the opportunity arises, the possessor of the idea will

invest in the idea or bank it. The planner�s objective is to make sure that the privately

chosen threshold functions correspond to the threshold function that is optimal.

Each idea recipient�s incentive to bank or invest depends on his belief about �; and also

on his belief about the other agents�investment strategies. If there is a large accumulation

of banked ideas, the probability of being preempted is high.

Further, the social planner must predict these beliefs. If the social planner does not

know the beliefs of the idea recipients, he cannot predict their investment strategies, and

thus cannot predict the cost threshold that will be implemented by his reward function.

We solve the problem of beliefs in a familiar way. We require that beliefs must be

correct in equilibrium. For the threshold function c that will be implemented, a recipient

must believe in equilibrium that other agents invest according to c, and the recipient must

�nd it most pro�table to invest according to c himself. The point is to �nd a reward function

with this result.

The planner�s belief about � is irrelevant in the following discussion. The planner can

implement any nondecreasing threshold he wants, provided he knows the beliefs of the

idea recipients. The idea recipients have more information than the planner, and will have

5A similar type of tradeo¤ exists in Weeds (2002), who considers a model of R&D competition where
delay is undermined by the fear of pre-emption.
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di¤erent beliefs than the planner. This is because, when a nonviable idea arrives to a

recipient, the arrival contains information about � even if the idea is banked instead of

used.

Let ĥ (�jt; c) represent the belief of each recipient about �, with expected value Ê (�jt; c) :

The argument c is a belief, namely, the recipient�s belief about the investment strategy

(cost threshold) of the other recipients. Our notation ĥ incorporates an assumption about

equilibrium: that in equilibrium all other recipients of ideas obey the same investment

strategy, c. We justify this assumption after de�ning the idea recipients�pro�t function.

A recipient�s belief P on the probability of arriving at t̂ is given by

P
�
t̂jc
�
=

Z 1

0
Q
�
t̂j�; c

�
~h (�) d�

where c is the threshold function that other recipients are assumed to obey, and ĥ is the

recipients�posterior belief on �: The probability of arriving at t̂, having already arrived at

t; is given by
P
�
t̂jc
�

P (tjc) =
Z 1

0

Q
�
t̂j�; c

�
Q (tj�; c) ĥ (�jt; c) d�

To de�ne the idea recipient�s pro�t function, suppose that he possesses an idea with

cost c0 at time t: The innovator�s pro�t, as a function of the time t̂ at which he will invest,

is given by (16).

�
�
t̂; c0jt; c

�
=
�
�
�
t̂
�
� c0

�
e�r(t̂�t)

P
�
t̂jc
�

P (tjc) (16)

The derivative of the pro�t function is

d

dt̂
�
�
t̂; c0jt; c

�
= �0

�
t̂
�
e�r(t̂�t)

P
�
t̂jc
�

P (tjc) �
�
�
�
t̂
�
� c0

�
e�r(t̂�t)

"
r
P
�
t̂jc
�

P (tjc) +
d

dt̂

P
�
t̂jc
�

P (tjc)

#

= e�r(t̂�t)
P
�
t̂jc
�

P (tjc) �
�
�0
�
t̂
�
�
�
�
�
t̂
�
� c0

� h
r + F

�
t̂jc
�
Ê
�
�jt̂; c

�i�
where

Ê
�
�jt̂; c

�
=

Z 1

0
�ĥ
�
�jt̂; c

�
d�
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The optimal investment decision at t̂ is

delay if �0
�
t̂
�
>

�
r + Ê

�
�jt̂; c

�
F
�
t̂jc
�� �

�
�
t̂
�
� c0

�
invest if �0

�
t̂
�
�

�
r + Ê

�
�jt̂; c

�
F
�
t̂jc
�� �

�
�
t̂
�
� c0

�
(17)

In (17), �0 on the left hand side is the bene�t of delay. The right hand side is the cost

of delay, namely, the interest cost r on the foregone pro�t �
�
t̂
�
� c0; and the perceived

probability Ê
�
�jt̂; c

�
F
�
t̂jc
�
of being preempted.

The investment strategy derived in (17) is the same for all idea recipients. However,

the derivation is based on the prior assumption that all idea recipients have the same belief

about �: This is justi�ed in the following Remark.

We write the following as a remark instead of a lemma because the proof in the appendix

elaborates the model, assuming that the population of idea recipients is �nite instead of

in�nite, and taking limits. We do this in order to derive limit beliefs as the population

becomes large. We show that, in the limit, the beliefs of idea recipients do not depend

on when a recipient received his idea. In the limit, the probability of receiving an idea is

zero, and the timing of the idea has negligible impact beyond the impact of receiving one.

Nevertheless, the limit beliefs are more optimistic than those of the planner because the

planner has not observed the arrival of any idea at all.

Remark 1 Let c be an arbitrary nondecreasing investment strategy (cost threshold). (a) If

all recipients of ideas believe that c is the investment strategy of every other recipient, then

at a given time t; every recipient of an idea has the same belief on arrival rates, which we

call ĥ (�jt; c). (b) The recipients�belief ĥ (�jt; c) stochastically dominates the planner�s belief

h (�jt; c) at every t; and as a consequence, Ê (�jt; c) > E (�jt; c) : (c) Every recipient of an

idea with a given cost, say c0; has the same optimal investment strategy given by (17).

The optimal investment behavior (17) should guide the planner in choosing his reward

function. For an arbitrary nondecreasing cost threshold c, let the reward function satisfy

�0 (t) =
�
r + Ê (�jt; c)F (tjc)

�
[� (t)� c (t)] (18)
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The following lemma says that, with the reward function de�ned in (18), idea recip-

ients will indeed obey the threshold function c that determines beliefs (represented by

Ê (�jt; c)F (tjc)) :

Lemma 2 Let c be a nondecreasing cost threshold, and suppose that the belief of each idea

recipient is c: Suppose that the reward function � solves (18) at every t. Then for each

t; a recipient�s most pro�table investment strategy is to invest if he has an idea with cost

c0 � c (t) ; and not otherwise.

Proof: The condition (17) is clearly optimal at the margin, for choosing whether to

invest at t or delay for a length of time dt: We must also show that if (17) holds, a longer

delay is also not pro�table.

If c0 � c (t) � c
�
~t
�
, then

�0 (t) =
�
r + Ê (�jt; c)F (tjc)

�
[� (t)� c (t)] �

�
r + Ê (�jt; c)F (tjc)

�
[� (t)� c0]

and

�0
�
~t
�
=
�
r + Ê

�
�j~t; c

�
F
�
~tjc
�� �

�
�
~t
�
� c

�
~t
��
�
�
r + Ê

�
�j~t; c

�
F
�
~tjc
�� �

�
�
~t
�
� c0

�
The �rst line (respectively, second line) means that it is more pro�table to invest at t

rather than t+dt (respectively, ~t rather than ~t+dt) because the additional pro�t from delay

(the left hand term) is no greater than the cost of delay (the right hand term). The �rst

line (respectively, second line) holds because c0 � c (t) (respectively, c0 � c
�
~t
�
). If the idea

was not available at t (or if the possessor of the idea made a mistake by not investing), he

will invest at the earliest next time, such as at ~t, since c0 � c (t) implies c0 � c
�
~t
�
whenever

t < ~t: At any time after t; the possessor of an idea with cost less than c (t) prefers to invest

rather than bank. �

Thus, if c is nondecreasing and the reward function � is chosen to satisfy (18), recip-

ients of ideas will invest according to the investment strategy c. We therefore say that �

implements c if � satis�es (18) and also satis�es � (t) � c (t) :
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Proposition 8 Suppose that c is nondecreasing. There exists a reward function � that

implements c. The function � satis�es � > c if c is increasing. Further, � (t)� c (t)! 0 as

t!1:

Proof: Let

� (t) = c (t) +
k �

R t
0 e

�D(t̂)c0
�
t̂
�
dt̂

e�D(t)
(19)

where D
�
t̂
�
=

Z t̂

0

�
r + Ê

�
�j~t; c

�
F
�
~tjc
��
d~t

k = lim
t!1

Z t

0
e�D(t̂)c0

�
t̂
�
dt̂:

The function � de�ned by (19) is a solution to (18). Since
R t
0 e

�D(t̂)c0
�
t̂
�
dt̂ is nondecreasing

with t; the choice of k ensures that � (t) � c (t) � 0 for all t, with strict inequality if

c is increasing on some domain. The de�nition of k can be satis�ed because at each t;R t
0 e

�D(t̂)c0
�
t̂
�
dt̂ �

R t
0 c

0 �t̂� dt̂ = c (t) � c (0) : Since c is nondecreasing and bounded by

(v=r), there exists �c � (v=r) such that c (t)! �c:

It holds that � (t)� c (t)! 0 because

k �
R t
0 e

�D(t̂)c0
�
t̂
�
dt̂

e�D(t)
! 0

by L�Hopital�s rule:

e�D(t)c0 (t)

e�D(t)
�
r + Ê (�jt; c)F (tjc)

� = c0 (t)�
r + Ê (�jt; c)F (tjc)

� ! 0

�

We close this section with a comment on the pro�tability of R&D in aggregate. Due

to the scarcity of ideas, innovators make positive pro�t on average. This is because the

cost of an implemented idea will generally be lower than the threshold. The recipient of a

low-cost idea is in a favored position, and everyone would like to have such an idea, but

there is little that one can do to create the investment opportunity. In fact, we have taken

the extreme assumption that investment opportunities arrive entirely by chance. We have
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done this to emphasize our key departure from the more standard R&D literature, where

all �rms have access to an investment opportunity, and pro�t may be dissipated in a patent

race or through preemptive strategies. As a consequence, one would not expect to observe

in equilibrium that the return to R&D investments is the same as the return to capital. On

average, it should be higher.

Our argument that the optimal cost threshold can be implemented seems to overlook

the possibility that an innovator might be able to keep his innovation secret while charging a

proprietary price. This would presumably subvert the objective of the reward, and possibly

not implement the optimal cost threshold. However, as we show in our (2007) paper, at

least in the case of known �, secrecy is never optimal.6 This assumes that with secrecy,

another innovator can claim the reward and end the prior innovator�s proprietary pro�t

stream.

6 Economic Concepts and Legal Concepts

We interpret ideas, and the fact that ideas are private, as a model of imagination or creativ-

ity. Ideas have economic value because they are scarce. We have argued that rewards should

be higher in environments where ideas are scarce. If ideas are scarce, higher cost should be

tolerated in order to reduce delay. We have also argued that rewards should be increasing

as time passes without an innovation. Longer delay leads to expectation of an even longer

delay. The delay can be mitigated with higher rewards, since higher rewards encourage in-

vestment in higher-cost ideas. Because ideas are not common knowledge, innovators make

positive pro�t in expectation.

These arguments apply equally well to patents and prizes, and any other way of giving

rewards.7 Patents raise the issue of whether our prescriptions can be implemented under

existing patent doctrine. They also raise the question of how deadweight loss incurred in

collecting the reward money changes the optimal cost threshold.

6This result contrasts with previous treatments of secrecy in the literature. See, for example, Denicolo
and Franzoni (2004) and Erkal (2005).

7For a sample of the many ways, other than patents, that economists have thought about incentives in
R&D, see Wright (1983), chapters 2 and 8 of Scotchmer (2004) and Hopenhayn, Llobet and Mitchell (2006).
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The main requirements for obtaining a patent are novelty, nonobviousness, utility and

enablement. Together, these requirements govern the breadth of claims that are granted.

When the statutory patent life is the same for all patentable innovations, breadth is the

main lever to di¤erentiate rewards. Our prescription is therefore that the patent o¢ ce

and courts should grant generous claims (broad patents) when ideas are scarce, or more

particularly, when the innovation arrives after long delay.

Patent law doctrine also has a threshold standard for granting a patent, namely, the

nonobviousness requirement. Our arguments can be interpreted to mean that this threshold

standard should be interpreted more leniently when ideas are scarce. In fact, patent doctrine

has its own term for this circumstance, namely, �long felt need.�Long-felt need is one of

the secondary considerations for patentability.

7 Appendix

7.1 Proof of Proposition 1

(a) We �rst show that the optimized value of V is stationary. Stationarity of c follows from

(5).8

Claim 1 Given t1 < t2; let c1 : (t1;1) ! R+ be the function that maximizes V (t1; c; �) ;

and let c2 : (t2;1)! R+ be the function that maximizes V (t2; c; �) : Then V (t1; c1; �) =

V (t2; c2; �) :

Proof: De�ne a function ~c1 : (t1;1)! R+ by

~c1
�
t̂
�
= c2

�
t̂+ t2 � t1

�
(20)

The function ~c1 is the same function as c2; except shifted to begin at t1 instead of t2. Then

by de�nition, V (t1; c1; �) � V (t1; ~c1; �) ; and by construction, V (t1; ~c1; �) = V (t2; c2; �).

Hence, V (t1; c1; �) � V (t2; c2; �) :
8Stationarity is proved in the search literature by using a value function and the Bellman equation. We

take a di¤erent approach because V is useful when we discuss the social welfare function ~V for unknown �:
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Now reverse the roles and de�ne a threshold function ~c2 : (t2;1)! R+ by

~c2
�
t̂
�
= c1

�
t̂� t2 + t1

�
Then by de�nition, V (t2; c2; �) � V (t2; ~c2; �) ; and by construction, V (t2; ~c2; �) = V (t1; c1; �).

Hence, V (t2; c2; �) � V (t1; c1; �). Together with V (t1; c1; �) � V (t2; c2; �) ; this proves the

result. �

Claim 1 implies that V has a constant value. Using (5), this implies that c is also

stationary.

Part (b) follows by di¤erentiating (7) implicitly.

7.2 Proof of Lemma 1

The lemma follows from Claim 2. When the stochastic process is given by (2) as in section

3, and h is given by (8), the hypothesis of the Claim is satis�ed because

d

dt
h (�jt; c) = F (c (t))h (�jt; c) [E (�jt; c)� �] (21)

Claim 2 Suppose there exists �̂ such that d
dth (�jt; c) > 0 for � < �̂ and

d
dth (�jt; c) < 0 for

� > �̂. Then d
dtH (�jt; c) > 0 at each � 2 [0;1):

Proof : For each � 2 [0;1);

0 =
d

dt

Z 1

0
h
�
~�jt; c

�
d~� =

d

dt

Z �

0
h
�
~�jt; c

�
d~�+

d

dt

Z 1

�
h
�
~�jt; c

�
d~�

For � � �̂;
d

dt
H (�jt; c) =

Z �

0

d

dt
h
�
~�jt; c

�
d~� > 0

For � > �̂;

d

dt
H (�jt; c) =

Z �

0

d

dt
h
�
~�jt; c

�
d~� =

Z 1

0

d

dt
h
�
~�jt; c

�
d~��

Z 1

�

d

dt
h
�
~�jt; c

�
d~�

= 0�
Z 1

�

d

dt
h
�
~�jt; c

�
d~� > 0

Therefore, H (�jt1; c) stochastically dominates H (�jt2; c) and (d=dt)E (�jt; c) < 0.
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7.3 Proof of Proposition 2

The conclusion that c is increasing follows from (11) since we can show that ~V is decreasing.

For the derivative of ~V ; we need the derivative of the conditional density function at t̂ > t,

d

dt
E
�
�jt̂; c

�
F
�
c
�
t̂
�� ~P �t̂jc�
~P (tjc)

= F (c (t))E (�jt; c) 
�
t̂jt; c; �

�
h (�jt; c)

Di¤erentiating ~V with respect to t gives

d

dt
~V
�
t; c; ~h

�
= �

�v
r
� EF (c (t))

�
E (�jt; c)F (c (t)) + r ~V

�
t; c; ~h

�
+

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

E
�
�jt̂; c

�
F
�
c
�
t̂
�� d
dt

"
~P
�
t̂jc
�

~P (tjc)

#
dt̂

= �
�v
r
� EF (c (t))

�
E (�jt; c)F (c (t)) + r ~V

�
t; c; ~h

�
+E (�jt; c)F (c (t))

Z 1

t
e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

E
�
�jt̂; c

�
F
�
c
�
t̂
�� ~P �t̂jc�
~P (tjc)

dt̂

= �
�v
r
� EF (c (t))

�
E (�jt; c)F (c (t)) + (r + E (�jt; c)F (c (t))) ~V

�
t; c; ~h

�
= (r + E (�jt; c)F (c (t)))

�
�
�v
r
� EF (c (t))

� E (�jt; c)F (c (t))
r + E (�jt; c)F (c (t)) +

~V
�
t; c; ~h

��
= (r + E (�jt; c)F (c (t)))

�
�
�v
r
� EF (c (t))

� E (�jt; c)F (c (t))
(r + E (�jt; c))F (c (t)) +

�v
r
� c (t)

��
(22)

where the last line follows from (11).

First, the optimizing function c cannot be �U-shaped" on any domain. If the func-

tion c is �U-shaped� on some domain, there exist t1 and t2 such that t1 < t2; c (t1) =

c (t2) ; and c0 (t1) < 0 < c0 (t2). However, this generates a contradiction. It holds that�
v
r � EF (c (t1))

�
=
�
v
r � EF (c (t2))

�
,
�
v
r � c (t1)

�
=
�
v
r � c (t1)

�
; F (c (t1)) = F (c (t2)) ;

and (using Lemma 1) E (�jt1; c) > E (�jt2; c). Hence, using (22), ddt ~V
�
t1; c; ~h

�
< d

dt
~V
�
t2; c; ~h

�
.

Together with c0 (t1) < 0 < c0 (t2) ; this contradicts (11).

Proposition 2 then follows from Claim 3 and Claim 4 below. By Claim 4, if c is the

optimal threshold function, ~V
�
t; c; ~h

�
is decreasing with t on a domain (�t;1). Therefore,

using (11), it also holds that c is increasing on that domain. But it then follows that the
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entire function c is nondecreasing, since c cannot be U-shaped on any domain. And, in fact,

c is increasing because the derivative (22) is not constant on any interval.

Claim 3 Let c be the threshold function that maximizes V
�
0; �; ~h

�
. Then there exists �t such

that the function t! e�rt
�
v
r � EF (c (t))

�
is decreasing on the domain (�t;1) :

Proof of Claim 3: Because the optimal c cannot be U-shaped, it is either nonincreasing

or nondecreasing for su¢ ciently large t. Further, because c is bounded above and below,

it holds that c0 (t) ! 0, c (t) ! c�, EF (c (t)) ! EF (c
�) for some c� 2

�
0; vr

�
. The result

follows because

d

dt
e�rt

�v
r
� EF (c (t))

�
= e�rt

�
�r
�v
r
� EF (c (t))

�
� dEF (c (t))

dc (t)
c0 (t)

�
! � re�rt

�v
r
� EF (c�)

�
�

Claim 4 Let c be the threshold function that maximizes V
�
0; �; ~h

�
: Then there exists a

domain (�t;1) for which

~V
�
t1; c; ~h

�
> ~V

�
t2; c; ~h

�
if �t � t1 < t2

Proof of Claim 4: We will take the domain (�t;1) as the domain on which e�rt
�
v
r � EF (c (t))

�
is decreasing, by Claim 3. We will show that

~V
�
t1; c; ~h

�
� ~V

�
t1; ~c; ~h

�
> ~V

�
t2; c; ~h

�
if �t � t1 < t2 (23)

where ~c is de�ned by ~c (t) = c (t) for t � t1 and ~c (t) = c (t+ t2 � t1) for t > t1.

The �rst inequality in (23) is true by the principle of optimality. Beginning from time

t1, the optimizing function is still c; as it was when optimized from the beginning. If �c

satis�es ~V
�
t1; �c; ~h

�
� ~V

�
t1; ĉ; ~h

�
for all threshold functions ĉ; then �c (t) = c (t) for every

t � t1:

It is the second inequality in (23) that we must show. The function ~c in ~V
�
t1; ~c; ~h

�
is

de�ned by the function c restricted to (t2;1) and shifted back in time to t1. For a �xed
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�; it therefore holds that V (t1; ~c; �) = V (t2; c; �). Further, h (�jt1; ~c) = h (�jt1; c) because

c = ~c for t � t1: Therefore,

~V
�
t1; ~c; ~h

�
=

Z 1

0
V (t1; ~c; �)h (�jt1; ~c) d� =

Z 1

0
V (t2; c; �)h (�jt1; c) d�,

and to show the second inequality in (23), it is enough to show thatZ 1

0
V (t2; c; �)h (�jt1; c) d� >

Z 1

0
V (t2; c; �)h (�jt2; c) d� = ~V

�
t2; c; ~h

�
. (24)

Since e�r(t�t2)
�
v
r � EF (c (t))

�
is decreasing with t for t 2 (�t;1) ; V (t2; c; �) increases with �.

Then (24) follows because, by Lemma 1, the distribution h (�jt1; c) stochastically dominates

h (�jt2; c). This means that h (�jt2; c) puts relatively more weight on low values of �, where

the value of V (t2; c; �) is low, and h (�jt1; c) puts relatively more weight on high values of

�, where the value of V (t2; c; �) is high. �

7.4 Proof of Proposition 3

We show this in two claims.

Claim 5 Let c : (t1;1) ! R+ be the function that maximizes B (0; c; �). Then c is not

increasing on any interval.

Proof: Suppose to the contrary that c is increasing on a domain [0; t2]. (The same

argument works for any domain where c is increasing.) De�ne a threshold function ~c :

(0;1)! R+ by

~c
�
t̂
�
=

8<:
c
�
t̂
�

for t̂ � t2

c
�
t̂� t2

�
for t̂ > t2

Thus, the function ~c is identical to the optimizing function c until t2, but then the function

c repeats, so that c (0) = ~c (t2) : During the period [0; t2], ideas are being banked. When

the threshold function is ~c; the banked ideas may be useful at times ~t > 2t2, when it holds

that ~c (t) > c (t2) = ~c (2t2) :

We will show that B (t2; c; �) < B (0; c; �) < B (t2; ~c; �) ; which contradicts the fact that

c is optimal from time t2: Using (13), the �rst inequality holds because c is assumed optimal
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and increasing, so B is decreasing. We show the second inequality.

B (t2; ~c; �) =

Z 2t2

t2

e�r(t�t2)

8<:
�
v
r � EF (~c (t))

�
�

� [F (~c (t)) + f (~c (t)) ~c0 (t) (t� t2)] �
e��F (~c(t))(t�t2)

9=; dt
+

Z 1

2t2

e�r(t�t2)

8<:
�
v
r � EF (~c (t))

�
�

� [F (~c (t)) + f (~c (t)) ~c0 (t) t] �
e��F (~c(t))(t�t2)

9=; dt

=

Z 2t2

t2

e�r(t�t2)

8<:
�
v
r � EF (c (t� t2))

�
�

� [F (c (t� t2)) + f (c (t� t2)) c0 (t� t2) (t� t2)] �
e��F (c(t�t2))(t�t2)

9=; dt
+

Z 1

2t2

e�r(t�t2)

8<:
�
v
r � EF (c (t� t2))

�
�

� [F (c (t� t2)) + f (c (t� t2)) c0 (t� t2) t] �
e��F (c(t�t2))(t�t2)

9=; dt

=

Z t2

0
e�rt̂

8<:
�
v
r � EF

�
c
�
t̂
���

�
�
�
F
�
c
�
t̂
��
+ f

�
c
�
t̂
��
c0
�
t̂
�
t̂
�
�

e��F(c(t̂))t̂

9=; dt̂
+

Z 1

t2

e�rt̂

8<:
�
v
r � EF

�
c
�
t̂
���

�
�
�
F
�
c
�
t̂
��
+ f

�
c
�
t̂
��
c0
�
t̂
� �
t̂+ t2

��
�

e��F(c(t̂))t̂

9=; dt̂
=

Z 1

0

�v
r
� EF (c (t))

�
~G0 (tjt2) dt

where

~G0
�
t̂jt2
�
=

8><>:
�
�
F
�
c
�
t̂
��
+ f

�
c
�
t̂
��
c0
�
t̂
�
t̂
�
e��F(c(t̂))t̂ if t̂ 2 [0; t2]

�
�
F
�
c
�
t̂
��
+ f

�
c
�
t̂
��
c0
�
t̂
� �
t̂+ t2

��
e��F(c(t̂))t̂ if t̂ 2 [t2;1]

9>=>;
Similarly, write

B (0; c; �) =

Z 1

0

�v
r
� EF

�
c
�
t̂
���

G0
�
t̂
�
dt̂

where

G0
�
t̂
�
= �

�
F
�
c
�
t̂
��
+ f

�
c
�
t̂
��
c0
�
t̂
�
t̂
�
e��F(c(t̂))t̂ for each t̂ 2 [0;1)

Then ~G (tjt2) � G (t) for all t; with strict inequality for t > t2; that is, the distribution
~G stochastically dominates the distribution G: Since

�
v
r � EF

�
c
�
t̂
���

is decreasing with t̂;

this implies that B (0; c; �) < B (t2; ~c; �) : �
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Claim 6 Let c : (t1;1) ! R+ be the function that maximizes B (0; c; �) : Then c is not

decreasing on any interval.

Proof: Suppose to the contrary that c is decreasing on a domain [0; t2]. (The same

argument works for any domain where c is decreasing.) De�ne a threshold function ~c :

(0;1)! R+ by

~c
�
t̂
�
= c

�
t̂+ t2

�
for all t 2 [0;1)

Thus, the function ~c is identical to the optimizing function c as c is de�ned from t2 forward,

but it is shifted back to start at 0 instead of t2. We will show that B (0; c; �) < B (t2; c; �) =

B (0; ~c; �) ; which contradicts the fact that c is optimal from time 0: Using (13), the �rst

inequality holds because c is assumed optimal and decreasing, so B is increasing. We show

the equality.

B (t2; c; �) =

Z 1

t2

e�r(t̂�t2)
�v
r
� EF

�
c
�
t̂
���

�F
�
c
�
t̂
��
e
�
R t̂
t2
�F (c(t))dt

dt̂

=

Z 1

t2

e�r(t̂�t2)
�v
r
� EF

�
~c
�
t̂� t2

���
�F

�
~c
�
t̂� t2

��
e�

R t̂�t2
0 �F (~c(x))dxdt̂

=

Z 1

0
e�rt

�v
r
� EF (~c (t))

�
�F (~c (t)) e�

R t
0 �F (~c(x))dxdt

= B (0; ~c; �) �

7.5 Proof of Proposition 4

We �rst show in Claim 7 that the optimal c is either increasing everywhere, as we wish to

show, or there exists t1 � 0 such that c is increasing for t < t1 and decreasing for t > t1:

Claim 7 If c maximizes ~B
�
0; �; ~h

�
; and if c0 (t) = 0 at some t; then c00 (t) < 0: (The

optimal c can have at most one point where c0 = 0; and at that point, c is concave.)

Proof : We will use the derivative of ~B.

d

dt
~B
�
t; c; ~h

�
=
hv
r
� c (t)

i
r + [EF (~c (t))� c (t)]E (�jt; ~c)F (tj~c) (25)

If c is optimal, it follows from (15) that c0 (t) = 0 () d
dt
~B
�
t; c; ~h

�
= 0 and c00 (t) < 0 ()

d2

dt2
~B
�
t; c; ~h

�
> 0: If c0(t) = 0 then (d=dt)F (tj~c) = 0 and (d=dt) [EF (~c (t))� c (t)] = 0:
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But by Lemma 1, (d=dt)E (�jt; ~c) < 0: Because [EF (~c (t))� c (t)] < 0; this proves that

d2

dt2
~B
�
t; c; ~h

�
> 0 and c00 (t) < 0. �

Suppose, then, that there exists t1 such that for t > t1; c is decreasing and ~B is increasing.

There are no relevant banked ideas at t1. An idea with cost c < c (t1) would already

have been used. An idea with cost c > c (t1) will never be used at any t > t1 because

c > c (t1) > c (t) : Therefore, banking is irrelevant after t1; and the stochastic process

beginning at t1 is exactly the same as when ideas are not banked. Let the �initial�beliefs

at t1 be ~h1: Then, maintaining the hypothesis that c is decreasing for t > t1 (and ~B is

increasing), it holds that ~B
�
t; c; ~h

�
= ~V

�
t; c; ~h1

�
for t > t1: But we already showed in

Proposition 2 that ~V is decreasing, not increasing, which is a contradiction. This completes

the proof.

7.6 Proof of Proposition 5

It is enough to show that ~B
�
t; c; ~h

�
> ~V

�
t; c; ~h

�
for every increasing threshold function c:

De�ne functions g, ~QV and ~QB by

g
�
t̂jc
�
= e�r(t̂�t)

�v
r
� EF

�
c
�
t̂
���

~QV
�
t̂jc
�
=

Z 1

0

~h (�) e��(t̂;c) d�

~QB
�
t̂jc
�
=

Z 1

0

~h (�) e��F(c(t̂))t̂ d�

~V
�
t; c; ~h

�
=

Z 1

t

Z 1

0
g
�
t̂jc
�
�F

�
c
�
t̂
��
e�[�(t̂;c)��(t;c)]h (�jt; c) d�dt̂

=
1

~QV (tjc)

Z 1

t

Z 1

0
g
�
t̂jc
�
�F

�
c
�
t̂
��
~h (�) e��(t̂;c) d�dt̂

=
1

~QV (tjc)

Z 1

t
g
�
t̂jc
�
F
�
c
�
t̂
�� Z 1

0
�~h (�) e��(t̂;c) d�dt̂

=
1

~QV (tjc)

Z 1

t
g
�
t̂jc
� d
dt̂

h
1� ~QV

�
t̂jc
�i
dt̂
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~B
�
t; c; ~h

�
=

Z 1

t

Z 1

0
g
�
t̂jc
�
�F

�
t̂jc
�
e��F(c(t̂))t̂+�F (c(t))th (�jt; c) d�dt̂

=
1

~QB (tjc)

Z 1

t

Z 1

0
g
�
t̂jc
�
�F

�
t̂jc
�
~h (�) e��F(c(t̂))t̂ d�dt̂

=
1

~QB (tjc)

Z 1

t
g
�
t̂jc
�
F
�
t̂jc
� Z 1

0
�~h (�) e��F(c(t̂))t̂ d�dt̂

=
1

~QB (tjc)

Z 1

t
g
�
t̂jc
� d
dt̂

h
1� ~QB

�
t̂jc
�i
dt̂

At each t̂ > 0; e��(t̂;c) > e��F(c(t̂))t̂. Therefore,

~QV
�
t̂jc
�
=

Z 1

0
�~h (�) e��(t̂;c)d� >

Z 1

0
�~h (�) e��F(c(t̂))t̂d� = ~QB

�
t̂jc
�

and 1 � ~QV (�jc) stochastically dominates 1 � ~QB (�jc) : Since g (�) is decreasing when c is

increasing, it follows that ~QB (tjc) ~B
�
t; c; ~h

�
> ~QV (tjc) ~V

�
t; c; ~h

�
:

But since ~QB (tjc) = ~QV (tjc) < 1; it follows that ~B
�
t; c; ~h

�
> ~V

�
t; c; ~h

�
: �

7.7 Proof of Remark 1

(a) Let n be the number of potential recipients. Suppose that each recipient believes that

each other recipient follows an investment strategy described by a cost threshold function

c: At date t; some recipients have received ideas. If a recipient received a single idea at,

say ~t � t; the recipient takes this into account in forming his belief on �. In a population

of size n; with individual arrival rate �=n; the agent�s belief on � is given by the following

posterior density:

gn

�
�̂j~t; t; c

�
=

�̂
ne
� �̂
n
~te�(

n�1
n )�̂

R
F (c(t))dt~h

�
�̂
�

R
�
ne
��
n
~te�(

n�1
n )�

R
F (c(t))dt~h (�) d�

=
�̂e�(

n�1
n )�̂

R
F (c(t))dt~h

�
�̂
�

R
�e�

(���̂)
n

~te�(
n�1
n )�

R
F (c(t))dt~h (�) d�

Let r be the limit density function as n!1:

r
�
�̂jt; c

�
=

�̂e��̂
R
F (c(t))dt~h

�
�̂
�

R
�e��

R
F (c(t))dt~h (�) d�

The limit distribution does not depend on ~t; as asserted in part (a).

Further, the probability of receiving more than one idea has a second-order e¤ect, and

we therefore ignore it. The numerator in the following expression is the probability of
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receiving two or more ideas by time t; and the denominator is the probability of receiving

one or more ideas by time t: Using L�Hopital�s rule, the ratio converges to zero.

lim
n!1

h
1� e��

n
t �

�
�
n t
�
e�

�
n
t
i

h
1� e��

n
t
i ! 0

This concludes part (a).

(b) Nevertheless, the recipients are more optimistic about � than the planner. When

the planner believes that c describes the recipients�investment behavior, the density of the

planner�s posterior is

h
�
�̂jt; c

�
=

e��̂
R
F (c(t))dt~h

�
�̂
�

R
e��

R
F (c(t))dt~h (�) d�

The ratio of the densities, r
�
�̂jt; c

�
=h
�
�̂jt; c

�
; is proportional to �: This implies that the

recipients, as opposed to the planner, place higher weight on higher �; that r stochastically

dominates h; and that r has a higher expected value. It is instructive to show the latter

directly.

Divide both numerator and denominator of r by
R
e��

R
F (c(t))dt~h (�) d�:

r
�
�̂jt; c

�
=

�̂e��̂
R
F (c(t))dt~h(�̂)R

e��
R
F (c(t))dt~h(�)d�R

�e��
R
F (c(t))dt~h(�)d�R

e��
R
F (c(t))dt~h(�)d�

=
�̂e��̂

R
F (c(t))dt~h

�
�̂
�

Eh (�jt; c)
R
e��

R
F (c(t))dt~h (�) d�

Let Eh (�jt; c) and Eh
�
�2jt; c

�
be the expected values with respect to the planner�s posterior

belief, and let V arh (�) be the variance of the planner�s belief. Now consider the expected

value of � with respect to the recipients�belief instead of the planner�s belief:

Er (�jt; c) =

Z
�̂r
�
�̂jt; c

�
d�̂ =

R
�̂
2 e��̂

R
F (c(t))dt~h(�̂)R

e��
R
F (c(t))dt~h(�)d�

d�̂

Eh (�jt; c)
=
Eh
�
�2jt; c

�
Eh (�jt; c)

=

�
1

Eh (�jt; c)

��
V arh (�) + Eh (�jt; c)2

�
=
V arh (�)

Eh (�jt; c)
+ Eh (�jt; c)

Thus, Er (�jt; c) > Eh (�jt; c) :

Part (c) follows from (17). �
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