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ABSTRACT

Applying Machine Learning to Identify NUMA End-System Bottlenecks for
Network I/0

Performance bottlenecks across distributed nodes, such as in high performance computing
grids or cloud computing, have raised concerns about the use of Non-Uniform Memory
Access (NUMA) processors and high-speed commodity interconnects. Performance en-
gineering studies have investigated this with varying degrees of success. However, with
continuous evolution in end-system hardware, along with changes in the Linux networking
stack, this study has become increasingly complex and difficult due to the many tightly-
coupled performance tuning parameters involved. In response to this, we present the Net-
worked End-System Characterization and Adaptive Tuning tool, or NESCAT, a partially
automated performance engineering tool that uses machine learning to study high-speed
network connectivity within end-systems. NESCAT exploits several novel techniques for
systems performance engineering. These include using k-means clustering and Artificial
Neural Networks (ANNs) to effectively learn and predict network throughput performance
and resource utilization for end-system networks.

NESCAT is a unique tool, different from other previously designed applications. It is
based on of machine learning and clustering techniques on NUMA core-binding cases. This
work focuses on predicting optimal Network Interface Controller (NIC) parameters for
performance predictability, which is a necessity for complex science applications. Through
experiments, we are able to demonstrate the uniqueness of this technique by achieving
high accuracy rates in predicted and actual performance metrics such as throughput, data
rate efficiency, and frame rates. Our system is able to ingest large amounts of data to
produce results within 2 hours for a machine with an 8-core end-systems. The root mean
square error of the designed model is around 10~! and thus predicts output efficiently

when compared to live run data on an actual machine.
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Chapter 1

Introduction

1.1 The Problem

Complex data-intensive applications are becoming increasingly frequent in scientific dis-
covery [1]. These applications rely on network middleware that supports high-speed
and high-capacity data delivery across distributed resources. For communication across
high-performance computing grids and cloud computing architectures, engineers have
focused on improving application performance bottlenecks by tweaking computing work-
loads across the distributed nodes. For example, HPC(High-performance computing)
scheduling algorithms and cloud load balancers developed via SLURM (Simple Linux
Utility Resource Management) have demonstrated improvement in climate modeling ap-
plication [2].

The grid clusters and chip makers have adopted Non-Uniform Memory Access (NUMA)
multi-core processors to allow more computations per given frequency. This along with
the use of various flavors of Linux operating systems (OSes) has considerably reduced the
throughput predictability required by science applications. Assessing hardware profiles
based on application code, especially in distributed environments, is increasingly impor-
tant for designing successful applications. To cater to this effort, this thesis explores
using machine learning (ML) algorithms to learn resource usage patterns across science
applications and distributed computing architectures. The aim is to produce benchmark

results for hardware and application performances on the system.



In terms of architecture, parallel and distributed computing systems like HPC and the
cloud still rely on a full TCP/IP protocol stack for data communications [3]. However,
based on the end-to-end principle [4], TCP Offload Engines (TOE) have reduced much
of the TCP processing overhead. Additional On-Line Transaction Processing (OLTP)
has impacted throughput predictability for communication networks. In order to improve
throughput and latencies, vendors have turned to Non-Uniform Memory Access (NUMA)
models to achieve higher network resource density. NUMA hardware provides physical
addresses different access times, but is engaged via “dice rolling” to pick cores. In partic-
ular, the assignment of cores to flows is either performed randomly or via obscure hash
functions, or based on some arbitrarily-chosen metrics. Our previous work on NUMA end-
systems demonstrated wide variation in the achieved throughput performance depending
on which core is assigned to the incoming flow. The results demonstrated that affinity
(core-binding) serves as a key performance indicator along with memory controller and
on-chip features that leads to system bottlenecks when NIC drivers respond to interrupts
[5, 6]. Previous work on tuning parameters showed that interrupt coalescing parameters
are critical to throughput performance as well [7]. However, studying performance bench-
marks for bottlenecks and identifying the root cause of performance degradation becomes
increasingly complex with multiple parameters and performance data. Additionally, the
changes to the Linux kernel networking stack impact the temporal validity of the data.
This thesis incorporate all of these factors and shows how performance engineering prac-

tices are impacted.

1.2 Contributions

This thesis presents the use of ML approaches to study performance patterns across mul-
tiple resource usage and application data sets. The model is used to predict throughput
performances for various data-intensive experiments. The ML approach involves studying
the performance in three stages. First, characteristics of the computing clusters involved
per experiment are studied to produce an elbow curve. The elbow curve [8] is an estab-

lished clustering technique for studying the variance among the number of k clusters used



and the performance received until no enhancement is detected. Second, the K-means
clustering technique is used to create k clusters and find optimal multi-variable centroids
across clusters [9][10][11]. Third, the data is then brought together to predict through-
put and bytes/instruction-retired (a rough efficiency metric) by processing the data via
artificial neural network models.

This thesis presents NESCAT, a portable, automated tuning methodology for high
speed data transfer nodes (DTNs) and high speed 40 Gbps LAN systems. The main

contributions of this works are as follows:

e An efficient yet exhaustive collection methodology for detailed end-system perfor-

mance characterization across all possible NUMA boundaries.

e An automated scheme for detecting core affinity cases which effectively represent

NUMA boundaries.

e An automated method for accurately predicting throughput and network processing

efficiency, given flow and application core affinities.

e An adaptive and automated method for adjusting interrupt coalescing parameters

for performance predictability and network stack processing efficiency.

The evaluation of results is done by generating large amounts of data and partitioning
it into training, testing and validation sets. The test data is unexposed to the trained
model. The features of the testing model are passed to the Artificial Neural Network
(ANN) show in Figure 6.1, and the predicted values of throughput and bytes/instruction-
retired are compared against actual values generated by the system during the experi-
ments. The graph of sum of square error mean and the RMSE(Root Mean Square Error)
value is considered as a measure of model accuracy. The root mean square error value
for throughput and bytes/instruction-retired results is obtained around 10~! on average.
This high degree of accuracy allows NESCAT to tune coalescing parameters with a high
degree of accuracy as well. Given the performance evolution of the Linux network stack

along with efficient ML algorithms, this work is especially timely.



1.3 Thesis Outline

The rest of this thesis has been organized as follows. Chapter 2 discusses the background
and motivation of this work. Chapter 3 discusses the related works both in the area of
end-system optimization for high-speed networking as well as ML. Chapter 4 describes
the experimental setup and monitoring tools for data collection. Chapter 4.1 describes
the performance characterization of NUMA end-system. Chapter 5 discusses the ML
methodology and the different algorithms used in this research. Chapter 6 discusses the

results, and, finally, Chapter 7 gives the conclusion and outlines future work.



Chapter 2

Background and Motivation

2.1 The Hardware

While network and general interconnect speeds continue to grow to 400 Gbps and be-
yond [12], CPU clock speeds have stopped increasing to higher amount, thus creating
a speed gap. Consequently, chip makers have been moving to NUMA multicore archi-
tectures. Furthermore, features which used to reside off-chip, such as the north bridge!
are now integrated onto the processor die. Figure 4.1 shows a contemporary Intel micro-
architecture with a Quick Path Interconnect (QPI) linking the north bridges on two
sockets in a dual-socket system.

These micro-architectures are commonly being deployed in supercomputers, clouds,
and clusters with variable performance results [13]. Understandably, with these deployed
in scale-out environments, the amount of unpredictability increases resulting in severe per-
formance unpredictability in HPC jobs [14]. In cloud environments, research is focused on
batch job completion performances and OLTP, but over-provisioning of datacenters deliv-
ering Service-Level Agreements (SLAs) is still not studied, due to most of the utilization

data being proprietary and confidential.

!The north bridge is a PCI bus controller, and additionally a memory controller on some systems.



2.2 The Operating System

Linux has become the standard operating system for an incredibly diverse variety of
applications running on different hardware architectures, ranging from light bulbs to su-
percomputers. As a result, Linux kernels have become the subject of much speculation
and development. Inherently a network-ready OS, Linux owes much of its popularity to

its robust and feature-rich network stack.

2.3 The Workload

TCP/IP is the building block of the Internet. Many architects liken TCP/IP to the C
programming language, popular due to its ubiquity. TCP/IP is a deceptively complex
distributed set of processes, all working in a provably optimal and correct manner to
provide a unique set of protocol properties [4]. Foremost of those properties is survivabil-
ity. TCP/IP makes a minimal set of assumptions about the reliability of the intervening
network between a sender and a receiver, yet it still provides reliable, connection-oriented
behavior in a wide variety of network conditions. While TCP does not perform optimally
or even well in all conditions, the protocol still performs correctly. This has been a key
reason for its widespread deployment.

Using TCP/IP, network operators are able to easily scale workloads, using minimal
assumptions about the intervening network. Application developers are also able to learn
and utilize a single protocol stack across many platforms. However, the TCP survivability
is not always free, making assumptions about network and adding complexity to the end
system protocol stack. From a systems and architecture standpoint, this complexity can
become difficult to manage. In addition, TCP/IP protocol processing is a memory copy
intensive workload due to the fact that information must first be copied to the kernel,
and then be copied to the application which consumes the data. Figure 2.1 illustrates
the Linux TCP/IP network receive process. There have been many solutions proposed
to ameliorate or even eliminate these copies. However, many of these solutions begin
by making assumptions about the intervening network or the system state, but the ap-

plication is usually unaware of either. In practice, TCP can invoke even more memory



copies due to a variety of possible page fault situations. There have been many efforts to
ameliorate the effects of the resource-intensive network workload which are discussed in

detail in Chapter 3.
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Figure 2.1. The Linux receive process for network I/0.

Interrupt coalescing is a technology with efficacy instrumental to this study. Out of
dozens of the most-tuned parameters, this study determined that interrupt coalescing
is by far the most important and perhaps the least understood by systems architects
when it comes to end system network processing performance and efficiency. While there

are many different parameters which can be set to control interrupt coalescing, there



are two essential parameters: rx-frames, the number of frames the NIC must receive
before an interrupt is generated and rx-usecs, the time to wait, in microseconds, before
interrupting the kernel’s network receive routine?. Both of these parameters allow the
user to change the 1:1 ratio between a packet and an interrupt through the use of a buffer
or a timer, respectively. If the values are set too high, it can have detrimental effects on
the latency of packet processing in the end-system. When set too low, receiving cores can
be overwhelmed with interrupt processing. While the mechanism of either waiting for a
timeout or a certain number of packets to arrive is simple, the way it interacts with a high-
performance end-system is complex. For example, high clock-rate processors are better
at handling interrupts quickly, but perhaps efficiency is still a concern. Furthermore, in

this work we explore the points of diminishing return with regard to interrupt coalescing.

2.4 Machine Learning Approach

The data which constitutes of values obtained from different system parameters during
execution of data extraction scripts is mainly nonlinear in nature. The goal is to tune
the parameters which have categorical values as well as numeric values, so that when
tuned, the system performs better than previously. As the dimensionality of data is
high and non-linear in our case, methods like Naive Bayes is unfeasible. Since this is
a multiclass problem, SVM (Support Vector Machine) has no standard way of dealing
with this problem as it is more suited for binary classification problems. Also, logistic
regression is ideally a binary classifier which does not suit the problem well. Due to the
large number of dimensions, the current approach also uses PCA (Principle Component
Analysis). In addition, a part of the current solution involves clustering which is a type of
unsupervised learning technique. Thus, two models which stands out are Decision Trees
(also known as Tree Ensembles) and Neural Networks. Of these, the technique that is
adopted is based on factors like amount of data, training time, memory, over-fitting etc.

The decision tree based models subdivide the feature space into different regions and
groups them who have similar labels and values. This is based on whether or not the

problem is a classification problem or a regression problem. Decision tree based models

2Versions of these parameters also exist for transmitting data.



can be implemented for both supervised and unsupervised learning and they are more
applicable when there are non-linear relationships in the data. Furthermore, it also tackles
outliers quite well. The current work is a part of a more ambitious goal of end-system
tuning for network I/O. This is discussed in Chapter 7.2. To achieve the overall goal
of optimizing network 1/0, the work will require multiple approaches based on machine
learning’s supervised, unsupervised and reinforcement learning techniques. One of the
models which can be used in all three different ML techniques is neural networks.

The machine learning (ML) based Artificial Neural Network (ANN) can be used to
analyze large amounts of data consisting of important end-system parameters that impacts
the network I/O throughput and efficiency. The initial data analysis part using ML-based
analysis and clustering algorithms helps us prune data with similar characteristics and
collect effective data. The main reason for using ML and designing an ANN is to predict
the values of throughput and efficiency. ANNs can compute huge amounts of complex data
which have non-linear relationships and predict results quite accurately when compared
to values extracted from live runs on a machine. It was felt that the presence of a model
which can take in huge amounts of tightly coupled data in the context of high-speed
networking and help users tune a variety of inter-related parameters was not available.
Also to motivate others to come up with such models, we decided to create a baseline

model based on ML.



Chapter 3

Related Work

Hardware architects have demonstrated that CPUs have been starved for data from mem-
ory hierarchies [15]. The processor is allowed more access to inter-memory bandwidth post
the development of scale-out commodity computing, where multi-chassis clusters are in-
creasingly common. However, whether or not memory controllers and “north-bridge”
(high-speed I/O controller) features can realize throughput improvement, is yet to be
tested. Additionally, other factors, such as the memory latency, processor speed gap,
cache hierarchy bottlenecks and miss rates, continue to starve processors for data within
many workloads.

In modern hardware architectures, north-bridge features have been moved directly
onto the processor die, given the large amounts of real-estate opened by shrinking semi-
conductor fabrication processes. This has led to obvious benefits of reducing latency due
to interconnect, but produced drawbacks on PCI-Express devices allocated to physical
sockets in a multi-socket system. In order to allow sockets to scale out on the same moth-
erboard, chipmakers have introduced high-bandwidth interconnects between the physical
sockets. In this manner, applications running on socket 1 retain access to an I/O resource
directly connected to socket 0. However, this method introduces additional workloads on
on-chip features already tasked with handling overall memory accesses. Figure 4.1 shows
this on a contemporary Intel microarchitecture.

There have been many architectural advancements which must be taken into account

when thoroughly characterizing the TCP/IP network stack processing of an end-system.
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Contemporary NICs support multiple receive and transmit descriptor queues. A NIC can
send different packets to different queues in order to distribute processing among CPUs,
by applying a filter to each packet that assigns it to one of a small number of logical
flows. Packets for each flow are steered to a separate receive queue, which in turn can be
processed by separate CPUs. This mechanism is generally known as Receive-side Scaling
(RSS). The goal of RSS (as well as other scaling techniques) is to allow performance to
increase uniformly. Receive Packet Steering (RPS) is essentially a simplified RSS, done in
software (i.e., what the NIC does with the on-board RSS tables and interrupts and DMA
queues is done in RPS using extra linked-lists in the host memory). Since it is in software,
it is necessarily called later in the datapath - thus, while RSS selects the queue and hence
the CPU that will run the hardware interrupt handler, RPS selects the CPU which will
perform protocol processing above the interrupt handler. Another development in RSS
has been RFS, which adds the key feature of migrating flows to the cores upon which the
application already resides, using a pair of indirection tables. A special algorithm is used
to ensure that migrations result in minimal packet loss or reordering.

However, RFS [16] chooses cores such that they share the lowest possible level of
the cache structure!. For example, when a given core (e.g. core A) is selected to do
the protocol/interrupt processing, the core that shares the L2 cache with core A should
execute the corresponding user-level application. Doing so will lead to fewer context
switches, improved cache performance, and ultimately higher overall throughput.

irgbalance scatters interrupts across cores based on the load statistics. In one sense,
irgbalance is a variant of round-robin scheduling. Foong et al [17] and Narayanswamy et al
[18] have analyzed the effect of processor affinity on networking performance of multicore
systems. They demonstrated the limitation of irgbalance and the benefit of RSS.

There has been a good deal of attention paid to the use of interrupts in high-speed
network flows [19]. Message-Signaled Interrupts (MSI-X) has provided a method for
reducing the overhead of large numbers of interrupts on the processor core handling the

network flow by combining the interrupt and the data into a single packet sent over the

Tn this document we consider the L1 cache to be at a lower level (closer to the core) than the L2
cache, L2 lower than L3, etc.

11



PCI bus.

Pause frames [20] allow Ethernet to assist TCP with flow control, to avoid a multi-
plicative decrease in window size when only temporary buffering at the router or switch
is necessary. However, there have been some implementation issues concerning dead-
lock with pause frames which have led network operators to disable them in production
networks [21].

Jumbo Frames are simply Ethernet frames that are larger than the 1500-byte limit
that has been most common in the past. In most cases, starting with Gigabit Ether-
net, frame sizes are 9000 bytes. This allows for better protocol efficiency by increasing
the ratio of payload to header size for a frame. Although Ethernet speeds have now in-
creased to 40 and 100 Gbps, this standard 9000-byte frame size has remained the same.
The reason for this is the various segmentation offloads. Large/Generic Segment Offload
(LSO/GSO) and Large/Generic Recieve Offload (LRO/GRO) work in conjunction with
Ethernet implementations in contemporary routers and switches to send and receive very
large frames in a single TCP flow for which the only limiting factor is the negotiation of
transfer rates and error rates.

With the advent of techniques like Direct Cache Access (DCA) [22], processor affinity
has become very important. DCA-enabled drivers on DCA-capable systems can achieve
much higher performance than systems which must undergo the throughput and latency
bottlenecks of primary memory. However, this also creates additional performance un-
predictability if cores are chosen arbitrarily and parameters are left untuned.

The work on the lines of reinforcement learning is done in CAPES [23]. They have
tried to tune the congestion window parameter to increase the throughput of a Lustre
2.4 system. Using DNN (Deep Neural Network), based on the Q-learning method, they
tune the unsupervised storage performance. The work on detection of bottlenecks on the
fly is not published. The work does not cover the process of portability i.e. mapping of
models on different environments. It falls short on suggestions about tuning of multiple
parameters at a time. There are insufficient details about tuning of multiple parameters

at a time. Also other kinds of performance outputs like efficiency, latency, energy etc. are

12



yet to be covered.

To tackle the problem of bottleneck detection in computer system, some studies have
adopted belief networks [24] which are a type of Bayesian network i.e., probabilistic graph-
ical model. The bottleneck is based on over-consumption of some hardware resource re-
sulting in delay of completing workload. The technique is based on a functional model
which consists of interaction between application workloads, the Windows OS and the
system hardware. Uncertainty in workloads, predictions and counter values of Windows
performance monitoring tool are characterized with Gaussian distributions. As an anal-
ysis, performance monitor values are used to find the best assignment of workload.

DeepRM tool studies the processes to improve performance of resource management
in systems and networking [25]. This tool learns and manages resources directly based
on previous experiences. This method competes against the traditional heuristics like
Shortest-Job-First. It is a multi-resource cluster scheduler that operates in an online
setting where jobs arrive dynamically. DeepRM learns to optimize various objectives and
uses a gradient reinforcement learning algorithm on Deep Neural Network model. The
work is mainly on the multi-resource cluster scheduling problem.

The study in [26] proposes automatically diagnosing previously encountered perfor-
mance anomalies in HPC systems. Their machine learning framework is more related
to learning of anomaly characteristics and the type of anomaly present in data which is
collected along the lines of resources usage and performance counter data. The work uses
two environments namely HPC cluster and public cloud computing platform to show-
case the results. However, this study does not address how to tune the network related
parameters and predicting the performance metrics such as throughput and latency.

The study in [27] is related to predicting time frames of node failures in a HPC system
using the F-score. They assume that features of certain time frames before a critical
event can serve as indicator of a failure. They train a model with critical and healthy
time frames. The underlying problem is a classification problem and is not related to
tuning of parameters and performance prediction.

Some work in the area of visual recognition tasks has been carried out in Project Adam

13



[28]. It is a design and implementation of a distributed system comprised of commodity
server machines which is trained to achieve very high performance, scaling and classifi-
cation accuracy on visual reorganization tasks. They exploit asynchrony throughout the
system to improve performance and demonstrate that it improves accuracy of the trained
model. The study discusses methods to reduce the number of memory copies to optimize
the memory system to achieve high performance. A review of the latest work in applying
ML in networks for workflow is given in [29]. Finally, a study in the area of multicore
architectures to optimize running time and energy efficiency is reported in [30]. The study
adopts a state-of-the-art statistical ML techniques using a 7-point and 27-point stencil

code on two multicore architectures to optimize running time and energy efficiency.
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Chapter 4

Experimental System Setup

4.1 A Fully-Optimized System

To replicate the ESnet’s 100G testbed [31] for experimental purpose, two identical systems
were used to establish a testbed at UC Davis. These systems used Intel Xeon 2637v3
processors, chosen due to high clock rate, coupled with the availability of thermal slack of
4 cores residing on a single package. Two processors were run on each end-system, in order
to simulate a high-performance Data Transfer Node (DTN) residing within a commodity
cluster [32]. During characterization, the processor clock speeds were set to 3.5 GHz using
the acpi driver and the userspace governor, as opposed to the default intel pstates
configuration. This was done to stabilize the core behavior during repeated tests. Table
4.1 outlines the architectural and systems parameters.

The systems under test make use of PCI-Express Generation 3 connected to Intel
Xeon 2637v3 processors which are also codenamed as Haswell. There are two quad-core
processors per end-system!. Since the release of Sandy Bridge processors, each socket is
directly connected to its own PCI-Express bus, such that certain PCI-Express slots are
directly physically linked to single sockets. This limitation is overcome with the addition
of low-level inter-socket communication provided by the Quick Path Interconnect (QPT).
This architecture is seen in Figure 4.1.

In this work, Intel’s Performance Counter Monitor (PCM) is used for the collection of

'Herein, the four-core packages will be referred to as “sockets” and individual multi-instruction multi-
data (MIMD) cores be referred to as “cores”.
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Memory Connections

Figure 4.1. Block diagram of the end-system I/O architecture

(PMU) hardware counter information. The main reason for this is that the OProfile does
not have uncore counters for the QPI. A data collection module was developed to easily
accommodate new hardware counter monitoring tools or the PMU counters available in
the /proc filesystem.

A scenario of back-to-back connected systems with 95ms RTT fiber loop is created
for tests. While loop testing is important to test TCP’s protocol semantics over long
distances, the goal was to avoid the slow start phase and bandwidth limitations (due to
noise rates) of TCP over long distances as much as possible. The research involves placing
stress and analyzing the performance efficiency of the receiver end-system.

Both of the experiment systems were running Ubuntu Linux 16.04 with the 4.4 kernel.

16



Table 4.1. List of environmental parameters.

Component Value

Processors Dual Intel Xeon 2637v3 @ 3.5 GHz
NIC Mellanox ConnectX-3 EN 40 Gbps
Operating System Ubuntu Linux 16.04 4.4.0-97-generic
TCP CA Algorithm HTCP

Linux TC QDisc fq_codel

Hardware Counter Monitor | Intel Performance Counter Monitor
Workload Generator iperf3

MTU 9000

Hyper-Threading Off

The use of one of the latest Linux kernels assures that latest kernel advancements in
networking design are employed. The benchmark application used to generate the TCP
flows was iperf3. Again, to ensure that the stress was placed on the end-system, the
transfers were performed in zero-copy mode, which makes use of the TCP sendfile system
call to avoid unnecessary copies into and out of memory on the sending system. The
focus of these experiments is on the end-system overheads involved in Linux network
stack processing, not the semantics of the competing TCP flows. This makes using a single
stream a better choice for uncovering bottlenecks. GridFTP [33, 34] is used to qualitatively
compare the network stack processing implications of iperf3 against a GridFTP flow
from memory to /dev/null, and obtained reasonably similar results. Since any intensive
data-transfer workload will still have to use the same calls to the network stack, and
the application is not the bottleneck in either case, it is reasonable to assume similar

performance.
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4.2 Performance Characterization

Every advancement charged with eliminating the end-system bottleneck has met with
caveats. This is a product of the complexity of end-system network processing and the fact
that many working proposed solutions included unexpected second-order effects. Indeed,
the systems code in the Linux TCP/IP network stack still includes “magic constants”
determined by quick performance characterization. This an observation rather than a
criticism of Linux, as these constants must be used in order to accommodate new features
of genuine utility.

One of the first analyses of end-system bottlenecks pertains to systems and architec-
tural performance introspection from [35]. This was the initial inspiration for the contin-
ued work on the topic. The effect of NUMA architectures on the end-system bottleneck
was roughly characterized in [36] and an additional possible solution using file chunking
across multiple TCP streams was presented in [37]. However, after briefly investigating
performance bottlenecks against ESnet’s 100G testbed [31], it became apparent that a
much more thorough analysis was needed for different NUMA architectures combined

with different NIC hardware.

4.3 Extensions to Previous Work
4.3.1 Exhaustive Tests

This work expands the work of [36] by creating a system capable of exhaustively testing
a receiving system for all possible combinations of network flow and application core
binding (also referred to as “affinity”) [5]. Table 4.2 shows a summary of the results of
an exhaustive test for an 8-core NUMA receiver. The numbers in the body of the matrix
represent the achieved throughput in gigabits per second. The diagonal of the table,
starting with socket 0 core 1 on both axes, represents all the cases where the network flow

and receiving application are bound to the same core.

4.3.2 Kernel Introspection and Flamegraphs

Broadly, Table 4.2 visually illustrates that throughput varies dramatically with the place-

ment of the flow and application threads in a NUMA system. Immediately, results
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Core 4 39 39 39 39 39 39 39 26

Core 3 39 39 37 39 39 39 26 39
Socket 1

Core 2 39 39 39 39 39 26 39 39

Core 1 37 39 39 39 26 39 39 39

Flow

Core 4 39 39 39 28 32 32 32 32

Core 3 39 39 28 39 32 32 32 32
Socket 0

Core 2 39 28 39 39 32 32 32 32

Core 1 28 39 39 39 32 32 32 32

Core 1 | Core2 | Core3 | Core4 | Corel | Core 2 | Core 3 | Core 4
Socket 0 Socket 1
Application

Table 4.2. A table of the throughput performance for every possible combination of
flow and application core binding (affinity).

like this could be used to avoid certain core combinations if the Linux kernel made the
rps_sock _flow_table available for editing. This would allow a core combination “black-
list” to be implemented directly on top of the RFS implementation, utilizing its ability
to migrate flows and applications without loss. While this would constitute a reasonable
solution on its own, in a completely untuned system over a quarter of the affinity combi-
nations would have to be blacklisted. Rather than simply implementing the engineering
solution, a continuous search for the end-system bottleneck using kernel introspection in
OProfile was done. However, even analyzing the top 50 system calls over a variety of tests
proved to be a difficult task. Figure 4.2 demonstrates the system call complexity for just
a single experiment using a

Flamegraph [38]. In this Flamegraph, the length of a segment represents the per-
centage of time a counter interrupt was triggered during that call. The vertical position
represents the callgraph hierarchy. The horizontal position is simply alphabetical order.
Finding any correlation between hardware performance counters across different experi-
mental scenarios also proved to be extremely difficult, as many different input parameters
were tightly coupled, making simple correlations impossible [6]. Due to the difficulty in
correlating these system calls with architectural bottlenecks while retaining genuine call-
graph output, introspection has been replaced with detailed hardware analysis in the data
collection, but kernel and driver introspection remain in the data collection plans in the

near future.
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Figure 4.2. A flamegraph of the system calls involved in a network transfer.

4.3.3 Interrupt Coalescing

Some performance counters were also collected from the /proc filesystem itself. For ex-
ample, there was usage of /proc/interrupts in order to gather the amount of interrupts
generated by the system’s receiving NIC. This enabled the gathering of an important met-
ric on the performance of coalescing: the number of bytes received during a fixed-length
transfer divided by the number of interrupts raised by the NIC. In this manner, there was
a possibility to track whether or not coalescing was behaving as expected. Figures 4.3
and 4.4 shows that the lowest possible frames or microseconds parameter which creates
the highest number of bytes/interrupt would be the value used, even if it doesn’t quite
maximize the efficiency of the transfer. This is due to the fact that these variables must be
set as low as possible in order to have the minimum possible impact on the latency of the
end-system. Finally, there is one more variable to consider: pkt-rate-low, or the packet
rate threshold above which the previously set coalescing parameters take effect. Below
this threshold, coalescing can be used for many NICs, but it is standard practice to leave
coalescing off in order to be sensitive to latency-critical, low-throughput applications.
One interesting point about Figures 4.3 and 4.4 is that they demonstrate a repetitive
relationship between the parameters and efficiency. For the rx-frames parameter, this
relationship is most likely due to the need to batch precisely the number of packets that
fit into the least number of DMA transfers that can be completed within the requisite
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Efficiency vs rx-frames
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Figure 4.3. The efficiency (measured as bytes received per interrupt) for different
settings of rx-frames in the same-core case.
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Figure 4.4. The efficiency (measured as bytes received per interrupt) for different
settings of rx-usecs in the same-core case. rx-frames had been hand-tuned to 47.

number of clock cycles. The relationship between rx-usecs and rx-frames is similar
since the timer can compete with the interrupt during execution. The first efficiency
peak with the lowest setting of rx-usecs is the best result when concerned with latency
implications and that should be picked while setting rx-usecs. The common tuning
knowledge of setting the rx-usecs parameter to less than one quarter of the frames
parameter held in our preliminary analysis, so NESCAT also follows this rule by default,

and does not test higher values of rx-usecs.
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Chapter 5

Machine Learning

5.1 Efficient Data Analysis Approach
5.1.1 Application of K-means

The process of manual end-system tuning for network stack processing is tedious and
repetitive. Usually this involves processing large amounts of collected data to distill results
such as throughput and bytes/instruction-retired (a rough measure of efficiency). Then
this data, combined with parameter settings, must be used to predict tuning settings. Due
to recent advancements in the speed, efficiency, and development of machine learning (ML)
algorithms, an ML model can be constructed to do this. The data collected represents
non-linear patterns and so in this work an Artificial Neural Network (ANN) is designed
to predict throughput and efficiency to inform users about parameter settings to use to
achieve predictably good performance. The core ML design flow-graph can be seen in
Figure 5.1. On the initial data set, the elbow-curve is drawn to find the possible number
of clusters k. Then, the process of iterating through multiple K-means is conducted to

find cluster errors and optimal k-values

5.1.2 Application of PCA

The k-value serves as an input to the PCA procedure in order to reduce the number of
dimensions to reflect the number of significant parameters. The ML dimension reduc-
tion algorithm is evaluated using principle component analysis in python’s scikit — learn

packages. After reducing the dimension, to only represent significant parameters, the
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k — means algorithm is applied to the elbow-curve process. This is discussed in more

detail in Chapter 6.2.3.

Elbow Curve ANN-psec ANN-Throughput
Find best possible k Generate optimum One of the main ANN to
value for number of usec value by setting psecvalue o predict desired throughput
clusters present received frame size for any combination of

mentioned features

| 1
K-means and PCA ANN-Frame & ANN-Bytes/inst_ret
Applying PCA to reduce Generate optimum G One of the main ANN to
dimensionality and frame size and pass it as predict desired Bytes/
clustering data using K- parameter to usec inst_ret for any
means collecting bash script Frame size combination of mentioned

features

Figure 5.1. Core ML approach Flow Diagram

5.2 Multiple ANN Approach
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Figure 5.2. Working of ANN model

The Figure 5.2 gives a better overview of working of neural networks. The input layer

is a matrix X, which is computed with weight matrix W! for the second layer Z?. The
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equation used is:

7% = XW?

The sigmoid activation function applied is f(Z?) and the output matrix O?
0* = f(Z?)

The dot product of output matrix O? and weight matrix W? is computed and it generates
the input matrix (Z3)
73 = 02 W?

The sigmoid activation function f(Z?) is applied to the output layer neuron and the
throughput Y’ is predicted.
The training of network considers a cost function C, sum of square error mean, to

measure error. This is defined by
C=> 1(Y —Y')?
2
To achieve a minimum cost function, we focused on reducing each synapse (weight)

value using batch gradient descent method. Partial derivatives are calculated to find rate

of error change i.e., C' with respect to weights W! and W2. Finally, the equations will be:

an] ! !
where
073
A3 =
oW?2
and
aawjl - A
where

A% = AW (2%)

The cost function is chosen to handle non-convex loss functions.
In conjunction with batch gradient descent, a back-propagation algorithm is used to

back-propagate the error to each weight. The back-propagation error is fed back to the
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network denoted by A3 and A2, where numbers denote errors of their respective layers.
The larger the weight value the larger activation and the higher gradient value. Each
gradient value drags the gradient descent in a certain direction with the final path being
cumulative. In a nutshell, subtracting gradient values from weight reduces the cost.

To overcome the limitations of gradient descent and yield better solutions under real-
istic time constraints, we used the BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimizer
method to estimate second order derivatives. Sourced from the scipy optimize package
[39], the trainer function trains input data on a set of features. A callback function also
keeps track of the cost value while training. Upon training, the initial random weights
are replaced with trained values.

The issue of over-fitting is resolved by using the validation data. This is shown in
Figure 6.4. A comparison between training and validation data sets helps to identify the
number of iterations required to train the model post over-fitting. Also a regularization
parameter A is used to tune relative costs. We leveraged the relative ease of collecting
additional validation data in order to validate our results as we proceeded. Another ANN
predicts the output - bytes/instructions-retired functions, similar to how throughput
is predicted.

In order to begin the process of predicting throughput and efficiency given flow and
application core bindings, the input features need to be fed into the ANN-Frames, shown
in Figure 5.3. The ANN has 7 input features (CSwitch can also be avoided and similar
results have been obtained with 6 inputs, but here it is used for better variation), one
hidden layer of 3 neurons and an output layer to predict frame values. All ANNs work on
similar strategies as explained in 5.2. Some concepts of how ANN works were taken and
studied from online resources [40]. Figure 5.3 shows data is collected from the predicted
frame values. Then the model uses 7 input features in input layer (again 6 inputs can
be used by avoiding Cswitch and similar results are achieved), one hidden layer with
three neurons and one output layer to predict usecs, the performance metric discussed in
Chapter 2.4.

The ANN model, shown in Figure 5.4, uses 6 input features and 1 hidden layer to
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ANN-2 psecs

Input Layer Hidden Layer Output Layer

Figure 5.3. ANN predicting the frame size and usecs for given features

predict throughput.

ANN-3
Throughput

ANN-4 byt/ins-ret

Input Layer Hidden Layer Output Layer

Figure 5.4. NN predicting Throughput and bytes/inst-ret(efficiency) for given features
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Chapter 6

Results

The complete architecture of experimentation is shown in Figure 6.1. The results gener-

ated are divided in two main parts: analysis and prediction.

e Python Scripts

e Bash Scripts

e Pre-analysis
for smart data
collection

e Domain
knowledge

6.1 Data Analysis Results

Feature Value

ClsO,Cls1,..Pk_rt_lw 39
CIs0,Cls1,..Pk_rt_Iw 38.8
ClsO,Cls1,..Pk_rt_Iw 32
CIs0,Cls,..Pk_rt_lw 39.04

f—|

Splitting D
Training
Validation
Testing

Training

Data Collection
Parameters: Flow Core, App
—® Core, psecs, pk_rate_low,
frame_size, cswitch, interrupts
and many more
Tools: iperf3, pcm, etc

—

+_l

Feature

ClsO,Cls1,..Pk_rt_lw
ClsO,Cls1,..Pk_rt_lw
ClsO,Cls1,..Pk_rt_lw

Testing

Figure 6.1. Experiment architecture

ANN1

—

ANN2
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N
0‘.;0

= F
\ ANN Tuned \

Feature Value

ClsO,Cls1,..Pk_rt_Iw 38.5
ClsO,Cls1,..Pk_rt_Iw 39
Cls0,Cls1,..Pk_rt_Iw 31.6)

ANN1 ANN2 ANN3 ANN4

ML Output Prediction

Figure 6.1 shows how data is collected, post execution of python and bash scripts. Using

the initial data set, data_collection_1, the goal is to identify the number of clusters

present and eventually reduce or prune core combinations of similar properties.
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process is called efficient data analysis. The elbow method, PCA and k-means help us in
this process. The data_collection_1 has parameters like FlowCore, ApplicationCore,
Context Switch, L3Hit, L2Hit, receive bytes and instructions retired. We convert receive
bytes to Gbps and refer to it as throughput. Also we divide receive bytes by the number
of instructions retired during that instance and refer to it as ef ficiency or bytes per
instruction_retired. The data is preprocessed before any analysis or before applying
any ML algorithms. The general techniques used to process the data are scaling, nor-
malization and one-bit-hot encoding. The general rule used for all parameters during

processing of both data_collection_1 and ML_data_collection_2 are:

e Scaling: For the features which have a definite scale, eg. throughput that ranges

from 0-40.

e Normalizing: All the features which have no definite scale and can have different

values. We use MinMaxScalar from scikit — learn preprocessing library [41].

e One-bit-hot encoding: Used for FlowCore and ApplicationCore number. The pro-
cess makes sure that features keep their identity as numbers and do not introduce

a bias while learning.

6.2 Machine Learning-based ANN Prediction Results

Data containing important parameters from data_collection_1 are analyzed and mul-
tiple iterations of k-means are executed with k£ values from 0 to 10 to generate an elbow
curve (see Figure 6.2). The figure shows how the optimum value of k is 5 as the cluster
error, or the the distance between one cluster and another, becomes 0. We now pro-
cess the input vector containing the parameters from data_collection_1 and reduce its
dimensionality to 2 using principal component analysis. Using the k value reported by
the elbow-curve, a new input vector of reduced dimension is created and passed to the
k-means clustering algorithm, assigning labels to clusters as shown in Figure 6.3. The
list of core combination are chosen based on the centroid, calculated via using k-means.
The core, or the nearest centroid in its respective cluster, is chosen. The core combina-

tion chosen for further ML_data_collection_2 is listed below with the color code, which
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represents all the Flow and Application core combinations in a particular cluster. Note:

Use Table 6.1 as reference to read Figure 6.3 which shows all clusters.

Elbow curve

15000 A

10000 ~

Cluster Error

5000 -

2 4 6 8 10
No of Clusters

Figure 6.2. Cluster-k value for different iterations

After pruning the data to represent similar characteristics in terms of throughput and
efficiency, ML_data_collection_2 uses iperf3, pcm.x, and the /proc file system to col-
lect important parameters such as FlowCore, ApplicationCore, receive-bytes, rx-usecs,
packet-rate-low, instructions_retired, frame size, etc. The ML_data_collection_2
is divided into three data extraction processes namely ML_frames_data_collection_2.1,
ML_usecs_data_collection_2.2 and ML_pkt_rt_low_data_collection_2.3. These 3
scripts collect important parameters with few common parameters against selected cores
shown in Table 6.1. The data is preprocessed with the aforementioned methods and
partitioned into three sets: Training, Testing and the Validation. Figure 6.1 shows that
once the training data is collected, which constitutes multiple runs R1, R2, R3 and many
more depending on amount of iterations, it is fed to respective ANN-models in the order:
ANN1, ANN2, ANN3 and ANN4. The output data is validated using unexposed testing
data and respective ANN (Figure 6.1).

6.2.1 ANN-Frames:

The ML_frames_data_collection_2.1 is extracted. The value of packet-rate-low is

fixed to 0 and rx-usecs to a high value (i.e 512), extracting different rx-frame values.
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AppCore,FlowCore | Color Code | Cluster Number | Combination meaning

4.5 Orange 1 Different_Socket_Different_Core
0,4 red 3 Same_Socket_Different_Core
1,6 Blue 0 Different_Socket_Different_Core
5,7 pink 4 Same_Socket_Different_Core
0,0 green 2 Same_Socket_Same_Core

Table 6.1. Color Code Mapping (to be read with Figure6.3)
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Figure 6.3. Kmeans after PCA

Here the ML_frames_data_collection_2.1 data is fed to ANN-1. Table 6.2 shows the
prediction results, where the frame-size is plotted against the highest bytes/instruction-

retired(efficiency), passed to ANN-2 model.

6.2.2 ANN-rx-usecs:

Now, during ML_usecs_data_collection_2.2, the packet-rate-low is again set to 0 and
selected frame-size from the previous model is set to collect data for different values of
rx-usecs in the range 0-13. The predicted values of rx-usecs is shown in Table 6.3.
We select the rx-usecs value against the highest bytes/instruction-retired (efficiency)

obtained from ML prediction and data analysis.
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Case ML Model Learnt Value | Actual machine Value
Cluster | Frame Frame

0 36 36

1 36 37

2 26 27

3 54 55

4 27 28

6.2.3 ANN-Throughput and ANN-bytes/inst-ret(Efficiency):

Both selected (tuned) values of rx-frames and rx-usecs are used and the final script for
ML_pkt_rt_low_data_collection_2.3 is executed for different values of pkt-rate-low.
Figure 6.4 shows how validation data helps in avoiding over-fitting for throughput pre-
diction. It can be seen that over-fitting may occur post 125 iterations and hence train-
ing is done accordingly. Similarly, validation data is used for prediction of bytes per
instructions_retired. The RMSE value of 107! for the designed model shows that
the prediction of throughput and bytes per instructions retired is of high accuracy
for unexposed testing data. Testing data is data extracted from live runs on an actual
machine. The predicted values of throughput and bytes per instruction retired by

the ANN-3 model and ANN-4 model respectively on unexposed testing data is shown in

Table 6.4.

Table 6.2. Predicted vs. hand-tuned rx-frames value

Case ML Model Learnt | Actual machine Value
Cluster | usec usec

0 7 7

1 8 7

2 7 8

3 8 9

4 9 8

Table 6.3. Predicted vs. hand-tuned rx-usecs values
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Figure 6.4. Training vs. Prediction graph for achieved throughput.

Thus, the overall summary of data_collection_2 of important parameters needs to
be tuned to fix pkt-rate-low to 0 and rx-usecs to a high value (e.g. 512). Addi-
tionally, data is extracted via ML_frames_data_collection_2.1 for different values of
frames. Then with this collected data, the frame-size value is selected against the highest

bytes/instruction-retired(efficiency) obtained from the ML prediction and data analysis.

Cases | ML Model Learnt Value Actual machine Value
Cluster | Throughput | Bytes/Inst_ret | Throughput | Bytes/Inst_ret
0 31.96 2066345.67 32.93 2017785.452

1 39.31 1932287.241 39.02 1935329.628

2 38.25 2257874.84 38.33, 2218625.807

3 39.31 1781183.77 39.0 1863459.416

4 39.07 1752674.038 39.04 1781409.302

Table 6.4. Prediction vs. Actual data

During the ML_usecs_data_collection_2.2, the frame size is selected and data is
collected for different values of rx-usecs. Similarly, we select rx-usecs value against
the highest bytes per instruction retired obtained from ML prediction and data

analysis. Both the selected (tuned) values of rx-frames and rx-usecs are used and
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the final script for ML_pkt_rt_low_data_collection_2.3 is executed for different val-
ues of pkt-rate-low. The final prediction by ANN-Throughput for throughput and
ANN-Bytes/Instruction-retired for bytes per instructions retired is done by using
ML_pkt_rt_low_data_collection_2.3.

One of the critical takeaways is that we were successfully able to predict the range
for the pkt-rate-low coalescing parameter, which impacts the throughput for the same
core same socket case (diagonal case). As seen in Table 4.2, the same core same socket
(diagonal) entry had throughput in the range of 26-28 Gbps and our model was able to
learn the best range which can predict the value up to 38.7 Gbps and help the user tune
parameters accordingly.

Both ANN models learn from different values of pkt — rate — low and correspondingly
predict throughput and bytes per instruction_retired (efficiency). This helps users under-
stand and find values of throughput and bytes per instructions retired for current
settings. To have high output values, one can test with different parameter values, which
are tuned by supplying parameters as features to the ANN-models and get the predicted
output. Thus NESCAT tool which is built upon earlier discussed methods, will help
tune a parameter to a particular value or range for which the best output values can be

achieved.
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Chapter 7

Conclusion

In this paper we introduced NESCAT, a ML-based end-system characterization and tun-
ing tool. In the process, we presented a scheme for exhaustive automated end-system
characterization for high-speed network workloads. Furthermore, we introduced the no-
tion of using ML methods to prune input data in order to automatically discover and
represent NUMA boundaries on a physical end-system. We also applied Artificial Neural
Networks (ANNs) to systematically tune core affinity and interrupt coalescing parame-
ters. The result is more predictable and overall better performance for an end-system
facing several internal throughput bottlenecks.

In addition to taking an introspective look into the sources of affinity-driven bottle-
necks, we presented an overview of the benefits and drawbacks of interrupt coalescing
parameter settings, and provide insights into the effects of different interrupt coalescing
settings on each other and end-system network processing efficiency.

NESCAT leverages ML techniques including Artificial Neural Networks to both inter-
pret vast amounts of performance characterization data and provide tuning parameters
that increase the performance efficiency and predictability. It can be concluded from the
ML data analysis and from all designed ANNs that the RMSE value is low enough that
the prediction of throughput and bytes/instructions—retired is accurate when compared
with actual data extracted from live runs on a machine. Thus the results generated in
this work establish a baseline and it can be concluded that the tuning of parameters via

a ML model is a good choice in practical scenarios.
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7.1 Limitation

NESCAT currently needs some human intervention between consecutive scripts in order to
set system variables and pass parameters between scripts. We are engaged in the process
of fully automating NESCAT. In the near future, the application will be expanded to
detect system variables and automatically set tuning parameters. Currently, NESCAT
is only capable of explicitly setting coalescing parameters. In the future, we plan to
expand this functionality to a core affinity blacklist as well as tuning additional end-

system parameters.

7.2 Future Work

It can be seen that ML provides unique opportunities in the fields of end-system tuning
and overall macro-architecture performance engineering. As a part of the future work,
further work can be done in creating a more robust ML model which can learn from
an even larger number of input features towards finding the best possible output values
important for data transmission in the area of high-speed interconnects and HPC. Also,
this model could be tested on an HPC testbed.

With the current research in predicting important parameters like throughput and
efficiency, the work can be extend for prediction of latency and even other categories like
tail latency, energy and others. Some of the important areas which are either unexplored
or partially unexplored in the related work chapter is identifying the critical parameters
on a fly i.e. online learning. As a part of futuristic goal, online learning will help in the
dynamic process of identification of important system parameters, auto-tune them and
predict the best output for each of performance parameters. This approach will be an
alternative to throwing in a huge amount of data to the system and then making the model
learn. It would be better to create a model which trains in batches based on importance
of parameters. The step-1 of this model will understand and rank the critical parameters.
It will collect the data of parameters rank wise and correspondingly train itself in that
same order. This part of training will be on the lines of batch gradient descent where

learning can be done on the fly as new data arrives. The criteria to achieve best output
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for different performance parameter is known and hence the model could be trained as
when to stop on a parameter and jump to another. The model should then proceed to the
direction where multiple system parameters need to be tuned after completion of step-1.
This model will be able to function in different kinds of systems; hence it will be portable

and scalable in nature.
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Abstract

Performance bottlenecks across distributed nodes, such as in high performance computing
grids or cloud computing, have raised concerns about the use of Non-Uniform Memory
Access (NUMA) processors and high-speed commodity interconnects. Performance en-
gineering studies have investigated this with varying degrees of success. However, with
continuous evolution in end-system hardware, along with changes in the Linux networking
stack, this study has become increasingly complex and difficult due to the many tightly-
coupled performance tuning parameters involved. In response to this, we present the Net-
worked End-System Characterization and Adaptive Tuning tool, or NESCAT, a partially
automated performance engineering tool that uses machine learning to study high-speed
network connectivity within end-systems. NESCAT exploits several novel techniques for
systems performance engineering. These include using k-means clustering and Artificial
Neural Networks (ANNs) to effectively learn and predict network throughput performance
and resource utilization for end-system networks.

NESCAT is a unique tool, different from other previously designed applications. It is
based on of machine learning and clustering techniques on NUMA core-binding cases. This
work focuses on predicting optimal Network Interface Controller (NIC) parameters for
performance predictability, which is a necessity for complex science applications. Through
experiments, we are able to demonstrate the uniqueness of this technique by achieving
high accuracy rates in predicted and actual performance metrics such as throughput, data
rate efficiency, and frame rates. Our system is able to ingest large amounts of data to
produce results within 2 hours for a machine with an 8-core end-systems. The root mean
square error of the designed model is around 10~! and thus predicts output efficiently

when compared to live run data on an actual machine.



