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Abstract of the Dissertation

Modeling Volatility Using High Frequency Data

by

Miao Sun

Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Bryan C. Ellickson, Chair

This dissertation explores the volatility of stock prices over the course of a trading

day. I reformulate the Heston stochastic volatility model as a model of the high-

frequency evolution of the scaled increments of quadratic variation. I use the

generalized method of moments to estimate three of the parameters of the model:

the speed of mean reversion, the asymptotic mean, and the volatility of volatility.

This continuous-path model works very well most of the time, and most of the

failures are localized to a few short intervals.
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CHAPTER 1

Stock-Price Volatility: I

This dissertation explores the volatility of stock prices over the course of a trading

day. I view the daily pattern of volatility as a realization of a continuous-time

mean-reverting stochastic process, a Heston (1993) model of stochastic volatility.

Using the generalized method of moments (GMM), I estimate three of the pa-

rameters that characterize this model: the asymptotic mean, the speed of mean

reversion and the volatility of volatility.1 Estimating the asymptotic mean and

the speed of mean reversion will be the focus of this chapter. Estimating volatility

of volatility will be the focus of Chapter 2.

This research follows in a line of doctoral dissertations at UCLA over the past

few years that use high-frequency data to explore stock price volatility during the

trading day. The common theme is that realized variation computed from stock

prices sampled once a second is a useful estimator of the quadratic variation of the

stock price process over short intervals of time, intervals as short as 100 seconds.

Consider the following setting (see Protter (2004) and Shreve (2004)). Let the

interval [0, 1] denote time for a specific trading day, and let S = (St)t∈[0,1] denote

a stock price process on [0, 1]. Define the log price process X by Xt = log(St)

for t ∈ [0, 1]. Consider an Itô process characterized by the stochastic differential

equation

dXt = µt dt+ σt dWt (t ∈ [0, 1]) (1.1)

1I do not estimate the correlation parameter between the Wiener process driving the price
process and the Wiener process driving the volatility process. That “leverage parameter” is
incidental to the focus of this dissertation.

1



where W is a standard Brownian motion. The drift process µ = (µt)t∈[0,1] and

volatility process σ = (σt)t∈[0,1] are stochastic processes defined on the same

stochastic basis2 (Ω,F ,F,P) as the Wiener process W and adapted to F. If µ and

σ are constant, then the log price process X is called geometric Brownian mo-

tion. The quadratic variation process of the stochastic process X is the stochastic

process [X,X] = ([X,X]t)t∈[0,1] given by

[X,X]t =

∫ t

0

σ2
sds (t ∈ [0, 1]) (1.2)

To simplify notation in later derivations, I define ζt = σ2
t and write equation 1.2

in the form

[X,X]t =

∫ t

0

ζsds (t ∈ [0, 1]) (1.3)

The instantaneous value ζt is, of course, not observable. However, the theory of

semimartingales provides a way to estimate the path of the process [X,X], called

the realized variation. Realized variation uses the price processX (which is observ-

able) to provide a good estimate of quadratic variation. Let ΠN = {t0, t1, . . . , tN}

be a partition of [0, 1] where

0 = t0 < t1 < . . . < tN = 1

and

tj − tj−1 = δN :=
1

N
(j = 1, . . . , N)

δN is called the mesh of the partition. In all of the empirical work discussed here,

the mesh is 1 second, corresponding to prices sampled once a second. Because

there are N = 23, 400 (= 6.5 ∗ 60 ∗ 60) seconds in a 6.5-hour trading day and a

trading day corresponds to one “unit” of time, the mesh δN = 1/23400.

The realized variation of the stochastic process X = (Xt)t∈[0,1] for the partition

2The triple (Ω,F ,P) is a probability space and F = (Ft)t∈[0,1] is a filtration.
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ΠN is

RV N
t =

∑
tj≤t

(∆Xtj)
2 (t ∈ [0, 1]) (1.4)

where ∆Xtj = Xtj − Xtj−1
is the log return over the interval [tj−1, tj]. In other

words, the value of the realized variation at time t is the cumulative sum of the

squared log returns at time t. In particular, for t = 1

RV N
1 =

N∑
j=1

(∆Xtj)
2 (1.5)

In much of the financial econometrics literature, RV N
1 (rather than the process

RV N) is called the realized variation.

An important conclusion in semimartingale theory (see Protter (2004)) states

that, for any sequence of partitions ΠN for which δN → 0 as N → ∞, the

realized variation process converges uniformly in probability on compact sets to

the quadratic variation process.3 It follows that realized variation over an interval

is a consistent estimator for the increment to quadratic variation over the same

interval. Provided that the processes µ and σ satisfy some regularity conditions,

the paths of the price process X defined by the stochastic differential equation 1.1

are continuous with probability one, and the same is true for the paths of the

quadratic variation process 1.3.

In her thesis, Zhou (2007) found that, except for occasional jumps, the plot of

cumulative squared one-second log returns over a trading day is quite smooth, a

curve that can be fit reasonably well on most days by a straight line with a strictly

positive intercept, which reflects the elevated level of volatility at the beginning

of the day. She examined the behavior of realized variation for every stock in the

Dow-Jones Industrials for every trading day from the beginning of 2000 to the

end of 2006. These plots exhibit an astonishing regularity across stocks and over

3The result in Protter (2004) is, in fact, more general: the times tj are allowed to be stopping
times. I do not require that level of generality.
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Figure 1.1: Realized variation process RV N
t × 104, 01/06/2011

time: apart from a few big jumps, the realized variation (which, of course, starts

at 0) has a concave shape for the first half hour or so of the trading day and then

flattens out to a straight line for the rest of the day.

Figure 1.1 shows a plot of realized variation for SPY — an exchange traded

fund (ETF) that tracks the S&P 500 Index — on a random day, January 6th,

2011 (which lies outside Zhou (2007)’s sample). Because the path of realized

variation is a good approximation to the path of quadratic variation, the slope

of this graph at time t is a good measure of the local (squared) volatility of the

stock at time t. This suggests that, after half an hour or so, stock prices settle

down to a constant volatility, the signature of geometric Brownian motion. This

pattern fits the initial portion of the “u-shape” found in the literature (see Wood,

McInish and Ord (1985)). One interpretation is that, when markets are closed,

uncertainty about market-clearing prices builds; when the market opens, “the

market” does its job and uncertainty eventually settles down to the constant level

4



σ of a geometric Brownian motion. But convergence need not be to a geometric

Brownian motion — the volatility process itself may be stochastic.

The fact that realized variation is a consistent estimator of quadratic variation

for any compact interval of the time line suggests a way to explore the question

whether volatility is stochastic: divide the trading day into blocks several seconds

in length, and examine the realized variation over each of these blocks. Let

ΠM = {t0, t1, . . . , tM}

where ΠM ⊂ ΠN ,

0 = t0 < t1 < . . . < tM = 1

and ti− ti−1 = h = 1/M for i = 1, 2, . . . ,M . If the 6.5-hour trading day is divided

into 100-second blocks, then M = 23400/100 = 234 and h = 100δN = 1/234. For

a block [t, t + h] ⊂ [0, 1] with t ∈ ΠM and t + h ∈ ΠM , I define the quadratic

variation over block [t, t+ h] by

ζt,t+h =
1

h
([X,X]t+h − [X,X]t) =

1

h

∫ t+h

t

ζs ds (1.6)

and the realized variation over block [t, t+ h] by

ϕt,t+h =
1

h

(
RV N

t+h −RV N
t

)
=

1

h

∑
ti∈(t,t+h]∩ΠN

(∆Xti)
2 (1.7)

In both of these definitions, I multiply by 1/h so that the increments scale to a

rate per unit time (i.e., a rate per trading day). It is important not to confuse

these scaled variations with the unscaled variations

[X,X]t+h − [X,X]t =

∫ t+h

t

ζs ds and RV N
t+h −RV N

t =
∑

ti∈(t,t+h]∩ΠN

(∆Xti)
2

which, with h = 1/234, have the scale of a rate per 100-second block rather

5



Figure 1.2: Realized variation by block ϕt,t+h × 104, 01/06/2011

than a rate per trading day. From now on I will refer to ζt,h+h and ϕt,t+h as the

quadratic variation and realized variation respectively without adding explicitly

the qualification “scaled”.

Figure 1.2 exhibits a plot of realized variation block by block for SPY on

January 6, 2011, the same day exhibited in Figure 1.1. The higher value of

volatility at the beginning of the trading day is apparent, as is the tendency for

the process to settle down. Whether the variation in the increments to realized

variation is due to sampling variation around a constant value (as for a geometric

Brownian motion) or to stochastic volatility is hard to judge without a model.

The Heston (1993) model is probably the most commonly applied model of

stochastic volatility. It proposes a specific model for the volatility σt of equa-

tion 1.1, or rather its square ζt. The ζ process is a mean-reverting Markov process

6



characterized by the stochastic differential equation

dζt = κ(ζ̄ − ζt)dt+ γ
√
ζt dBt (t ∈ [0, 1]) (1.8)

where B is a Wiener process that is possibly correlated with the Wiener process

W that drives the price process in equation 1.1. The parameters ζ̄, κ and γ corre-

spond to the asymptotic mean of the volatility process, the speed of reversion to

this asymptotic mean, and the volatility of volatility respectively. These param-

eters are assumed to be strictly positive and to satisfy the Feller condition (see

Feller (1951))

γ2 < 2κζ̄ (1.9)

which guarantees that ζt is almost surely positive for all t. No restriction is

imposed on the drift process µ of the price equation 1.1.

The Heston stochastic differential equation 1.8 does not have a closed-form

solution. However, one can solve for the distribution of ζt for each t and, in

particular, derive expressions for the expectation and variance of ζt for each t.

The Heston model of the volatility process ζ is mathematically equivalent to the

Cox-Ingersoll-Ross (1985) (henceforth CIR (1985)) interest rate model studied on

page 151 to 153 of Shreve (2004), although of course there are some differences

in notation. In particular, it is shown that (I will provide a detailed derivation of

this equation in section 1.1)

ζti − ζti−1
= β(ζ̄ − ζti−1

) + γe−κh
∫ ti

ti−1

eκs
√
ζs dBs (i = 1, 2, . . . ,M) (1.10)

where [ti−1, ti] is a block defined by the partition ΠM and β = 1− e−κh.

Equation 1.10 can be interpreted as a stochastic difference equation

ζti − ζti−1
= β(ζ̄ − ζti−1

) + εti (i = 1, 2, . . . ,M) (1.11)

7



with slope β, no constant term and an innovation sequence (εti)
M
i=1 that is a

martingale difference. The slope of the regression model measures the speed of

mean reversion: on average the fraction β of the gap between ζti−1
and the daily

asymptotic mean ζ̄ is eliminated over the block [ti−1, ti]. Ellickson, Hood, Liu,

Whang and Zhou (2012)4 (henceforth EHLWZ (2012)) estimates equation 1.11

using the ordinary least square (OLS) method, by assuming that the instantaneous

volatility ζt can be approximated by the quadratic variation ζt,t+h over the block

[t, t+h], and that ζt,t+h can be approximated by the realized variation ϕt,t+h over

the same block.

The results are very impressive: the speed of mean reversion appears to be

roughly constant over the entire period, and t-statistics are very large. Mean

reversion is rapid: on the order of 80% of the gap between volatility and its

asymptotic mean is expected to vanish in five minutes. What emerges is a plausible

portrait of the equilibrating dynamics of volatility within the trading day. The

volatility process is approximated reasonably well by a continuous-path, stationary

Markov process, the Heston model, that reverts with high speed to its asymptotic

mean. Disequilibrium occurs at the market open, but that effect wears off quickly,

and the market settles down to an equilibrium in which shocks to volatility are

balanced by reversion to the mean.

The estimation of the Heston model in EHLWZ (2012) is the starting point

for this dissertation. Their regression-based method is easy to compute, and the

estimation results are successful. However, it suffers from some drawbacks. First,

this method does not distinguish between instantaneous volatility at a specific time

and quadratic variation over a block. If, as their paper claims, the mean reversion

of the volatility process is rapid, replacing ζt by ζt,t+h could potentially introduce

large error. That is to say, this method does not perfectly deal with the key

4EHLWZ (2012) draws from the doctoral dissertations of Hood (2011), Liu (2011), Whang
(2012) and Zhou (2007).
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challenge that the volatility process is unobservable. Second, the standard errors

seem too small and the t-statistics too large. This renders statistical inference

based on them suspicious. Third, the authors do not use the Heston model to

estimate the asymptotic mean ζ̄, choosing instead to estimate that parameter

using the median of the realized variations for the blocks, and they do not estimate

γ. Fourth, their paper does not address the issue of error in variables introduced by

using the observable realized variation ϕt,t+h in place of the unobservable quadratic

variation ζt,t+h despite the considerable literature casting doubt on the reliability

of the approximation.5

In this dissertation I develop an easy-to-compute, GMM-type estimator that

addresses these problems with the EHLWZ (2012) methodology. In this chapter,

I develop a difference equation that describes the evolution of the conditional ex-

pectation of the quadratic variation from one block to the next, a characterization

that parallels the structure of the continuous-time stochastic differential equation

of Heston in a natural way. This difference equation provides the basis for the

moment conditions that I employ, using GMM, to estimate the asymptotic mean

and speed of mean reversion of the Heston model. In Chapter 2, I derive a second

moment condition that is used to estimate the volatility of volatility. In both

chapters I estimate the model using high-frequency data for SPY (the exchange-

traded fund that tracks the S&P 500 index) for all trading days from the start of

2007 until the end of 2014.

5As high-frequency asset price data became widely available in the late 1990’s, financial
econometricians began to explore the potential of using realized variation to estimate quadratic
variation over the trading day. However, experience using the notion of realized variation was
not successful, leading to the widespread suspicion of its value as an estimator of quadratic
variation and to the development of methods not based on realized variation. See Anderson,
Bollerslev, Diebold and Labys (2002) for an early exploration of this issue, and Aı̂t-Sahalia and
Jacod (2014) or Mykland and Zhang (2012) for more recent commentary.
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1.1 Estimating the Heston Model

The setting is a single trading day in which a log stock price process and its

volatility are described by the Heston model: they satisfy the stochastic differential

equations 1.1 and 1.8 respectively, repeated here for convenience:

dXt = µt dt+ σt dWt (t ∈ [0, 1])

and

dζt = κ(ζ̄ − ζt)dt+ γ
√
ζt dBt (t ∈ [0, 1])

I assume that the trading day [0, 1] has been partitioned into M blocks, each of

length h = 1/M .

The goal in this section is to develop estimators for the parameters κ and ζ̄ of

the Heston model, given observed realized variation ϕt,t+h over these blocks. Note

that the instantaneous volatility ζt and the quadratic variation ζt,t+h over blocks

are not observable.

To simplify notation in later discussion, I define parameters

α = e−κh (1.12)

β = 1− e−κh (1.13)

Thus, the goal is equivalent to developing estimators for the parameters β and ζ̄.

1.1.1 Deriving a moment condition for GMM

In this subsection, I derive a stochastic difference equation describing the evolution

of the quadratic variation ζt,t+h from one block [t, t+ h] to the next.

The starting place is the stochastic difference equation 1.10 describing the evo-

10



lution of the instantaneous volatility ζt. I rewrite it as a lemma, and as promised

in the introduction, derive it now.

Lemma 1.1. In the Heston model,

ζt+h = αζt + βζ̄ + e−κ(t+h)γ

∫ t+h

t

eκs
√
ζs dBs (1.14)

Proof. This proof follows directly from the analysis of the CIR model in Shreve

(2004), page 152.

Define f(t, z) = eκtz, The function f has partial derivatives ft = κeκtz, fz =

κeκt and fzz = 0. The Itô-Doeblin formula implies that

d(eκtζt) = df(t, ζt)

= ft(t, ζt) dt+ fz(t, ζt) dζt +
1

2
fzz(t, ζt) d[ζ, ζ]t

= κeκtζt dt+ eκt
[
κ(ζ̄ − ζt) + γ

√
ζt dBt

]
= κeκtζ̄ + γeκt

√
ζt dBt

Integrating both sides over the interval [t, t+ h] yields

eκ(t+h)ζt+h − eκtζt = ζ̄(eκ(t+h) − eκt) + γ

∫ t+h

t

eκs
√
ζs dBs

Rearranging terms and using the definitions of α and β in equations 1.12 and 1.13,

the result follows.

Equation 1.14 is a difference equation for the instantaneous volatility ζt. What

I want is a difference equation for the quadratic variation ζt,t+h over the blocks of

the partition ΠM .

The following lemma expresses the conditional expectation of ζt+h relative to

the information set Ft as a convex combination of ζt and ζ̄.
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Lemma 1.2. In the Heston model,

E[ζt+h | Ft] = αζt + βζ̄ (1.15)

Proof. The result follows from equation 1.14 and the fact that the Itô integral∫ t+h
0

eκs
√
ζs dBs is a martingale with zero expectation.

Lemma 1.2 allows me to interpret β as the weight attached to the asymptotic

mean ζ̄ in equation 1.15, which expresses the conditional expectation of ζt+h as a

convex combination of ζt and ζ̄. Equation 1.15 can also be written in the form

E[ζt+h − ζt | Ft] = β
(
ζ̄ − ζt

)
(1.16)

Thus, β can be interpreted as the average fraction of the gap between ζt and the

asymptotic mean ζ̄ eliminated over the block [t, t+ h].

The next lemma establishes a link between the conditional mean of the quadratic

variation ζt,t+h over the block [t, t + h] and the instantaneous volatility ζt at the

beginning of that block.

Lemma 1.3. In the Heston model,

E [ζt,t+h | Ft] = a1ζt + b1ζ̄ (1.17)

where

a1 =
1− e−κh

κh
b1 = 1− a1

Proof. Using the definition of ζt,t+h in equation 1.6 and interchanging expectation

and integration with respect to time,

E [ζt,t+h | Ft] = E
[

1

h

∫ t+h

t

ζsds | Ft
]

=
1

h

∫ t+h

t

E [ζs | Ft] ds

12



Using equation 1.15 to substitute for the conditional expectation and evaluating

the integrals,

E [ζt,t+h | Ft] =
1

h

∫ t+h

t

[
e−κ(s−t)ζt +

(
1− e−κ(s−t)) ζ̄] ds

=

(
1

h

∫ t+h

t

e−κ(s−t)ds

)
ζt +

(
1

h

∫ t+h

t

(
1− e−κ(s−t)) ds) ζ̄

=
1− e−κh

κh
ζt +

(
1− 1− e−κh

κh

)
ζ̄

Lemma 1.3 states that the conditional mean of the quadratic variation ζt,t+h

over the block [t, t+ h] is a convex combination of the instantaneous volatility ζt

at the beginning of the block and the asymptotic mean ζ̄. Although the weights

are different from those in equation 1.15, the similarity in form of equation 1.15

and equation 1.17 is no surprise at all: Equation 1.17 is just an integrated version

of equation 1.15 — the average of quantities that are convex combinations of

two given numbers with different weights is just a convex combination of the two

numbers with the average weight. A simple application of calculus shows that

β = 1− e−κh > 1− 1− e−κh

κh
= b1

Thus, the weight of the asymptotic mean in equation 1.15 is always larger than

that in equation 1.17. This makes sense, as the instantaneous volatility ζt+h

is more forward-looking and less sticky than quadratic variation over the block

[t, t+ h] and consequently exhibits faster mean reversion.

Now I am ready to establish the relationship between the conditional mean of

the quadratic variation ζt+h,t+2h given the information set Ft and the conditional

mean of the quadratic variation ζt,t+h over the preceding block.

13



Proposition 1.1. In the Heston model,

E [ζt+h,t+2h | Ft] = α E [ζt,t+h | Ft] + β ζ̄ (1.18)

or equivalently,

E
[
ζt+h,t+2h − α ζt,t+h − β ζ̄ | Ft

]
= 0 (1.19)

Proof. By the law of iterated expectations,

E [ζt+h,t+2h | Ft] = E [E [ζt+h,t+2h|Ft+h] |Ft]

Using equation 1.17 to substitute for the inner conditional expectation on the

right-hand side gives

E [ζt+h,t+2h | Ft] = E
[
a1ζt+h + b1ζ̄ | Ft

]
= a1 E [ζt+h | Ft] + b1 ζ̄

Using equation 1.15 to substitute for E [ζt+h | Ft] yields

E [ζt+h,t+2h | Ft] = a1

(
αζt + βζ̄

)
+ b1ζ̄ = a1αζt + (a1β + b1)ζ̄

Using equation 1.17 to replace ζt

E [ζt+h,t+2h | Ft] = a1α
E [ζt,t+h | Ft]− b1ζ̄

a1

+ (a1β + b1)ζ̄

= αE [ζt,t+h | Ft] + (−αb1 + a1β + b1)ζ̄

= αE [ζt,t+h | Ft] + (a1β + (1− α)b1)ζ̄

Because

a1β + (1− α)b1 =

(
β

kh

)
β + β

(
1− β

kh

)
= β

the result follows.
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Proposition 1.1 establishes that the conditional expectation of ζt+h,t+2h with

respect to the information set Ft is a convex combination of the conditional ex-

pectation of ζt,t+h with respect to the same information set Ft and the asymptotic

mean ζ̄ of the process ζ. Note that the coefficients in equation 1.18 are the same

as those in equation 1.15. This seems surprising at first, but it is actually quite

natural: equation 1.18 is just a time-averaged version of equation 1.15 plus the

law of iterated expectations.

Proposition 1.1 provides interpretations of β that are parallel to those provided

by Lemma 1.2. On the one hand, β is the weight attached to the asymptotic mean

ζ̄ in the expression for conditional expectation of ζt+h,t+2h as a convex combination

of conditional expectation of ζt,t+h and ζ̄. On the other hand, equation 1.18 can

be rewritten in the form

E [ζt+h,t+2h − ζt,t+h | Ft] = β (ζ̄ − E [ζt,t+h | Ft]) (1.20)

Thus, β can be interpreted as the average fraction of the gap between conditional

expectation of ζt,t+h and the asymptotic mean ζ̄ eliminated over the block [t +

h, t+ 2h].

Rewrite equation 1.19 as

E [ηt,t+2h | Ft] = 0 (1.21)

where

ηt,t+2h := ζt+h,t+2h − α ζt,t+h − β ζ̄ (1.22)

or

ζt+h,t+2h = α ζt,t+h + β ζ̄ + ηt,t+2h (1.23)

Equation 1.23 is a stochastic difference equation that describes the evolution of

the quadratic variation ζt,t+h from one block [t, t + h] to the next, and it has
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the important property that the error term has a conditional mean of zero, as in

equation 1.21.

Equation 1.19 gives a candidate for a moment condition suitable for the GMM

procedure, provided that the quadratic variation ζt,t+h over a block [t, t + h] can

be approximated by the realized variation ϕt,t+h over the same block.

1.1.2 Errors in variables

I now address the error in variables introduced by using the observable realized

variation ϕt,t+h in place of the unobservable quadratic variation ζt,t+h. The error-

in-variables problem, also called the measurement error problem, refers to the

phenomenon that an otherwise exogenous regressor necessarily becomes endoge-

nous when measured with error.

Standard assumptions about measurement errors are that they are zero mean

and uncorrelated with contemporaneous observables. This idea applies naturally

in my context. The observable realized variation is an error-ridden measure of the

unobservable quadratic variation:

ϕt,t+h = ζt,t+h + νt,t+h (1.24)

and

ϕt+h,t+2h = ζt+h,t+2h + νt+h,t+2h (1.25)

Substituting equations 1.24 and 1.25 into equation 1.23, the relationship in equa-

tion 1.23 can be expressed in terms of the observable realized variation:

ϕt+h,t+2h = α ϕt,t+h + β ζ̄ + (νt+h,t+2h − α νt,t+h + ηt,t+2h) (1.26)
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I claim that, in order to satisfy the conditional moment condition

E
[
ϕt+h,t+2h − α ϕt,t+h − β ζ̄ | Ft

]
= 0 (1.27)

or equivalently,

E [νt+h,t+2h − α νt,t+h + ηt,t+2h | Ft] = 0 (1.28)

I only need the following assumption:

Assumption 1.1.

E [νt,t+h | Fs] = 0 ∀s ≤ t (1.29)

To see this, note that the first two terms in equation 1.28 are zero under Assump-

tion 1.1, and that the last term is zero according to equation 1.21.

Assumption 1.1 is hardly an “assumption”, and it appears quite reasonable —

the difference between realized variation and quadratic variation over a block is

zero mean and uncorrelated with what happens before the beginning of the block.

1.1.3 GMM estimation

Up to now I have adopted a notation more suitable to the setting of continuous-

time finance. In order to apply discrete-time econometrics techniques, I translate

the analysis into a discrete-time notation that is consistent with Hayashi (2000).

I will describe the econometric problem by focusing on realized variation over

blocks defined by the partition ΠM = {0, h, 2h . . . ,Mh}.

The equation to be estimated is the linear regression equation 1.26, a stochastic

difference equation describing the evolution of realized variation over blocks:

yi = zi
′δ + εi (i = 1, 2, . . . , n)
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where

yi = ϕ(i+1)h,(i+2)h

is the scalar observable dependent variable,

zi =

 1

ϕih,(i+1)h


is the 2-dimensional observable vector of regressors,

δ =

 βζ̄

1− β


is the 2-dimensional coefficient vector,

εi = ν(i+1)h,(i+2)h − α νih,(i+1)h + ηih,(i+2)h

is the scalar unobservable error term, and n = M − 2 is the sample size.

The regressor ϕih,(i+1)h (the second row of zi) is necessarily endogenous in

this setting. To see this, notice that ϕih,(i+1)h, which depends on the realization

of the Heston model over the block [ih, (i + 1)h], is necessarily correlated with

ηih,(i+2)h, which depends on the realization of the Heston model over the block

[ih, (i + 2)h], and hence, is correlated with the error term εi. As a consequence,

the OLS estimator is not consistent.

To deal with the endogeneity problem, I introduce instrument variables (IVs).

IVs should be both valid and relevant: orthogonal to the error term and at the

same time correlated with the endogenous regressors. The lagged realized vari-

ation and its powers appear to satisfy both conditions: they are orthogonal to

the error term under Assumption 1.1 and equation 1.21, and realized variation is

typically serially autocorrelated. The number of IVs should be no less than the
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number of parameters, 2. In the empirical analysis below, I choose the following

4-dimensional observable vector of instruments:

xi =


1

ϕ(i−1)h,ih

ϕ
1/2
(i−1)h,ih

ϕ
1/4
(i−1)h,ih


The orthogonality conditions associated with these IVs are

E
[
ϕt+h,t+2h − (1− β)ϕt,t+h − βζ̄

]
= 0

E
[(
ϕt+h,t+2h − (1− β)ϕt,t+h − βζ̄

)
ϕt−h,t

]
= 0

E
[(
ϕt+h,t+2h − (1− β)ϕt,t+h − βζ̄

)
ϕ

1/2
t−h,t

]
= 0

E
[(
ϕt+h,t+2h − (1− β)ϕt,t+h − βζ̄

)
ϕ

1/4
t−h,t

]
= 0.

However, I am well aware that lagged variables might fail to be proper instruments,

either because assumptions of zero correlations might fail due to a more complex

pattern of serial correlation than the model assumes, or because these lagged

variables are not quite correlated with the variables they are instrumenting. I will

examine this issue in Chapter 3.

I have so far stated the complete setting necessary for the generalized method

of moments (GMM). One obtains the GMM estimator for the underlying model

parameters by minimizing the weighted distance between population moments

and their sample versions (see Hansen (1982)).

The GMM estimator is consistent under standard regularity conditions, ac-

cording to Hayashi (2000), Proposition 3.1. These conditions are Assumptions

3.1 to 3.4 in the book. Assumption 3.1 states that the equation to be esti-
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mated is linear, which is automatically satisfied here. Assumption 3.2 requires

that
(
ϕt+h,t+2h, ϕt,t+h, ϕt−h,t, ϕ

1/2
t−h,t, ϕ

1/4
t−h,t

)
is jointly stationary and ergodic; this

is likely satisfied because (1) the ζ process in the Heston model is stationary and

ergodic, (2) a measurable function of a stationary and ergodic process is station-

ary and ergodic, and (3) ϕt,t+h is a very good approximation of ζt,t+h so it should

approximately inherit the stationarity and ergodicity properties of the ζ process.

Assumption 3.3, the orthogonality condition, and Assumption 3.4, the identifica-

tion condition, are trivially satisfied. Therefore, the GMM estimator in my setting

is consistent.

Because the error terms are autocorrelated, I use a heteroscedasticity and

autocorrelation consistent (HAC) covariance matrix estimator with a Bartlett-

kernel (see Newey and West (1987)). For numerical considerations, I also re-scale

the second, third and fourth moments to make all the four of the same order of

magnitude.

Under the GMM setting, the minimized value of the objective function multi-

plied by the sample size is asymptotically chi-square distributed, which allows for

a specification test of the overidentifying restrictions. Moreover, inference con-

cerning the individual parameters is readily available from the standard formula

for the asymptotic covariance matrix.

1.2 Empirical Results

This section examines the empirical performance of the Heston stochastic volatility

model in describing the intraday dynamics of stock price volatility. I use the GMM

method to estimate the asymptotic mean parameter ζ̄ and the mean reversion

parameter β of the model. This analysis is based on the high-frequency data set

of prices of the exchange-traded fund SPY in a eight-year sample period from 2007

to 2014. I perform daily, weekly and monthly joint estimation of the parameters
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ζ̄ and β. I find that weekly estimation achieves a good balance of good statistical

performance with large enough sample size and high temporal resolution.

1.2.1 Data

The data come from the trades component of the NYSE Trades and Quotes (TAQ)

database, available at the Wharton WRDS website. These data report price,

number of shares, and time of each transaction (to the nearest second). Following

the usual practice, the TAQ “condition codes” were used to remove trades from

the file that were canceled or otherwise flagged as illegitimate, and the data within

each day were sorted by time stamp.6

The sample period is 2007 to 2014. These years have witnessed a rapid de-

velopment of high-frequency trading. On the one hand, high-frequency trading

generates an abundance of data. On the other hand, it probably influences how

the financial market works. I will address some of these points in Chapter 3.

Because this sample period includes the financial crisis in 2008 and 2009, I am

able to examine how my model works in an extremely volatile environment. I use

data for SPY, an exchange traded fund that tracks the S&P 500 Index.

I sample the data once per second. Following Whang (2012), for a time stamp

with more than one trade I use the median-share price, i.e. the median of the

distribution of price per share for that second with each share traded in that

second treated as a separate observation. One advantage of using the median-

share price rather than the volume-weighted price is that there is almost always a

transaction with the median-share price. This set of median-share prices sampled

every second is the data set used to compute realized variation over blocks.

6See Aı̂t-Sahalia and Jacod (2014) for details about the TAQ dataset.
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1.2.2 Daily estimation

This subsection examines the estimates of ζ̄ (the asymptotic mean) and β (the

speed of mean reversion parameter) for every day in the sample period. The

sample period consists of the 1969 trading days from the beginning of 2007 to the

end of 2014.

Figure 1.3 plots the time series of the daily estimates for ζ̄, the asymptotic

mean. The estimates are multiplied by 104. For example, a label of 4 on the ver-

tical axis corresponds to a 2% volatility, or equivalently, a 2% standard deviation

of daily return (recall σt =
√
ζt). The maximum daily estimate of ζ̄ in the entire

sample exceeds 10 × 10−4, but I truncate the vertical axis at that threshold to

better reflect the overall picture. The year labels on the horizontal axis mark the

start of each year.

The central message of Figure 1.3 is that daily estimation appears to work

quite well in the sense that it produces plausible estimates of ζ̄. In general, the

time series of ζ̄ looks persistent, consistent with the well-documented stylized fact

of volatility clustering. However, volatility can move abruptly; for example, the

“Great Recession” from the second half of 2008 to the beginning of 2009 witnessed

exceptionally high levels of market volatility, which is clear in the plot.

Figure 1.4 displays a histogram of the daily estimates of ζ̄ (the estimates are

multiplied by 104). The central message here is the same — the estimates look

reasonable. On about half of the days the estimates fall in the range of [0, 1]×10−4,

corresponding to a daily variance of less than 1%, which again seems plausible.

The distribution of ζ̄ is asymmetric with a fat right tail: volatility is occasionally

quite high, as represented by the bar I label “infinity” at the very right of the

histogram.

Daily estimation of β does not perform as well. Figure 1.5 plots the time

series of daily estimates of β, the mean reversion parameter. The plot is very
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Figure 1.4: Histogram of daily estimates of ζ̄ × 104

noisy, with no clear pattern. One possible reason for this is that the sample size

is not large enough. To give some perspective, the sample size of 232 is the same

order of magnitude as the number of daily returns in a year. Figure 1.6 displays

a histogram of the daily estimates of β. The very left bar and the very right

bar represent daily estimates smaller than zero and larger than unity respectively.

Clearly daily estimation works poorly on those days.

1.2.3 Pooled joint estimation

The daily estimates suggest that pooling the data might be a good idea. Specif-

ically, I pool trading days into groups of 5 or 20 successive trading days, which

I will refer to as “weeks” or “months”. I assume that the parameters ζ̄ and β

are constant within each week or month. This seems reasonable because ζ̄ looks

highly persistent according to Figure 1.3 and β does not have a clear pattern
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Figure 1.6: Histogram of daily estimates of β

according to Figure 1.5.

Table 1.1 displays measures of statistical performance of daily, weekly and

monthly joint estimation of ζ̄ and β. The top panel reports significance of esti-

mates of the two parameters. A parameter is called “good” if the null hypothesis

that it is zero is rejected at 5% significance level in favor of an alternative that

it is positive, where the test statistic is the “z-score”, which is asymptotically

standard normal under standard regularity conditions. The first row of the panel

reports the percentage of days, weeks and months (together with the counts in

parentheses) where the joint estimation yields good estimates for both parame-

ters. On 53% of all days in the sample, or 1041 days out of 1969, estimates for

both parameters are significant and positive. This ratio rises to 88%, or 344 weeks

out of 393, for weekly estimation. This is what I hoped when I introduced the

idea of pooling: a sample size five times as large as that of the daily estimation

should help produce a more accurate estimate and a smaller standard error. This
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Table 1.1: Performance of joint estimation of ζ̄ and β, daily, weekly and monthly

Daily (1969) Weekly (393) Monthly (98)

Good β, Good ζ̄ 53% (1041/1969) 88% (344/393) 92% (90/98)
Good β, Bad ζ̄ 0% (7/1969) 1% (2/393) 1% (1/98)
Bad β, Good ζ̄ 37% (737/1969) 9% (36/393) 2% (2/98)
Bad β, Bad ζ̄ 9% (184/1969) 3% (11/393) 5% (5/98)

Good J-stat 88% (1732/1969) 87% (340/393) 48% (47/98)
Bad J-stat 12% (237/1969) 13% (53/393) 52% (51/98)

Good (β, ζ̄ and J-stat) 45% (894/1969) 75% (296/393) 43% (42/98)

ratio increases slightly to 92%, or 90 months out of 98, for monthly estimation.

An even longer sample does not seem to provide much help along this dimension.

The next three rows correspond to situations in which the joint estimation

does not yield good estimates for both parameters. The “good β bad ζ̄” cases

account for less than 1% of days, weeks or months in the sample. On a few

occasions, the joint estimation breaks down when it cannot yield a good estimate

of ζ̄ and consequently cannot produce a good estimate of β. The “bad β good ζ̄”

cases account for 37% of days, 9% of weeks and 2% of months. This demonstrates

the power of pooling: a larger sample size by pooling tends to produce a better

estimate of β, as long as the joint estimation can yield a good estimate of ζ̄. The

“bad ζ̄ bad β” cases account for 9% of days, 3% of weeks and 5% of months. The

ratios are not very different from one another, and a good portion of these cases

are associated with outliers in the sample of realized variation, either representing

true volatility jumps or data errors. I will examine these situations in more detail

in Chapter 3.

The middle panel of Table 1.1 takes into consideration the GMM specification

test. A “good J-stat” means that the model is not rejected at a 10% significance

level by the J-test: i.e., the J-statistic is smaller than the corresponding percentile

of the relevant chi-square distribution. The model passes the specification test on
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88% of all days in the sample, or 1732 days out of 1969. This ratio drops slightly

to 87%, or 340 out of 393, for weekly estimation and dramatically to 48%, or 47

out of 98, for monthly estimation. This is most likely because the assumption

that the parameters are constant for each day or week hold reasonably well but

the corresponding assumption for each month is badly violated — volatility could

well vary by a large amount over a month, as suggested by Figure 1.3.

The bottom row of Table 1.1 reports the percentages of days, weeks and months

in which the joint estimation yields good estimates of both parameters ζ̄ and β

as well as a good J-stat. I will call them “good days”, “good weeks” and “good

months”, respectively. Good weeks account for 75% of weeks, much higher than

the percentages of good days and good months.

The central message of Table 1.1 is that weekly estimation enjoys the best

statistical performance: it provides a large enough sample size and the parameters

are approximately constant over that period of time.

1.2.4 Good days versus good weeks

I have focused on statistical performance when comparing daily and weekly joint

estimation. This subsection complements that comparison by taking into consider-

ation another criterion, temporal resolution. A natural tradeoff between good sta-

tistical performance and temporal resolution arises in my context: weekly pooled

estimation enjoys better statistical performance than daily estimation, but it may

fail to capture rapid movement of ζ̄ over time.

To address this, Figure 1.7 and Figure 1.8 plot the time series of ζ̄ for good days

and good weeks respectively, and Figure 1.9 and Figure 1.10 plot the time series of

β for good days and good weeks respectively. The two plots for ζ̄ look similar. One

does not lose much resolution in moving from daily to weekly estimation. However,

weekly estimates of β improve upon daily estimates: there is little evidence that
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Table 1.2: Estimates of ζ̄ × 104 and β, good weeks

ζ̄ × 104 β

median 0.59 0.10
lower quantile 0.37 0.08
upper quantile 1.15 0.14

mean 1.06 0.13
median standard error 0.04 0.03

median z-score 14 3.2

β varies significantly over time.

To summarize, weekly estimation achieves a good balance of sample size and

high temporal resolution. For this reason, weekly estimates for good weeks will

be the focus of the empirical analysis that follows.

1.2.5 Estimation results for good weeks

I now examine the weekly estimation in more detail for good weeks. Table 1.2

reports the summary statistics of weekly estimates of ζ̄ and β in good weeks only.

The median estimate of ζ̄ is 0.59× 10−4, corresponding to a 0.77% standard devi-

ation of daily return, or a 12% standard deviation of yearly return, which seems

plausible given the historic volatility of U.S stock indexes. The lower and up-

per quantiles of 0.37 × 10−4 and 1.15 × 10−4 correspond to 10% and 17% yearly

standard deviation respectively.7 The mean is 1.06 × 10−4, only slightly smaller

than the upper quantile. This suggests that there are a few large positive esti-

mates. The median z-score of the estimates is 14, which is reasonably high. As a

comparison, this z-score is smaller than the corresponding t-statistics as high as a

few hundred reported in EHLWZ (2012). This is probably because my estimation

7The annual standard deviation of postwar U.S. stock market return is about 16%, according
to Cochrane (2005).
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Figure 1.11: Histogram of estimates of ζ̄ × 104, good weeks

using GMM yields a more accurate estimate of the standard error than OLS.

Figure 1.11 displays the histogram of ζ̄ in good weeks only. The two highest

bars lie in the range of [0, 1]×10−4, which contains the median and lower quantile

ζ̄ reported in Table 1.2. The distribution is highly skewed to the right, with a few

outliers that are larger than 5× 10−4. However, these outliers are not suspicious

but rather represent a good feature of the estimation: volatility can sometimes be

exceptionally high, for example, during the financial crisis of 2008 - 2009.

The second column of Table 1.2 reports the summary statistics of weekly

estimates of β in good weeks only. The median, lower and upper quantiles are

0.10, 0.08 and 0.14, respectively. I will delay the interpretation of these magnitudes

until the next subsection.

Figure 1.12 displays the histogram of β in good weeks only. Compared to

the daily estimates in Figure 1.6, weekly estimates are much more concentrated
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Figure 1.12: Histogram of estimates of β, good weeks

in a smaller range that is clearly above zero. The three highest bars lie in the

range of [0.050, 0.125], which contains the median and lower quantile β reported

in Table 1.2. However, there are still a few outliers that are larger than 0.3. They

are suspicious, as there is hardly any economic reason to have the speed of mean

reversion significantly different from one week to another. Indeed, β in good weeks

might even be seen as roughly constant.

1.2.6 Speed of mean reversion

In this subsection, I examine more closely my estimates of β as well as two alterna-

tive measures of the speed of mean reversion: the parameter κ and the “half-life”.
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Table 1.3: Measures of the speed of mean reversion, good weeks

median lower quantile upper quantile

β for 100 seconds 10% 8% 14%
β for 5 minutes 27% 21% 36%
β for 10 minutes 47% 38% 60%
β for 30 minutes 85% 76% 93%

κ (rate per day) 25 19 34

half-life 11 minutes 14 minutes 8 minutes

1.2.6.1 Magnitudes of β

Recall from equation 1.16 that β can be interpreted as the average fraction of

the gap between instantaneous volatility ζt and the asymptotic mean ζ̄ eliminated

over the interval [t, t+h]. Thus, the median estimate of 0.10 in Table 1.2 suggests

that on average about 10% of the gap between the level of the volatility process

and its asymptotic mean is eliminated within a 100-second interval.

The magnitude of β depends on the particular length of the interval h. To

better illustrate, I translate my estimates of β for 100-second intervals to rates for

intervals with different lengths. Rewriting equation 1.13 as

βh = 1− e−κh (1.30)

I obtain

βh′ = 1− (1− βh)
h′
h (1.31)

for any h, h′. In particular, setting h = 1/234 and h′ at a different value will

convert the β rate for 100-second intervals to rates for intervals with different

lengths.

The top panel of Table 1.3 displays the magnitudes of β for intervals with
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length h′, computed by the method described above. The central message here

is that mean reversion is fast. The median estimates in the first column suggest

that the fraction of the gap between volatility and its asymptotic mean expected

to evaporate rises from 10% in 100 seconds to 27% in 5 minutes, to 47% in 10

minutes, and 85% in 30 minutes. The lower quantile and upper quantile estimates

are shown in the second and third column respectively. Even the lower quantile

estimates suggest a very high speed of mean reversion.

These results generally agree with EHLWZ (2012) in the sense that both doc-

ument a very high speed of mean reversion in a matter of minutes. However, my

estimates are smaller than theirs. As shown in the second row of the top panel

of Table 1.3, my median estimate of β for a five-minute interval is 27%, while the

estimate in EHLWZ (2012) is about 60%. This can be explained by differences

in estimation methodology: one key difference is that EHLWZ (2012) excludes

an interval pair if the second interval has a large jump in volatility, so their β

estimates are naturally biased upwards compared to my estimates, which exclude

no intervals.

1.2.6.2 Magnitudes of κ

κ is a natural alternative measure of the speed of mean reversion. Recall that κ is

a parameter in the continuous-time stochastic differential equation 1.8 while β is

a parameter that I introduced to derive parallel discrete-time stochastic difference

equations. κ is related to β in the following two ways. First, one can solve for κ

in the equation 1.30:

κ = − log (1− βh)
h

(1.32)

for any h, and consequently, can compute an estimate of κ given an estimate of β.

Second, κ, with the dimension of a rate per day (recall that a unit time is a day),

measures the instantaneous rate of mean reversion: it is the infinitesimal fraction
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of the gap between volatility and its asymptotic mean expected to evaporate in an

infinitesimally short interval. Precisely, a simple application of calculus combined

with equation 1.30 yields

κ = lim
h→0

1− e−κh

h
= lim

h→0

βh
h

(1.33)

which clearly gives the interpretation above. Note that the magnitude of κ does

not depend on the particular length of the interval h (while β does).

The middle panel of Table 1.3 displays the magnitudes of κ, computed by

equation 1.32. The median estimate is 25. This suggests that, for example, within

a short time interval as short as one thousandth of a trading day, or 23.4 seconds,

the average fraction of gap between volatility and its asymptotic mean eliminated

is 25 × 1/1000 = 2.5% — a very rapid mean reversion. The lower quantile and

upper quantile estimates are shown in the second and third column respectively.

Even the lower quantile estimate suggests a very high speed of mean reversion.

1.2.6.3 Half-life

The half-life is yet another measure of the speed of mean reversion. It is the

amount of time required for the gap between volatility and its asymptotic mean

to fall to half its initial value. According to equation 1.30 and the interpretation

of β, the half-life H, measured in units of a trading day, satisfies

1

2
= 1− e−κH (1.34)

from which I can solve

H =
log 2

κ
(1.35)

where κ has already been calculated by equation 1.32.

The bottom panel of Table 1.3 displays the magnitudes of the half-life H, com-
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puted by equation 1.35. The median estimate is 11 minutes. This suggests that

it takes 11 minutes on average for the gap between volatility and its asymptotic

mean to fall to half its initial value, which is consistent with β for 10 minutes

being 47%, as shown in the third row and first column of Table 1.3. The lower

quantile and upper quantile estimates are shown in the second and third column

respectively. Even the lower quantile estimate suggests a very high speed of mean

reversion.

1.2.7 The asymptotic mean

My GMM estimation approach provides a direct estimate of the asymptotic mean

parameter ζ̄, and it is jointly estimated together with β. In this section, I compare

my estimates of ζ̄ with alternative local measures of volatility.

1.2.7.1 Comparison to the median and mean realized variation

EHLWZ (2012) used the daily median of the realized variation over blocks as an

estimate of the daily asymptotic mean ζ̄. They argued that the median is preferred

to the mean, because the median is a robust measure of central tendency given

the asymmetry of distribution of realized variation over blocks.

Figure 1.13 compares for good weeks only my weekly estimate of ζ̄ with the

median and the mean of the realized variation for all blocks in the same week,

together with the 45 degree lines. My GMM estimates are very close to both the

median and the mean for a great majority of weeks. My estimates are occasionally

significantly larger than the median and are rarely smaller, according to the top

plot, while my estimates are sometimes significantly smaller than the mean and

are rarely larger, according to the bottom plot.
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Figure 1.13: Estimates of ζ̄ versus the median and mean of ϕt,t+h, good weeks
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1.2.7.2 Comparison to the VIX

I also compare my asymptotic mean parameter ζ̄ with another local measure of

volatility, the VIX. The VIX is the Chicago Board Options Exchange (CBOE)

Volatility Index. It was created by Whaley (1993) and is the implied volatility

of the S&P 500 index options. (See Whaley (2009)) To construct a weekly time

series for the VIX, I use the average value of each daily close. Because the VIX is

an annualized standard deviation while ζ̄ has the dimension of variance per day,

I re-scale my estimates appropriately. Specifically, assuming 250 trading days in

a year, I calculate adjusted ζ̄ as

100

√
250ζ̄ .

Note that, because the VIX is expressed as a percent, I need to multiply by 100.

Figure 1.14 compares my weekly estimates of ζ̄ for SPY and the weekly aver-

aged VIX for good weeks. The values are reasonably close to each other, despite

the fact that the VIX is a forward-looking indicator measuring volatility that the

investors expect to see in the near future while ζ̄ is backward looking. The re-

semblance of the two plots is not surprising: ζ̄ is not very far backward looking:

it measures the settled value of volatility for a week once the week has ended,

which we associate with the asymptotic mean of the volatility process. Both are

meaningful local measures of volatility.
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Figure 1.14: Adjusted ζ̄ versus weekly average VIX, good weeks

42



CHAPTER 2

Stock-Price Volatility: II

In Chapter 1 I reformulated the Heston model of stochastic volatility for stock-

price processes to develop a model of the evolution of the scaled increments ζt,t+h

of quadratic variation. I used this model to estimate two of the parameters of

the Heston model, the speed of mean reversion κ (or equivalently, β) and the

asymptotic mean ζ̄, using the generalized method of moments (GMM). In this

chapter I focus on the parameter γ, called the volatility of volatility.

In the Heston model, the process ζ = (ζt)t≥0 is a stationary ergodic Markov

process. Although the stochastic differential equation that characterizes the volatil-

ity process ζ has no closed form solution, it is possible to solve for the distribution

of ζt for each t and, in particular, to derive its expectation and variance. As Shreve

(2004) shows, 1

E [ζt] = ζ̄ + e−κt(ζ0 − ζ̄) (2.1)

and

Var(ζt) =
γ2

κ
(e−κt − e−2κt) ζ0 +

γ2

2κ
(1− 2e−κt + e−2κt) ζ̄ (2.2)

As t → ∞, the mean and the variance approach limits that are independent of

the initial value ζ0 of the process:

lim
t→∞

E [ζt] = ζ̄ (2.3)

1Shreve (2004) derives these equations for the Cox, Ingersoll, Ross (CIR) model of interest
rates. As noted in Chapter 1, the CIR model and the Heston model are identical in form. Because
the context is different, the notation here is different from that of Shreve. Equations 2.1 and 2.2
correspond to equations (4.4.36) and (4.4.48) respectively in Shreve (2004).
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and

lim
t→∞

Var(ζt) =
γ2ζ̄

2κ
(2.4)

In Chapter 1 I exploited the implications of equation 2.3, demonstrating that the

volatility process for SPY reverts very quickly to its asymptotic mean ζ̄.

In this chapter I turn my attention to the second moment of ζt,t+h. In Sec-

tion 2.1 I derive an equation for the conditional variance Var(ζt,t+h | Ft) that is a

linear combination of ζt and ζ̄ with weights that are independent of t. I use this

conditional variance to derive an expression for limt→∞Var(ζt,t+h), the asymptotic

variance of the process as t→∞. Because I find mean reversion is very fast, in my

empirical work I assume that this limiting approximation is a good approximation

for most of the trading day. I also derive asymptotic limits for the autocovariance

E[(ζt,t+h − ζ̄)(ζt+jh,t+(j+1)h − ζ̄)]

and the autocorrelation for all lags j ≥ 1.

In Section 2.2 I derive an explicit expression for the error term

ηt,t+2h := ζt+h,t+2h − α ζt,t+h − β ζ̄

for the GMM moment condition that featured prominently in Chapter 1 as the

sum of an Itô integral over the block [t, t + h] and an Itô integral over the block

[t + h, t + 2h]. I then proceed to derive an equation for the conditional variance

Var(ηt,t+2h | Ft) that is a linear combination of ζt and ζ̄ with weights independent

of t. I use the conditional variance to derive a formula for the asymptotic variance

limt→∞Var(ηt,t+2h) and for the asymptotic autocovariances and autocorrelations

of ηt,t+2h for all lags j ≥ 1.

Section 2.3 explicitly addresses the errors in variables introduced by using the

observable realized variation ϕt,t+h in place of the unobservable quadratic variation
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ζt,t+h. I show that among the results in Sections 2.1 and 2.2 only those on the

autocovariances of ζt,t+h for lags j ≥ 1 and on the autocovariances of ηt,t+2h for

lags j ≥ 2 are robust to measurement error.

Section 2.4 proposes a GMM estimator of the volatility-of-volatility parameter

γ based on the autocovariances of ζt,t+h for lags j ≥ 1.

Section 2.5 explores the empirical properties of the variance, autocovariances

and autocorrelations of the ζt,t+h process. I find that the results in Section 2.1

are able to explain the relative sizes of the sample autocovariances and autocor-

relations of ζt,t+h for all lags j ≥ 1, but fail to account for the relatively large

sizes of the sample variance. These pattern are consistent with the analysis of the

measurement error problem in Section 2.3.

Section 2.6 explores the empirical properties of the variance, autocovariances

and autocorrelations of the error process ηt,t+2h. I find that the results in Section

2.2 are able to explain the relative sizes of the sample autocovariances and auto-

correlations of ηt,t+2h for all lags j ≥ 2, but they fail to account for the relatively

large sizes of the sample variance, and greatly over-predict the autocorrelation (or

autocovariance) of ηt,t+2h for lag 1. These patterns are also consistent with the

analysis of the measurement error problem in Section 2.3.

Section 2.7 reports the estimation results of γ for the collection of “good weeks”

as characterized in Chapter 1. For 91% of the good weeks, the estimates of γ2 are

significant and satisfy the Feller condition, and the model passes the GMM spec-

ification test. I interpret these results as strong evidence of stochastic volatility

at high frequency. I conclude that the Heston model is a good model of high-

frequency stock-price volatility most of the time.
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2.1 The Second Moments of Quadratic Variation ζt,t+h

This section examines the structural implications of the Heston model on the

second moments of ζt,t+h, the (scaled) quadratic variation over a block.

2.1.1 Conditional variance of ζt,t+h

I start with the following lemma, which decomposes ζt,t+h, the quadratic varia-

tion over the block [t, t + h], into the sum of its expectation conditional on the

information at the beginning of that block and an innovation, an Itô integral over

that block.

Lemma 2.1. In the Heston model,

ζt,t+h = E [ζt,t+h|Ft] +

∫ t+h

t

(
1− e−κ(t+h−s)

κh

)
γ
√
ζsdBs (2.5)

Proof. Lemma 1.3 asserts that

E [ζt,t+h | Ft] = a1ζt + b1ζ̄

with

a1 =
1− e−κh

κh
b1 =

kh− e−κh

κh

Letting t+ h = T and h = T − t, I have

E [ζt,T | Ft] = a1ζt + b1ζ̄

with

a1 =
1− e−κ(T−t)

κ(T − t)
b1 =

k(T − t)− e−κ(T−t)

κ(T − t)
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or equivalently,

κ (T − t)E [ζt,T |Ft] =
(
1− e−κ(T−t)) ζt +

(
κ(T − t)−

(
1− e−κ(T−t))) ζ̄

Fix T and let t vary. Define

f(t, z) =
(
1− e−κ(T−t)) z − (κ(T − t)−

(
1− e−κ(T−t))) ζ̄

The partial derivatives of f are

ft = −κe−κ(T−t)z + κ(1− e−κ(T−t))ζ̄ fz = 1− e−κ(T−t) fzz = 0

Applying the Itô-Doeblin formula,

d (κ (T − t)E [ζt,T |Ft]) = df(t, ζt)

= [−κe−κ(T−t)ζt − κ(1− e−κ(T−t))ζ̄] dt

+ (1− eκ(T−t))[κ(ζ̄ − ζt) dt+ γ
√
ζt dBt]

Simplifying gives the stochastic differential equation

d (κ(T − t)E [ζt,T | Ft]) = −κζtdt+
(
1− e−κ(T−t)) γ√ζt dBt

Integrating from t to T yields

0− κ (T − t)E [ζt,T |Ft] = −κ
∫ T

t

ζsds+

∫ T

t

(
1− e−κ(T−s)) γ√ζs dBs

Dividing both sides by κ(T − t), writing T once again as t + h and using the

definition of ζt,t+h, we reach the desired conclusion:

ζt,t+h = E [ζt,t+h|Ft] +

∫ t+h

t

(
1− e−κ(t+h−s)

κh

)
γ
√
ζs dBs
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The next lemma expresses the conditional variance of ζt,t+h as a linear function

of the instantaneous volatility at the beginning of the block and the asymptotic

mean of the instantaneous volatility.

Lemma 2.2. In the Heston model,

Var (ζt,t+h | Ft) =
( γ
κh

)2 (
c1 ζt + d1 ζ̄

)
(2.6)

where

c1 =
1

κ
− 2he−κh − 1

κ
e−2κh

d1 = h− 5

2κ
+

(
2

κ
+ 2h

)
e−κh +

1

2κ
e−2κh

Proof. Rewrite equation 2.5 in Lemma 2.1 as

ζt,t+h − E [ζt,t+h|Ft] =

∫ t+h

t

(
1− e−κ(t+h−s)

κh

)
γ
√
ζsdBs (2.7)

Squaring both sides of equation 2.7, taking the conditional expectation of each
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side with respect to Ft and appealing to Itô’s isometry,

Var (ζt,t+h | Ft) := E
[
(ζt,t+h − E[ζt,t+h | Ft])2 | Ft

]
= E

[(∫ t+h

t

(
1− e−κ(t+h−s)

kh

)
γ
√
ζs dBs

)2

| Ft

]

= E

[∫ t+h

t

[(
1− e−κ(t+h−s)

kh

)
γ
√
ζs

]2

ds | Ft

]

=
( γ
κh

)2

E
[∫ t+h

t

(
1− e−κ(t+h−s))2

ζs ds | Ft
]

=
( γ
κh

)2
∫ t+h

t

(
1− e−κ(t+h−s))2 E[ζs | Ft] ds (2.8)

Recall that Lemma 1.2 establishes that for s ≥ t,

E[ζs | Ft] = e−κ(s−t)ζt + (1− e−κ(s−t))ζ̄ (2.9)

Using equation 2.9 to substitute for the conditional expectation in equation 2.8,

Var (ζt,t+h | Ft) =
( γ
κh

)2
∫ t+h

t

(
1− e−κ(t+h−s))2 (

e−κ(s−t)ζt + (1− e−κ(s−t))ζ̄
)
ds

=
( γ
κh

)2 (
c1 ζt + d1 ζ̄

)
where

c1 =

∫ t+h

t

(1− e−κ(t+h−s))2e−κ(s−t) ds

=

∫ t+h

t

(1− 2e−κ(t+h−s) + e−2κ(t+h−s))e−κ(s−t) ds

=

∫ t+h

t

(e−κ(s−t) − 2e−κh + e−κ(t+2h−s)) ds

=
1

κ
− 2he−κh − 1

κ
e−2κh
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c1 + d1 =

∫ t+h

t

(1− e−κ(t+h−s))2 ds =

∫ t+h

t

(1− 2e−κ(t+h−s) + e−2κ(t+h−s)) ds

= h− 3

2κ
+

2

k
e−κh − 1

2κ
e−2κh

and

d1 = (c1 + d1)− c1 = h− 3

2κ
+

2

k
e−κh − 1

2κ
e−2κh −

[
1

κ
− 2he−κh − 1

κ
e−2κh

]
= h− 5

2h
+

(
2

κ
+ 2h

)
e−κh +

1

2κ
e−2κh

Note that the coefficients c1 and d1 do not depend on t or t+ h, but just on h

and the parameters κ and γ of the Heston model.

2.1.2 Asymptotic variance of ζt,t+h

I now use this conditional variance to derive an expression for limt→∞Var(ζt,t+h),

the asymptotic variance of quadratic variation over a block as t→∞.

Proposition 2.1. In the Heston model,

lim
t→∞

Var(ζt,t+h) =
( γ
κh

)2
(
h− 1

κ
+

1

κ
e−κh

)
ζ̄ (2.10)

Proof. It is important to realize that the expectation of the conditional variance

is usually not the unconditional variance of ζt,t+h. By the law of total variance

Var(ζt,t+h) = Var(E(ζt,t+h | Ft]) + E[Var(ζt,t+h | Ft)]

According to Lemma 1.3,

E[ζt,t+h | Ft] = a1ζt + (1− a1)ζ̄
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Consequently,

Var(E[ζt,t+h | Ft]) = Var(a1ζt + (1− a1)ζ̄) = a2
1 Var(ζt)

Taking limits of both sides and using equation 2.4.gives

lim
t→∞

Var(E[ζt,t+h | Ft]) = a2
1 lim
t→∞

Var(ζt)

= a2
1

(
γ2ζ̄

2κ

)
(2.11)

=
( γ
κh

)2 (1− e−κh)2

2κ
ζ̄

From Lemma 2.2,

Var(ζt,t+h | Ft) =
( γ
κh

)2

(c1 ζt + d1 ζ̄)

and so

E[Var(ζt,t+h | Ft)] =
( γ
κh

)2

(c1 Eζt + d1 ζ̄)

Therefore,

lim
t→∞

E[Var(ζt,t+h | Ft)] =
( γ
κh

)2

(c1 lim
t→∞

Eζt + d1ζ̄)

=
( γ
κh

)2

(c1 + d1)ζ̄ (2.12)

Combining equation 2.11 and equation 2.12, the asymptotic variance is

lim
t→∞

Var(ζt,t+h) =
( γ
κh

)2 (1− e−κh)2

2κ
ζ̄ +

( γ
κh

)2

(c1 + d1)ζ̄

=
( γ
κh

)2
((

1

2κ
− 1

κ
e−κh +

1

2κ
e−2κh

)
+

(
h− 3

2κ
+

2

κ
e−κh − 1

2κ
e−2κh

))
ζ̄

=
( γ
κh

)2
(
h− 1

κ
+

1

κ
e−κh

)
ζ̄
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The limiting procedures in equations 2.11 and 2.12 have a natural interpreta-

tion: if t is “large enough”, the mean and variance approach their limits because

the effects of the initial condition ζ0 have essentially worn off.

It is instructive to compare the size of the asymptotic variance of ζt,t+h to that

of the asymptotic variance of ζt. To do so, I rewrite equation 2.10 in Proposi-

tion 2.1 to express the former as a fraction of the latter:

lim
t→∞

Var(ζt,t+h) =
2

κh2

(
h− 1

κ
+

1

κ
e−κh

)
γ2ζ̄

2κ

=

(
2

κh
− 2

(κh)2
+

2

(κh)2
e−κh

)
lim
t→∞

Var(ζt) (2.13)

To give some practical perspective, recall that h = 1/234 throughout my empirical

analysis and κ has a median value of 25 according to Table 1.3. With these values,

lim
t→∞

Var(ζt,t+h) ≈ 0.96 lim
t→∞

Var(ζt)

This is not surprising, since a simple application of calculus gives that the fraction

approaches unity as the product κh goes to zero:

lim
κh→0

(
2

κh
− 2

(κh)2
+

2

(κh)2
e−κh

)
= 1

This analysis shows that the asymptotic variance of ζt,t+h accounts for a large

proportion of the variance of ζt in the model.

2.1.3 Asymptotic autocovariances and autocorrelations of ζt,t+h

Since the process (ζt)t≥0 of the instantaneous volatility in the Heston model is

stationary, so is the process (ζt,t+h)t≥0 of the quadratic variation over a block.

Consequently, it makes sense to talk about asymptotic autocovariances and au-
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tocorrelations of ζt,t+h. Let Vj denote the asymptotic autocovariance of ζt,t+h for

lag j ≥ 0:

Vj := lim
t→∞

E
[(
ζt,t+h − ζ̄

) (
ζt+jh,t+(j+1)h − ζ̄

)]
(2.14)

In particular, V0 is the asymptotic variance, which I have already computed in

Proposition 2.1. I now derive expressions for the asymptotic autocovariances for

all lags j ≥ 1.

Proposition 2.2. In the Heston model,

V0 =
( γ
κh

)2
(
h− β

κ

)
ζ̄ (2.15)

V1 =
( γ
κh

)2 β2

2κ
ζ̄ (2.16)

Vj = α Vj−1, j ≥ 2 (2.17)

Proof. I have already established equation 2.15 in Proposition 2.1.

To derive an expression for V1, consider

lim
t→∞

E
[(
ζt+h,t+2h − αζt,t+h − βζ̄

)2
]

= lim
t→∞

E
[((

ζt+h,t+2h − ζ̄
)
− α

(
ζt,t+h − ζ̄

))2
]

=
(
1 + α2

)
V0 − 2αV1

and so

V1 =
1

2α

((
1 + α2

)
V0 − lim

t→∞
E
[(
ζt+h,t+2h − αζt,t+h − βζ̄

)2
])

(2.18)

As I will prove in Proposition 2.4 (whose proof does not rely upon this proposi-

tion),

lim
t→∞

E
[(
ζt+h,t+2h − αζt,t+h − βζ̄

)2
]

=
( γ
κh

)2

(c2 + d2) ζ̄ (2.19)
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where

c2 + d2 = h− 1

κ
+

(
h+

1

κ

)
e−2κh (2.20)

Plugging equation 2.15 and equation 2.19 into equation 2.18 yields

V1 =
1

2α

((
1 + α2

) ( γ
κh

)2
(
h− 1

κ
+

1

κ
e−κh

)
ζ̄ −

( γ
κh

)2

(c2 + d2) ζ̄

)
=

1

2e−κh

((
1 + e−2κh

) ( γ
κh

)2
(
h− 1

κ
+

1

κ
e−κh

)
ζ̄

−
( γ
κh

)2
(
h− 1

κ
+

(
h+

1

κ

)
e−2κh

)
ζ̄

)
=
( γ
κh

)2
(

1

2κ
− 1

κ
e−κh +

1

2κ
e−2κh

)
ζ̄

=
( γ
κh

)2 β2

2κ
ζ̄ (2.21)

To compute the autocovariances for lags j ≥ 2, recall that Proposition 1.1

establishes that

E
[
ζt+h,t+2h − αζt,t+h − βζ̄ | Ft

]
= 0

Since ζt−(j−1)h,t−(j−2)h − ζ̄ is measurable with respect to Ft when j ≥ 2, it follows

that

E
[(
ζt+h,t+2h − αζt,t+h − βζ̄

) (
ζt−(j−1)h,t−(j−2)h − ζ̄

)]
= 0

or

E
[((

ζt+h,t+2h − ζ̄
)
− α

(
ζt,t+h − ζ̄

)) (
ζt−(j−1)h,t−(j−2)h − ζ̄

)]
= 0

or

Vj − αVj−1 = 0, j ≥ 2

as claimed.

Note that the autocovariances of ζt,t+h for all lags depend on γ2. Consequently,

their expressions in equations 2.15 to 2.17 will potentially play an important role

in estimation of γ.
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I now consider the autocorrelations of ζt,t+h. Let Rj denote the asymptotic

autocorrelation of ζt,t+h for lag j:

Rj :=
Vj
V0

(2.22)

It is easy to derive expressions for the autocorrelations of ζt,t+h based on the

results in Proposition 2.2.

Corollary 2.1. In the Heston model,

R0 = 1 (2.23)

R1 =
β2

2 (− log (1− β)− β)
(2.24)

Rj = α Rj−1, j ≥ 2 (2.25)

Proof. Equation 2.23 is trivial.

Equation 2.25 directly follows from the definition of Rj in equation 2.22 and

equation 2.17 in Proposition 2.2.

To establish equation 2.24, use the definition in equation 2.22 and equa-

tions 2.15 and 2.16 in Proposition 2.2:

R1 :=
V1

V0

=
β2

2κ

h− β
κ

=
β2

2 (− log (1− β)− β)

where in the last step I use the relationship β = 1− e−κh.

Note that the asymptotic autocorrelations of ζt,t+h for all lags depend only on

the mean-reversion parameter β. In particular, equation 2.24 expresses R1, the

autocorrelation of ζt,t+h for lag 1 as a function of β. Figure 2.1 displays the graph

of this function. It suggests that R1 is approximately affine in β for a wide range
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Figure 2.1: R1 as a function of β in equation 2.24

of values of β. This is not surprising, since a Taylor expansion around 0 gives that

β2

2 (− log (1− β)− β)
= 1− 2

3
β +O(β2)

For example, the median value of β = 0.10 yields R1 = 0.93.

2.2 The Second Moments of the GMM Error ηt,t+2h

I now derive properties of the second moments of the GMM error term ηt,t+2h.

2.2.1 The GMM error ηt,t+2h

I begin by deriving an explicit expression for the GMM error ηt,t+2h as an Itô

integral.
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Proposition 2.3. In the Heston model,

ηt,t+2h := ζt+h,t+2h − α ζt,t+h − β ζ̄ (2.26)

=

∫ t+2h

t+h

(
1− e−κ(t+2h−s)

κh

)
γ
√
ζsdBs +

∫ t+h

t

(
e−κ(t+h−s) − e−κh

κh

)
γ
√
ζsdBs

(2.27)

Proof. According to equation 2.6, the GMM error term can be decomposed as

ηt,t+2h := ζt+h,t+2h − α ζt,t+h − β ζ̄

= E[ζt+h,t+2h | Ft+h] +

∫ t+2h

t+h

(
1− e−κ(t+2h−s)

κh

)
γ
√
ζsdBs

− α
(
E [ζt,t+h | Ft] +

∫ t+h

t

(
1− e−κ(t+h−s)

κh

)
γ
√
ζsdBs

)
− β ζ̄

and so

ηt,t+2h = E[ζt+h,t+2h | Ft+h]− αE [ζt,t+h | Ft]− β ζ̄

+

∫ t+2h

t+h

(
1− e−κ(t+2h−s)

κh

)
γ
√
ζsdBs

−
∫ t+h

t

(
e−κh − e−κ(t+2h−s)

κh

)
γ
√
ζsdBs (2.28)

Using equations 1.17 and 1.14,

E[ζt+h,t+2h | Ft+h]− α E [ζt,t+h | Ft]− β ζ̄

=
(
a1ζt+h + b1ζ̄

)
− α

(
a1ζt + b1ζ̄

)
− β ζ̄

= a1 (ζt+h − α ζt) + (b1 − α b1 − β) ζ̄

= a1

(
ζt+h − α ζt − β ζ̄

)
=

(
1− e−κh

κh

)
e−κ(t+h)γ

∫ t+h

t

eκs
√
ζs dBs
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and so

E[ζt+h,t+2h | Ft+h]− α E [ζt,t+h | Ft]− β ζ̄

=

∫ t+h

t

(
e−κ(t+h−s) − e−κ(t+2h−s)

κh

)
γ
√
ζs dBs (2.29)

Substituting equation 2.29 into equation 2.28 yields

ηt,t+2h =

∫ t+2h

t+h

(
1− e−κ(t+2h−s)

κh

)
γ
√
ζsdBs+

∫ t+h

t

(
e−κ(t+h−s) − e−κh

κh

)
γ
√
ζsdBs

Because E[ηt,t+2h | Ft] = 0, this proposition implies Proposition 1.1. However,

because E[ηt,t+2h | Ft+h] 6= 0, the sequence of the GMM errors ηt,t+2h is not a

martingale difference.

2.2.2 Conditional variance of ηt,t+2h

The next lemma expresses the conditional variance of ηt,t+2h as a linear function

of the instantaneous volatility at the beginning of the block and the asymptotic

mean of the instantaneous volatility.

Lemma 2.3. In the Heston model,

Var (ηt,t+2h | Ft) =
( γ
κh

)2 (
c2 ζt + d2 ζ̄

)
(2.30)

where

c2 =
2

k
e−κh − 4he−2κh − 2

κ
e−3κh

d2 = h− 1

κ
+

(
5h+

1

κ

)
e−2κh +

2

κ
e−3κh
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Proof. The starting point is Proposition 2.2, which establishes that

ηt,t+2h =

∫ t+2h

t

ψs
γ

κh

√
ζs dBs (2.31)

where2

ψs =


e−κ(t+h−s) − e−κh if s ∈ [t, t+ h)

1− e−κ(t+2h−s) if s ∈ [t+ h, t+ 2h]

(2.32)

Squaring both sides of equation 2.31, taking the conditional expectation of each

side with respect to Ft and appealing to Itô’s isometry,

Var(ηt,t+2h | Ft) = E
[
η2
t,t+2h | Ft

]
= E

[(∫ t+2h

t

ψs
γ

κh

√
ζs dBs

)2

| Ft

]

= E
[∫ t+2h

t

(
ψs

γ

κh

√
ζs

)2

ds | Ft
]

=
( γ
κh

)2

E
[∫ t+2h

t

ψ2
s ζs ds | Ft

]
=
( γ
κh

)2
∫ t+2h

t

ψ2
s E[ζs | Ft] ds (2.33)

Recall that Lemma 1.2 establishes that for s ≥ t,

E[ζs | Ft] = e−κ(s−t)ζt + (1− e−κ(s−t))ζ̄ (2.34)

Using equation 2.34 to substitute for the conditional expectation in equation 2.33,

Var (ηt,t+2h | Ft) =
( γ
κh

)2
[∫ t+2h

t

ψ2
se
−κ(s−t) ds

]
ζt

+
( γ
κh

)2
[∫ t+2h

t

ψ2
s(1− e−κ(s−t)) ds

]
ζ̄

=
( γ
κh

)2 (
c2 ζt + d2 ζ̄

)
2Note that if s = t + h, then e−κ(t+h−s) − e−κh = 1− e−κh and 1− e−κ(t+2h−s) = 1− e−κh.
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where

c2 =

∫ t+2h

t

ψ2
se
−κ(s−t) ds

=

∫ t+h

t

(e−κ(t+h−s) − e−κh)2e−κ(s−t) ds+

∫ t+2h

t+h

(1− e−κ(t+2h−s))2e−κ(s−t) ds

=

∫ t+h

t

(e−κ(t+2h−s) − 2e−2κh + eκ(t−2h−s)) ds

+

∫ t+2h

t+h

(eκ(t−s) − 2e−2κh + e−κ(t+4h−s)) ds

=
2

k
e−κh − 4he−2κh − 2

κ
e−3κh

c2 + d2 =

∫ t+2h

t

ψ2
s ds

=

∫ t+h

t

(e−κ(t+h−s) − e−κh)2 ds+

∫ t+2h

t+h

(1− e−κ(t+h−s))2 ds

=

∫ t+h

t

(e−2κ(t+h−s) − 2e−κ(t+2h−s) + e−2κh) ds

+

∫ t+2h

t+h

(1− 2e−κ(t+2h−s) + e−2κ(t+2h−s)) ds

= h− 1

κ
+ (h+

1

κ
)e−2κh

and

d2 = (c2 + d2)− c2 = h− 1

κ
+

(
5h+

1

κ

)
e−2κh +

2

κ
e−3κh

Note that the coefficients c2 and d2 do not depend on t or t+ h, but just on h

and the parameters κ and γ of the Heston model.
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2.2.3 Asymptotic variance of ηt,t+2h

Now I use this conditional variance to derive an expression for limt→∞Var(ηt,t+2h),

the asymptotic variance of the GMM error as t→∞.

Proposition 2.4. In the Heston model,

lim
t→∞

Var (ηt,t+2h) =
( γ
κh

)2

(c2 + d2) ζ̄ (2.35)

where

c2 + d2 = h− 1

κ
+

(
h+

1

κ

)
e−2κh (2.36)

Proof. Taking the expectation of each side of equation 2.30 in Lemma 2.3, and

taking the limit as t→∞,

lim
t→∞

E[Var(ηt,t+2h | Ft)] =
( γ
κh

)2 [
c2 lim

t→∞
Eζt + d2 ζ̄

]
=
( γ
κh

)2

(c2 + d2)ζ̄ (2.37)

where

c2 + d2 = h− 1

κ
+ (h+

1

κ
)e−2κh

By the law of total variance,

Var(ηt,t+2h) = E[Var(ηt,t+2h | Ft)] + Var(E[ηt,t+2h | Ft]) (2.38)

Since

E[ηt,t+2h | Ft] = 0

equation 2.38 simplifies to

Var(ηt,t+2h) = E[Var(ηt,t+2h | Ft)] (2.39)
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Taking the limit of each side of equation 2.39 as t→∞ and using equation 2.37,

the result follows.

The limiting procedure in equation 2.37 has a natural interpretation: if t is

“large enough”, the difference E(ζt − ζ̄) can be ignored because the effects of the

initial condition ζ0 have essentially worn off.

It is instructive to compare the size of the asymptotic variance of ηt,t+2h to

that of the asymptotic variance of ζt. To do so, I rewrite equation 2.35 in Propo-

sition 2.4 to express the former as a fraction of the latter:

lim
t→∞

Var(ηt,t+2h) = 2

(
c2 + d2

κh2

)
γ2ζ̄

2κ

=

(
2

κh
− 2

(κh)2
+

(
2

κh
+

2

(κh)2

)
e−2κh

)
lim
t→∞

Var(ζt) (2.40)

To give some practical perspective, recall that h = 1/234 throughout my empirical

analysis and κ has a median value of 25 according to Table 1.3. With these values,

lim
t→∞

Var(ηt,t+2h) ≈ 0.14 lim
t→∞

Var(ζt)

The asymptotic variance of the error term is about 14% of the asymptotic variance

of ζt.

2.2.4 Asymptotic autocovariances and autocorrelations of ηt,t+2h

Since the process (ζt)t≥0 of the instantaneous volatility in the Heston model is

a stationary ergodic process, so is the process (ηt,t+2h)t≥0 of the GMM error.

Consequently, it makes sense to talk about asymptotic autocovariances and auto-

correlations of ηt,t+2h. Let Uj denote the asymptotic autocovariance of ηt,t+2h for

lag j:

Uj := lim
t→∞

E
[
ηt,t+2h ηt+jh,t+(j+2)h

]
(2.41)

62



In particular, U0 is the asymptotic variance, which I have already computed in

Proposition 2.4. I now derive expressions for the asymptotic autocovariances for

all lags j ≥ 1.

Proposition 2.5. In the Heston model,

U0 =
( γ
κh

)2
(
h− 1

κ
+

(
h+

1

κ

)
e−2κh

)
ζ̄ (2.42)

U1 =
( γ
κh

)2
(

1

2κ
− he−κh − 1

2κ
e−2κh

)
ζ̄ (2.43)

Uj = 0, j ≥ 2 (2.44)

Proof. I have already established equation 2.42 in Proposition 2.4.

According to the definition of U1 in equation 2.41,

U1 = lim
t→∞

E [ηt,t+2h ηt+h,t+3h]

= lim
t→∞

E
[(
ζt+h,t+2h − αζt,t+h − βζ̄

) (
ζt+2h,t+3h − αζt+h,t+2h − βζ̄

)]
= lim

t→∞
E
[(
ζt+h,t+2h − ζ̄ − α

(
ζt,t+h − ζ̄

)) (
ζt+2h,t+3h − ζ̄ − α

(
ζt+h,t+2h − ζ̄

))]
Using the definition of Vj in equation 2.14 and the expressions in equations 2.15

to 2.17,

U1 =
(
1 + α2

)
V1 − α (V0 + V2)

=
(
1 + α2

)
V1 − α (V0 + αV1)

= V1 − αV0

=
( γ
κh

)2 β2

2κ
ζ̄ − α

( γ
κh

)2
(
h− 1

κ
+

1

κ
e−κh

)
ζ̄

=
( γ
κh

)2
(

1

2κ
− he−κh − 1

2κ
e−2κh

)
ζ̄
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For j ≥ 2, by the law of iterated expectations, I have

Uj = lim
t→∞

E
[
ηt,t+2h ηt+jh,t+(j+2)h

]
= lim

t→∞
E
[
E
[
ηt,t+2h ηt+jh,t+(j+2)h | Ft+2h

]]
= lim

t→∞
E
[
ηt,t+2h E

[
ηt+jh,t+(j+2)h | Ft+2h

]]
= lim

t→∞
E [ηt,t+2h · 0]

= 0

where the conditional expectation is zero according to Proposition 1.1.

Note that the autocovariances of ηt,t+2h for all lags j ≥ 2 are zero. This result

has a natural interpretation: the two blocks associated with the two GMM errors

do not overlap when j ≥ 2, and consequently the GMM errors are uncorrelated.

I now consider the autocorrelations of ηt,t+2h. Let Qj denote the asymptotic

autocorrelation of ηt,t+2h for lag j:

Qj :=
Uj
U0

(2.45)

It is easy to derive expressions for the autocorrelations of ηt,t+2h based on the

results in Proposition 2.5.

Corollary 2.2. In the Heston model,

Q0 = 1 (2.46)

Q1 =
1
2

+ (1− β) log (1− β)− 1
2

(1− β)2

− log (1− β)− 1 + (− log (1− β) + 1) (1− β)2 (2.47)

Qj = 0, j ≥ 2 (2.48)

Proof. Equation 2.46 is trivial.
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Figure 2.2: Q1 as a function of β in equation 2.47

Equation 2.48 directly follows from the definition of Qj in equation 2.45 and

equation 2.44 in Proposition 2.5.

To establish equation 2.47, use the definition in equation 2.45 and equa-

tions 2.42 and 2.43 in Proposition 2.5:

Q1 :=
U1

U0

=
1

2κ
− he−κh − 1

2κ
e−2κh

h− 1
κ

+
(
h+ 1

κ

)
e−2κh

=
1
2

+ (1− β) log (1− β)− 1
2

(1− β)2

− log (1− β)− 1 + (− log (1− β) + 1) (1− β)2

where in the last step I use the relationship β = 1− e−κh.

Note that the asymptotic autocorrelations of ηt,t+2h for all lags depend only

on the mean-reversion parameter β of the Heston model. They do not depend on

ζ̄ or γ.

In particular, equation 2.47 expresses Q1, the autocorrelation of ηt,t+2h for lag

1 as a function of β. Figure 2.2 displays the graph of this function. It suggests
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that Q1 is approximately equal to 0.25 for a very wide range of values of β that

encompasses both the median value of β = 0.10 and the upper quantile value of

β = 0.14.

2.3 Errors in Variables

In Section 1.1.2 I addressed the errors in variables introduced by using the ob-

servable realized variation ϕt,t+h in place of the unobservable quadratic variation

ζt,t+h. I showed that the moment condition equation 1.19 is unaffected under a

weak assumption.

The same error-in-variable problem occurs here: the observable realized vari-

ation is an error-ridden measure of the unobservable quadratic variation:

ϕt,t+h = ζt,t+h + νt,t+h (2.49)

However, it is no longer true that the second moments of quadratic variation ζt,t+h

and the GMM error ηt,t+2h are unaffected by measurement errors. As Anderson

and Bollerslev (1998) suggests, squared realized variation yields an upward biased

estimate of true squared quadratic variation for any fixed sampling interval, even

though realized variation itself is unbiased for quadratic variation.

To investigate the effects of measurement errors on the second moments of

ζt,t+h and ηt,t+2h, I start with the following strong assumption:

Assumption 2.1. νt,t+h is independent of the ζ process, and is i.i.d. N(0, ν2)

with variance ν2 > 0.

Let Ṽj denote the asymptotic autocovariance of ϕt,t+h for lag j ≥ 0:

Ṽj := lim
t→∞

E
[(
ϕt,t+h − ζ̄

) (
ϕt+jh,t+(j+1)h − ζ̄

)]
(2.50)
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Define

ξt,t+2h := ϕt+h,t+2h − α ϕt,t+h − β ζ̄ (2.51)

and so

ξt,t+2h = (ζt+h,t+2h + νt+h,t+2h)− α (ζt,t+h + νt,t+h)− β ζ̄

= ηt,t+2h + (νt+h,t+2h − α νt,t+h) (2.52)

Let Ũj denote the asymptotic autocovariance of ξt,t+2h for lag j ≥ 0:

Ũj := lim
t→∞

E
[
ξt,t+2h ξt+jh,t+(j+2)h

]
(2.53)

Proposition 2.6. Under Assumption 2.1,

Ṽ0 = V0 + ν2 (2.54)

Ṽ1 = V1 (2.55)

Ṽj = Vj, j ≥ 2 (2.56)

Ũ0 = U0 +
(
1 + α2

)
ν2 (2.57)

Ũ1 = U1 − αν2 (2.58)

Ũj = Uj, j ≥ 2 (2.59)

Proof. Using Assumption 2.1 and the definitions in equations 2.49, 2.50, 2.52

and 2.53,

Ṽ0 = lim
t→∞

E
[(
ϕt,t+h − ζ̄

)2
]

= lim
t→∞

E
[(
ζt,t+h + νt,t+h − ζ̄

)2
]

= lim
t→∞

E
[(
ζt,t+h − ζ̄

)2
+ ν2

t,t+h + 2
(
ζt,t+h − ζ̄

)
νt,t+h

]
= V0 + ν2 + 0
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and

Ṽ1 = lim
t→∞

E
[(
ϕt,t+h − ζ̄

) (
ϕt+h,t+2h − ζ̄

)]
= lim

t→∞
E
[(
ζt,t+h + νt,t+h − ζ̄

) (
ζt+h,t+2h + νt+h,t+2h − ζ̄

)]
= lim

t→∞
E
[(
ζt,t+h − ζ̄

) (
ζt+h,t+2h − ζ̄

)
+ νt,t+h νt+h,t+2h

+
(
ζt,t+h − ζ̄

)
νt+h,t+2h +

(
ζt+h,t+2h − ζ̄

)
νt,t+h

]
= V1 + 0 + 0 + 0

Similarly,

Ṽj = Vj, j ≥ 2

Moreover,

Ũ0 = lim
t→∞

E
[
ξ2
t,t+2h

]
= lim

t→∞
E
[
(ηt,t+2h + νt+h,t+2h − α νt,t+h)2]

= lim
t→∞

E
[
η2
t,t+2h + ν2

t+h,t+2h + α2ν2
t,t+h

+2 ηt,t+2h νt+h,t+2h − 2 ηt,t+2h νt,t+h − 2 ηt,t+2h νt,t+h]

= U0 + ν2 + α2ν2 + 0− 0− 0

and

Ũ1 = lim
t→∞

E [ξt,t+2h ξt+h,t+3h]

= lim
t→∞

E [(ηt,t+2h + νt+h,t+2h − α νt,t+h) (ηt+h,t+3h + νt+2h,t+3h − α νt+h,t+2h)]

= lim
t→∞

E [ηt,t+2h ηt+h,t+3h + (νt+h,t+2h − α νt,t+h) ηt+h,t+3h

+ηt,t+2h (νt+2h,t+3h − α νt+h,t+2h)

+νt+h,t+2h νt+2h,t+3h − α νt,t+h νt+2h,t+3h − α ν2
t+h,t+2h + α2 νt,t+h νt+h,t+2h

]
= U1 + 0 + 0 + 0− 0− αν2 + 0
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Similarly,

Ũj = Uj, j ≥ 2

This proposition implies that, among the results on autocovariances of quadratic

variation in Proposition 2.3, equation 2.16 and equation 2.17 are unaffected by

measurement errors, while equation 2.15 is vulnerable to measurement error.

Among the results on autocovariance of the GMM error in Proposition 2.5, both

equation 2.42 and equation 2.43 are vulnerable to measurement error; equa-

tion 2.44 is clearly robust to measurement error.

2.4 Estimating the Volatility of Volatility Parameter γ

The analysis of measurement errors in the last section has a direct implication

regarding estimation of γ: equations 2.16 and 2.17 are appropriate choices for the

moment conditions.

To achieve efficiency in estimation, I use the generalized method of moments

(GMM) rather than the method of moments (MM). In the empirical study below,

I use the following two moment conditions:

E

[(
ϕt,t+h − ˆ̄ζ

)(
ϕt+h,t+2h − ˆ̄ζ

)
−
( γ
κ̂h

)2 β̂2

2κ̂
ˆ̄ζ

]
= 0 (2.60)

E

(ϕt,t+h − ˆ̄ζ
)(

ϕt+2h,t+3h − ˆ̄ζ
)
−
( γ
κ̂h

)2

(
1− β̂

)
β̂2

2κ̂
ˆ̄ζ

 = 0 (2.61)

Because the error terms associated with these two moment conditions are

possibly heteroscedastic and autocorrelated, I use a heteroscedasticity and auto-

correlation consistent (HAC) covariance matrix estimator with a Bartlett-kernel

(see Newey and West (1987)).
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Table 2.1: Sample standard deviation of ϕt,t+h × 104, good weeks

sample standard deviation of ϕt,t+h ×104

median 0.42
5% percentile 0.14
25% percentile 0.26
75% percentile 0.81
95% percentile 5.8

Under the GMM setting, the minimized value of the objective function multi-

plied by the sample size is asymptotically chi-square distributed, which allows for

a specification test of the overidentifying restrictions. Moreover, inference con-

cerning the individual parameter is readily available from the standard formula

for the asymptotic covariance matrix. Specifically, I will test the hypothesis that

γ = 0.

2.5 Empirical Analysis of the Second Moments of ϕt,t+h

This section examines the empirical properties of the second moments of realized

variation ϕt,t+h.

2.5.1 Sample standard deviation of ϕt,t+h

I start my empirical analysis with the sample standard deviation of ϕt,t+h, the

(scaled) realized variation over blocks. I compute the standard deviation for each

week (more precisely, each five-day collection of blocks). I exclude the first block

for each day so that the standard deviation lines up with the sample used to

compute the estimates in Chapter 1.

Table 2.1 reports the summary statistics of the weekly sample standard devia-

tion of ϕt,t+h for good weeks. The median sample standard deviation is 0.42×10−4.
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Recall that the median ζ̄ in the sample is 0.59× 10−4, so the sample standard de-

viation of realized variation has a sizable magnitude compared to the level of the

asymptotic mean of volatility. The distribution of the sample standard deviation

is highly skewed to the right — a few good weeks experience very large standard

deviation of realized variation. The 95% percentile of the distribution is as high

as 5.8× 10−4, or 14 times as large as the median.

Figure 2.3 plots the time series of the sample standard deviation of ϕt,t+h for

all good weeks in the sample period. This plot resembles the times series plot of

estimates of ζ̄ in Figure 1.8. This is not surprising, given the linear relationship

between the standard deviation and ζ̄ in equation 2.10, which implies that because

ζ̄ varies a lot over my sample period according to Figure 1.8, so does the standard

deviation of ϕt,t+h. The series looks persistent and slow-moving most of the time.

However, it can move abruptly; for example, the “Great Recession” from the

second half of 2008 to the beginning of 2009 witnessed exceptionally high levels

of volatility of volatility, which is clear in the plot.

2.5.2 Sample autocorrelations of ϕt,t+h

I now examine the sample autocorrelations of ϕt,t+h, the (scaled) realized variation

over blocks. Let R̂j denote the sample autocorrelation of ϕt,t+h for lag j. As before,

I compute the sample autocorrelations for each week, and exclude the first block

for each day in my calculation.

Table 2.2 reports the summary statistics of R̂j, the sample autocorrelations

of ϕt,t+h, for j = 1, 2, 3, 4, 5, 6. The sample autocorrelation decreases as the lag

increases: the median R̂1 is 0.57, and the median declines gradually to 0.38 for

R̂6 (recall that realized variation is over a 100-second block, so lag 6 corresponds

to a time difference of 600 seconds, or 10 minutes). This makes sense, since the

volatility process is persistent, and it is able to deviate from its original value
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Table 2.2: Sample autocorrelations of ϕt,t+h, good weeks

R̂1 R̂2 R̂3 R̂4 R̂5 R̂6

median 0.57 0.48 0.42 0.42 0.40 0.38
5% percentile 0.17 0.07 0.05 0.05 0.03 0.03
25% percentile 0.49 0.38 0.33 0.33 0.31 0.30
75% percentile 0.63 0.55 0.51 0.48 0.47 0.45
95% percentile 0.72 0.65 0.63 0.57 0.58 0.57

mean 0.54 0.45 0.42 0.39 0.37 0.36
standard deviation 0.16 0.16 0.15 0.15 0.15 0.14

as time passes. The mean is close to the median for each R̂j, suggesting that

its distribution is roughly symmetric about the median. The standard deviations

of R̂j’s are strikingly close to each other, with the maximum of 0.16 for R̂1 and

minimum of 0.14 for R̂6.

I now compare R̂1, the sample autocorrelation of realized variation ϕt,t+h for

lag 1, to the value of the asymptotic autocorrelation of quadratic variation ζt,t+h

for lag 1 given by equation 2.24 with the parameter β replaced by its estimate β̂

obtained in Chapter 1. Let Rβ
1 denote this value:

Rβ
1 =

β̂2

2
(
− log

(
1− β̂

)
− β̂

) (2.62)

Figure 2.4 plots the sample autocorrelation R̂1 on the vertical axis and Rβ
1 on

the horizontal axis, together with a 45 degree line. The plot shows that sample

autocorrelation R̂1 is almost always smaller than Rβ
1 . R̂1 has a median of 0.57,

much smaller than the median Rβ
1 of 0.93. This suggests that equation 2.24 fails

to explain the sample autocorrelations for lag 1 observed in data.

This failure might be caused by two factors. The first factor is the measurement

error. According to equations 2.54 and 2.55 in Proposition 2.6, the measurement

73



Figure 2.4: The sample autocorrelation R̂1 versus Rβ
1 , good weeks

error in realized variation as a proxy for quadratic variation increases the variance

but does not affect the autocovariance for lag 1, as long as the measurement error

has zero mean and is independent across blocks. Consequently, measurement

error lowers the sample autocorrelation. Under this explanation, the ratio of

the medians, 0.57/0.93 = 61%, roughly measures the percentage in the sample

variance of realized variation that can be contributed to the Heston dynamics

of quadratic variation as opposed to measurement errors. The second factor is

non-stationarity at the beginning of each day. Strictly speaking, equation 2.24

is an asymptotic formula that exploits the stationarity property of the quadratic

variation process, and it might not be accurate if there is severe non-stationarity

at the beginning of each day. However, this argument is mitigated by the fact

that mean reversion is very fast, which suggests that the limiting approximation

is a good approximation for most of the trading day.

I also examine R̂j, the sample autocorrelations of ϕt,t+h for higher lags j ≥ 2.
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In particular, I compute the ratio R̂j/R̂1, and compare this ratio to
(

1− β̂
)j−1

,

the ratio of corresponding autocorrelations of quadratic variation given by equa-

tion 2.25 with the parameter β replaced by its estimate β̂ obtained in Chapter

1. Figure 2.5 plots the ratios R̂j/R̂1 for j = 2, 3, 4, 5 on the vertical axis and(
1− β̂

)j−1

on the horizontal axis, together with a 45 degree line. In all sub-

plots, the dots are reasonably close to the 45 degree line. This suggests that

equation 2.25 succeeds in explaining the relative sizes of autocorrelations for lags

j ≥ 1.

This success can be explained by equations 2.55 and 2.56 in Proposition 2.6:

the measurement error in realized variation as a proxy for quadratic variation does

not affect the autocovariances for lags j ≥ 1.

2.6 Empirical Analysis of the Second Moments of ξ̂t,t+2h

This section examines the empirical properties of the second moments of the GMM

error. Let ξ̂t,t+2h denote the empirical GMM error:

ξ̂t,t+2h := ϕt+h,t+2h − α̂ ϕt,t+h − β̂ ̂̄ζ (2.63)

where α̂, β̂ and ̂̄ζ are the estimates of the parameters obtained in Chapter 1.

2.6.1 Sample standard deviation of ξ̂t,t+2h

I start with the sample standard deviation of the GMM error ξ̂t,t+2h. I compute the

standard deviation for each week, or precisely, each five-day collection of blocks.

Each trading day contains 232 GMM errors (recall that the first block for each day

is used as an instrument and that a GMM error is associated with two adjacent

blocks).

Table 2.3 reports the summary statistics of weekly sample standard deviation
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Figure 2.5: R̂j/R̂1 versus
(

1− β̂
)j−1

for j = 2, 3, 4, 5, good weeks
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Table 2.3: Sample standard deviation of ξ̂t,t+2h × 104, good weeks

sample standard deviation of ξ̂t,t+2h × 104

median 0.36
5% percentile 0.12
25% percentile 0.22
75% percentile 0.73
95% percentile 4.5

of the GMM error ξ̂t,t+2h. The median sample standard deviation is 0.36× 10−4.

Recall that the median ζ̄ in the sample is 0.59× 10−4, so the standard deviation

has a sizable magnitude compared to the asymptotic mean of quadratic variation.

The distribution of the sample standard deviation is highly skewed to the right

— a few good weeks experience very large standard deviation of GMM errors.

Figure 2.6 plots the time series of the sample standard deviation of GMM

errors ξ̂t,t+2h for good weeks in the bottom subplot, compared with Figure 2.3,

the time series plot of the sample standard deviation of ϕt,t+h, in the top subplot.

The two series resemble each other. Their correlation coefficient is 0.91. This

is not surprising given the parallel between equation 2.10 in Proposition 2.1 and

equation 2.35 in Proposition 2.4: the variance of quadratic variation and that of

the GMM error are both proportional to the asymptotic variance of ζt, and they

vary as the parameters ζ̄ and γ vary.

2.6.2 Sample autocorrelations of ξ̂t,t+2h

I now examine the sample autocorrelations of ξ̂t,t+2h, the empirical GMM error.

Let Q̂j denote the sample autocorrelation of ξ̂t,t+2h for lag j. As before, I compute

the sample autocorrelations for each week, and exclude the first block for each

day in my calculation.
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Figure 2.6: Sample standard deviation of ϕt,t+h and ξ̂t,t+2h, good weeks
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Figure 2.7: Sample autocorrelation function of ξ̂t,t+2h, a good week, SPY

Figure 2.7 displays the autocorrelation function of the GMM error term for

a typical good week, together with a band marked by dashed lines as indicating

the threshold of significance at the 95% level. The sample autocorrelation for lag

1 is significantly negative, and those for higher lags are not significantly different

from 0 (with a few minor exceptions).

Table 2.4 reports the summary statistics of Q̂j, the sample autocorrelations of

ξ̂t,t+2h for j = 1, 2, 3 (recall that realized variation is over a 100-second block, so

lag 3 corresponds to a time difference of 300 seconds, or 5 minutes).

The first column of Table 2.4 shows that Q̂1 is almost always negative. The

median is -0.39 and the mean is -0.37. The 95% percentile is -0.19, which is still

significantly negative. This is in sharp contrast to the implication of equation 2.47

that Q1 is positive. This contrast might be caused by the measurement error.

According to equations 2.58 in Proposition 2.6, the measurement error in realized
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Table 2.4: Sample autocorrelations of ξ̂t,t+2h, good weeks

Q̂1 Q̂2 Q̂3

median -0.39 -0.04 -0.00
5% percentile -0.48 -0.16 -0.08
25% percentile -0.42 -0.07 -0.04
75% percentile -0.35 -0.01 0.02
95% percentile -0.19 0.04 0.08

mean -0.37 -0.05 -0.00
standard deviation 0.12 0.07 0.06

variation as a proxy for quadratic variation negatively affects the autocorrelation

of the GMM error for lag 1. If the measurement error is large, the autocorrelation

can turn negative (the variance is also affected by the measurement error but it

cannot change sign).

The second and third columns of Table 2.4 show that Q̂2 and Q̂3 are very close

to 0. This agrees with equation 2.48 in Proposition 2.5. This agreement is likely

because the measurement error does not affect the autocovariances of the GMM

error for lags j ≥ 2, according to equation 2.59 in Proposition 2.6.

2.7 Estimation Results of γ

This section reports the estimation results of the volatility of volatility parameter

γ of the Heston model. I estimate γ using GMM based on the two moment

conditions given by equations 2.60 and 2.61 for every good week as defined in

Chapter 1.
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Table 2.5: Estimates of γ2 × 103, good weeks

γ2 × 103

median 0.83
5% percentile 0.21
25% percentile 0.42
75% percentile 1.45
95% percentile 7.46

median standard error 0.21
median z-score 4.01

2.7.1 Estimates of γ2

Table 2.5 reports the summary statistics of the estimates of γ2. The median is

0.83 × 10−3. This median is much larger than the median estimate of ζ̄, which

is 0.59 × 10−4 according to Table 1.2. Thus, γ2 dominates ζ̄ by an order of

magnitude in determining the asymptotic variance of ζt, which equals γ2ζ̄/2κ (see

equation 2.4).

Figure 2.8 plots the time series of the estimates of γ2 (the estimates are multi-

plied by 103). This series is persistent and slow-moving, most of the time, although

this is less noticeable than the volatility clustering shown in Figure 1.8. However,

volatility of volatility can move abruptly; for example, the “Great Recession” from

the second half of 2008 to the beginning of 2009 witnessed exceptionally high levels

of volatility of volatility, which is clear in the plot.

Figure 2.9 displays the histogram of the estimates of γ2 (the estimates are

multiplied by 103). The two highest bars lie in the range of [0, 2] × 10−3, which

encompass the median and the lower and upper quantiles reported in Table 2.5.

The distribution is highly skewed to the right, with a few outliers that are larger

than 10×10−3, as represented by the bar I label “infinity” at the very right of the

histogram. However, these outliers are not a problem but rather represent a good
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Figure 2.9: Histogram of estimates of γ2 × 103, good weeks

feature of the estimation: volatility of volatility can sometimes be exceptionally

high, for example, during the financial crisis of 2008 - 2009.

2.7.2 Evidence of stochastic volatility

I am now ready to answer a key question raised in the introduction of Chapter 1:

is the variation in realized variation over blocks, for example, in Figure 1.2, due

to sampling error around a deterministic trend (as for a deterministic volatility

model) or even a constant value (as for a geometric Brownian motion) or does

this variation actually represent stochastic volatility? I answer this question by

testing the hypothesis that γ = 0 — the null is accepted under deterministic

volatility and rejected under stochastic volatility. The crucial point is that my

GMM estimates are robust to measurement error by design thanks to a judicious

choice of moment conditions, so the estimates of γ faithfully reflects the magnitude
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of stochastic volatility despite the presence of measurement error.

92% of the good weeks feature stochastic volatility. The null is rejected at a 5%

significance level, or equivalently, the estimates of γ2 are positive and significant.

This is strong evidence of stochastic volatility. Volatility starts the day high,

and quickly declines towards its asymptotic mean ζ̄ at a fast rate κ. However,

stochastic shocks to volatility constantly occur. This force is balanced by the force

of strong mean reversion toward the asymptotic mean. The two forces jointly

determine the stationary distribution of stock-price volatility.

For the other 8% of the good weeks the null hypothesis γ = 0 is not rejected

at the 5% significance level. This is the case of deterministic volatility. Volatil-

ity starts the day high, but it declines deterministically at rate κ. The Heston

stochastic differential equation becomes a deterministic ordinary differential equa-

tion: dζt = κ(ζ̄ − ζt)dt. The solution is ζt = e−κtζ0 + (1 − e−κt)ζ̄. Because I find

that mean-reversion is fast, this deterministic volatility model is approximately a

geometric Brownian motion for most of the trading day.

I now examine the Feller condition in all good weeks. Recall that the Feller

condition states that γ2 < 2κζ̄, and it guarantees that ζt is almost surely positive

for all t. Figure 2.10 plots 2κ̂̂̄ζ×103 on the horizontal axis against γ̂2×103 on the

vertical axis, together with a 45 degree line. 95% of the dots lie below the 45 degree

line, indicating that the Feller condition is satisfied in the weeks they represent.

5% of the dots lie above the 45 degree line, indicating that the Feller condition is

violated in those weeks. This is an evidence of model mis-specification, including

price jumps or volatility jumps. Some of these 5% of good weeks belong to the 8%

deterministic cases, suggesting that the GMM estimation of γ occasionally breaks

down.

I further assess the performance of the Heston model using the GMM specifi-

cation test. Figure 2.11 displays the histogram of the p-values of GMM J-tests for

good weeks in which γ2 is significantly positive and satisfies the Feller condition,
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Figure 2.10: The Feller condition, good weeks
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Figure 2.11: Histogram of p-values of GMM J-test, good weeks

which account for 91% of the good weeks. The p-values are not small most of the

time, indicating no evidence that the model is mis-specified. Only in 11 out of

268 weeks does the GMM specification test reject the model at 10% significance

level.

To summarize, the Heston model works very well empirically in 65% (257 out

of 393) of weeks in the sample, in the sense that all three parameters are signifi-

cant, the model passes the GMM specifications tests, and the Feller condition is

satisfied.
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CHAPTER 3

Outliers

In Chapters 1 and 2 I reformulated the Heston stochastic volatility model to

develop a model of the high-frequency evolution of the scaled increments ζt,t+h

of quadratic variation. I used the generalized method of moments to estimate

three of the parameters of the Heston model, the speed of mean reversion κ (or

equivalently, β), the asymptotic mean ζ̄, and the volatility of volatility γ, and

found that the estimation is successful most of the time. I established the validity

of the Heston model also by examining as many structural implications of the

model as I could find.

However, the continuous-path Heston model is not the whole story. An attrac-

tive alternative is to allow for jumps, either in the price process or the volatility

process, but to claim that they are rare. Small jumps may be common but in-

distinguishable from a Heston model empirically. But I can allow for rare large

jumps. To identify blocks where large jumps are likely present, I look for blocks

where large realized variation occurs. What these “bad blocks” are picking up are

very large shocks that are not well approximated by the Heston model. The arrival

rate of the large shocks is very low (on the order of a few per day) in contrast to

ordinary shocks (which have arrival rates on the order of a few per second). Bad

blocks represent deviations that are not handled well by the stationary error terms

of our model. They show up only when we examine the “path behavior” of the

realized variation process. The larger point is that distinguishing between jumps

and continuous movements is hard, but I may be able to approximate the general
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Table 3.1: Number of bad blocks

ϕt,t+h over weekly median Good weeks Bad weeks Total

(10, 100) 301 422 723
(100, 1000) 32 157 189
(1000,+∞) 3 41 44

Total bad blocks 336 620 956
Total per week 1.13 6.39 2.43

Total percentage 0.10% 0.55% 0.21%

case with my continuous-path model most of the time except for a collection of

relatively infrequent bad blocks.

3.1 The Effect of Bad Blocks

In this section, I identify bad blocks, shrink them, and re-estimate the model, and

analyze the effects of bad blocks on estimation results.

I start by identifying bad blocks. A bad block is a 100-second block in which

the realized variation ϕt,t+h exceeds 10 times the median of realized variation in all

blocks in that week. This definition of the bad block has an important advantage

that it is independent of any model.

Based on this definition, I identify all bad blocks in the entire sample period

from 2007 to 2014. Table 3.1 reports the breakdown of all bad blocks. There are

956 bad blocks in total, or 2.43 per week (there are 393 weeks in the sample),

accounting for 0.21% of all blocks (there are 234 × 5 × 393 = 459, 810 blocks

in the sample). Among them 336 bad blocks occur in the 296 good weeks, or

1.13 bad blocks per good week, accounting for 0.10% of all blocks in good weeks.

The remaining 620 bad blocks occur in the 97 bad weeks, or 6.39 bad blocks per

bad week, accounting for 0.55% of all blocks in bad weeks. These numbers are

88



Table 3.2: Distribution of the number of bad blocks for each week

Number of bad blocks Good weeks Bad weeks Total

0 158 28 186
1 63 18 85
2 36 14 50
3 13 9 22
4 7 2 9
5 4 2 6
6 4 3 7
7 2 1 3
8 3 3 6
9 2 1 3
10 1 0 1
11 1 2 3
12 0 1 1
13 1 1 2
14 0 2 2
20 0 1 1
21 0 1 1
23 0 1 1
25 0 1 1
44 0 1 1
75 0 1 1
184 0 1 1

Total 296 97 393

consistent with the idea that bad blocks represent large and rare jumps (either in

the price process or in the volatility process).

Table 3.2 reports the distribution of the number of bad blocks for each week.

The first column reports the distribution for good weeks. More than half of good

weeks have no bad blocks. The good weeks with 0, 1 or 2 bad blocks account for

87% of all good weeks. The good weeks with the largest number of bad blocks has

13 bad blocks. This distribution looks like a Poisson distribution, as expected. An

estimate of the parameter of the Poisson distribution is 1.13, the average number

of bad blocks per week shown in Table 3.1. This estimate has the dimension of a
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Figure 3.1: Histogram of the number of blocks for each week

rate per week, and corresponds to a parameter value of 0.23 with the dimension

of a rate per day.

The second column of Table 3.2 reports the distribution for bad weeks. 29%

of bad weeks have no bad blocks. This percentage is significantly lower than for

good weeks, but it is still a considerable portion. In these weeks, the failure of

my GMM estimation in Chapter 1 cannot be explained by bad blocks. The bad

weeks with 0, 1 or 2 bad blocks account for 62% of all bad weeks. This distribution

looks like a Poisson distribution, as expected, except for its fat right tail. The

bad weeks with the largest number of bad blocks has 184 bad blocks. This week

includes February 27, 2007, when the S&P 500 Index dropped 3.5% in volatile

trading following a 9% sell-off in China’s stock market overnight.

The third column of Table 3.2 reports the distribution for all weeks. Figure 3.1

displays the histogram of this distribution. The distribution looks like a Poisson
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Figure 3.2: Histogram of the block index of bad blocks

distribution, except for its fat right tail. The weeks containing more than 14 bad

blocks are represented by the bar at the very right end labeled “>14”.

Do bad blocks tend to occur more frequently in some part of a trading day

than other parts? Figure 3.2 displays the histogram of the block index of bad

blocks. Bad blocks are more common in four parts of a trading day, the begin-

ning, 10:00AM, 2:00PM and the end. 10:00AM corresponds to various macroeco-

nomic announcements1, and 2:00PM is the time when FOMC releases its policy

statement.

I now “shrink” the bad blocks. Specifically, I divide ϕt,t+h by 10 for blocks in

the first row of Table 3.1, by 100 for blocks in the second row and by 1000 for blocks

in the third row. This procedure of shrinking bad blocks also has the advantage

that it is independent of any model. There are of course other reasonable and

model-independent ways of shrinking bad blocks, but I perform this procedure for

simplicity.

I am now ready to re-estimate the parameters for a day or a week, using the

1They include Purchasing Managers Index (PMI), Consumer Conference (Conference Board),
and Consumer Sentiment (University of Michigan, preliminary), among others. See Siegel,
“Stocks in the Long Run”, Fourth Edition, Table 14.1, p. 243.
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Table 3.3: Reproduced Table 1.1: joint estimation of ζ̄ and β, before shrinkage

Daily (1969) Weekly (393)

Good β, Good ζ̄ 53% (1041/1969) 88% (344/393)
Good β, Bad ζ̄ 0% (7/1969) 1% (2/393)
Bad β, Good ζ̄ 37% (737/1969) 9% (36/393)
Bad β, Bad ζ̄ 9% (184/1969) 3% (11/393)

Good J-stat 88% (1732/1969) 87% (340/393)
Bad J-stat 12% (237/1969) 13% (53/393)

Good (β, ζ̄ and J-stat) 45% (894/1969) 75% (296/393)

Table 3.4: Performance of joint estimation of ζ̄ and β, after shrinkage

Daily (1969) Weekly (393)

Good β, Good ζ̄ 54% (1061/1969) 92% (363/393)
Good β, Bad ζ̄ 0% (0/1969) 0% (0/393)
Bad β, Good ζ̄ 36% (716/1969) 7% (28/393)
Bad β, Bad ζ̄ 10% (192/1969) 1% (2/393)

Good J-stat 92% (1806/1969) 89% (351/393)
Bad J-stat 8% (163/1969) 11% (42/393)

Good (β, ζ̄ and J-stat) 49% (961/1969) 83% (325/393)

shrunk data for bad blocks.

Table 3.4 displays measures of statistical performance of daily and weekly joint

estimation of ζ̄ and β after shrinking bad blocks. This table is parallel to Table

1.1 in Chapter 1, reproduced here for convenience as Table 3.3.

The first column reports the statistical performance of daily estimation. The

parameter significance is not very different from before shrinkage. The percentage

of days passing the GMM J-test increases to 92% after shrinkage from 88% before.

The percentage of good days is unchanged at 49%.

The second column reports the statistical performance of weekly estimation.
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The parameter significance improves, with the percentage of both parameters

being significant increasing to 92% after shrinkage from 88% before. Meanwhile,

the percentage of days passing the GMM J-test increases to 89% after shrinkage

from 87% before. Overall, the percentage of good weeks increases to 83% after

shrinkage from 75% before.

In summary, shrinking bad blocks modestly improves daily joint estimation

of ζ̄ and β, and significantly improves weekly joint estimation. Pooling is still

appropriate.

3.1.1 The effect of bad blocks in good weeks

I now examine parameter estimates after shrinking bad blocks, in each of the 138

good weeks with at least one bad block.

Figure 3.3 plots parameter estimates in all good weeks with bad blocks, before

shrinking on the horizontal axis versus after shrinking on the vertical axis, together

with a 45 degree line. Clockwise from the upper left corner, I present plots for the

three estimated parameters ζ̄, β, γ2 followed by a plot of the p-value of the J-test.

Each of these graphs plots estimates for all 138 good weeks with at least one bad

block. Figure 3.4 is organized in the same way, but with axes truncated to better

display the majority of the results, except for the graph for the p-value, which is

simply reproduced. Because of the truncation, the plots in Figure 3.4 have fewer

observations: 135, 133, 132 and 138.

The upper-left subplot of Figure 3.3 shows that ζ̄ is almost unaffected by bad

blocks, even for some good weeks with large estimates of ζ̄. The upper-left subplot

of Figure 3.4 has 135 dots, and it confirms that all relatively small estimates of ζ̄

are unaffected by bad blocks. One might be inclined to think this is because bad

blocks are rare, however, this argument is not valid because it also predicts other

parameter estimates are almost unaffected, which is not the case as I explain
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Figure 3.3: Good weeks with bad blocks, before shrinking and after
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Figure 3.4: Good weeks with bad blocks, before shrinking and after, truncated

95



the paragraphs that follow. The reason is likely that a bad block affects two

GMM errors with almost the same magnitude (because α is close to 1) but with

opposite signs, and hence the time-average sample versions of equation 1.28 are

almost equal with or without bad blocks.

The upper-right subplot of Figure 3.3 shows that β is unaffected most of the

time, but shrinking eliminates large estimates that are suspicious. The upper-left

subplot of Figure 3.4 has 133 dots, and it confirms that relatively small estimates

of β are almost unaffected by bad blocks, except for 3 cases. The percentage of

the estimates before and after shrinking being roughly equal is 130/138 = 94%.

The argument in the last paragraph can explain why estimates of β are unaffected

most of the time. The fact that shrinking eliminates all large estimates indicates

that sometimes estimates of β are probably driven by a single pair of blocks where

the first block is bad while the second is on the border of being bad or not (an

immediate decline of realized variation from a large positive shock to a level about

ζ̄ corresponds to β close to 1).

The lower-right subplot of Figure 3.3 shows that γ is unaffected or modestly

smaller most of the time, but like β shrinking eliminates all large estimates that

are suspicious (the line that looks like a vertical axis is indeed a 45 degree line).

The upper-left subplot of Figure 3.4 has 132 dots, and it confirms that relatively

small estimates of γ are unaffected or modestly smaller after shrinking, with a few

more exceptions than for β. A change in the value of γ might be due to a change

in the value of β, and the estimation procedure of γ developed in Chapter 2 itself

might or might not be affected.

The lower-left subplots of Figure 3.3 and Figure 3.4 show that the P-value of

the GMM J-test of Chapter 1 estimation is affected in an unclear way.
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3.1.2 The effect of bad blocks in bad weeks

I now examine parameter estimates after shrinking bad blocks, in each of the 69

bad weeks with at least one bad block.

Figure 3.5 plots parameter estimates in all bad weeks with bad blocks, before

shrinking on the horizontal axis versus after on the vertical axis, together with a

45 degree line. This figure is not truncated, so it contain estimates in all 69 bad

weeks with at least one bad block. Figure 3.6 does the same, but is truncated to

better display the majority of the results.

The upper-left subplot of Figure 3.5 shows that shrinking eliminates all ex-

tremely large and all negative estimates that are suspicious (the line that looks

like a vertical axis in is indeed a 45 degree line). The upper-left subplot of Figure

3.6 contains 63 dots, and it shows that almost all estimates of ζ̄ are unaffected.

The upper-right subplots show that estimates of β are unaffected most of the

time, but shrinking eliminates most of the large estimates that are suspicious. This

pattern is similar to those in good weeks with bad blocks but is less prominent.

The lower-right subplots show that estimates of γ is unaffected or modestly

smaller most of the time, but like β shrinking eliminates all extremely large es-

timates that are suspicious. This pattern is similar to those in good weeks with

bad blocks but is less prominent.

The lower-left subplots show that the p-value of the GMM J-test of Chapter 1

estimation is affected in an unclear way, except that shrinking eliminates almost

all p-values smaller than 0.1, but this might be artificial since 0.1 is the threshold

of the p-value for “good J-test” and “bad J-test”.
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Figure 3.5: Bad weeks with bad blocks, before shrinking and after
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Figure 3.6: Bad weeks with bad blocks, before shrinking and after, truncated
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Table 3.5: Estimation results, two bad weeks

Week 123 Week 323

ζ̄ × 104 81 0.81
standard error of ζ̄ × 104 7.3× 104 0.49

β 5.3× 10−5 0.012
standard error of β 4.8× 10−2 0.017

p-value of J-test 0.62 0.13
median ϕt,t+h × 104 1.33 0.57
mean ϕt,t+h × 104 1.53 0.72

3.1.3 Two Bad Weeks

There are still 393 - 325 = 68 bad weeks after shrinking, according to Table 3.4.

These bad weeks are not likely caused by a few bad blocks but rather by some

other forms of model misspecification. I will only examine the two weeks that fall

into the “bad ζ̄, bad β” category after shrinking.

One such bad week is a five-day collection of 02/27/2007 - 03/05/2007, which

is not a calendar week from Monday to Friday; I will refer to this week as “week

123” henceforth. Figure 3.7 plots the realized variation over blocks for this week.

This is a typical week: volatility starts high on each trading day and quick declines

towards its long-run mean value, and moves slightly higher at the end of the day.

No block in this week is identified as a bad block. The first column of Table

3.5 reports the estimation results for this week. The estimate of ζ̄ is too large.

Clearly, the jointly estimation breaks down in this week. The reason is unclear.

The other bad week is a five-day collection of 06/17/2013 - 06/21/2013, which

happens to be a calendar week from Monday to Friday; I will refer to this week

as “week 323”. Figure 3.8 plots the realized variation over blocks for this week.

Volatility suddenly moved high at 2:00PM on 06/19/2013. This was the time

the FOMC released a statement that it might “taper” its quantitative easing
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Figure 3.7: Realized variation by block, 02/27/2007 - 03/05/2007 (week 123)

Figure 3.8: Realized variation by block, 06/17/2013 - 06/21/2013 (week 323)
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program sooner than the market assumed. The market experienced significantly

higher volatility for the rest the week than before the FOMC announcement. The

second column of Table 3.5 reports the estimation results for this week. The

estimate of ζ̄ looks plausible in the sense that it is close to weekly median and

mean, but its standard error is very high. This is because there was a structural

break: volatility switched from a low volatility regime to a high volatility regime.

Pooling might harm rather than help because the parameter values clearly change

over this week.

3.2 Conclusion and Future Research

In conclusion, the continuous-path model of Chapters 1 and 2 works very well

“most of the time”, and most of the failures are localized to a few bad blocks

— the equilibrium behavior is interrupted at relatively infrequent intervals with

the arrival of big junks of information that disrupt the market. That immediately

suggests a disjunction between price behavior at high frequency and price behavior

on longer time scales (days, weeks, months).
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