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1. Summary 24 

 25 

Objectives 26 

The association between cancer and venous thromboembolism (VTE) is well-established with 27 

cancer patients accounting for approximately twenty percent of all VTE incidents. In this 28 

paper, we have: 29 

- Performed a comparison of machine learning (ML) methods to traditional clinical scoring 30 

models for predicting the occurrence of VTE in a cancer patient population, and 31 

- Identified important features (clinical biomarkers) for ML model predictions and examined 32 

how different approaches to reducing the number of features used in the model impact 33 

model performance. 34 

 35 

Methods 36 

We have developed an ML pipeline including three separate feature selection processes and 37 

applied it to routine patient care data from the electronic health records (EHR) of 1910 cancer 38 

patients at the University of California Davis Medical Center (UCDMC). 39 

 40 

Results 41 

Our ML-based prediction model achieved an area under the receiver operating characteristic 42 

(ROC) curve of 0.778 ± 0.006 when trained on a set of 15 features. This result is comparable 43 

to the model performance when trained on all features in our feature pool (0.779 ± 0.006 with 44 

29 features). Our result surpasses the most validated clinical scoring system for VTE risk 45 

assessment in cancer patients by 16.1%. We additionally found cancer stage information to be 46 

a useful predictor after all performed feature selection processes despite not being used in 47 

existing score-based approaches.  48 

 49 

Conclusion 50 

From these findings, we observe that machine learning can offer new insights and a significant 51 

improvement over the most validated clinical VTE risk scoring systems in cancer patients. The 52 

results of this study also allowed us to draw insight into our feature pool and identify the 53 

features that could have the most utility in the context of developing an efficient machine 54 

learning classifier. While a model trained on our entire feature pool of 29 features significantly 55 

outperformed the traditionally used clinical scoring system, we were able to achieve an 56 

equivalent performance using a subset of only 15 features through strategic feature selection 57 

methods. These results are encouraging for potential applications of ML to predicting cancer 58 

associated VTE in clinical settings such as in bedside decision support systems where feature 59 

availability may be limited. 60 

 61 

 62 

Keywords 63 

 64 
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2. Introduction 67 

Venous thromboembolism (VTE) comprises both deep-vein thrombosis (DVT) and 68 

pulmonary embolism (PE) 1. The association between VTE and cancer is well-established with 69 

cancer patients accounting for approximately twenty percent of all VTE incidents 2. While the 70 

estimated prevalence of VTE in the general population is around 1 in 1000 3, 4, some estimates 71 

suggest this number increases 5-fold within the cancer patient population 1, 5, 6. The risk 72 

increases further among patients who receive chemotherapy as shown in a 15-year population-73 

based study 7. 74 

VTE is a multifaceted risk in cancer patients that exacerbates clinical consequences, 75 

significantly impacting morbidity, mortality, and cost of patient care 1, 5, 8, 9, 10, 11. Specifically, 76 

VTE associated mortality is 2.2 times more likely in VTE patients with cancer than in those 77 

without 10. VTE is the leading cause of mortality in cancer patients, aside from mortality due 78 

to cancer itself  1, 8. In addition to increasing risk of mortality, VTE burdens the cancer 79 

treatment process. When managing VTE in cancer patients, use of anticoagulants, which thin 80 

the blood, requires rigorous patient monitoring in order to achieve adequate anticoagulation 81 

and to identify complications such as bleeding. Compared to cancer patients without VTE, 82 

patients with VTE have over two times the risk of experiencing major bleeding 12. Bleeding 83 

can worsen anemia while reduced blood counts can delay cancer interventions such as 84 

chemotherapy and radiotherapy and increase the need for blood transfusions. 85 

The recurrence rates of VTE are also high in patients with cancer. Patients with an 86 

active malignancy have a 3-4 fold higher risk of recurrence compared to patients without 87 

cancer, and the risk is further increased in those with metastatic cancers. According to one 88 

study, the one-year cumulative risk for recurrent VTEs after the first episode was 21% in cancer 89 

patients compared to 7% in patients without cancer 12. All the VTE related factors discussed 90 
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above can affect cancer management, increase treatment costs, and escalate average price per 91 

hospitalization for cancer patients 2, 3, 12, 13. 92 

Treatments such as anticoagulant therapy are available, both for prophylaxis against 93 

occurrence, as well as for treatment of VTE in cancer patients. Appropriate and timely use of 94 

the prophylactic measures are vital for reducing the risk of both fatal and non-fatal pulmonary 95 

embolism as well as the post-thrombotic complications 14.  Anticoagulants are drugs that 96 

interfere with blood coagulation cascade to reduce or inhibit blood clotting. The low-97 

molecular-weight heparin (LMWH) has been found in multiple studies to reduce the likelihood 98 

of a VTE event occurring in a cancer patient 2, 15, 16, 17. With these issues in mind, it is evident 99 

that effective VTE prophylaxis in cancer patients has the potential to drastically improve 100 

cancer survival rates and decrease treatment costs for hospitals and patients alike. However, 101 

while anticoagulant prophylaxis and treatment is effective in primary and secondary prevention 102 

of VTE, as mentioned above, there are certain implications with their regular use in all cancer 103 

patients. In particular, anticoagulants are associated with increased bleeding, require parenteral 104 

administration, training, and additional monitoring, all of which can increase both cost and 105 

complexity of cancer patient management 2, 12 ,18. Therefore, it is important to stratify and 106 

define high risk cohorts of cancer patients who are prone for VTE. There is thus a need for 107 

effective VTE risk stratification systems to ensure that prophylaxis is administered only to 108 

high-risk patients. An accurate, reliable, and robust VTE stratification system would help 109 

clinicians in decision making about anticoagulant therapy at the point-of-care (POC). 110 

Prophylactic measures against VTE are often implemented for hospitalized patients, so high 111 

risk stratification is particularly important in ambulatory patients (outpatients) as they cannot 112 

be monitored as closely as hospitalized patients.  113 
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The importance of delineating which cancer patients are at increased risk of VTE for 114 

instituting anticoagulation prophylaxis, particularly ambulatory patients, is critical as 115 

anticoagulation is associated with significant risks and costs in already debilitated cancer 116 

patients. Decision to provide prophylactic anticoagulation in ambulatory patients clinically 117 

alone is often difficult and providers need a decision support tool that pinpoints the most 118 

vulnerable groups for VTE. Several Cancer Associated Thromboembolism (CAT) prediction 119 

scores have been developed, such as Khorana 19, Vienna CATS 20, PROTECHT 21 and CONKO 120 

22 based on routinely collected patient care data. These risk-assessment methods all use a 121 

simple scoring system where points are added based on each of five to eight different predictors 122 

with higher scores indicating a higher risk of developing VTE. Some of the predictors that 123 

these scores use include cancer site, platelet count, white blood cell count, hemoglobin, use of 124 

red blood cell stimulating factors, and BMI. Of these scores, the Khorana score is the most 125 

validated and used 23. However, despite its acceptance in the research community, the Khorana 126 

score still only achieves a positive predictive value of 6.7 %, which is not meaningful enough 127 

to make a quantified decision by the clinicians and thus leaves plenty of room for improvement 128 

19. In another study of 218 patients with cancer initiating chemotherapy, it is shown that the 129 

Khorana score was able to stratify ambulatory cancer patients according to the risk of VTE, 130 

but not for all cancer types 24. The Khorana score can be used to select ambulatory cancer 131 

patients at high risk of venous thromboembolism for thromboprophylaxis, but most events 132 

occur outside this high-risk group 25. 133 

During informal discussions, clinicians opined that, even a positive predictive value of 134 

20 to 30% will help them with decision making, tipping the decision one way or other with 135 

some scientific qualitative basis, and those discussions motivated the team to explore various 136 
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features (clinical biomarkers) and develop more robust and clinically meaningful predictive 137 

models. 138 

In this study we use machine learning to take a data-driven approach to VTE prediction 139 

in cancer patients. Our aim in this study is to not only improve upon the performance of known 140 

risk assessment scores such as the Khorana score but also to perform an in depth, data-driven 141 

exploration of both new and known VTE risk factors. 142 

Traditional approaches to prediction in medicine often focus on capturing medical 143 

expertise through a set of carefully designated rules 26. However, data driven approaches, such 144 

as machine learning algorithms instead can learn effective prediction decisions by observing 145 

numerical patterns in the input data 26, 27. One subset of machine learning, known as supervised 146 

learning, deals with training a model to accomplish this task of classifying data based on a set 147 

of input data with labeled ground truth values 27. Supervised learning has the advantage over 148 

traditional rule-based methods of being able to leverage computational power to identify highly 149 

convoluted patterns in massive datasets with large numbers of potential predictors relatively 150 

quickly and efficiently 26, 28. Such an approach has promise in the context of cancer patient 151 

VTE prediction, where the currently accepted scoring systems are simple rule-based methods 152 

that do not necessarily capture a wide range of the potentially complex interactions between 153 

variables 19, 20, 22. Patrizia Ferroni et al. have designed a precision medicine approach to exploit 154 

significant patterns in data to produce VTE risk predictors for cancer outpatients 29. They have 155 

used Multiple kernel learning (MKL) 30 based on support vector machines (SVM) models to 156 

predict VTE risk. In our research, we have examined VTE classification performances of 157 

several standard ML algorithms including SVM, logistic regression (LR), and Random Forest 158 

(RF) and compared these to the baseline performance of the Khorana score. 159 
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Methods and results are described in the following sections.  160 

3. Methods 161 

 162 

In this retrospective study of a population of cancer patients at the University of 163 

California Davis Medical Center, we used machine learning to explore both new and known 164 

VTE risk factors. Our goal was to not only develop a machine-learning based VTE risk 165 

assessment system for cancer patients but also to examine which risk factors may be useful 166 

when taking such an approach. From our efforts, we hope to establish a foundation for using 167 

machine learning to eventually answer more complex questions about VTE prediction in 168 

cancer patients, such as how changes in a patient’s condition, as the patient continues with 169 

his/her cancer management, affect the risk of developing VTE over time.  170 

In this study, we examined 29 features in total, including a selection of available 171 

features from the Khorana score and biomolecular markers from a previous study of CAT 19, 172 

29. Since relevant VTE events can occur before or after cancer diagnosis and clinical 173 

interventions (i.e., surgery, chemotherapy, radiotherapy), we used a set of time-agnostic 174 

features to gain a view of how a patient's general profile over a large period of time may or 175 

may not be indicative of VTE risk. Each of the features we used covered information about a 176 

patient’s background, cancer, lab values, or medications. 177 

We then explored the utility of our feature set in a machine learning context in a two-178 

phased approach. In the first phase we trained several different models with a spectrum of 179 

hyperparameter choices on four different feature subsets that were derived both from 180 

performed feature selection experiments and from pre-determined feature pools. We then 181 

identified the best performing model and feature set combination and, in a second phase of 182 

experiments, attempted to reduce the number of used features without sacrificing performance 183 
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through an iterative feature accumulation process. Finally, we validated the performance of 184 

our chosen model on a held-out dataset extracted from our original data. 185 

 186 

3.1. Dataset and Data Prepossessing 187 

 188 

The dataset used in these experiments was extracted from the UCDMC affiliated 189 

hospital’s EHR system and combined with curtained and manually curated data elements from 190 

the California state cancer network CNExT registry, from 2015-2017 (C/NET Solutions, 191 

Berkeley, CA).  The organ system-based cancers which are considered high risk for VTE 192 

episodes in previous studies were included in the study and are listed in Table 1 32. 193 

 194 

Table 1. Cancer sites contained in the dataset 195 

Site group 

Pancreas 

Bladder 

Non-Hodgkin’s Lymphoma 

Hodgkin’s Disease 

Corpus Uteri/Uterus 

Prostate 

Ovary 

Breast 

Lung/Bronchus (Small Cell and Non-Small Cell) 

Brain 
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Stomach 

 196 

In order to study how a given cancer and its attributes may be predictive of VTE events, 197 

each cancer instance was treated as a separate entry in our dataset. Thus, a few patients have 198 

more than one cancer entry in the dataset. Associated with each cancer instance is a list of 199 

features describing the cancer and patient background.  200 

All medications were grouped according to the pharmacologic class of the medication. 201 

Medication data was incorporated in the primary cancer entry cohort by assigning a binary 202 

variable to each patient for every medication, indicating whether or not that medication was 203 

ever administered to the patient. 204 

Lab test values were represented by the mean of all pre-chemotherapy measurements 205 

associated with that test in order to eliminate noise and understand how a patient’s general 206 

condition correlates with VTE risk. We accumulated such values for 45 different lab tests. This 207 

set of 45 was then reduced to only the lab tests which were performed on at least 75 % of 208 

patients. Of the 45 lab tests, only 12 of the tests satisfied this criterion and were included in 209 

our final feature pool. Any missing values among these 12 lab tests were imputed using the 210 

mean across all patients for the given test. 211 

Exclusion criteria for our dataset included patients with missing information in any of 212 

the listed categories outside of lab tests, patients with benign tumors, patients with 213 

mesotheliomas, and patients with extreme outliers (i.e., BMI > 100). These exclusion criteria 214 

were applied to the general dataset. After cleaning, the dataset consisted of 1973 cancer entries 215 

across 1910 unique patients. 216 
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The presence or absence of a VTE diagnosis date served as our binary target variable 217 

for prediction in our machine learning models. The full list of features in our curated dataset is 218 

detailed in Table 2. 219 

Table 2: Feature pool 220 

Feature Type Features (29) 

Cancer  site, grade, stage, behavior, histopathological type 

Patient gender, body mass index (BMI), age, race list, race count 

Binary 
Medications 

antineoplastic - aromatase inhibitors, immunosuppressives, 
antineoplastic - antiandrogenic agents, steroid 

antineoplastics, antineoplastic - alkylating agents, 
antineoplastic systemic enzyme inhibitors, antineoplastic - 

antimetabolites 

Lab Tests albumin, hematocrit, hemoglobin, creatinine serum, red 
blood cell count, calcium, white blood cell count, platelet 

count, mean corpuscular hemoglobin concentration (MCHC), 
mean corpuscular hemoglobin (MCH), protein, mean 

corpuscular volume (MCV) 

 221 

3.2.   Model Training 222 

 223 

We performed an 80:20 split on the dataset, allocating 80% of the data for cross-224 

validation of different model and feature set combinations. We used the remaining 20% as a 225 

hold-out dataset for testing the generalizability of our best performing model. Our approach to 226 

performing model training and feature selection was two-fold: 227 

1. First, we trained seven different model configurations, each on four different feature sets. 228 

The model configurations and feature set choices are described in the remainder of this 229 

subsection and in subsections 3.3.1 and 3.3.2. 230 
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2. Second, we took the highest performing model configuration and used a stepwise feature 231 

selection approach to attempt to find a reduced subset of features that would provide 232 

comparable performance. The implementation of this feature selection approach is 233 

described in subsection 3.3.3. 234 

To prevent overfitting, all models were trained and validated on our training dataset using 10-235 

fold cross-validation. We evaluated our trained models using the area under the ROC curve 236 

(AUROC) and the DeLong test for statistical significance 33. We also evaluated the AUROC 237 

generated by the Khorana score on our dataset and used this for baseline performance 238 

comparisons with our models. 239 

For the first phase of our study, we trained and evaluated models using the machine 240 

learning algorithms and parameter configurations listed in Table 3. 241 

 242 

Table 3: Machine Learning Model Configurations 243 

Model  Parameter Choices 

Logistic Regression (LR) 34 
 

- 

Support Vector Machine (SVM) 35 
 

Radial basis function kernel, linear 
kernel 

Random Forest (RF) 36 
 

50 trees, 100 trees, 200 trees, 500 
trees 

All LR, SVM, and RF models were implemented using the Scikit-learn library in 244 

Python 37. Each of these models was cross-validated on four different feature sets/subsets: 245 

1. All 29 available features in our feature pool. 246 
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2. Features used for calculating the Khorana score: cancer site, platelet count, hemoglobin 247 

level, white blood cell count, and BMI. 248 

3. Features selected by our clinical team. We will refer to this feature selection method as the 249 

“clinical expert” method. 250 

4. Features selected based on statistical correlation with VTE incidence. We will refer to this 251 

feature selection method as the “filtering” method. 252 

For the second phase of the experiment, we identified the model with the highest performance 253 

based on AUROC values and DeLong test results for statistical significance. We then used this 254 

model to perform a stepwise forward feature selection method to identify a minimum subset of 255 

features required to attain equivalent performance. We will refer to this feature selection method 256 

as the “wrapper” method. The implementations of this and the clinical expert and filtering methods 257 

are described in detail in the following section.  258 

Finally, we tested our best performing model on the held-out dataset to better examine the 259 

generalizability of the model and ensure that we did not overfit the training dataset. 260 

 261 

3.3. Feature Selection Methods 262 

 263 

In training different machine learning models for predicting VTE, we experimented with 264 

three different feature selection methods.  The first was an expert-driven feature selection process 265 

in which we used domain expertise from clinicians and researchers at UCDMC to derive a subset 266 

of known clinically relevant features as a feature set for training our machine learning models. The 267 

second was a filtering approach which identified the highest statistically correlated features with 268 

our target. The third was a wrapper approach that bootstrapped the model training process to 269 

iteratively accumulate an optimal set of features for a chosen ML classifier 38.  270 
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The clinical expert and filtering approaches were used in the first phase of our study for 271 

comparing performances of different machine learning approaches across several feature sets. The 272 

goals of performing these feature selection approaches were to: 273 

● Examine the utility of commonly accepted VTE risk factors in a machine learning 274 

approach. 275 

● Identify new risk factors or combinations of risk factors which may add value to 276 

predicting VTE incidence in cancer patients using machine learning. 277 

The wrapper approach was used in the second phase of our study on the best performing 278 

model and feature set from the first phase. The goal of this approach was primarily to: 279 

● Minimize the number of features required for the best performing model configuration 280 

to achieve optimal performance. 281 

The implementation details for these feature selection methods are described in the 282 

following subsections. 283 

3.3.1   Clinical Expert Method 284 

 285 

Our first feature selection method involved consulting with our team of physicians to 286 

determine a subset of features that are known risk factors in the development of VTE. The 287 

decisions made in this process were based both on clinical expertise and review of literature in the 288 

area 19, 29, 20, 21, 22, 32. 289 

3.3.2  Filtering Method 290 

 291 

Since our data consists of both categorical and continuous data, we divided our feature 292 

filtering approach into two tasks. For the categorical features, we determined the likelihood of 293 

each feature being linearly independent of our target variable using a chi-squared test 39. 294 



13 

Meanwhile, for each continuous feature in our dataset, we observed the distribution of 295 

the feature across VTE-diagnosed patients as well as the distribution of the feature across 296 

patients without a VTE diagnosis. We then compared these distributions to determine the 297 

likelihood that they came from one common distribution using a Kolmogorov-Smirnov (KS) 298 

test for goodness of fit 40. 299 

We acquired our final statistically filtered feature set by selecting only the features from 300 

both of the above tests which resulted in p < 0.05. 301 

3.3.3  Wrapper Method 302 

 303 

The final feature selection process we used was an empirical forward feature selection 304 

method that served the purpose of maximizing the performance of our model while minimizing 305 

the dimensionality. While a high-dimensional model is appealing from a performance 306 

standpoint, it may not always be practical in a clinical setting due to limitations in available 307 

lab test results or other information. Performing a forward feature selection process allows us 308 

to directly identify only the n best performing features on our dataset and thus reduce the 309 

amount of required information without significant sacrifices in performance. 310 

While the filtering method that is discussed in the last subsection is valuable for 311 

identifying variables directly correlated with the target, it fails to examine how different 312 

combinations of these variables may affect the predictive power of our chosen ML classifier 313 

33. In order to cover the full space of variable interactions, we would ideally train a model on 314 

every possible combination of features from our feature pool, but doing so would take several 315 

years of model training and would be computationally infeasible. We used the wrapper method 316 

to shortcut this process and only test a small subset of all possible unique feature combinations.  317 



14 

In our approach, we accumulated features one at a time under the assumption that the 318 

best performing feature at each iteration is part of the optimal set 41. This process started by 319 

training 29 separate models: one trained on each feature in our set. Each training cycle included 320 

10 iterations of 10-fold cross-validation. The best performing feature was then selected and the 321 

process repeated with the remaining 28 features, this time also including the best selected 322 

feature(s) from the previous iteration(s) and so on. We continued to accumulate features in this 323 

fashion until we no longer saw improvements in performance for a predetermined number of 324 

iterations. To provide a small buffer for temporary drops in performance, we set this number 325 

to 2 iterations. 326 

It should be noted that, while the clinical expert and filtering feature selection methods 327 

are determined independently of any model choices, the wrapper selected features are specific 328 

to one model as they are accumulated by iterative model training. Since we used this method 329 

in the second phase of our study to optimize the feature set for a selected model, we found it 330 

sufficient to only perform the wrapper feature selection process for our best performing model. 331 

4. Results 332 

 333 

4.1. Model Selection 334 

 335 

The first phase of our study involved training several model configurations on different 336 

selected feature sets. Each model was evaluated by generating an AUROC value and 337 

confidence interval from 10 iterations of 10-fold cross-validation. The results of this model 338 

training and feature selecting are presented in this section and in section 4.2. Table 4 shows 339 

the performance of each model configuration on the training dataset (80% of the original 340 

dataset) across the four different feature sets listed in section 3.2. Each row represents a unique 341 

model algorithm or scoring system and each column represents a unique feature set. To make 342 
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a fair comparison between different models that are using different feature sets, we have 343 

included a model trained on the features that the Khorana score uses as shown in column 3 344 

Khorana (n=5) of Table 4. The performance generated by using the standard Khorana scoring 345 

system itself is also included as a baseline in the last row of Table 4. All model ROC curves 346 

were compared to that of the baseline Khorana score in the last row of Table 4 via the DeLong 347 

test. The differences that were statistically significant based on a p-value < 0.05 are marked 348 

with an asterisk in the table. The full list of model-to-model DeLong comparisons is also 349 

provided in Appendix B. 350 

Table 4: AUROC of predictive models by feature set 351 

 All (n=29) Khorana (n=5) Clinical (n=5) Filtered (n=20) 

Logistic Regression 0.684 ± 0.054* 0.668 ± 0.077 0.662 ± 0.074 0.672 ± 0.047* 

SVM (RBF Kernel) 0.652 ± 0.061 0.562 ± 0.061* 0.576 ± 0.056* 0.617 ± 0.072 

SVM (Linear Kernel) 0.644 ± 0.042 0.577 ± 0.040* 0.589 ± 0.048* 0.669 ± 0.036* 

Random Forest (50 trees) 0.751 ± 0.068* 0.672 ± 0.062* 0.681 ± 0.072* 0.748 ± 0.071* 

Random Forest (100 trees) 0.752 ± 0.062* 0.676 ± 0.066* 0.683 ± 0.072* 0.743 ± 0.073* 

Random Forest (200 trees) 0.762 ± 0.065* 0.684 ± 0.070* 0.692 ± 0.074* 0.746 ± 0.075* 

Random Forest (500 trees) 0.761 ± 0.065* 0.684 ± 0.073* 0.696 ± 0.071* 0.755 ± 0.067* 

Baseline: Khorana Score 
‐  

0.632 ± 0.019 - - 

* p<0.05 from DeLong test when compared to Khorana score (bottom row) 352 

 353 

In general, every model outperformed the Khorana score baseline when trained on our 354 

entire feature space (though this difference for the SVM models was not statistically significant). 355 

The RF models trained on the same features used in the Khorana score all achieved a small but 356 
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significant improvement over the Khorana score, suggesting that using ML alone instead of a 357 

simple point system may offer an improvement over currently used clinical risk assessment scores. 358 

However, the results of the models trained on the other feature sets indicate that this is not the 359 

maximum attainable performance and that adding additional risk factors to the model could result 360 

in even larger performance improvements. 361 

Every RF model also outperformed the logistic regression and SVM models on each feature 362 

set suggesting that a random forest is likely the best suited algorithm choice for this task among 363 

our tested classifiers. For the ease of viewing, the p-values of all pair-wise model comparisons by 364 

feature set are not listed here but can be viewed in Appendix B. 365 

The RF models also showed similar trends across feature sets with performance being 366 

highest when trained on all features followed by the filtered feature set, clinical expert feature set, 367 

and then the Khorana score feature set. The highest performing models were the four RF models 368 

trained on all features and on the filtered feature set. Since the difference between these models 369 

was generally not statistically significant, we chose the most complex model – the RF model with 370 

500 trees – as our best performing model for the second phase of the study. The reasoning for this 371 

choice was that a more complex model, while more prone to overfitting, is also capable of learning 372 

more complex variable relationships leading to potential performance improvements. As 373 

mentioned in the methodology, we combat and assess overfitting by performing 10-fold cross 374 

validation on all experiments and further validating our best performing model on a held-out 375 

dataset.  376 

Based on these results, we will focus on the performance of the 500-tree RF model for the 377 

remainder of our analysis where we will explore optimizing the set of required features using the 378 

wrapper feature selection method and will validate our model performance on our held-out dataset. 379 
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But first, details on the results of the clinical expert and filtering feature selection processes are 380 

provided in the following section. 381 

 382 

4.2. Feature Selection Results 383 

4.2.1 Clinically Important Features 384 

Our first feature selection method involved reducing our feature set to a list of only five    385 

features deemed clinically important to the prediction of VTE by a team of UCDMC physicians 386 

and researchers. These features are: 387 

platelet count, white blood cell count, hemoglobin, cancer site, cancer stage 388 

The first four of these are the same four features that are common across the Khorana, Vienna 389 

CATS, PROTECHT, and CONKO scoring systems while cancer stage is an additional feature 390 

deemed relevant by our team 19, 20, 21, 22. The RF model with 500 trees trained on these features 391 

outperforms the AUROC of the Khorana score on our dataset by 10%. This improvement can be 392 

attributed to the fact that the RF model is capable of making decisions that are much more nuanced 393 

than the decisions made in any of the listed scoring systems, which involve only simple point 394 

additions based on binary categorizations of the data 39. Despite this improvement in performance, 395 

the model still falls short of the model trained on the full feature set by 8.5%, indicating that there 396 

are other potentially useful features in predicting VTE that were not initially deemed clinically 397 

relevant. 398 

 399 

4.2.2 Filtered Features 400 

In order to further examine the known clinically relevant features and identify new features, 401 

we used statistical methods to filter our feature pool and identify features highly correlated with 402 

our target variable. The feature filtering method described previously yielded a set of 20 features 403 
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that were significantly correlated with the binary presence of VTE. The full list of this filtered 404 

feature set includes the following features: 405 

site, grade, stage, histopathological type, gender, age, race list, antineoplastic - 406 

aromatase inhibitors, albumin, hematocrit, hemoglobin, creatinine serum, red blood 407 

cell count, calcium, white blood cell count, platelet count, MCHC, MCH, protein, 408 

MCV 409 

Notably, all of the clinically essential features identified above were also found to be 410 

significantly correlated with our target. All of the features used in the Khorana score were also 411 

selected with the exception of BMI. All of the lab tests in our feature pool were selected as well 412 

while all but one pharmacologic class, i.e., antineoplastic aromatase inhibitors, were left out. The 413 

RF model with 500 trees achieved a 19.5% improvement over the Khorana score and did not result 414 

in a significant decline in performance based on the DeLong test compared to the model trained 415 

on all features. 416 

 417 

4.3. Model Optimization 418 

For the second phase of our study, we looked at optimizing the feature set for our best performing 419 

model configuration and validating the performance on our held-out test set. Based on the results 420 

presented in Table 4, we used the 500-tree RF model trained on our entire feature pool as a baseline 421 

for our best performing model. In this section, we present the results of using this model with the 422 

previously described wrapper feature selection method to reduce the dimensionality of the feature 423 

set while attempting to maintain the same level of model performance. 424 

4.3.1. Wrapper Selected Features 425 
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Table 5 compares the cross-validation performance of the 500-tree RF model using the wrapper 426 

selected feature set to the results from the first phase of the study. When compared to the model 427 

trained on all features, the wrapper and filtered feature sets are the only feature sets that did not 428 

result in a statistically significant decline in performance. This confirms that the wrapper method 429 

was effective in identifying a reduced subset of features (52% of the whole feature pool and 75% 430 

of the filtered feature pool), without sacrificing performance. 431 

Table 5. Cross-Validation of 500-Tree Random Forest on All Feature Sets 432 

 All (n=29) Khorana (n=5) Clinical (n=5) Filtered (n=20) Wrapper (n=15) 

Random Forest (500 trees) 0.761 ± 0.065 0.684 ± 0.073* 0.696 ± 0.071* 0.755 ± 0.067 0.769 ± 0.072 

* p<0.05 from DeLong test when compared to model trained on all features (first column) 433 

Table 6 contains the ordered list of features accumulated when performing the wrapper 434 

feature selection method with the RF model of 500 trees. The curve illustrated in Figure 1 shows 435 

the relationship between these features and the AUROC of our model during feature accumulation.  436 

Each model evaluation came from the average result of 10 iterations of 10-fold cross-validation. 437 

The x-axis represents each iteration of the recursive accumulation of features, while the y-axis 438 

represents the AUROC associated with the model trained after each added feature. The model 439 

trained on this set of recursively selected features not only matched the performance of the model 440 

trained on all features with no statistical difference between ROC outputs, but also did so with 441 

only 15 features, reducing the size of our feature set by 14. The ROC and PRC curves resulting 442 

from training a model on these 15 features are contained in Figure 3 and Figure 4 respectively. 443 

 444 

Table 6. Order of Accumulated Features During Wrapper Selection 445 

1 creatinine serum 
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2 antineoplastic - aromatase inhibitors 

3 MCHC 

4 red blood cell count 

5 stage 

6 Immunosuppressives 

7 antineoplastic - antiandrogenic agents 

8 protein 

9 site 

10 MCV 

11 antineoplastic - alkylating agents 

12 albumin 

13 antineoplastic – antimetabolites 

14 MCH 

15 histopathological type 

 446 

 447 

Figure 1. Mean AUROC of 500-tree RF Model During Wrapper Feature Accumulation 448 
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Unlike in the clinical expert and filter-selected feature sets, seven different medications 449 

were included in the wrapper-selected feature set, although only two appeared in the first 450 

twelve selected features. Furthermore, the white blood cell count and platelet count lab tests 451 

were excluded despite being included in both of our other examined feature sets as well as the 452 

Khorana score. This exclusion is not to undermine the usefulness of the features to the task of 453 

VTE prediction, but rather to show that they were not necessary for achieving optimal 454 

performance with reduced dimensionality on our dataset. 455 

4.3.2. Feature Set Comparisons 456 

Table 7 lists the overlap between the feature sets of the three presented feature selection 457 

methods. The full list of features selected by each method is provided in Appendix A. 458 

All features deemed clinically relevant were also found to be statistically correlated 459 

with the presence of VTE in our filtered feature set. Furthermore, all three feature selection 460 

methods selected the cancer site and stage as important features for VTE prediction. While 461 

cancer site is a widely used risk factor for VTE, cancer stage is not typically included in 462 

currently used scoring systems 19, 20, 21, 22. The clinical team further concurred with the data 463 

driven finding of the importance of clinical staging information. 464 

The overlap of the clinical expert and wrapper feature sets matches the overlap of the 465 

clinical expert, filter, and wrapper feature sets and is thus omitted from the table. 466 

Table 7. Overlapping features between feature sets 467 

Feature Selection Methods Features 

*Expert + Filter + Wrapper site, stage 
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Filter + Wrapper site, stage, antineoplastic - aromatase 

inhibitors, albumin, creatinine serum, red 

blood cell count, mean corpuscular 

hemoglobin concentration (MCHC), mean 

corpuscular hemoglobin (MCH), protein, 

mean corpuscular volume (MCV), 

histopathological type 

Filter + Expert site, stage, hemoglobin, platelet count, 

white blood cell count 

*The overlap of only the expert and wrapper feature sets produces the same list of features 468 

4.4 Performance Validation on Held-Out Data 469 

The remainder of the results section shows the performance when validating our RF model trained 470 

with 500 trees on our held-out data (20% of the original dataset). 471 

4.2.1 All features 472 

 473 

Figure 2. Performance comparison on held out test set between Khorana score and RF model with 474 

all features 475 

The ROC curve in Figure 2 illustrates the test performance of the RF model with 500 476 

trees being trained on our entire feature pool in comparison to the ROC curve generated from 477 

the Khorana score on our held-out test dataset. The model achieves a statistically significant 478 

improvement in AUROC of 16.1% compared to the Khorana score. This increase in 479 

performance confirms the potential for improving VTE prediction through the inclusion of new 480 

risk factors in a machine learning approach. Next, we validated the 500-tree RF model with 481 

each of the previously examined feature subsets. 482 
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 483 

 484 

Figure 3. ROC Performance by Feature Set on Held-Out Data 485 

The ROC curves in Figure 3 show this performance by feature set when run on our 486 

held-out data. As in the results in section 4.3.1., the model trained on the wrapper selected 487 

features did not result in a statistically significant decline in performance compared to the 488 

model trained on the entire feature pool. This validates our takeaway that the wrapper feature 489 

selection process provided an effective way to reduce the feature space without impacting 490 

performance. A full list of DeLong test comparisons for the 500-tree RF models on the held-491 

out dataset are provided in Appendix B. 492 

For additional validation, we evaluated the precision-recall curve (PRC) for the 500-493 

tree RF model on each feature set. These results are displayed in Figure 4. 494 

 495 

 496 

Figure 4.  PRC Performance by Feature Set on Held-Out Data 497 

Similar to the ROC results, the PRC curves in Figure 4 show that the models trained 498 

on all features and on the wrapper-selected features are the best performing models and achieve 499 

comparable performance. 500 

 501 

5. Discussion 502 

In this study, we examined the utility of using machine learning to predict VTE in 503 

cancer patients. We accomplished this through a carefully designed set of steps adhering to a 504 

typical machine learning pipeline. First, we selected a feature pool based on the data 505 

availability within our patient population. We also set aside 20% of the data in a held-out 506 
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dataset for final model validation. We then performed a number of feature selection methods 507 

and trained multiple machine learning classifiers with different hyperparameter configurations 508 

to identify a best performing model for our use case. Finally, we iteratively trained the best 509 

performing model in order to accumulate a minimum set of required features and thus reduce 510 

the complexity of the model without impacting model performance. 511 

The results of this process allow us to draw insight into how a machine learning 512 

classifier might offer an improvement in performance over traditionally used clinical VTE risk 513 

assessment systems in cancer patients. With these results, we are able to examine our feature 514 

pool and identify those features that are most useful in the context of developing an efficient 515 

machine learning classifier by comparing the selected features and resulting model 516 

performance across multiple unique feature selection methods. 517 

This project was an effort to showcase the improved predictive performance of various 518 

ML models over the Khorana score in predicting VTE in cancer patients. We compared the 519 

performance of models trained on different feature sets selected by domain experts, statistical 520 

methods, and ML techniques. We identified features that were common across these selected 521 

feature sets to better understand which features are meaningful in this context. 522 

Our trained classifiers achieved encouraging results on numerous feature subsets. We 523 

found that a 500-tree RF model trained using only the features used in the Khorana score 524 

achieved a statistically significant 14.6% improvement in AUROC over the standard point-525 

based Khorana score on our held-out test set with an AUROC of 0.769 ± 0.007. Meanwhile, 526 

we achieved a peak AUROC of 0.779 ± 0.006 on a held-out dataset when training the 500-tree 527 

RF model on our entire feature pool. This surpassed the performance of the Khorana score on 528 

the same dataset by 16.1%. We were additionally able to reduce the number of required 529 
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features to 15 total (a 48% reduction) without a statistically significant impact on model 530 

performance by using a wrapper method to iteratively accumulate features. We also used two 531 

model-agnostic feature selection methods – a statistical filtering method and a clinical expert 532 

method – which both achieved AUROCs of 0.771 ± 0.007 and 0.757 ± 0.004 respectively on 533 

our held-out dataset. All of these results showed statistically significant improvements in 534 

performance over that of the Khorana score. 535 

The results in Table 7 depict the overlap between the features selected by our three 536 

described feature selection methods. Only cancer site and cancer stage were common across 537 

all three feature sets. Cancer site is already a common risk factor considered in current VTE 538 

risk stratification systems 19, 20, 21, 22. Based on our experimental results, cancer stage merits 539 

inclusion in future VTE prediction systems using an ML approach. Meanwhile, all of the 540 

features deemed clinically relevant were also found to be statistically significant in the filtered 541 

feature set. Unlike the other two feature sets, the wrapper-selected feature set did not include 542 

hemoglobin. However, it did identify three related metrics - corpuscular hemoglobin (MCH), 543 

mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular volume (MCV) 544 

- as essential metrics for VTE prediction. While these metrics are not identical to hemoglobin, 545 

they are likely inter-related. Furthermore, since the wrapper method optimizes the feature 546 

space based on empirical performance of different feature combinations, an excluded feature 547 

is not by necessity unimportant. Instead, an excluded feature may be redundant when compared 548 

to the optimal set of features, making its inclusion unnecessary for improving prediction 549 

performance. 550 

In comparison to the features used in the Khorana score, all but BMI are included in 551 

the filtered and clinically relevant feature sets. Furthermore, the cancer site, which is the most 552 
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heavily weighted risk factor in the Khorana score, was selected in all three feature sets. 553 

Interestingly, BMI, which is included in the Khorana score, Vienna CATS, and PROTECHT, 554 

was not identified as useful in any of our acquired feature sets 19, 20, 21. Aside from BMI, 555 

however, the results of this study suggest that the predictors used in the Khorana score have a 556 

relatively high predictive power when used in a machine learning context. The results also 557 

suggest that the stage of the cancer is useful in predicting VTE and should be considered in 558 

future machine learning applications. Because staging information is not always readily 559 

available in medical notes, future studies could look to reliably extract this information from 560 

free medical text using NLP methods. Since cancer staging can vary over time as new 561 

information comes in and is incorporated in the staging determination, this problem is 562 

particularly challenging with past efforts achieving only limited success 42, 43. One approach 563 

that may improve this performance without sacrificing too much predictive power in VTE risk 564 

assessment could involve reducing the cancer stage to a binary variable that simply indicates 565 

a presence or absence of metastasis 44
.  566 

While the results of this study are promising, it is important to note that the dataset uses 567 

a small sample size, especially for certain subgroups, (i.e., only a few pharmacological groups 568 

were used in the patient population). Also, the study did not include cancer patients who had 569 

radiation therapy. There is increasing evidence implicating radiotherapy in cancer associated 570 

thrombosis (CAT) in cancer patients, however accessing data from the radiation therapy 571 

information system (RTIS) was not possible for this study. This study dealt with the patient 572 

population at only one location, so before we generalize these results across the general 573 

population, the findings in this study should be validated in other patient populations. 574 

Furthermore, this study takes a time-agnostic approach to identify useful predictors for VTE 575 
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in cancer patients. Therefore, this approach highlights VTE predictors that may be useful in a 576 

machine learning context but does not yet reflect an implementable clinical scenario. With this 577 

being the case, the aim of this study was to effectively identify these useful predictors in order 578 

to provide the groundwork for exploration of this problem in specific clinical scenarios (i.e., 579 

at different stages of pre-diagnosis presentation, establishing diagnosis, and post-diagnosis 580 

treatment phases of a patient’s cancer management). 581 

The methods used in this study could be generalizable to other clinical conditions, 582 

particularly ambulatory settings, where there is moderate to strong increased risk for 583 

developing VTE, such as, congestive heart or respiratory failure, hormone replacement and 584 

oral contraceptive therapy, antiphospholipid antibody and other thrombophilia syndromes 45. 585 

Even though multiple studies have demonstrated that thromboprophylaxis using anticoagulant 586 

treatments such as low-molecular-weight heparin (LMWH) can reduce the likelihood of VTE 587 

events, due to the need for training the patients and care-givers to administer (parenteral) the 588 

LMWH, regular lab monitoring and dose adjustment, as well as the potential for bleeding 589 

complications, all of which add to the cost and quality of care, such prophylaxis may not always 590 

be feasible and risk-free. There is thus a need for effective VTE risk stratification and decision 591 

support systems to ensure that prophylaxis is administered only to high-risk patients. 592 

The project goal was to select the necessary and sufficient features from our available 593 

feature pool that would maximize the predictive power of various statistical ML models. It can 594 

be a hard decision to initiate prophylaxis against VTE, especially in ambulatory cancer patients 595 

where anti-thrombosis prophylaxis can be expensive and cumbersome. Evidence based 596 

decision support is crucial for minimizing risk in this decision process and improving patient 597 

outcomes.  598 
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At the point of care where the decisions are made, ideally, prediction tools and scoring 599 

systems should automatically retrieve the required features and inform the clinicians to help 600 

make decisions. For ease of use and interpretability, the list of features should be small, but 601 

should provide meaningful enough information to supplement the current evidence and 602 

clinicians’ evaluations. We found cancer staging information to be particularly meaningful as 603 

a predictor of VTE as it was selected in all of our feature selection processes. The Khorana 604 

score does not include the cancer staging information as often it can be hard to retrieve accurate 605 

staging information from clinical notes. Accurate staging information is often established by 606 

cancer registrars retrospectively, which may take up to six months. Our study emphasizes the 607 

importance of cancer staging information as a predictor of VTE in cancer patients and 608 

highlights the need for its timely evaluation. Simplifying the cancer stage variable into a binary 609 

value indicating whether the cancer is metastatic (stage 4) or non-metastatic could improve the 610 

accessibility and real-time accuracy of staging but would require further studies and additional 611 

validation. 612 

6.  Conclusion 613 

Machine learning offers a promising avenue for improving the performance of current 614 

VTE prediction scores in cancer patients. A combination of a time-agnostic approach and three 615 

unique feature selection methods demonstrates that at least four of the features that are used to 616 

calculate the Khorana score can also provide high predictive power to a machine learning 617 

classifier. We also observe that cancer stage information is generally more useful than BMI as 618 

a predictor in our ML classifiers. Consultation with clinicians reveal a potential reason - BMI 619 

can vary as patients lose significant weight due to cancer itself, chemotherapy, and associated 620 

anorexia or other adverse effects. Furthermore, with significant improvements in the generated 621 

ROC curve, it is clear that a machine learning classifier can make complex deductions that 622 
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may allow it to outperform currently used VTE risk scores. The results in this study offer a 623 

foundation from which future machine learning approaches to VTE prediction in cancer 624 

patients can be built. Future studies should consider the identified relevant variables in the 625 

context of a temporal analysis in which machine learning may be used to dynamically assess 626 

at all levels how cancer management progress, including medical intervention, over time can 627 

alter a patient's risk of developing VTE. 628 
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Appendix A 767 

Table A.1. Full list of selected features by feature selection method 768 

Feature Selection Method Features 

Clinical Expert Method site, stage, hemoglobin, platelet count, white blood cell count 

Filter Method site, grade, stage, histopathological type, gender, age, race list, 

antineoplastic - aromatase inhibitors, albumin, hematocrit, 
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hemoglobin, creatinine serum, red blood cell count, calcium, 

white blood cell count, platelet count, MCHC, MCH, protein, 

MCV 

Wrapper Method site, stage, histopathological type, albumin, creatinine serum, red 

blood cell count, MCHC, MCH, protein, MCV, antineoplastic - 

aromatase inhibitors, immunosuppressives, antineoplastic - 

antiandrogenic agents, antineoplastic - alkylating agents, 

antineoplastic - antimetabolites 

 769 

Appendix B 770 

The following tables show the comprehensive results of performing the DeLong test for statistical 771 

significance between ROC curves of the various models we trained during the study. Each table is 772 

a grid of DeLong p-values. For this study, we used p<0.05 as our cutoff for statistical significance. 773 

The first four tables are most pertinent to the results discussed in the main text while the following 774 

tables contain a more comprehensive coverage of pairwise prediction comparisons. 775 

Table B.1. DeLong p-values for Models Compared to Khorana Score 776 

 
 

All (n=29) Khorana (n=5) Clinical (n=5) Filtered (n=20) 

Logistic Regression 0.00142 0.07314 0.101754 0.004921 

SVM (RBF Kernel) 0.150591 0.00036 0.001697 0.27491 

SVM (Linear Kernel) 0.18518 3.2E-05 0.004174 0.000772 

Random Forest (50 trees) 0.0 0.023375 0.017531 0.0 

Random Forest (100 trees) 0.0 0.020919 0.015383 2E-06 

Random Forest (200 trees) 0.0 0.011794 0.006736 2E-06 

Random Forest (500 trees) 0.0 0.014679 0.003016 0.0 

 777 

Table B.2. DeLong p-values for Models Compared to Same Model Trained on All Features 778 

 
 

Khorana (n=5) Clinical (n=5) Filtered (n=20) 

Logistic Regression 0.307395 0.234885 0.300637 
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SVM (RBF Kernel) 0.00089 0.003027 0.130158 

SVM (Linear Kernel) 0.000331 0.005092 0.08326 

Random Forest (50 trees) 0.00465 0.016925 0.466185 

Random Forest (100 trees) 0.005323 0.014444 0.387342 

Random Forest (200 trees) 0.006923 0.016309 0.321548 

Random Forest (500 trees) 0.009481 0.020839 0.431354 

 779 

Table B.3. DeLong p-values for 500-tree RF Models on Held-Out Test Dataset 780 

 
 

All (n=29) 
Khorana 

(n=5) 
Clinical (n=5) Filtered (n=20) Wrapper (n=15) 

All (n=29) 
 

0.5 0.000465 0.0 0.00303 0.369048 

Khorana (n=5) 0.000465 0.5 1.0E-06 0.301592 0.001222 

Clinical (n=5) 
 

0.0 1.0E-06 0.5 0.0 0.0 

Filtered (n=20) 
 

0.00303 0.301592 0.0 0.5 0.006966 

Wrapper (n=15) 0.369048 0.001222 0.0 0.006966 0.5 

 781 

Table B.4. DeLong p-values for 500-tree RF Models vs. Khorana Score on Held-Out Test Dataset 782 

 
 

All (n=29) Khorana (n=5) Clinical (n=5) 
Filtered 
(n=20) 

Wrapper (n=15) 

Baseline: Khorana Score 
 

0.0 0.0 0.0 0.0 0.0 

 783 

Below are the results of performing the DeLong test for statistical significance between ROC 784 

curves on every pairwise combination of models for each feature set we examined in the study. 785 

Table B.5. DeLong p-values for Models Trained on All Features 786 

 
 

Logistic 
Regression 

SVM 
(RBF 

Kernel) 

SVM 
(Linear 
Kernel) 

Random 
Forest (50 

trees) 

Random 
Forest (100 

trees) 

Random 
Forest (200 

trees) 

Random 
Forest (500 

trees) 

Baseline: 
Khorana 

Score 

Logistic 
Regression 

0.5 0.116269 0.037197 0.010025 0.006254 0.002805 0.003274 0.001447 

SVM (RBF 
Kernel) 

0.116269 0.5 0.367859 0.00054 0.000257 0.000104 0.000127 0.150591 

SVM (Linear 
Kernel) 

0.037197 0.367859 0.5 2.7E-05 7E-06 2E-06 3E-06 0.18518 
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Random 
Forest (50 

trees) 
0.010025 0.00054 2.7E-05 0.5 0.48744 0.367113 0.379221 0.0 

Random 
Forest (100 

trees) 
0.006254 0.000257 7E-06 0.48744 0.5 0.372979 0.385744 0.0 

Random 
Forest (200 

trees) 
0.002805 0.000104 2E-06 0.367113 0.372979 0.5 0.487627 0.0 

Random 
Forest (500 

trees) 
0.003274 0.000127 3E-06 0.379221 0.385744 0.487627 0.5 0.0 

Baseline: 
Khorana 

Score 
0.001447 0.150591 0.18518 0.0 0.0 0.0 0.0 0.5 
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Table B.6. DeLong p-values for Models Trained on Khorana Score Features 788 

 
 

Logistic 
Regressio
n 

SVM 
(RBF 
Kernel) 

SVM 
(Linear 
Kernel) 

Random 
Forest (50 
trees) 

Random 
Forest (100 
trees) 

Random 
Forest (200 
trees) 

Random 
Forest (500 
trees) 

Baseline: 
Khorana 
Score 

Logistic 
Regression 

0.5 0.00061
8 

0.000882 0.459024 0.416674 0.330223 0.329241 0.073683 

SVM (RBF 
Kernel) 

0.000618 0.5 0.266912 7.4E-05 7.4E-05 4.2E-05 6.2E-05 0.00036 

SVM (Linear 
Kernel) 

0.000882 0.26691
2 

0.5 5.9E-05 6.6E-05 3.8E-05 6.3E-05 3.2E-05 

Random 
Forest (50 
trees) 

0.459024 7.4E-05 5.9E-05 0.5 0.450544 0.350922 0.349703 0.023375 

Random 
Forest (100 
trees) 

0.416674 7.4E-05 6.6E-05 0.450544 0.5 0.399317 0.396751 0.020919 

Random 
Forest (200 
trees) 

0.330223 4.2E-05 3.8E-05 0.350922 0.399317 0.5 0.494963 0.011794 

Random 
Forest (500 
trees) 

0.329241 6.2E-05 6.3E-05 0.349703 0.396751 0.494963 0.5 0.014679 

Baseline: 
Khorana 
Score 

0.073683 0.00036 3.2E-05 0.023375 0.020919 0.011794 0.014679 0.5 
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Table B.7. DeLong p-values for Models Trained on Clinical Expert Features 790 

 
 

Logistic 
Regressio

n 

SVM 
(RBF 

Kernel) 

SVM 
(Linear 
Kernel) 

Random 
Forest (50 

trees) 

Random 
Forest (100 

trees) 

Random 
Forest (200 

trees) 

Random 
Forest (500 

trees) 

Baseline: 
Khorana 

Score 



36 

Logistic 
Regression 

0.5 
0.00272

4 
0.006279 0.288285 0.272988 0.197527 0.163826 0.102482 

SVM (RBF 
Kernel) 

0.002724 0.5 0.302347 0.000265 0.00023 9.2E-05 3.5E-05 0.001697 

SVM (Linear 
Kernel) 

0.006279 
0.30234

7 
0.5 0.000648 0.000563 0.000226 8.7E-05 0.004174 

Random 
Forest (50 

trees) 
0.288285 

0.00026
5 

0.000648 0.5 0.480818 0.380343 0.336385 0.017531 

Random 
Forest (100 

trees) 
0.272988 0.00023 0.000563 0.480818 0.5 0.398935 0.354845 0.015383 

Random 
Forest (200 

trees) 
0.197527 9.2E-05 0.000226 0.380343 0.398935 0.5 0.456638 0.006736 

Random 
Forest (500 

trees) 
0.163826 3.5E-05 8.7E-05 0.336385 0.354845 0.456638 0.5 0.003016 

Baseline: 
Khorana 

Score 
0.102482 

0.00169
7 

0.004174 0.017531 0.015383 0.006736 0.003016 0.5 
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Table B.8. DeLong p-values for Models Trained on Filter Features 792 

 
 

Logistic 
Regressio

n 

SVM 
(RBF 

Kernel) 

SVM 
(Linear 
Kernel) 

Random 
Forest (50 

trees) 

Random 
Forest (100 

trees) 

Random 
Forest (200 

trees) 

Random 
Forest (500 

trees) 

Baseline: 
Khorana 

Score 

Logistic 
Regression 

0.5 
0.02727

7 
0.451289 0.003532 0.007221 0.00583 0.001173 0.005015 

SVM (RBF 
Kernel) 

0.027277 0.5 0.024625 4.4E-05 0.00011 8.8E-05 1.2E-05 0.27491 

SVM (Linear 
Kernel) 

0.451289 
0.02462

5 
0.5 0.001453 0.003458 0.002766 0.000373 0.000772 

Random 
Forest (50 

trees) 
0.003532 4.4E-05 0.001453 0.5 0.436936 0.477591 0.414938 0.0 

Random 
Forest (100 

trees) 
0.007221 0.00011 0.003458 0.436936 0.5 0.460575 0.354352 2E-06 

Random 
Forest (200 

trees) 
0.00583 8.8E-05 0.002766 0.477591 0.460575 0.5 0.395179 2E-06 

Random 
Forest (500 

trees) 
0.001173 1.2E-05 0.000373 0.414938 0.354352 0.395179 0.5 0.0 

Baseline: 
Khorana 

Score 
0.005015 0.27491 0.000772 0.0 2E-06 2E-06 0.0 0.5 

 793 




