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Even if there is only one possible unified theory, it is just a set of rules and equa-

tions. What is it that breathes fire into the equations and makes a universe for

them to describe? The usual approach of science of constructing a mathemat-

ical model cannot answer the questions of why there should be a universe for

the model to describe. Why does the universe go to all the bother of existing?

Stephen W. Hawking

If I have seen further than others, it is by standing upon the shoulders of giants.

Isaac Newton
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Chemically reacting plumes, gas hydrate dissociation and
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Chemical transport by natural convection is a common occurrence in en-

vironmental and industrial settings, and in many cases a reaction occurs between

the source fluid and the fluid entrained by the ambient. This process is particu-

larly important in the case of ventilated spaces, especially when the chemical is

hazardous to the occupants. We explore analytically, numerically and experimen-

tally the physics involved when a chemically reacting plume enters a ventilated

space in order to determine the species distribution in time. We compare our

results to traditional ventilation strategies that rely on well-mixed spaces and dis-

cuss the main differences. Furthermore, there are many case in which the chemical

reaction is endothermic or exothermic, such as in dilution reactions, pool fires and

others. In this case the buoyancy force depends on the heat of reaction as well as

the ambient density distribution and we develop a model to take into account this

extra source/sink applying methods based on traditional plume models.

This thesis also presents a separate investigation on gas hydrate decom-

position in porous media due to an increase in ocean water temperature. The
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problem is essentially broken up into two parts, depending on the system condi-

tions in relation to the phase diagram. In the first case the hydrate dissolves at

warmer temperatures at a rate that scales with species diffusion. In the second

case the hydrate dissociates into water and gas, which requires a special treatment

for the two-phase flow through the sediment. Here we determine methane gas flow

rates into the ocean from the sea bed as a function of thermal forcing and sediment

properties.

Finally, we present a related project on dendrite solidification in super-

cooled binary liquids (e.g. hydrate and alloys). Slender body theory is applied to

a steady state dendrite and solved analytically using the Wiener-Hopf technique.

We examine the interface shape as a function of temperature, concentration, and

kinetic under-cooling and compare this to the classic similarity solution.

xix



1

Thesis outline and scope

During my graduate career at the University of California – San Diego I

have been fortunate to work on various research projects in parallel whereas most

dissertations focus on a set of closely related topics. Fortunately all of my projects

can be tied together by the fact that they are related to melting/solidification

processes in the environment. For example, during the dissociation of gas hydrates

under the seafloor, gas will flow into the ocean forming a bubble plume. The

collection of bubbles are commonly modeled using turbulent plume theory with

a closure relationship that takes into account the collective bubble motion on the

plume dynamics. In addition, since the bubbles are dissolving in response to phase

disequilibrium, the plume can be considered to be reactive.

Furthermore, the rejection of salt during the solidification of seawater may

lead to the formation of salt plumes. The release of dense saline water from these

mushy structure may be the dominate mode of convection in the polar regions. For

these reasons, this document is separated into two main areas: turbulent plumes

and melting/solidification problems and is roughly divided into the following 3

parts:

• Chapters 2-4: Chemically reacting plumes

• Chapters 5-7: Gas hydrate dissociation

1
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• Chapter 8: Dendrite solidification

Chapter 3 examines the effects of chemical reactions on the dynamics of a

turbulent plume and their relationship to contaminant removal in occupied spaces.

Through a combination of analytical, numerical and experimental techniques, we

examine the evolution of species concentrations in a ventilated room with nonlin-

ear reaction rates and compare them to traditional, well-mixed, HVAC systems.

Since traditional systems distribute the chemistry uniformly, whereas natural con-

vection stratifies the chemistry, we show that a plume may lead to a more efficient

ventilation strategy if the initial fluid in the room is contaminated.

Chapter 4 explores the relationship between buoyancy fluxes and internal

heat gains/losses from exothermic and endothermic reactions. These reactions can

have important effects on the plume dynamics since the entrainment rate, which

scales with the vertical velocity, will be a function of the heat release or absorption.

For chemically and density stratified environments, this will have an important

effect on the vertical density distribution because the entrainment rate will not

necessarily decrease with distance from this source. In traditional models this will

not be the case, since the reaction will contribute to the buoyancy of the plume.

As a result, the maximum rise height of the plume for exothermic reactions may

actually decrease with reaction rate if this occurs in a region of high ambient

density.

Chapter 6 investigates melting and dissolution rates of methane gas hy-

drates in porous media in response to changes in system conditions from phase

equilibria. A model is developed based on conservation equations for heat, mass,

momentum and species and solved analytically in an infinite domain. We compare

two formulations of the problem, corresponding to pure hydrate layers with large

hydrate saturations and hydrate layers with variable hydrate saturations. In gen-

eral, a mushy layer will melt/dissolve more quickly because the system is limited

by thermal diffusion rather than mass diffusion as in the pure case.

Chapter 7 extends the model developed in Chapter 6 to hydrate disso-
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ciation in which gas and water are released from the phase boundary. The new

problem involves a multiphase flow through the sediment, which we solve numer-

ically and analytically for a few limiting cases, such as large latent heat release

or weak gravitational forces. We examine the effects of system properties such as

temperature and capillary forces on the gas flux through the sediment and total

concentration of methane released from the seafloor. Generally, for small Stefan

numbers (large temperature scale) and shallow deposits the total amount of gas

entering the ocean can be significant, possibly kilograms per year.

In Chapter 8 we solve the steady dendrite problem in which a solid needle-

like structure grows into a super-cooled binary fluid using slender body theory.

We consider the full interfacial conditions, including curvature, binary, and kinetic

under-cooling effects and solve the first-order outer problem using the Wiener-Hopf

technique. In the case of a pure liquid we investigate the effect of kinetic under-

cooling on the interface displacement and compare these results with the similarity

solution. The method is appropriate for slender dendrites and is found to be

equivalent to the similarity solution in the small Péclet number limit. In addition,

the growth rate can be determined uniquely, provided the thickness of the dendrite

is known at some position, rather than the radius of curvature. Furthermore we

investigate the effect of component concentrations on the interface position and

growth velocity.
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Chemically reacting plumes
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Introduction to plumes with

chemically reacting species

Many processes in the natural world rely on the transport of heat and

material by convection, in which buoyancy forces generated by some mechanism

(e.g. solar radiation) drive the motion of a parcel of fluid. The fluid therefore moves

in order to minimize its potential energy. In many cases the convection usually has

a self similar profile and we can use turbulent plume theory to model the structure

of the flow. The simplest approach, starting with the seminal work of Morton et al.

(1956), is to consider a set of conservation equations with a constitutive relation-

ship for the turbulent entrainment (expressing the rate at which ambient fluid is

incorporated into the plume). This relationship is known as the ‘entrainment rate’

and is proportional to the center line velocity and thus scales with the turbulent

production. Plume theory has been compared successfully with the experiments

of Ricou and Spalding (1961) and Turner (1973), and extended to various geo-

physical and industrial settings such as volcanic eruptions (Woods 1995), bubble

plumes (Mcdougal 1978, and Asaeda and Imberger 1993), ventilation (Baines and

Turner 1969) and many more. An excellent introduction to plume theory and its

applications can be found in Linden (2000).

An interesting application for plume models is to include a chemically-

5
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reacting species that is initially buoyant and reacts with the entrained ambient

fluid. In the simplest case the conversion of chemical to thermal energy is small

(small heat of reaction) and the chemistry is passively driven (Conroy et al. 2005).

In more complicated cases the heat of reaction is sufficiently large and contributes

substantially to the plume dynamics, manifesting itself as a buoyancy source. We

discuss some applications for these types of models in the following sections.

2.1 Environmental plumes

Plumes are the most common form of large-Reynolds-number convection

in the ocean and the atmosphere (Linden 2000). The environment can generally

be treated as unbounded (no solid boundaries such as walls), which is naturally

stratified in density by either heat or solute. In all cases the entrainment of dense

fluid causes the plume to rise to a maximum height. At this height the momentum

of the plume changes direction from upward to downward, and provided the mo-

mentum of the plume is negative the plume will descend in the form of a fountain

before it ultimately spreads out horizontally (Bloomfield and Kerr 2000). A com-

mon manifestation is the visually stunning umbrella cloud formed from a volcanic

eruption.

2.1.1 Examples

Black smokers

On the ocean floor of the mid-ocean ridges, plumes of hot sulfide-bearing

sea water issue into the water column from hydrothermal vents. The water is

heated to temperatures near 350◦C from beneath the Earth’s crust in magma

chambers, in which sulfur-bearing materials are dissolved into the high pressure

fluid. As the buoyant fluid seeps out of the Earth’s crust, a turbulent plume forms

and entrains cool, ambient sea water. As the fluid cools a precipitation reaction

occurs forming small black particles of metal sulfides causing the plume to resemble
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Figure 2.1: Black smoker image from http//:www.rst.gsfc.nasa.gov

black smoke (hence the name “black smoker”) as seen in Figure 2.1.

Mid-ocean ridges are deep underwater and essentially devoid of sunlight.

However new organisms have been found to thrive on the sulfide-rich seawater using

chemosynthesis as a pathway for energy sequestration. These regions support

a unique ecosystem critically dependent on the concentrations of the chemicals

issuing from the plumes, which is of great interest to researchers in biology and

oceanography (Tunnicliffe 1992).

Volcanic eruptions

Similarly to the examples above concerning black smokers, a plume is

formed from a volcanic eruption as seen in Figure 2.2 with a spectacular display of

ejected ash and molten magma. Initially the material is ejected at high velocities.

The extremely large temperatures and thus buoyancy allows the plume to rise as

high as 45 km into the stratosphere. The hot fluid is composed of a mixture denser

than air and behaves with jet-like characteristics, but as the jet entrains ambient
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Figure 2.2: Volcanic eruption image from http//:www.rst.gsfc.nasa.gov

air, the thermal energy of the ash and magma is transferred to the gas and the

average density decreases. As the volume increases with height and the density

decreases, the jet behaves as a plume and therefore the maximum rise height of

the volcanic eruption increases (Huppert 2000).

Generally, the ejected volcanic material has multiphase fluid-like proper-

ties with many different chemicals such as carbon dioxide (CO2), sulfur dioxide

(SO2), carbon monoxide (CO), hydrogen chloride (HCl) and many more. In addi-

tion sulfate aerosols from volcanic eruptions can accelerate ozone depleting chem-

ical reactions in the stratosphere as they encounter man made CFC’s (Brasseur

and Granier 1992).

Chemical fires

Chemically reacting plumes are a common occurrence resulting from the

flow that develops above a pool of ignited fuel (i.e. pool fires). Provided the fire

is unbounded and the vaporization rate is above a minimum value, a single plume

forms with two distinct stages. In the first stage a reacting plume rises above the

fuel source in the form of a fire, in which hot, buoyant fuel mixes with entrained

ambient air. The highly exothermic reaction increases the buoyancy of the plume
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until the initial plume species is completely consumed. At this height the plume

behaves as a non-Boussinesq plume without reaction and with a virtual origin

correction (Tieszen 2001).

Bubble plumes

Gas that has migrated out of the sediment and entered the water column

will rise to the surface due to buoyancy forces in the form of distributed bub-

ble plumes. Motivated by oil well blowouts and reservoir de-stratification many

authors have performed laboratory investigations as well as developing mathemat-

ical models. Experimental studies by McDougall (1978) have shown that bubble

plumes form a double plume configuration, where bubbles stay confined to an inner

core and entrained ambient fluid forms an annular plume moving upwards at some

slower velocity than the bubbles. Since most ambient environments are stratified,

the fluid that forms the outer plume eventually loses momentum and consequently

detrains and falls to some neutrally buoyant level. Further, Asaeda and Imberger

(1993) found that in addition to the double plume configuration, the detrained fluid

forms an annular down-draught that eventually turns into a horizontal intrusion

flow.

In deep ocean water, where the hydrate stability zone extends far enough

above the sea floor, gas hydrates may nucleate on the bubble surfaces as they rise,

forming a crystalline rind. The formation process rejects salt and releases latent

heat which acts in concert to modify the water density. In addition, the buoyant

core, which is a combination of solid hydrate and gas, will in general have a larger

average density. After the coated bubbles leave the hydrate stability zone the

hydrate will begin to decompose into water and free gas. Of course the buoyancy

forces acting on the plume will be different at various stages and vertical locations

of the plume. Zheng et. al. (2002) included hydrate formation in a bubble plume

model, using a Lagrangian formulation and in the presence of a cross flow. They

modeled the hydrate formation as a kinetic and thermodynamic process with the
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assumption that the rind remains spherical and grows with time due to the diffusion

of gas across its porous shell.

2.2 Ventilation and plumes in confined spaces

Plumes issuing into a confined space such as a room in an office building

are a common occurrence in conjunction with building ventilation where the source

of buoyancy comes from sources of heat. These heat sources can originate from

people, electronic equipment, air conditioning, smoke, etc. Flows of this type were

first studied by Baines and Turner (1969) who considered the flow that develops in

an initially homogeneous room a turbulent plume. As it rises the plume entrains

ambient fluid, until it eventually reaches the ceiling, spreads horizontally and then

descends into the space. As the plume continually entrains ambient fluid the old

plume fluid gets re-entrained and the density structure evolves with time as seen

in Figure 2.3. This mechanism is known as the “filling box” process and in the

case of a single vent, the room fluid will be replaced by plume fluid within a few

replacement time scales (the time it takes to fill the room at the source flow rate).

The filling box model of Baines and Turner (1969) only applies provided

the aspect ratio of the room is sufficiently large. In this case the mixing that

occurs when the plume spreads along the ceiling is confined to a small region and

the velocity of the room fluid is only in the vertical direction. Furthermore, this

assumption implies that the vertical velocity of the plume is much larger than the

downward velocity of the room fluid. This fact was exploited by Germeles (1975)

in his numerical algorithm, which essentially decouples the plume dynamics from

the room dynamic during each step of the time integration. The plume then sees

a quiescent ambient that is determined by tracking a sufficiently large number of

fluid layers. This technique can still be used when a reaction is occurring in the

room, provided the rate of change of ambient fluid is small compared to the vertical

propagation of a parcel of fluid in the plume.
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Figure 2.3: A ventilated filling box with a dyed freshwater plume entering a salty,

ambient fluid from the bottom and a vent located at the floor. The interface

separating the clear and dyed fluid is the first front and it moves downwards at a

velocity that is dependent on the plume flow rate and horizontal room area.

2.2.1 Natural Ventilation

Natural ventilation, which models heat sources, such as people or elec-

tronic equipment as ideal plumes has recently experienced a considerable amount

of research since it is more efficient than traditional HVAC systems in certain ge-

ographical regions. Essentially, natural ventilation takes advantage of the density

stratification generated from heat sources to transport fluid into and out of the

occupied space. Since the space is not well mixed, this strategy has the advan-

tage of conditioning only the occupied zone, which is at the ground level. The

generated heat and contaminants flow to the top of the room where they are ex-

tracted and fresh, cool air flows in from the floor. A review of natural ventilation

has been compiled by Linden et al.(1990) although there is still substantial ongo-

ing research, especially regarding the engineering aspects associated with building

design strategies and optimization.
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2.2.2 Example

Indoor air quality

Since many people spend a large fraction of their time within enclosed

spaces, it is important to control the indoor air quality, especially when there is a

continuous release of a hazardous chemical. A hazardous chemical may be carbon

monoxide from car exhaust, cigarette smoke flowing in from an open window, or

radon contained within the bedrock that enters in from the building foundation.

These chemicals may be considered passive, since they advect with the fluid or

diffuse, but do not contribute to the momentum of the bulk fluid motion. From

the standpoint of indoor air quality it is clearly necessary to understand how these

chemicals are transported so as to maintain the occupied zone at tolerable levels.

In addition, there exists the possibility of an accidental release of a haz-

ardous chemical that reacts with the surrounding air, producing a chemical species

that is either hazardous or acts to dilute the hazardous reactant. These may include

pyrophoric chemicals, such as phosphorus, which react with the water in humid air

and become very toxic. These chemicals may be transported in pipelines through

buildings for manufacturing processes and may leak, forming a dense fluid that

enters the space and falls downward with turbulent plume-like characteristics. In

this case it is important to understand the chemical reaction mechanism and how

the species are transported through the ventilated room.



3

Chemically reacting plumes in a

ventilated filling box

3.1 Abstract

The dynamics of a second order chemical reaction in an enclosed space

driven by the mixing produced by a turbulent buoyant plume are studied theo-

retically, numerically and experimentally. An isolated turbulent buoyant plume

source is located in an enclosure with a single external opening. Both the source

and the opening are located at the bottom of the enclosure. The enclosure is filled

with a fluid of a given density with a fixed initial concentration of a chemical. The

source supplies a constant volume flux of fluid of different density containing a dif-

ferent chemical of known and constant concentration.These two chemicals undergo

a second order non-reversible reaction, leading to the creation of a third product

chemical. For simplicity, we restrict attention to the situation where the reaction

process does not affect the density of the fluids involved. Because of the natural

constraint of volume conservation, fluid from the enclosure is continually vented.

We study the evolution of the various chemical species as they are advected by

the developing ventilated filling box process within the room that is driven by the

plume dynamics. In particular, we study both the mean and vertical distributions

13
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of the chemical species as a function of time within the room. We compare the re-

sults of analogue laboratory experiments with theoretical predictions derived from

reduced numerical models, and find excellent agreement. Important parameters for

the behavior of the system are associated with the source volume flux and specific

momentum flux relative to the source specific buoyancy flux, the ratio of the initial

concentrations of the reacting chemical input in the plume and the reacting chem-

ical in the enclosed space, the reaction rate of the chemicals and the aspect ratio

of the room. Although the behavior of the system depends on all these parameters

in a non-trivial way, in general the concentration within the room of the chemical

input at the isolated source passes through three distinct phases. Initially, as the

source fluid flows into the room, the mean concentration of the input chemical

increases due to the inflow, with some loss due to the reaction with the chemical

initially within the room. After a finite time, the layer of fluid contaminated by

the inflow reaches the opening to the exterior at the base of the room. During an

ensuing intermediate phase, the rate of increase in the concentration of the input

chemical then drops non-trivially, due to the extra sink for the input chemical of

the outflow through the opening. During this intermediate stage, the concentra-

tion of the input chemical continues to rise, but at a rate that is reduced due to

the reaction with the fluid in the room. Ultimately, all the fluid (and hence the

chemical) that was originally within the room is lost, both through reaction and

outflow through the opening, and the room approaches its final steady state, being

filled completely with source fluid.

3.2 Introduction

In many industrial settings, pipelines transport pressurized chemicals in

the liquid state that would undergo a chemical reaction if exposed to air. If a

leak were to occur, the chemical would enter the ambient environment, and under

ambient pressure, vaporize and cool, forming a gas, with in general a different
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density from the ambient air. Provided the source remains relatively isolated, and

the leaking fluid has some initial momentum, which is a plausible scenario, the

resulting plume, driven by buoyancy, would inevitably entrain ambient air. This

entrainment would have two principal effects. Firstly, it would increase the volume

of air that is at least partially contaminated by the released chemical. Secondly,

it would allow the released chemical to react with the entrained air. This air, con-

taminated with both the original chemical and the reaction product, would thus

start to fill the space. From a hazard analysis viewpoint, it is clearly important

to understand the spatial and temporal evolution of this contamination. For ex-

ample, such an understanding would allow the identification of the time available

to evacuate a building before concentrations of either the released chemical or the

product became hazardous. Naturally, similar concerns also arise when the release

of the hazardous reacting chemical is intentional, and many of the scientific and

theoretical modeling issues are the same.

Furthermore, situations with analogous physical properties occur in geo-

physics. For example, in oceanography, a few decades ago deep sea hydrothermal

vents, (known as “black smokers” because they discharge a black precipitate com-

posed of sulfur bearing material) were discovered at mid-ocean ridges. Hot seawater

and sulphites, formed in hot magma chambers below the surface, seep out of the

ground as a low density fluid. Although there are significant thermal differences

between the vented fluid and the surrounding ambient sea water, there is no vapor-

ization because of the high pressure. The vented buoyant fluid forms a turbulent

plume that when mixed with the cold ambient seawater creates a precipitate that

can be seen as black smoke. Since these regions are far underwater and essentially

devoid of sunlight, new organisms have been found to thrive on the chemically

rich seawater using chemosynthesis as an energy source. These regions support

a unique ecosystem critically dependent on the concentrations of the chemicals

issuing from the plumes, which is of great interest to researchers in biology and

oceanography (Tunnicliffe 1992). Due to the local topography, and also to the
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ambient stratification of the ocean (see Cardoso & Woods 1993), the plume fluid

propagates only a finite distance away from the source, and so there are marked

points of similarity with the industrial situation.

The fundamental fluid dynamical aspect of this class of problems is the

presence within a finite, though large, restricted area, or “room”, (with limited

“ventilation” to the exterior) of an isolated source of fluid of both different density

and chemical composition from the fluid initially within the room. In the absence

of chemical reaction between the source and ambient fluid, such flows have been

widely studied, building upon the original seminal contribution of Baines & Turner

(1969; henceforth BT69). They considered the flow that develops when an isolated

source of buoyancy alone (a so-called “point source plume”) issues into an enclosed

region. As the plume rises it entrains ambient fluid (in a way that is well modeled

by the classic approach of Morton, Taylor & Turner 1956; henceforth MTT56),

until ultimately the plume fluid reaches the ceiling of the room, where, provided

the aspect ratio of the room is sufficiently small, it spreads out, and forms a “first

front” of fluid that has been cycled through the plume. As the plume continues to

entrain, the first front moves downward through the room, and the region above

the first front fills with fluid that has, at some stage, been entrained into the plume.

This filling box mechanism continues for all times if the source has zero volume

flux, as the first front only approaches the source height asymptotically.

The evolution of the density distribution within the room can be ac-

curately studied numerically using the numerical algorithm initially proposed by

Germeles (1975). Essentially, this algorithm makes a quasi-steady approximation,

assuming that the transit time of a fluid parcel within the plume from floor to

ceiling is very much faster than the transit time for a fluid parcel within the room

from the ceiling to the floor. This assumption is satisfied provided the source is

isolated and always occupies a negligibly small fraction of the cross-sectional area

of the room at all heights, and so the aspect ratio of the room is sufficiently small.

In such a circumstance, the evolution of the plume can be considered to occur in a
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quiescent ambient. At any time instant, once the properties (and in particular the

volume flux) of the plume are determined at all heights, the evolution of the ambi-

ent density distribution in the room can be determined by tracking the motion of a

sufficiently large number of layers of ambient fluid. The propagation of each of the

interfaces between the layers is determined by requiring that the upflow volume

flux in the plume at that height is balanced by a slower downflow of ambient fluid,

with the effect that entrainment into the plume causes neighboring interfaces to

move closer together. This method, discussed in more detail below, leads to an

accurate representation of the evolution of the ambient density distribution within

the room.

A particularly important aspect of the point source model that deserves

attention is the requirement that the source has finite buoyancy flux yet zero vol-

ume flux. This corresponds formally to the requirement that there is no lower

bound on the fluid density within the system. Therefore, the density of the layer

above the first front continues to decrease without limit, with an asymptotic verti-

cal structure in the density profile, consistent with the assumption that the buoy-

ancy flux in the plume varies linearly with distance from the source (see Worster

& Huppert 1983).

Caulfield & Woods (2002; henceforth CW02) generalized this flow to

consider the behavior when the source has a nonzero source volume flux. This

source volume flux changes the behavior of the system qualitatively in several ways.

Firstly, since the source has a constant finite volume flux (and for consistency also a

finite source momentum flux), there is a minimum fluid density within the system,

corresponding to the density of the fluid issuing from the source. In the limit of

long time, the fluid in the room approaches this density asymptotically. Secondly,

since there is a finite volume flux into the system, there must be at least one

opening to the exterior, or vent, to allow for conservation of volume. Furthermore,

the first front arrives at the location of the opening in finite time, and for the

particularly straightforward case where the source and the opening are both at the
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floor of the room, this implies that the entire room becomes filled in a finite time

with fluid that has been cycled through the plume, and contaminated fluid starts

to issue from the opening. Since the fluid in the vicinity of the source becomes

less dense than the initial ambient fluid, if the source volume flux is constant, the

source buoyancy flux decreases. Therefore, as discussed in CW02 in detail, the

source starts to behave less and less like a buoyant plume, and more and more like

a forced jet. Indeed, asymptotically, as the fluid throughout the room approaches

the density of the source fluid, the source ceases to be buoyant, and the flow within

the room is driven by a source of momentum alone, enabling the development of

an asymptotic analytical model for the evolution of the density within the room

which is a slight improvement on that discussed by Worster & Huppert (1983) and

BT69.

None of these studies however considered the possibility of chemical re-

action between the source fluid and ambient fluid within the room, and so in this

Chapter we generalize the previous work to consider the behavior of a system

where the source fluid and the fluid initially within the room chemically react. For

there to be a possibility of chemical reaction, it is clearly necessary for there to be

a finite volume flux of source fluid into the enclosed space, and so there must be

at least one vent to conserve fluid volume. As a first attempt to consider this class

of problems, we will restrict ourself to flows with vents at a single height, thus

avoiding the possibility of the development of different steady states, as can oc-

cur when there are two vents at different heights (see Woods, Caulfield & Phillips

2003). Generalizing CW02, we therefore restrict our attention to the simplest case,

where the source and a single external opening are at the same location, the floor

of the room. Of course, the same model can apply to flows with multiple openings

at the same height, provided uni-directional flow occurs through each opening.

Furthermore, to gain an understanding of the extent to which the filling box flow

itself affects the evolution of the chemically reacting species, we assume that the

reaction has no effect on the flow dynamics, i.e. as the different species react they
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have no effect on the fluid density, and so play a passive role on the flow dynamics.

This problem still exhibits a rich range of flow behaviors, and has the particular

attractions that it is a simple generalization of previous studies and that the results

of theoretical predictions can be tested experimentally.

The Chapter is therefore organized as follows. In § 3.3, we briefly review

the standard plume model due to MTT56, and discuss the generalizations required

to model flow within an enclosed space (as discussed in BT69) with a finite volume

flux and a single vent (CW02). We add to this model the evolution of passively

advected reactive species, one initially in the plume source and the other initially

in the enclosed space. We also generate simplified well-mixed models which ig-

nore the plume dynamics, and the associated vertical distribution induced by the

plume within the room. Once we have developed these models and identified the

critical governing parameters and the important time scales for the flow, in § 3.4,

we present the results of time-dependent numerical solutions of this model for var-

ious relevant choices of the parameters. We discuss in some detail the inherent

assumptions of the model, which place some restrictions on the possible choices of

the various flow parameters. In § 3.4, the solution is generated using the method

originally proposed by Germeles (1975) appropriately modified to track the dynam-

ically passive concentrations of the various chemical species both within the plume

and in the interior of the room. In § 3.5, we discuss the experimental method which

we have used to consider the flow under consideration, in particular the chemicals

which we have identified to have the appropriate properties. We then compare the

results of the experiments with the various theories and numerical models which

we have developed to investigate their usefulness, identifying points of agreement

and discussing reasons for observed discrepancies. Finally, in § 3.6, we draw some

conclusions.
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3.3 Model description

A Schematic representation of the flow geometry is shown in figure 3.3.

Here a turbulent plume source is located at z = 0 in a room of depthH with a single

external opening also at z = 0. The plume has fixed source radius bs, source veloc-

ity ws and source density ρs, so that the source density concentration ĈP (0, t) = 1

as defined in (3.26). The source fluid also has fixed concentration P10 of species

one alone. The room is initially filled with fluid of density ρR0 > ρs corresponding

to room density concentration ĈR(z, 0) = 0 as defined in (3.26) and concentration

R20 of species two alone. As the plume rises and entrains fluid, the plume fluid has

concentrations P1(z, t), P2(z, t), P3(z, t) and ĈP (z, t) of the reacting species one

and two, the product species three, and the fluid density respectively. Similarly, as

the filling box process modifies the stratification in the room, the room fluid has

concentrations R1(z, t), R2(z, t), R3(z, t) and ĈR(z, t) of the reacting species one

and two, the product species three, and the fluid density respectively. Eventually,

due to the continual venting (with flux Qs) of room fluid through the external

opening, R1 → P10, ĈR → 1, R2, R3 → 0, as the room becomes completely filled

with source fluid. When we consider well-mixed models, we ignore any distinction

between plume fluid and room fluid, and consider well-mixed concentrations W1,

W2 and W3 of the three chemical species and concentration ĈW of the fluid density.

There are three components to the required model: a model for the iso-

lated plume source; a model for the induced flow within the room; and a model

for the chemical reactions between the different species. We consider each in turn.

3.3.1 Plume dynamics

We consider an isolated source of fluid of finite extent, supplying fluid of

different density and velocity compared to the surrounding environment. We make

the Boussinesq assumption, and so suppose that the density differences involved

are sufficiently small so that they only affect the buoyancy force. Although the
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P1, P2, P3, ĈP

Figure 3.1: Schematic representation of the flow geometry discussed in the text.

dynamics of the ensuing plume are highly turbulent and irregular at sufficiently

high Reynolds number, MTT56 demonstrated that the dynamics of the evolving

plume can be understood well through consideration of the behavior of three inte-

grated conserved quantities: the volume flux πQ, the specific momentum flux πM

and the specific buoyancy flux πB, defined as

πQ(z, t) =
2π

Tt

∫ t+Tt/2

t−Tt/2

∫ ∞

0

rwP dt dr = πw̄P b
2, (3.1)

πM(z, t) =
2π

Tt

∫ t+Tt/2

t−Tt/2

∫ ∞

0

rw2
P dt dr = πw̄2

P b
2, (3.2)

πB(z, t) =
2π

Tt

∫ t+Tt/2

t−Tt/2

∫ ∞

0

rwPg
ρR − ρP

ρR0

dt dr (3.3)

= πg
ρR − ρ̄P

ρR0

w̄P b
2 = πg′P w̄P b

2.

In the equations above wP (r, z, t) and ρP (r, z, t) are the vertical velocity and den-

sity profiles in the plume, ρR is the ambient density, ρR0 is a reference density, the

initial (constant) density in the room, and g′P is the reduced gravity of the plume

relative to the local ambient fluid. Bars denote averages over the plume. The
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various fluxes are in general time-dependent, but we take a rolling time average

to smooth out turbulent fluctuations over time scales substantially shorter than a

characteristic time scale Tt. For simplicity we assume that the flow in the plume

has a top hat profile, i.e. the vertical velocity and density take one value inside

the plume and another value outside: at all heights and times the plume is defined

with a characteristic radius b(z, t). (This makes it clear that consideration of the

three fluxes Q, M and B is equivalent to consideration of the three characteristic

properties of the plume: its radius b, its velocity wP and the plume reduced gravity

g′P .) As discussed in MTT56, it is straightforward to derive governing equations

for the fluxes within a plume under the assumption that the characteristic entrain-

ment velocity ue can be related to the vertical velocity wP at every height within

the plume by an universal constant of proportionality, the so-called entrainment

constant α, to yield

∂Q

∂z
= 2αM1/2, (3.4)

∂M

∂z
=
BQ

M
, (3.5)

∂B

∂z
=

g

ρR0

∂ρR

∂z
Q = −N2Q, (3.6)

where N2 is the buoyancy frequency.

3.3.2 Room dynamics

The equations discussed above are closed provided source conditions Qs,

Ms and B0 for volume flux, momentum flux and initial buoyancy flux (or equiva-

lently source radius, velocity and density) are given, and there is some mechanism

to determine the ambient density distribution outside the plume. In the circum-

stance we are considering, namely that of an isolated single plume rising from the

bottom (z = 0) of an enclosed space with one vent at the same level as the source,

the ambient density is coupled to, and determined by, the plume dynamics in a

straightforward manner, as discussed in more detail in CW02. We assume that

the plume is sufficiently isolated (i.e. b2 � Ac at all heights in the room, where Ac
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is the cross-sectional area of the room) for the entrainment into the plume to be

essentially horizontal. Therefore, the fluxes evolve as the plume rises in the room

in a manner that is well approximated by the equations (3.6).

However, when the plume reaches the ceiling, the upper boundary forces

the fluid at the top of the plume to spread out horizontally like a gravity current. As

discussed in BT69 and considered in more detail in Hunt, Cooper & Linden (2001)

provided the aspect ratio and the source momentum flux are sufficiently small,

a filling box flow then develops, and the fluid from the gravity current descends

in well organized horizontal layers into the room surrounding the plume when it

encounters the side walls. Therefore, the ambient density distribution evolves in a

time and depth-dependent manner due to the continual arrival of plume fluid at

the ceiling.

This evolving ambient density also affects the plume behavior through

entrainment. Indeed, as fluid is entrained into the plume there must be a return

flow in the room to conserve mass. BT69 demonstrated that for a confined room

if the plume occupies a negligible cross-sectional area (and so πb2 � Ac as already

assumed) of the room then the return flow is uniform and given by the volume

conservation relation

wRAc ' −πQ, (3.7)

where wR is the vertical velocity of the ambient fluid in the room. Assuming that

the flow is sufficiently high Reynolds number so that the effects of diffusion can

be ignored compared to advection in the equation for conservation of mass for the

fluid within the room, (3.7) can be used to obtain

∂ρR

∂t
=
πQ

Ac

∂ρR

∂z
, (3.8)

where we have used the fact that there is no net flow through the room due to the

vent and the source both being at the floor of the room. This equation closes the

system given an initial density distribution of ρR = ρR0 within the room, leading

to what is referred to as a “filling box process”.
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It is important to appreciate that there is an essential quasi-steady ap-

proximation at the heart of the filling box process. Although the ambient density

distribution in the room is evolving, it is assumed that it varies sufficiently slowly

compared to the rising plume so that the plume can be assumed to be passing

through a time-independent ambient density in the room. Equivalently to the

assumption that the plume is isolated, the filling box process requires that the

upward velocity wP in the plume is always very much greater than the downward

velocity in the environment, and so

M

Q
� πQ

Ac

. (3.9)

Characteristic scaling for these quantities can be found by considering for simplicity

the well-known “point source” similarity solution, where the source is a source of

buoyancy alone with Qs = 0 = Ms. For this situation, the governing equations for

flow in an unstratified environment admit a similarity solution

Q =
6α

5

(
9αB0

10

)1/3

z5/3; M =

(
9αB0

10

)2/3

z4/3. (3.10)

For this similarity solution, the plume velocity drops monotonically with distance

from the source, while the volume flux naturally increases monotonically due to

entrainment. Therefore, the most stringent restriction for (3.9) is at the ceiling,

when z = H, in which case the validity condition becomes a condition on an aspect

ratio parameter θ such that

θ =

(
5

6α

)2
Ac

πH2
� 1. (3.11)

Therefore, we expect the quasi-steady approximation to be valid provided the as-

pect ratio of the room is sufficiently small, and hence the parameter θ is sufficiently

large.

The source conditions (as noted on figure 3.3) that we choose to use are

constant source radius bs, source velocity ws, and source density ρs, corresponding

to constant source volume flux Qs = b2sws, source specific momentum flux Ms =
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b2sw
2
s , and initial source buoyancy flux B0 = g(ρR0 − ρs)Qs/ρR0. As discussed in

more detail in CW02, due to the finite source volume flux and the location of the

vent, the density of the ambient fluid at the source decreases below ρR0 in finite

time, as fluid that has been cycled through the plume reaches the external opening.

Therefore, since ρR(0) < ρR0, if the source has a flux of constant density fluid, the

source buoyancy flux satisfies Bs = g(ρR(0)− ρs)Qs/ρR0 < B0, and over time the

source will behave less and less as the source of a buoyant plume, and more and

more as the source of a forced momentum jet.

3.3.3 Chemistry dynamics

We now generalize the filling box process to allow for the time-dependent

chemical reaction of different species. For simplicity, we do not allow the chemically

reacting species to affect the flow dynamically. In particular, we assume that any

heat of reaction is sufficiently small so that it does not affect the fluid density. This

is a valid assumption for the experimental fluids and reactions which we consider

in this Chapter. We consider the situation where two distinct species can react

to form a third product species through a second order reaction. Therefore, in

general, we are interested in the spatial and temporal evolution of these three

species both within the plume rising from the isolated source, and in the ambient

fluid within the room. We denote the concentration of the three species within

the plume as P1(z, t) and P2(z, t) for the reactants, and P3(z, t) for the product,

while in the room we denote the equivalent quantities by R1(z, t), R2(z, t) and

R3(z, t). The isolated plume source fluid is assumed to contain only species one

with concentration P10, while the room initially contains only species two, with

concentration R20. Therefore, the boundary and initial conditions are

P2(0, t) = P3(0, t) = R1(z, 0) = R3(z, 0) = 0; P1(0, t) = P10;R2(z, 0) = R20.

(3.12)

As ambient fluid is entrained into the plume in a height and time-dependent

manner, the concentration P2 of species two within the plume fluid will increase
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from zero initially. Similarly, when the filling box process starts at the ceiling of

the room, the concentration R1 of species one at the ceiling will increase from zero.

Once these dynamic effects have taken place, we then assume that a second or-

der non-reversible reaction takes place between the reacting species both in plume

fluid rising from the isolated source and in the room. A second-order non-reversible

reaction is a reaction of the form

P1 + P2 → P3, R1 +R2 → R3, (3.13)

in which the mutual presence of species one and two is necessary for the reaction

and the reaction rate is proportional to the product of the concentrations of the

two reacting species (for further details, see e.g. Levine 2002). Then

DP1

Dt
=

DP2

Dt
= −KP1P2;

DP3

Dt
= KP1P2; (3.14)

DR1

Dt
=

DR2

Dt
= −KR1R2;

DR3

Dt
= KR1R2. (3.15)

Here, the second order rate constant K(T, µ) is determined experimentally for a

particular reaction and may in general be a function of temperature, T and, in the

case of solutions, of ionic strength, µ. D/Dt is the conventional convective deriva-

tive, since the reaction is a Lagrangian process that advects passively with fluid

parcels. The potential dependencies on temperature and ionic strength are very

important, because if the fluid density within the room is due to temperature or

compositional differences (e.g. through varying concentrations of sodium chloride)

then we expect the reaction rate to vary with this density. In the room, consistently

with the assumptions at the heart of the filling box process, we assume that all mo-

tions are homogeneous, and that diffusive processes are insignificant compared to

advection. Therefore, there is no vertical mixing, and no vertical reaction between

the various species in the room, and so the evolutions of the various concentrations

R1, R2 and R3 are determined purely by (3.15).

However, we are also interested in understanding how the various species

vary with height within the plume. We consider as an example the flux of species
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one in the plume through a particular level within the room, which must satisfy

∂

∂z
[P1Q] = 2R1αM

1/2 − Q2

M
KP1P2. (3.16)

The first term on the right hand side of (3.16) quantifies the entrainment by the

plume of species one from the room fluid (with concentration R1) while the second

term quantifies the loss of species one due to reaction, using the definition of the

plume velocity, wP = M/Q. Using the product rule on the left hand side of (3.16)

and rearranging, we can then derive an equation for the spatial variation of species

one in the rising plume:

∂P1

∂z
=

2αM1/2

Q
(R1 − P1)−K

Q

M
P1P2. (3.17)

Analagous equations can naturally be derived for the other species within the

plume, yielding

∂P2

∂z
=

2αM1/2

Q
(R2 − P2)−K

Q

M
P1P2, (3.18)

∂P3

∂z
=

2αM1/2

Q
(R3 − P3) +K

Q

M
P1P2. (3.19)

As in the dynamic filling box process, inherent in this model is a quasi-steady

approximation, in that we assume that the room concentration of the various

species does not vary appreciably during the vertical propagation of a particular

fluid parcel in the plume. Comparing the typical transit time of a fluid parcel, using

the velocity estimates at the ceiling derived from the similarity solution (3.10) to

the inverse of the reaction rate (scaled with the maximum concentrations of species

one and two) yields the condition(
5

6α

)(
9αB0

10

)1/3

� KH4/3
√
R20P10. (3.20)

3.3.4 Well-mixed models

The isolated source within the room inevitably leads to vertical varia-

tions in both density and species concentration within the room. However, par-

ticularly when the source volume flux is small compared to the volume flux of the
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plume when it arrives at the ceiling, (and hence significant entrainment occurs

during the plume evolution towards the ceiling) the developing layers can be well-

approximated by well-mixed layers (see CW02 for a fuller discussion). Assuming

that the room is completely well-mixed leads to simple models for the evolution of

the densities and species within the room. The time evolution of the well-mixed

density ρW within the room must satisfy the equation

d

dt
(AcHρW ) = πρsQs − πρWQs; ρW (0) = ρR0, (3.21)

since the source continually supplies fluid of density ρs with the same volume flux as

the well-mixed fluid which leaves through the external opening. Therefore, under

this assumption, the well-mixed fluid within the room is predicted to converge

exponentially to the density of the source fluid:

ρR0 − ρW

ρR0 − ρs

= 1− exp

[
−πQs

AcH
t

]
. (3.22)

Similar reduced models can be derived for well-mixed concentrations W1,

W2 and W3 for each of the three species. For species one (input at the source) we

obtain

d

dt
(AcHW1) = −KAcHW1W2 + πQs(P10 −W1); W1(0) = 0 (3.23)

since there is initially none of this species in the room, there is a constant flux

(with concentration P10 by definition) from the source, and there are losses due to

reaction with species two and outflow of the well-mixed concentration through the

source. Similar equations for W2 and W3 are

d

dt
(AcHW2) = −KAcHW1W2 − πQsW2; W2(0) = R20, (3.24)

d

dt
(AcHW3) = KAcHW1W2 − πQsW3; W3(0) = 0, (3.25)

showing that W2 decreases from its original value of R20 due both to reaction

and outflow, while W3 increases due to reaction provided the other two species

are present, but decreases due to outflow. Although these equations do not have
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a simple solution, it is clear that as t → ∞, W2 → 0 and hence W3 → 0 and

W1 → P10, i.e. the input concentration of species one eventually fills the interior,

analogously to the way the room density approaches that of the source fluid. We

will be interested in identifying circumstances when these well-mixed models are

adequate descriptions of the flow evolution, and also the parameter ranges in which

the complexities inherent in the more general filling box description are observable

and significant.

3.3.5 Nondimensionalization

We now introduce nondimensional variables (see CW02 for a detailed

discussion). The natural length scale to use is the height H of the room. Motivated

by the form of the well-mixed density, we scale the density difference from the initial

ambient density by the density difference between initial ambient and source fluid,

i.e.

ẑ =
z

H
, Ĉ(z, t) =

ρ− ρR0

ρs − ρR0

. (3.26)

Therefore, for the plume fluid at the source the fluid density concentration ĈP (0, t) =

1, while initially for the ambient fluid in the room, the fluid density concentration

Ĉr(z, 0) = 0. It is natural to scale the volume flux with its source value Qs, and

the buoyancy flux with its initial value B0, i.e.

Q̂(z, t) =
Q

Qs

; Q̂(0, t) = 1, (3.27)

B̂(z, t) =
B

B0

; B̂(0, t) = 1− ĈR(0, t). (3.28)

As observed above, requiring the source density to be constant as in this model,

with a nonzero source volume flux, implies that the source buoyancy flux can

drop from its initial value as the first front reaches the floor of the room, (and so

ĈR(0, t) > 0) which must happen in finite time if the source has nonzero source

volume flux and the external opening is at the same height as the source.

From comparison with the point source similarity solution (3.10) dis-

cussed above, the source volume flux Qs can be used to define a so-called “effective
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origin” (see Caulfield & Woods 1995, Hunt & Kaye 2001) ze:

Qs =
6α

5

(
9αB0

10

)1/3

z5/3
e , (3.29)

i.e. ze is the notional location below z = 0 of a point source with buoyancy flux

B0 which would have volume Qs at z = 0 given by the similarity solution (3.10).

Clearly, this point source would also have a particular momentum flux Mss at z = 0

given by the similarity solution, where

Mss =

(
9αB0

10

)2/3

z4/3
e . (3.30)

We use this characteristic scale Mss to nondimensionalize the momentum flux, and

so

M̂ =
M

Mss

; M̂(0, t) = M̂s. (3.31)

If M̂s > 1 the source has an excess of momentum flux above the point source

similarity solution, and so it is commonly referred to as a forced plume. This is

equivalent to the source either having too small a source radius, or too large a

source velocity. Conversely, if M̂s < 1, the source has a deficit of momentum flux,

and it is referred to either as a distributed (Caulfield & Woods 1995) or lazy plume

(Hunt & Kaye 2001) as this deficit is equivalent either to a large source radius,

or a small source velocity. Finally, if M̂s = 1, the plume is said to be in pure

plume balance, (see Caulfield & Woods 1995) and the plume follows the similarity

solution (3.10) for all time (with z replaced by the offset z + ze).

Since the source volume flux is essential to the flow dynamics, the natural

time scale of the fluid flow is the fluid replacement time or turnover time scale tr,

defined as

tr =
AcH

πQs

, (3.32)

i.e. the time required by the source to replace completely the fluid within the

room in the absence of entrainment, and so we define t̂ = t/tr. This is also the

characteristic time scale of the well-mixed model, as is clear from (3.22), which
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can be written in terms of a well-mixed fluid density concentration ĈW as

ĈW = 1− e−t̂. (3.33)

However, it is important to appreciate that all the chemical species within the room

may not converge to their steady states on the replacement time scale, particularly

in situations where the reaction rate is relatively fast, and so reaction plays a

dominant effect in determining the time scale for the chemical species, rather than

the (finite volume flux) filling box flow dynamics. We discuss this in more detail

below, particularly in section 3.4.

For the chemical concentrations, as already noted, the natural scaling is

the geometrical mean of the two initial concentrations, and so we nondimension-

alize as follows

[R̂1(ẑ, t̂), R̂2(ẑ, t̂), R̂3(ẑ, t̂)] =
(R1, R2, R3)√

P10R20

, (3.34)

[P̂1(ẑ, t̂), P̂2(ẑ, t̂), P̂3(ẑ, t̂)] =
(P1, P2, P3)√

P10R20

, (3.35)

with initial and boundary conditions

R̂1(ẑ, 0) = R̂3(ẑ, 0) = 0; R̂2(ẑ, 0) =

√
R20

P10

≡ φ, (3.36)

P̂2(0, t̂) = P̂3(0, t̂) = 0; P̂1(0, t̂) =
1

φ
. (3.37)

with R̂1 = R1/
√
P10R20 →

√
P10/R20 = 1/φ and R̂2 → 0 as t̂ → ∞. We also use

√
R20P10 and tr to define a nondimensional reaction rate λ as

λ =
K
√
R20P10AcH

πQs

, (3.38)

where it is important to remember that, since λ can be a function of tempera-

ture and ionic strength, it may depend on the local values of the fluid density,

or equivalently fluid density concentration. Using this scaling, the quasi-steady

approximation for the reaction (3.20) takes the form (using (3.11) and (3.29))

θ

ẑ
5/3
e λ

� 1, (3.39)
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which is clearly related to the quasi-steady approximation condition (3.11) for the

validity of the filling box process.

Using these natural scalings, the plume equations may be rewritten as

∂Q̂

∂ẑ
=

5

3ẑe

M̂1/2, (3.40)

∂M̂

∂ẑ
=

4

3ẑe

B̂Q̂

M̂
, (3.41)

∂B̂

∂ẑ
= −Q̂∂ĈR

∂ẑ
, (3.42)

with the boundary conditions as already noted

Q̂(0, t) = 1; M̂(0, t) = M̂s; B̂(0, t) = 1− ĈR(0, t). (3.43)

If the ambient concentration is constant and zero, and M̂s = 1 so that the plume

is in pure plume balance, the similarity solution (3.10) takes the form

Q̂ =

(
ẑ + ẑe

ẑe

)5/3

; M̂ =

(
ẑ + ẑe

ẑe

)4/3

. (3.44)

The equation for the evolution of the ambient density in the room (3.8) becomes

∂ĈR

∂t̂
= Q̂

∂ĈR

∂ẑ
; ĈR(ẑ, 0) = 0. (3.45)

Similarly, the equations for the evolution of the chemical species in the

room (3.15) and in the isolated source (3.17)-(3.19) become respectively

DR̂1

Dt̂
= −λR̂1R̂2, (3.46)

DR̂2

Dt̂
= −λR̂1R̂2, (3.47)

DR̂3

Dt̂
= λR̂1R̂2, (3.48)

and

∂P̂1

∂ẑ
=

5

3ẑe

M̂1/2

Q̂
(R̂1 − P̂1)−

λẑ2
e

θ

Q̂

M̂
P̂1P̂2, (3.49)

∂P̂2

∂ẑ
=

5

3ẑe

M̂1/2

Q̂
(R̂2 − P̂2)−

λẑ2
e

θ

Q̂

M̂
P̂1P̂2, (3.50)

∂P̂3

∂ẑ
=

5

3ẑe

M̂1/2

Q̂
(R̂3 − P̂3) +

λẑ2
e

θ

Q̂

M̂
P̂1P̂2, (3.51)
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with initial and boundary conditions

P̂1(0, t̂) =
1

φ
; P̂2(0, t̂) = P̂3(0, t̂) = 0; (3.52)

R̂2(ẑ, 0) = φ; R̂1(ẑ, 0) = R̂3(ẑ, 0) = 0. (3.53)

It is apparent by using (3.44) at ẑ = 1 that the quasi-steady assumption for the

chemically reacting species (3.39) corresponds to requiring that the second terms

on the right hand side of (3.51) be appropriately small. Finally, the well-mixed

equations (3.23)–(3.25) for the various chemical species become

dŴ1

dt̂
=

1

φ
− Ŵ1 − λŴ1Ŵ2; Ŵ1(0) = 0, (3.54)

dŴ2

dt̂
= −Ŵ2 − λŴ1Ŵ2; Ŵ2(0) = φ, (3.55)

dŴ3

dt̂
= −Ŵ3 + λŴ1Ŵ2; Ŵ3(0) = 0. (3.56)

Two particular limiting solutions of these equations are useful for under-

standing the time scales of the evolution of the reacting species within the flow,

particularly in the circumstances which we consider experimentally. Firstly, if

λŴ2 � 1, which is certainly always true when λφ � 1, then, under the further

simplifying assumption that the reaction rate is independent of the local density,

Ŵ1a '
1

φ
(1− e−t̂), (3.57)

Ŵ2a ' φ exp

[
−
(
t̂+

λ

φ

[
t̂− 1 + e−t̂

])]
. (3.58)

This corresponds to a situation where the concentration of species two is always

very low, and the reaction is pseudo first order, with the concentration of species

two limiting the reaction of the input species one. The other limiting case is

λŴ1 � 1 (definitely the case initially, but true for all time if λ/φ � 1) then,

where once again if we assume that λ is independent of the local density,

Ŵ1b '
1− exp

[
−
(
t+ λφ

[
1− e−t̂

])]
φ

(3.59)

−λ
[
E1

(
λφe−t̂

)
− E1 (λφ)

]
exp

[
−t+ λφe−t̂

]
,

Ŵ2b ' φe−t̂, (3.60)
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where E1(v) is the exponential integral, (see Abramowitz & Stegun 1965) defined,

for positive v as

E1(v) =

∫ ∞

v

e−u

u
du. (3.61)

This solution has the correct asymptotic behaviour of Ŵ1 increasing towards 1/φ

as t̂→∞. For this limit to always apply, since φ� 1, the concentration of species

one is always very much less than species two, and the reaction is again pseudo

first order, now limited by the (low) concentration in the incoming plume fluid.

For both of these limits, the concentrations of the reacting chemical

species are predicted to approach their asymptotic values on the fluid replacement

time scale tr, at least to leading order. The reaction, because of the (assumed)

wide disparity in the concentrations of the two species is a higher order effect. This

is because the evolution of the chemical species is dominated by the volume flux

into and out of the room (just as is the well-mixed fluid density concentration ĈW

defined in (3.33)) rather than by the chemical reactions, which is “slow” in some

sense, because the limiting assumptions are only satisfied if the reaction rate λ is

relatively small. As can be seen from (3.56), it is not immediately clear whether

the replacement time scale is the natural time scale for reactions with larger λ,

consistent of course with the quasi-steady assumption through satisfying (3.39).

To investigate this issue and others, we wish to compare the various well-mixed

models both with the predictions of the full models and with the results of lab-

oratory experiments, where, as discussed below, for technical reasons we find it

convenient to use extreme values of φ (both large and small).

3.4 Numerical modelling

3.4.1 Numerical method

We solved the plume evolution equations (3.42), the ambient concentra-

tion equation (3.45), the room chemical equations (3.46), and the plume chemical

equations (3.51), subject to the boundary and initial conditions (3.43) and (3.53)
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using the numerical integration scheme of Germeles (1975). With this method the

ambient density and chemical concentrations are discretized into a finite number

of layers, separated by sharp interfaces. As already noted, quasi-steady assump-

tions (3.11) and (3.39) allow us, at every timestep, to solve the spatial evolution

equations for the plume dynamical and chemical properties using a fourth order

Runge–Kutta scheme from the given source conditions ẑe, M̂s and φ to the top of

the room with “frozen” ambient profiles of density and chemical species concen-

tration. Any density dependence of the reaction rate λ can be straightforwardly

included as the density in the plume at each height is known. We then update

the ambient profiles, installing a new layer at the top of the room consisting of

the arriving plume fluid, changing the layer depths consistently with the entrain-

ment into the plume, (or equivalently the velocity of the various interfaces given by

(3.45)). We also evolve the various chemical species within each layer using (3.48),

as solving for each of the species in each layer is equivalent to solving the reaction

equation following fluid parcels, with the reaction rate determined if necessary by

the local density of the fluid layer. We continue to evolve our calculation until the

flow reaches its ultimate steady state, with the room completely filled with fluid

of source density ĈR → 1, and chemical species R̂1 → 1/φ. Typically this occurs

over time scales of the order of a few fluid replacement times.

3.4.2 Parameter ranges

The complete system (3.42), (3.45)-(3.51), with boundary and initial con-

ditions (3.43) and (3.53) is thus described by five parameters: ẑe and M̂s which

essentially determine the source conditions for the plume; φ which determines the

source conditions for the chemical species; λ(Ĉ) which determines the reaction

rate, and which may be a function of the local fluid density concentration; and

θ which determines the room aspect ratio. Central to the quasi-steady assump-

tions necessary for this model is that θ is sufficiently large, and λẑ
5/3
e is sufficiently

small so that (3.11) and (3.39) are satisfied but there is clearly still a very large



36

parameter space that can be described by this model. We shall follow two guiding

principles in our choice of parameters to discuss, without presenting an overwhelm-

ing number of studies. As our primary focus is the behaviour of the chemically

reacting species, our discussion will focus on the dependence of the system on the

two chemically related parameters λ and φ. The choices of the other parameters

will be restricted to specific values characteristic of physically realistic situations,

as we discuss in more detail below.

Although the condition on the aspect ratio parameter θ is implicit in

previous studies of non-reacting filling box flows, it does not play an explicit role

provided an appropriate nondimensional formulation is used. Here, however, due

to the presence of the competing time dependent processes of the filling box process

and the reaction between the two species, the particular value of θ is essential to

the formulation, as it inevitably appears in the equation for the evolution of P̂i in

(3.51). For rooms which are roughly cubic, (and so Ac ∼ H2) θ ∼ 20–30, (which is

naturally consistent with the quasi-steady approximation) since typical values of

the entrainment constant are of the order of α ∼ 0.1, and so in this section we fix

θ = 20.

There are also sensible restrictions which can be placed on the value of

the effective origin ẑe. For at least four reasons it is natural to consider flows where

ẑe is significantly less than one. Firstly, such flows, where the plume undergoes

substantial entrainment before it reaches the top of the enclosed space, are com-

monplace in environmental and industrial applications. Secondly, such flows are

more likely to enable a quasi-steady filling box process to develop. Thirdly, as

is well known, such flows are more straightforward to model experimentally (as

discussed in more detail below) and therefore are more likely to allow the direct

experimental verification of our theoretical model. Finally, for such flows the well-

mixed models are likely to be approximations of at least some utility, and so the

comparison between the detailed and more reduced models are likely to be more

meaningful. Therefore, in this section we consider ẑe = 0.1.
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There are then two natural choices for the source momentum flux M̂s.

Firstly, choosing M̂s = 1 implies that initially the plume is in pure plume balance,

and therefore follows the similarity solution defined in (3.44). This is useful for

illustrative purposes, has been commonly done previously, and is what we choose

to do in this section. A particular attraction of this choice is that an analytical

expression can be derived for the nondimensional arrival time t̂a of the first front

at the source location ẑ = 0, which, as we see below, is an important separating

time in the flow evolution. Indeed, as discussed in more detail in CW02, for the

similarity solution (3.44) it is clear that

t̂a ≡
∫ 0

1

dẑ

ŵr

=

∫ 1

0

dẑ

Q̂
=

3

2
ẑe

(
1−

[
ẑe

1 + ẑe

]2/3
)
, (3.62)

which can be significantly less than one (and hence dimensionally significantly less

than the replacement time scale of the room) when ẑe � 1.

It is important to stress that after this time, since the source buoyancy

flux drops from its initial value, the plume ceases to be in pure plume balance,

and becomes forced, with the source momentum flux playing an increasingly more

important role as the flow tends towards its steady state with the room completely

filled by source fluid, and the source behaving like a pure momentum jet (see CW02

for a more detailed discussion). Furthermore, a possible area for lack of agreement

between the various well-mixed models and the detailed plume filling box model

is due to the difference of behaviour of the two systems before this time. All

the well-mixed models assume from the initial instant that fluid at least slightly

affected by the plume (either through having a density less than the initial room

density or through having a nonzero concentration of species one) leaves through

the vent. However, in reality, fluid that has been cycled through the plume only

leaves once the first front reaches the floor, and hence the opening to the exterior.

In circumstances where the effective origin ẑe � 1, this time is significantly shorter

than the characteristic replacement time for the room to approach its final steady

state, and so we expect that the influence of this initial mismatch might be small.
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The other natural choice for a source condition for the momentum flux

is motivated by conventional experimental techniques. For a source of a given

area As, if it is assumed that the source velocity is constant across this area, then

dimensionally Ms = Q2
s/As, or equivalently, using the scalings of this Chapter

M̂s =
Ac

As

ẑ2
e

πθ
. (3.63)

We use this scaling in § 3.5 when we compare our model to our experiments.

For these particular choices of the parameters governing the plume dy-

namics, the vertically averaged fluid density concentration
¯̂
CR remains very close

to the fluid density concentration ĈW predicted by the well-mixed model defined in

(3.33). In particular, the fluid density evolves on the time scale of the fluid replace-

ment time scale defined in (3.32). Since we wish to focus on the evolution of the

chemical species, we do not show the time evolution of the density concentrations

in this Chapter. The time dependence of the vertically averaged concentration is

discussed in some detail in CW02. Indeed, these fixed, and reasonable, choices of

three of the parameters allow us to devote our attention to the effect of variations

in the chemically related parameters.

Since it is still necessary for our quasi-steady approximation (3.39), λ is

restricted such that

λ� θ

ẑ
5/3
e

∼ 1000, (3.64)

for the chosen values of the other parameters. This is not very restrictive, and

so to understand the effect of marked variations in λ, we consider the two choices

λ = 0.1 and 10, both of which still satisfy (3.64). This allows us to investigate

what the appropriate time scales for the chemical species are when the reaction

rate λ is sufficiently large to be significant compared to the finite volume flux

filling box process, which occurs on the fluid replacement time scale. Furthermore,

as we discuss in § 3.5, this range is appropriate for the experimental system we

considered.

On the other hand, φ is not constrained by an essential assumption.
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However, since we derived above particular explicit reduced models for λφ � 1

and λ/φ � 1, (i.e. (3.58) and (3.60)), we consider the two choices φ = 0.1 and

φ = 10. These choices also are of the order that are feasible in the laboratory.

3.4.3 Vertically averaged results

Since we are interested in the quality of the predictions of the reduced

models in comparison to the full numerical model, for each of the four possible

combinations of λ and φ, we first consider various vertically averaged chemical

quantities in the room. In Figures 3.2 and 3.3, we plot the evolution against time

of
¯̂

iR for i = 1, 2, 3 where the overbar denotes vertical averaging in the room, for

flows with φ = 0.1 and φ = 10 respectively. We also plot the predictions of the

various well-mixed models: Ŵi for i = 1, 2 as defined by the well-mixed model

(3.56); Ŵia for i = 1, 2 for the analytical model when λŴ2 � 1 as defined in

(3.58); and Ŵib for i = 1, 2 for the analytical model when λŴ1 � 1 as defined in

(3.60). We expect Ŵia to be most applicable when λ = 0.1, φ = 0.1, (i.e. figures

3.2a and 3.2c) and Ŵib to be most applicable when λ = 0.1, φ = 10 (i.e. figures

3.3a and 3.3c). Because of the wide disparity, for these values of φ, between the

initial values of
¯̂

2R = φ and the final values of
¯̂

1R = 1/φ, we plot
¯̂

3R (using a

thick solid line) for each of the four flows on the panel with the smallest vertical

extent: i.e. with
¯̂

2R when φ = 0.1 in figure 3.2, and with
¯̂

1R when φ = 10 in figure

3.3. This is because the magnitude of the concentration of the reaction product

will naturally be determined by the lesser magnitude of the concentrations of the

reactants.

In general, it is clear from the figure that the concentration of species

one (initially input from the source) within the room approaches its steady state

value (of 1/φ) on the time scale of a few fluid replacement time scales. The only

exception to this observation appears to be shown in figure 3.3b. This is due to

the effect of a large reaction rate (i.e. λ � 1) and a significantly larger initial

concentration of species two in the room, thus leading to initial suppression in the
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Figure 3.2: Variation with time of vertically averaged concentrations
¯̂
R1 (plotted

with a solid line), Ŵ1 as defined by (3.56) (dashed line), Ŵ1a as defined by (3.58)

(dotted line), and Ŵ1b as defined by (3.60) (dot-dashed line), for flows with M̂s = 1,

ẑe = 0.1, θ = 20, φ = 0.1 and (a) λ = 0.1; (b) λ = 10. Variation with time of

vertically averaged concentrations
¯̂
R2 (plotted with a solid line),

¯̂
R3 (thick solid

line), Ŵ2 as defined by (3.56) (dashed line), Ŵ2a as defined by (3.58) (dotted line),

and Ŵ2b as defined by (3.60) (dot-dashed line), for flows with M̂s = 1, ẑe = 0.1,

θ = 20, φ = 0.1 and (c) λ = 0.1; (d) λ = 10.
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Figure 3.3: Variation with time of vertically averaged concentrations
¯̂
R1 (plotted

with a solid line),
¯̂
R3 (thick solid line), Ŵ1 as defined by (3.56) (dashed line), Ŵ1a

as defined by (3.58) (dotted line), and Ŵ1b as defined by (3.60) (dot-dashed line),

for flows with M̂s = 1, ẑe = 0.1, θ = 20, φ = 10 and (a) λ = 0.1; (b) λ = 10.

Variation with time of vertically averaged concentrations
¯̂
R2 (plotted with a solid

line), Ŵ2 as defined by (3.56) (dashed line), Ŵ2a as defined by (3.58) (dotted line),

and Ŵ2b as defined by (3.60) (dot-dashed line), for flows with M̂s = 1, ẑe = 0.1,

θ = 20, φ = 10 and (c) λ = 0.1; (d) λ = 10.
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rate of increase of species one within the room, until all species two is lost. Since

there is a large initial concentration of species two, this takes a relatively long time.

Analogously, species two appears to drop to zero on the same time scale

except in the case where there is a small initial concentration (i.e. φ� 1) and the

reaction rate is high, as shown in figure 3.2d. This is unsurprising, as the large

reaction rate rapidly depletes the small initial room concentration of species two

in this case. The effect of high reaction rate is also apparent in the evolution of

the product species three, whose peak value is substantially higher in the cases of

large λ (figures 3.2d and 3.3c) than when λ� 1.

It is also apparent that the well-mixed models capture much of the charac-

ter of the evolution of the concentrations within the room when they are expected

to be relevant, (i.e. figures 3.2a and 3.3a) for the range of parameter choices

presented. On the other hand, Ŵ1a is a very poor approximation when λ = 10,

φ = 10 (i.e. the dotted line in figure 3.3b). This is unsurprising, since this choice

of parameters violates strongly the assumption for this reduced well mixed model,

namely that λφ � 1. However, there is a clear systematic error, with at a given

time the well-mixed models over-estimating
¯̂
R2 and underestimating

¯̂
R1. This can

be straightforwardly understood from consideration of the behaviour of the system

at early times. The well-mixed models assume that some species one (input by the

source in fact) is vented from the opening at the floor of the room from the very

first instant. Therefore, the well-mixed models assume that the vented fluid has

concentration of species two less than its original concentration. However, until

the first front has reached the floor of the room, none of species one is actually

vented, and all the fluid which is vented has the initial room concentration of

species two. Although, for the choice of the parameters presented here the arrival

time, as defined in (3.62) is t̂a = 0.1197 � 1, nevertheless the initial period leads to

the well-mixed models overpredicting the amount of species one and underpredict-

ing the amount of species two vented from the room. This leads to the observed

underprediction of species one within the room, and overprediction of species two
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within the room. For the particular parameter choices shown, there is typically

little difference between the numerical and analytical well-mixed models defined

by (3.56)-(3.60).

The evidence points to the fluid replacement time scale is also an ap-

propriate time scale for the chemical concentrations within the room, a fact that

can also be deduced from the reduced models, except when λ � 1. However, an

important aspect of the flow, (particularly for application to hazard analysis) is

the dependence of the (product) species three on the two chemical parameters: i.e.

nondimensional initial room concentration φ and the reaction rate λ. As can be

observed qualitatively in figures 3.2 and 3.3, increasing λ leads to a larger peak

value of
¯̂
R3 , while increasing φ leads to the later occurrence of this peak. To

understand this behaviour quantitatively, and also to identify the relevance of the

well-mixed model concentration Ŵ3 defined by (3.56), in figure 3.4 we plot the

peak values of
¯̂
R3 and Ŵ3, and the (nondimensional) time t̂p of occurrence of this

peak against φ for the two values λ = 0.1 and λ = 10 used in figures 3.2 and 3.3.

Certain characteristics are apparent. As already noted, larger values of

λ correspond to larger values of peak values of the product concentration, unsur-

prisingly, since larger values of λ imply more vigorous reaction before the filling

box process leads to loss of the finite quantity of species two (initially in the room)

through the external vent. There is also a clear non-monotonic variation of the

peak value with φ for a given value of λ, with a maximum occurring around φ ∼ 1.

For small values of φ, the concentration of the product species three is limited by

the initial concentration φ of species two in the room. In particular if φ is very

small, it is rapidly depleted by any reaction and the peak concentration of species

three occurs at a very small value. On the other hand, for large values of φ, the

concentration of species three is limited by the source concentration 1/φ of species

one entering the room through the source, and in particular when λ is large, the

peak concentration of species three exhibits a 1/φ dependence at large φ.

Turning attention to the usefulness of the well-mixed model, for both
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Figure 3.4: Variation with φ of the peak value of the vertically averaged concentra-

tion
¯̂
R3 of the chemical product (plotted with a solid line), and the well-mixed con-

centration Ŵ3 as defined by (3.56) (dashed line), for flows with M̂s = 1, ẑe = 0.1,

θ = 20, and (a) λ = 0.1; (b) λ = 10. Variation with φ of the time t̂p for the

occurrence of the peak value of the vertically averaged concentration
¯̂
R3 of the

chemical product (plotted with a solid line), and the time for the occurrence of the

peak value of the well-mixed concentration Ŵ3 as defined by (3.56) (dashed line),

for flows with M̂s = 1, ẑe = 0.1, θ = 20, and (c) λ = 0.1; (d) λ = 10.
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shown values of λ, Ŵ3 over-estimates the actual peak value of the product chemi-

cal species concentration, although the well-mixed model does appear to be a good

approximation, particularly when λ = 10 (figure 3.4). This over-estimation is prin-

cipally due to the fact, as noted above, that the well-mixed model over-estimates

the concentration of species two, i.e. the species initially within the room. Since

more of species two is assumed to remain within the room by the well-mixed model,

more reaction is assumed to take place than actually occurs within the full model.

This effect is not so significant for larger values of λ, as for flows with higher re-

action rates, differences in the evolution of species two between the well-mixed

model and the full model are not so important, and the evolution is more strongly

determined by the reaction rate.

The time tp for the occurrence of the peak value of the product species

three concentration also exhibits qualitatively different behaviour for small and

large values of φ. For smaller values of λ (figure 3.4c), this time is essentially

constant, and of the order of the fluid replacement time except when φ is very

small. When φ is very small of course, species two is rapidly depleted, and so

the reaction ends very early. However, for larger values of φ the chemical species

concentrations within the flow evolve on the filling box replacement time scale, and

so the time to peak concentration varies only weakly with φ. The well-mixed model

systematically over-estimates t̂p, due as usual to the fact that it systematically over-

estimates the amount of species two remaining in the room, and thus the potential

for further reaction to take place between the incoming source fluid (containing

only species one) and the finite quantity of species two.

For larger values of λ, (as shown in figure 3.4d) tp behaves in a quali-

tatively different manner, both in not being so strongly determined by the fluid

replacement time scale (which has been used in the nondimensional scheme, and

thus corresponds to t̂p = 1) and also in showing a strong dependence on φ. For

smaller values of φ, increasing λ actually reduces tp. As is apparent in figure 3.2,

when φ is small, and so the reaction is limited by the concentration of species two
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initially in the room, high reaction rates rapidly deplete this species, and so the

product species three reaches its maximum concentration very quickly, in a man-

ner that does not depend strongly on the filling box process. Conversely, when

φ is large, the reaction is limited by the low incoming source concentration 1/φ

of species one. For flows with higher reaction rates, peak concentrations of the

product species three can occur even after significant loss of species two through

the external opening, (due to the filling box process) since the cumulative input

of species one associated with the large initial concentration of species two in the

room can lead to more efficient reaction than in flows with smaller values of λ.

Nevertheless, the peak concentration of the reaction species still occurs within a

relatively small number of fluid replacement times, as inevitably species two will

all be lost from the room through the external opening, as source fluid completely

fills the room.

3.4.4 Vertical profile results

We are not only interested in vertically averaged outputs form our mod-

els, but also in the time-dependent behaviour of vertical profiles of the various flow

quantities of interest. In figures 3.5 and 3.6, we plot vertical profiles for each of the

four quantities of interest (ĈR and R̂i for i = 1, 2, 3) at evenly spaced time intervals

t̂j = j/5; j = 1, 2, 3 . . . , i.e. at intervals of 20% of the fluid replacement time tr

defined by (3.32) for the same parameter choices considered in figures 3.2 and 3.3

respectively. Similarly to the fluid density concentration profile ĈR as considered

previously in CW02, each of the profiles shows a clear vertical concentration gra-

dient, strongest near the floor of the room. In each case, the gradient approaches

zero over time. Unsurprisingly, it is clear that, when λ = 10 and φ = 0.1, so that

the reaction is both fast, and the initial concentration of R̂2 is small, the room is

rapidly depleted of species two, as shown in figure 3.5g. Also, it is clear in the last

column (figures 3.5d, 3.5h, 3.6d and 3.6h) that R̂3 increases from zero in the room

as reactions take place, and then drops towards zero as species two is completely
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Figure 3.5: Concentration profiles as a function of height at times t̂j = j/5; j =

1, 2, 3 . . . for: ĈR, (panels a, e); R̂1, (panels b, f); R̂2, (panels c, g); R̂3, (panels d,

h). In all cases M̂s = 1, ẑe = 0.1, θ = 20, and φ = 0.1 while: λ = 0.1 in panels a-d;

λ = 10 in panels e-h.

depleted.

Interestingly, species one (the species input from the source) and species

two (the species initially in the room) are qualitatively different in their verti-

cal structure. Species one is similar to the density concentration, in that it has

smallest value near the floor of the room, increasing towards the ceiling. This is

unsurprising, as both enter the room through the plume. As the flow evolves, and

the plume rises through and re-entrains fluid that has already been cycled through

the plume, the concentration of both fluid density and species one in the plume
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Figure 3.6: Concentration profiles as a function of height at times t̂j = j/5; j =

1, 2, 3 . . . for: ĈR, (panels a, e); R̂1, (panels b, f); R̂2, (panels c, g); R̂3, (panels d,

h). In all cases M̂s = 1, ẑe = 0.1, θ = 20, and φ = 10 while: λ = 0.1 in panels a-d;

λ = 10 in panels e-h.
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as it reaches the ceiling (and spreads out as a new layer) must increase, thus lead-

ing to a positive vertical gradient. Conversely, the concentration of species two is

greater near the floor of the room, since species two is originally in the room alone.

Therefore, the layers within the room which have had a longer residence time, and

have been less affected by the plume, will tend to have higher concentrations of

species two. These layers naturally are closer to the floor.

Finally, the product species three exhibits aspects of both of these be-

haviours. At early times, when both species one and species two are present in

nontrivial quantities, vertical profiles of species three behave like those of species

one, with higher concentrations at higher points in the room. This is due to the

fact that fluid cycled through the plume is accessing sufficient quantities of species

two to lead, through reaction, to creation of the product species three. Therefore,

more recently created layers, near the ceiling of the room, will have higher concen-

trations of species three. However, eventually species two becomes depleted, and so

less and less creation of the product species three occurs. The older layers (which

were generated when reaction was more prevalent) have higher concentrations of

species three. Therefore, at later times, profiles of species three are similar to those

of species two, with greater concentrations closer to the floor of the room. Having

developed these models, we now investigate whether their predictions agree with

the results of analogue laboratory experiments.

3.5 Experiments

3.5.1 Experimental method

We conducted the experiments in a plexiglass tank (43 cm × 28 cm ×

28.8 cm) open to the exterior at the upper surface with two evenly spaced holes

drilled in the tank bottom. The first hole contained a plume source, located far

enough away from the walls so that Ac � b2 at all heights within the plume. The

source consisted of a small tube connected to an expansion chamber with a pin
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sized hole on the upstream side, following a design originally due to Dr Paul Cooper

(see Hunt & Linden (2001) for a more detailed description of the design). On the

downstream side of the chamber is plastic gauze leading to a 5 mm diameter orifice,

through which the final discharge occurs. The flow is essentially turbulent on exit.

A tank mounted at the ceiling of the laboratory supplied the source. The level of

the supply tank was maintained by a pump and overflow system connected to a

larger tank located on the floor, and hence the hydrostatic pressure head between

the supply tank and experimental tank was constant. During the experiment the

pump was only turned on intermittently so as to not increase the fluid temperature,

as the reaction rate of the chemical species which we used is strongly sensitive to

temperature. The second hole in the experimental tank was connected to a vertical

tube opening to the exterior air. The level of the top of this tube was modified

until a hydrostatic balance was reached with the fluid inside the experimental

tank, such that throughout the entire course of the experiment, the depth of fluid

in the experimental tank remained constant, with extremely small fluctuations.

Therefore, we were confident that the flows into and out of the experimental tank

were constant and equal to Qs (which we were able to modify).

Density variations between the plume fluid and the room were caused

in the conventional way by varying the concentration of sodium chloride in the

room fluid initially. In all cases, the source fluid had no salt content, and so was

buoyant relative to the initial room fluid, whose density could be varied experi-

mentally. The two chemical species used in the experiments were malachite green,

a triphenylmethane dye, and sodium hydroxide, a strong base. In the presence

of a strong base the malachite green, which is green in solution, bonds with the

hydroxide anion to form a colorless molecule. There are three reasons why these

two species are appropriate for an experimental verification of our model. Firstly,

the reaction rate is sufficiently slow for the quasi-steady assumption to be valid

for the range of concentrations that we consider. Secondly, although there is some

energy release during the reaction, it can be shown to be sufficiently small to have a
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negligible effect on the fluid density and reaction rate. Finally, it is straightforward

to measure quantitatively changes in color of the solution experimentally, and thus

to measure the changing concentration of one of the chemical species with time.

We lit the experimental apparatus uniformly from one side, and videoed

the experimental tank through the other side using a digital monochrome ccd

camera. The light intensity of this image then acts as a proxy for the colored dye

still remaining in the tank, and hence the concentration of one of the chemically

reacting species, when the time sequence of images are analyzed with appropriate

image analysis software. We used the package DigImage, (see for example Dalziel

1993) and so we were able to measure how both vertical profiles and the mean

concentration of one of the species varied with time. In most experiments, we

used malachite green as species one, and so the source contained only malachite

green, while the room initially had a nonzero concentration of sodium hydroxide

(as species two). In this case, we tracked how the light intensity changed as the

room approached being filled with green fluid alone. However, we also considered

the reversed situation, where the source had a nontrivial concentration of sodium

hydroxide, and the room was initially filled with some concentration of malachite

green. In this case we were able to track how the color decreased in the room as

both reaction and outflow through the opening led to the loss of malachite green.

Essential to this experimental technique is of course the calibration of

light intensity with concentration of the malachite green chemical species. We

determined this by placing a known concentration, determined on a mass basis,

in the tank, and then recording the measured light intensity. This process was

repeated about 20 different times between the maximum concentration used in the

experiment and the smallest concentration distinguishable by the camera.

For the comparison of our experimental results with our theoretical mod-

els, it was also necessary to determine the (dimensional) rate constant K, which

needs to be considered carefully. Although sodium chloride, which as noted above

was used to increase the density of the ambient fluid, does not have a significant
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side reaction with the reacting chemical species, its presence does increase the ionic

strength of the solution, and thus decreases the rate constant of the reaction. Since

the concentration of salt in the tank changes with time we needed to determine

experimentally how the rate constant varied with salt concentration. Also, K is

unsurprisingly a strong function of temperature. Therefore, through each exper-

iment we carefully monitored the fluid temperature, and minimized temperature

fluctuations. The peak variation in temperature was always less than 0.5◦C.

To determine the functional form of K, we placed a known concentration

of malachite green G0 and sodium hydroxide H0 in the tank with a known quantity

of salt and digitally analyzed the change in the light intensity with time associated

with the color change of the fluid from green to clear. To simplify our analysis,

the concentration of sodium hydroxide was two to three orders of magnitude larger

than the concentration of malachite green in these calibration experiments, and so

the reaction was pseudo first order. Therefore, the time dependent concentration

G(t) of malachite green is given by the expression

log

(
G(t)

G0

)
' −KH0t. (3.65)

For a range of saline solutions between zero and seven per cent, by plotting

log(G/G0) against time, and determining the best fit to the slope of the resulting

line, we calculated the dependence of the rate constant on salinity. This salin-

ity, and hence density dependent, rate constant could then be straightforwardly

included within our code, to generate model predictions as discussed above.

We conducted seven experiments, with a range of parameters. We present

the results of three characteristic experiments in this Chapter, with parameters

given in table 1. For agreement with our calibration curves for the rate constant,

the initial concentration of malachite green was always substantially less than the

concentration for sodium hydroxide, and so it is at least plausible that one or other

of the limiting well-mixed models (defined in (3.58) and (3.60)) will describe the

experimental data well. As already noted, in all but one experiment, malachite

green corresponded to species one, input by the source, and so we are able to
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Table 3.1: Nondimensional constants and initial fluid density in the tank for each

experiment performed. The values for λ are multiplied by the rate constant K,

which varies between 0.3 and 1.2 depending on the salinity.

Experiment ẑ M̂s φ θ λ ρR(kg/m3)
A 0.054 0.176 10 32.1 1.05K 1.001
B 0.054 0.176 15.1 32.1 1.38K 1.05
C 0.054 0.176 .0644 32.1 1.42K 1.02

monitor the concentration of the dye that comes into and eventually thoroughly

contaminates the tank. In the other experiment, (experiment C) we initially placed

the dye in the tank (i.e. as species two) and we monitored its concentration until

it eventually got completely vented out and consumed by the reaction.

3.5.2 Experimental results and discussion

We have plotted the results from both the experiment and numerical

method in figures 3.7–3.9. We have used α = 0.1, a common value used in experi-

ments. Small variations of this parameter have a negligible effect on our results. We

have also assumed that the velocity was constant at the source so that given some

source flow rate the source momentum flux could be determined by Ms = Q2
s/As.

In figures 3.7 and 3.8 we first plot the vertically averaged concentration of species

one in the room, i.e.
¯̂
R1, as a function of time, and then two height-dependent

concentration profiles at different times. In figure 3.9, we plot the same quantities

for species two. In all cases, we compare the experimental measurements with

numerical solutions using the full model discussed in Section 3.4.

In all cases ẑe � 1, giving us a large fluid entrainment and a subsequent

fast downward ambient layer velocity. Because of this, the time it takes for the

first front to reach the vent in the figures shown is t̂a = 0.075 � 1. It should

be noted that in all cases the initial concentration of sodium hydroxide is about

two hundred times larger than that of the dye, leading to extreme values for φ,
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for consistency with our calibration. Therefore in a region of fluid containing this

large imbalance in chemical concentration, the rate of change of the base will be

much slower than dye, and the reaction is pseudo first order. Indeed, since it can

be established for the experiments shown in figures 3.7 and 3.8 that λ/φ� 1, we

also compare the average room concentration of species one with Ŵ1b from the

well-mixed solution (3.60), while for the experiment shown in figure 3.9, λφ � 1,

and so we compare with Ŵ2a as defined in (3.58). In addition we have plotted

the numerical solution to the well-mixed models from equations (3.54-3.55). In all

cases the rate constant in the well-mixed models is a function for fluid density for

consistency with the experimental results.

The error bars shown in the averaged concentration profiles are due to

the uncertainty in the laboratory equipment used, such as the scale, beakers and

flow meter, all of which were taken from the manufacturer’s listed data. The error

comes into effect in the experimental results mainly through the color intensity-

concentration calibration data and in the numerical method via the nondimensional

constants and the correction to the rate constant for density variations. It should be

noted that the error bars shown in the average concentration profiles also apply to

the height dependent profiles even though they are not indicated in those figures.

In all of the figures shown there is good agreement between the numerical and

experimental data; the curves lie within the range of experimental uncertainty. The

fluctuation in the concentration for the experiment, seen by the jagged appearance,

is a consequence of the optical method used and the mean profile contains all the

important physical information.

As noted above, the most obvious point of difference between the well-

mixed models and both the experimental and full numerical data is during the

initial stage of flow evolution, before the time t̂a when the first front arrives at the

opening and contaminated fluid starts to be vented through the opening. Although

this time is early in the overall flow evolution, the early behaviour has a lasting

effect, and so it is clearly necessary to model the plume dynamics. The plume
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Figure 3.7: Vertically averaged (top) and height dependent (bottom) plots of

species one for experiment A (solid jagged line) and the plume model (dotted

line on upper plot and solid line on bottom plot), as defined in § 3.4. The two

profiles on the bottom plot represent t̂ = 0.59 and t̂ = 1.24. The vertical lines on

the upper plot are error bars for the numerical solution (dotted line) and exper-

iment (solid line). We also plot the predicted concentration for species one from

the well-mixed model (3.54)–(3.55) (dashed line) and the reduced model (3.60)

(dot-dashed line) in the upper panel. The parameters are given in table 1.
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Figure 3.8: Vertically averaged (top) and height dependent (bottom) plots of

species one for experiment B (solid jagged line) and the plume model (dotted

line on upper plot and solid line on bottom plot), as defined in § 3.4. The two

profiles on the bottom plot represent t̂ = 0.50 and t̂ = 0.68. The vertical lines on

the upper plot are error bars for the numerical solution (dotted line) and exper-

iment (solid line). We also plot the predicted concentration for species one from

the well-mixed model (3.54)–(3.55) (dashed line) and the reduced model (3.60)

(dot-dashed line) in the upper panel. The parameters are given in table 1.
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Figure 3.9: Vertically averaged (top) and height dependent (bottom) plots of

species two for experiment C (solid jagged line) and the plume model (dotted

line on upper plot and solid line on bottom plot) as defined in § 3.4. The two

profiles on the bottom plot represent t̂ = 0.50 and t̂ = 0.11. The vertical lines on

the upper plot are error bars for the numerical solution (dotted line) and exper-

iment (solid line). We also plot the predicted concentration for species two from

the well-mixed model (3.54)–(3.55) (dashed line) and the reduced model (3.58)

(dot-dashed line) in the upper panel. The parameters are given in table 1.



58

model sets up a concentration gradient of R̂2, (the concentration of the chemical

species initially in the room) which decreases with height, where the oldest and

most concentrated layer is at the bottom ẑ = 0. As a result a larger quantity

of species two leaves the room sooner than if the space were well mixed, while

conversely a smaller quantity of species one leaves the room, thus leading to a

higher concentration of
¯̂
R1 at any particular instant compared to the well-mixed

model. This result can be seen clearly in figures 3.7-3.9. (As an aside, it is

necessary to allow the rate constant to increase as the density, and hence the

concentration of salt, within the room decreases. This of course can be embedded

straightforwardly in the numerical model, as noted above.) Overall there is good

agreement between the numerical and experimental results for the plume, and

in particular, it is important to stress that, particularly for species one, the full

plume model predicts the experimental results more accurately than the well-

mixed models in a quantifiable way. In all cases, there is also a measurable vertical

profile in concentration, whose amplitude decreases with time (consistently with

the results of CW02 for density).

There are three distinct regions in figures 3.7 and 3.8 with different slopes

that need further discussion. Before the arrival of the first front, (at t̂a = 0.075)

the concentration in the room of species one (i.e. the species entering through

the plume) increases rapidly, as the only sink of this species is due to reaction

with species two initially within the room. However, subsequently to the arrival of

the first front at z = 0, fluid containing species one starts to be vented from the

opening. Therefore there is another sink of species one, and so the rate of increase

of R̂1 drops somewhat. This drop in the rate of increase is also related to the fact

that the reaction rate increases due to a drop in the ionic strength of the fluid

within the room, as salty water is replaced by the fresh water from the source.

Eventually however, all the (finite quantity of) species two fluid initially in the

room must be lost, due to both reaction and outflow through the vent. Therefore,

the fluid within the room will approach the composition of the source fluid.
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The situation is different for the evolution of species two however, as

shown in figure 3.9. From the first instant of the experiment, since species two is

initially present at all heights in the room, species two fluid is both vented from

the room, and lost through reaction. Therefore, there is no markedly different

behaviour for species two before the arrival of the first front. At later times, as

all of species two is lost to reaction and venting, the rate of decrease drops, in a

largely exponential fashion. This clearly demonstrates the approach of the system

to its final steady state, with the room being completely filled with source fluid.

3.6 Conclusions

In this Chapter we have considered the theoretical, numerical and experi-

mental aspects of a chemical reaction in an enclosed ventilated space where the flow

is driven by a turbulent buoyant plume. We restricted our study to flows in which

there is no diffusion between adjacent ambient layers and negligible density change

from reaction. We have determined that the dynamics of this model flow can be

described by five nondimensional parameters: θ; ẑe; M̂s; λ; and φ (as defined in

(3.11), (3.29), (3.31), (3.36), and (3.38) respectively). These parameters describe

the room aspect ratio, the source volume flux, the source (specific) momentum

flux, the chemical reaction rate, and the relative concentrations of the species ini-

tially in the source fluid and the room fluid. As a result of a quasi-steady state

approximation essential to the model, we are restricted to a class of problems such

that λ� θ/ẑ
5/3
e . To generalize the previous work of CW02, we restricted ourselves

to consideration of flows where the plume entrained significant amounts of fluid as

it rose from the floor to the ceiling, and so we required ẑe � 1. Unsurprisingly,

as observed by CW02, well-mixed models described the evolution of the vertically

averaged concentration in the room well. Nevertheless, there were measurable and

observable discrepancies, principally associated with the behaviour of the system

before the arrival of the first front of fluid which has been cycled through the
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plume.

As is apparent from the well-mixed models, the natural time scale for the

fluid flow to approach its final steady state is the fluid replacement time scale tr

defined by (3.32). This illustrates the critical importance in general of the source

volume flux Qs in determining the transient behaviour of the chemical species.

Typically, on this time scale, species two (the species initially in the room) is

depleted through both reaction and outflow through the vent, while species one

(input through the source) completely fills the room.

However, it is important to stress that this generic picture does not apply

when the reaction rate is relatively large, i.e. λ� 1. In this case, if φ (as defined in

(3.36)) is small, and hence the initial concentration of species two is relatively low

in the room compared to the input concentration 1/φ of species one in the source,

species two is rapidly depleted if λ is large, on a time scale short in comparison

to the fluid replacement time. Conversely, if φ is very large, and so the initial

concentration of species two within the room is significantly larger than the source

concentration of species one, the rate of increase of species one in the room is

relatively slow. This is because what little species one is entering the room is being

significantly depleted by rapid reaction. This leads to high transient concentrations

of the product species three, and a delayed approach to the final steady state,

showing that rapid reactions can dominate the fluid-dynamical filling box process

for either the species entering through the source, or the species initially in the

room.

Within the room, we found that the largest concentrations of the reaction

product were associated with larger values of the nondimensional reaction rate λ.

This occurs because more reaction is able to occur before species two is depleted

too much due to the inevitable outflow through the vent due to the input of fluid

at the source. Naturally, the maximum concentration of the product species is

limited by the smaller of the peak concentrations of the reacting species, as the

creation of product relies inherently on the presence of both reacting species.
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All chemical species were observed to exhibit non-trivial vertical profiles

at finite times. Species one had a vertical structure similar to the density distri-

bution, with higher concentrations near the ceiling of the room, associated with

newer fluid layers which have been more recently cycled through the plume. On

the other hand, the concentration of species two decreased with height within the

room, as newer fluid layers higher in the room contained more and more fluid from

the source, and less and less of the species two-rich fluid initially in the room. Both

types of profile are observed for the product species three, which at early times

has profiles similar in character to species one, (the species initially in the plume)

while at later times, as its concentration drops towards zero, it exhibits vertical

profiles reminiscent of those of species two (the species initially in the room). In

all cases, the magnitude of the gradient was largest in the vicinity of the source,

and decreased towards zero with time as the flow approached its steady state.

These observations have significant implications for assessment of the

time-dependent behaviour of chemically reacting species within an enclosed, ven-

tilated space. It is clear that modelling the plume dynamics using the MTT56

model improves the quality of the prediction of the evolution of the various chem-

ical species. In particular, the early time dynamics are critical for understanding

the evolution of the various species. The filling box process both leads to the devel-

opment of vertical variation in concentration, but also, perhaps more importantly,

a time-lag before the input species is vented from the opening which inevitably

leads to a mismatch between the actual flow dynamics and the behaviour pre-

dicted by well-mixed models. Even when this time-lag is relatively short in terms

of the time scale of the overall flow evolution towards steady state, it still leads

to an observable effect on the concentration distribution within the room of the

various chemical species for a significant period of time.

Now that the importance of the filling box process has been demonstrated

for the evolution of chemically reacting species in an enclosed ventilated space,

there are at least three straightforward, yet relevant generalizations which should
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be considered. Firstly, the particular location of the vent to the exterior considered

in this Chapter is very specific. It is of undoubted interest to generalize both the

location and number of the vents considered. In particular, if there are two vents

at different heights within the room, there is the possibility of both “blocked”

ventilation, where the room ultimately fills with source fluid analogously to the

situation described here, and also “natural” ventilation where a two-layer density

distribution develops (see Woods et al. 2003 for a detailed discussion, generalizing

to nonzero source volume fluxes the seminal study of Linden, Lane-Serff & Smeed

1990). The evolution of the chemical species in such a layered flow would obviously

be of interest.

Secondly, the particular distribution of the chemically reacting species

considered in this Chapter, though plausible, is clearly quite special. Another

highly relevant situation would be where two plumes, each of which contain a

different chemical species, issue into an enclosed ventilated space. Reaction would

then ensue through the mutual entrainment of fluid which has been cycled through

each plume, leading to a reactive mixture of the two different species. In the

absence of chemical reaction, Cooper & Linden (1996) demonstrated that such

flows lead to a complex, layered final steady state, yet the transient dynamics

associated with finite source volume fluxes is an open, important question.

Finally, and perhaps most significantly, the initial simplifying assumption

that the chemical reaction has no dynamic role is certainly not valid in many cir-

cumstances. If the reaction is exothermic, and hence a significant amount of heat

is released, the plume buoyancy flux will be increased, while conversely if the reac-

tion is non-trivially endothermic, the plume buoyancy flux will be decreased. Such

dynamic effects will modify the filling box process in a complex manner, which is

undoubtedly worthy of study. For example, an endothermic reaction may actually

lead to the plume fluid being dense compared to its surroundings, thus leading to

deceleration of the plume fluid, and potentially collapse back towards the neutral

buoyancy height for the plume fluid (see Woods & Caulfield 1992 and Caulfield &
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Woods 1995 for discussion of the behaviour of such reversing buoyancy plumes).

Such collapse modifies qualitatively the evolution of the ambient fluid distribution,

as it is necessary to model another entrainment process associated with this fluid

collapse (see, for example Cardoso & Woods 1993). Furthermore, exothermic or

endothermic reactions within the room fluid itself may lead to convective overturn-

ings in the room, hence driving mixing in another non-trivial and different manner.

To gain a full understanding of the evolution of chemically reacting plumes in an

enclosed environment it is necessary to consider such issues, and we will report the

results of our investigations in the next chapter.

This Chapter has been published in Journal of Fluid Mechanics, 2005,

Conroy, D. T., S. G. Llewellyn Smith and C. P. Caulfield (Cambridge University

Press).
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Chemically reacting plumes with

an exothermic and endothermic

reaction

4.1 Abstract

We develop a model for a turbulent plume in an unbounded ambient that

takes into account a general exothermic or endothermic chemical reaction. These

reactions have important effects on the plume dynamics since the entrainment

rate, which scales with the vertical velocity, will be a function of the heat release

or absorption. Specifically, we examine a second order non-reversible reaction,

where one species is present in the plume from a pure source and the other is in

the environment. For uniform ambient density and species fields the reaction has

an important effect on the deviation from pure plume behaviour as defined by the

source parameter Γ. In the case of an exothermic reaction the density difference

between the plume and the reference density increases and the plume is ‘lazy’,

whereas for an endothermic reaction this difference decreases and the plume is

more jet-like. Furthermore, for chemical and density stratified environments, the

reaction will have an important effect on the buoyancy flux because the entrainment

64
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rate will not necessarily decrease with distance from the source, as in traditional

models, since the reaction will contribute to the velocity of the plume. As a result,

the maximum rise height of the plume for exothermic reactions, may actually

decrease with reaction rate if this occurs in a region of high ambient density. In

addition, we investigate the Boussinesq assumption, which is valid for relatively

small heats of reaction and compare it with the non-Boussinesq model.

4.2 Introduction

Convection induced by chemical reactions is an important process in many

industrial and environmental settings. For example, a plume will develop above a

pool fire if the vaporization rate is large enough (Tieszen, 2001). A plume forms

with two distinct stages. In the first stage a reacting plume rises above the fuel

source in which hot buoyant fuel mixes with entrained ambient air. The highly

exothermic reaction increases the buoyancy of the plume until the initial plume

species is completely consumed. In the second stage, from this height up, the plume

behaves as a non-Boussinesq plume without reaction and with a virtual origin

correction. Furthermore, many industrial chemicals such as pyrophoric materials

undergo a reaction with air or water vapour at normal ambient condition. An

accidental release of such a buoyant chemical in a an occupied space is potentially

very hazardous. In the aqueous phase, there are many acid-base reactions such as

the neutralization reaction between sodium hydroxide and hydrochloric acid which

can be exothermic (Patnaik, 1999).

A similar process occurs in relation to evaporative cooling which has been

used for years in cooling towers to cool circulated water (Fisenko et al., 2004) and

in air conditioning systems in hot dry climates. The fundamental fluid-dynamical

aspect of this problem is the presence of a distribution of water droplets with

variable size and concentration within a turbulent plume. As the plume entrains

ambient fluid, the water droplets will evaporate (provided the air is sufficiently
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dry) in order to maintain the equilibrium vapour concentration. Latent heat will

be absorbed, thus increasing the density of the gaseous phase. This will couple to

the plume dynamics through the buoyancy force.

The plume theory developed by Morton et al. (1956, henceforth MTT56)

relies on an entrainment assumption that scales the rate at which turbulent eddies

are engulfed into the plume with the center line velocity. This assumption leads to

a simple set of equations describing the flux of volume, momentum and buoyancy.

The Boussinesq approximation is often used, but is not always appropriate. A

rational derivation of the non-Boussinesq plume equations was given by Rooney

& Linden (1996). In all plume models the buoyancy flux is a function of ambient

stratification and the plume will keep rising in an unstratified or weakly-stratified

ambient, although in a stratified ambient the plume will reach a maximum height

(Caulfield & Woods, 1998).

Chemistry was added to the original plume model of MTT56 by Conroy

et al. (2005, henceforth CLSC) for a passive chemical reaction that decouples

from the plume dynamics. The species concentrations in the plume are treated in

the same fashion as the dynamic fluxes, starting from the conservation of species.

CLSC considered the ventilated filling box problem and compared experiment to

theory, finding good agreement. However, in cases where the reaction is strongly

exothermic or endothermic, this model is inadequate since the buoyancy flux must

be modified to account for the heat absorption or release due to reaction.

Plumes with volumetric heating supplied by a line source of heat were

investigated experimentally and theoretically by Bhat & Narashima (1996). This

model was extended by Hunt & Kaye (2005) to analyze the plume-like or jet-like

nature of plumes with an internal buoyancy flux gain represented as a constant

source of heat. However, these studies were not concerned with exothermic or

endothermic reactions between the source fluid and the ambient.

In this Chapter we generalize previous work on turbulent plumes to in-

clude a general reaction mechanism with a non-negligible heat of reaction. The
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buoyancy flux is a function of the addition or removal of heat by the chemical

reaction. Hence it can be a non-uniform function of height and is coupled to the

entrainment rate. Since many reactions have a large chemical heat release we

consider both non-Boussinesq plumes and Boussinesq plumes. We limit ourselves

to pure plume source conditions, following MTT56, Rooney & Linden (1996),

Caulfield & Woods (1998) and others, although a forced plume can be investigated

in a similar fashion.

The Chapter is organized as follows. In § 4.3, we formulate the energy

equation in terms of density, taking into account the heat of reaction. The reaction

mechanism is expressed in general terms but we limit ourselves subsequently to a

second order non-reversible reaction for comparison with CLSC and also to perfect

gases. In § 4.4 we develop the plume model following MTT56 for a Boussinesq

plume, which is valid for sufficiently small heats of reaction. We examine the devi-

ation from pure plume behaviour with uniform ambient density and species stratifi-

cation and investigate the maximum rise height in ambient chemical stratifications

with power law behaviour. In § 4.5 we extend the analysis to non-Boussinesq

plumes. Finally we conclude in § 4.6.

4.3 Model description

4.3.1 Governing equations

We consider a body of fluid rising in an infinite medium due to the action

of buoyancy forces with a sufficiently large velocity so that diffusion of momentum,

energy and species is negligible. An exothermic and/or endothermic chemical reac-

tion is allowed to occur within the body thus increasing or decreasing the relative

buoyancy force of the fluid. In general an unsteady, reacting high-Reynolds num-

ber three-dimensional flow with negligible diffusion is governed by the equations
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Hmax

z = zs
Q = 0,M = 0, B = B0, P10

R2

ρa

Figure 4.1: Pure plume entering an infinite ambient with concentration R2 of

species 2 from a source with concentration P10 of species 1.

(Williams, 1985)

Dρ

Dt
+ ρ∇·v = 0, (4.1a)

ρ
Dv

Dt
= ∇p− ρg, (4.1b)

ρ
De

Dt
= −p∇·v, (4.1c)

ρ
DYi

Dt
= ωi. (4.1d)

Here ρ is the density, v is the bulk fluid velocity, p is the pressure, g is the acceler-

ation of gravity downwards, e is the internal energy, Yi = ρi/ρ is the mass fraction

of species i and ωi is the reaction rate which will be specified in section (4.3.2).

We define the enthalpy h = e+ p/ρ to be an average enthalpy of the mixture with

h =
∑N

i=1 hiYi and hi = ho
i +
∫ T

T0
Cp,i dT , where ho

i is the standard enthalpy at the

standard temperature, T0, and Cp,i is the specific heat of species i.

We seek an alternative form to equation (4.1c) that describes the change

in density of a material particle due to reaction effects. In general the change

in internal energy of a fluid particle is governed by the first and second laws of

thermodynamics as follows:

de = T ds− p d(1/ρ) +
N∑

i=1

(µi/Wi) dYi, (4.2)
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where s is the entropy, µi is the chemical potential and Wi is the molecular weight

of species i. Substituting this relationship and (4.1a) into (4.1c) yields

Ds

Dt
= − 1

T

N∑
i=1

µi

Wi

DYi

Dt
, (4.3)

which expresses the rate of production of entropy by the irreversible chemical

reaction.

On substituting this equation into the mathematical identity

Dρ

Dt
=

(
∂ρ

∂p

)
s,Yi

Dp

Dt
+

(
∂ρ

∂s

)
p,Yi

Ds

Dt
+

N∑
i=1

(
∂ρ

∂Yi

)
s,p,Yj(i6=j)

DYi

Dt
, (4.4)

one can show by thermodynamic arguments (cf. e.g. Clarke and McChesney 1964)

Dρ

Dt
=

1

a2
f

Dp

Dt
+ ρ

N∑
i=1

[
β

Cp

(
∂h

∂Yi

)
p,T,Yj(i6=j)

− ρ

(
∂ρ−1

∂Yi

)
p,T,Yj(i6=j)

]
DYi

Dt
(4.5)

where af is the frozen speed of sound defined by a2
f = (∂p/∂ρ)s,Yi

, β = ρ(∂ρ−1/∂T )p,Yi

is the frozen volumetric thermal expansion coefficient and Cp = (∂h/∂T )p,Yi
is the

frozen specific heat at constant pressure.

For a perfect gas with equation of state p = ρRT
∑N

i=1 Yi/Wi = ρRT Ȳ ,

evaluating the derivatives gives

Dρ

Dt
=

1

a2
f

Dp

Dt
+

β

Cp

N∑
i=1

hiωi −
1

Ȳ

N∑
i=1

ωi

Wi

=
1

a2
f

Dp

Dt
+ ρσ. (4.6)

This equation represents the change in density due to pressure, chemical energy

released or absorbed by reactions and changes in mixture concentrations. The

latter two changes are regrouped into σ. In general the first term can be neglected

for fluid velocities that are small compared to the speed of sound, and we do so

here, since we will not be dealing with extremely large values of σ.

For steady flow with no swirl, i.e. v = (u, 0, w) in cylindrical coordi-

nates (r, θ, z), the equations underlying plume dynamics can be written in almost-
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conservative form as

1

r

∂

∂r
(ruρ) +

∂

∂z
(wρ) = 0, (4.7a)

1

r

∂

∂r
(ruwρ) +

∂

∂z
(w2ρ) = g(ρa − ρ), (4.7b)

u
∂ρ

∂r
+ w

∂ρ

∂z
= ρσ, (4.7c)

1

r

∂

∂r
(ruρYi) +

∂

∂z
(wρYi) = ωi (4.7d)

for mass, vertical momentum, energy and species respectively, using (4.6). We

have assumed the plume to be thin so that ∂rp � ∂zp in which case the pressure

may be shown to be hydrostatic: dp/dz = −ρag, where ρa(z) is the ambient fluid

density (Rooney & Linden, 1996). The additional term in (4.7c) is due to fluid

expansion or compression via reaction, while the additional term in (4.7d) is due

to reaction.

For Boussinesq plumes, the equations simplify to

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (4.8a)

1

r

∂

∂r
(ruw) +

∂w2

∂z
=

g

ρ0

(ρa − ρ), (4.8b)

u
∂ρ

∂r
+ w

∂ρ

∂z
= ρ0σ, (4.8c)

1

r

∂

∂r
(ruYi) +

∂

∂z
(wYi) =

ωi

ρ0

, (4.8d)

where ρ0 is a reference density. Here the mass fractions are given by Yi = ρi/ρ0.

The flow is incompressible, but density can change due to the reactions. If σ � 1,

the right-hand side of (4.8c) vanishes and we recover the equations of CLSC.

4.3.2 Chemical reaction mechanism

A general chemical reaction mechanism can be represented as (Williams,

1985)

ωi = Wi

n∑
k=1

(ν ′′i,k − ν ′i,k)Kk

N∏
j=1

c
ν′j,k

j , (4.9)
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where cj = Yjρ/Wj is the molar concentration of species j, Kk is the rate constant

(in general a function of temperature) of the kth reaction, ν
′

i,k is the stoichiometric

coefficient of reactants and ν
′′

i,k is the stoichiometric coefficient of products. Con-

servation of mass at the molecular level implies that
∑

i ωi = 0, which can also be

written as a constraint on the Wi, ν
′′
i,k and ν ′i,k.

In this Chapter we will only consider second-order reactions of the form

c1 + c2 → c3, although other forms are possible. Therefore

ωi = ±WiKc1c2 = ±KWiρ
2

W1W2

Y1Y2, (4.10)

where the sign is negative for ω1 and ω2, and positive for ω3. Note that W1 +W2 =

W3.

In the case of the perfect gas we have the following expression

σ =

[
β

Cp

(−h1W1 − h2W2 + h3W3) +
1

Ȳ

]
Kρ2

W1W2

Y1Y2 = Ωρ2Y1Y2, (4.11)

which defines Ω. The term in brackets is just the heat of reaction ∆Hr which is

positive for an endothermic reaction. The Ȳ term is present for the second-order

reaction considered here, but in general is multiplied by a numerical factor which

can be zero.

In the Boussinesq case, ρ in (4.10) is to be replaced by ρ0, and all quan-

tities in (4.11) are to be evaluated using the reference value ρ0 for ρ. While Ω is

in general a function of temperature (through K and hi) and of pressure (since by

the perfect gas law T is a function of ρ, p and Yj), we ignore these considerations

here and take Ω and K to be constant. The pressure dependence, which enters

via the hydrostatic relation, is very weak unless the plume extends a scale height.

The temperature dependence is negligible unless the reaction is very exothermic

or endothermic.
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4.4 Boussinesq plume

4.4.1 Plume equations

We consider an isolated source of buoyancy released into an infinite envi-

ronment. Following MTT56 we define the plume volume flux πQ, momentum flux

πM , buoyancy flux πB and species flux πPi as follows:

πQ(z) = 2π

∫ ∞

0

rw dr = πw̄b2, (4.12a)

πM(z) = 2π

∫ ∞

0

rw2 dr = πw̄2b2, (4.12b)

πB(z) = 2π

∫ ∞

0

rwg
ρa − ρ

ρ0

dr = πg
ρa − ρ̄

ρ0

w̄b2 = πg′w̄b2, (4.12c)

πPi(z) = 2π

∫ ∞

0

Yirw dr = πȲiw̄b
2. (4.12d)

We take top hat profiles for quantities in the plume so that the integrals extend

to b, the plume width, and quantities with over bars are functions of z only. Also

g′ is the reduced gravity of the plume relative to the local ambient fluid.

The plume equations for volume and momentum flux are as in MTT56:

dQ

dz
= 2αM1/2,

dM

dz
=
BQ

M
. (4.13)

Note that b2 = Q2/M and w̄ = M/Q. The buoyancy flux is found by differentiating

(4.12c) with respect to height and using (4.8a) and (4.8c), yielding

ρ0

2g

dB

dz
=

∫ ∞

0

rw
dρa

dz
dr−

∫ ∞

0

ρ0σr dr+

∫ ∞

0

ru(ρ− ρa)r dr−
∫ ∞

0

(ρa− ρ)(ru)r dr.

(4.14)

The last two terms integrate to zero and we find

dB

dz
= −N2Q− gσ

Q2

M
, (4.15)

where N2 = −(g/ρ0)dρa/dz. This buoyancy flux changes because of the exother-

mic or endothermic reaction and changes in average molecular weights. Integrating

(4.8d) across the plume gives

dPi

dz
= 2αRiM

1/2 +
ωi

ρ0

Q2

M
, (4.16)
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where Ri is the mass fraction of species i in the ambient.

To compute the right-hand sides of these equations for our case, we ex-

press concentrations in terms of fluxes through the plumes using Pi = QȲi. Then,

replacing Yi by Ȳi so as to work with plume variables as in the derivation of the

equation for dM/dz above

ωi

ρ0

Q2

M
= ±KWiρ0

W1W2

P1P2

M
= ψi

P1P2

M
(4.17)

and similarly

gσ
Q2

M
= gΩρ2

0Y1Y2
Q2

M
= gρ2

0Ω
P1P2

M
= κ

P1P2

M
, (4.18)

where

κ = gρ0ψ3

[
β∆Hr

W3Cp

+
Q

P̄

]
= ψ̂3(Ĥr +Q/P̄ ), (4.19)

and P̄ =
∑3

i=1W3Pi/Wi. Now the terms within the brackets are non-dimensional.

At the plume source we will only consider a pure plume as in Morton

et al. (1956) and Caulfield & Woods (1998) so that Q(zs) = M(zs) = 0 and

B(zs) = B0. In addition we will only consider a single species at the source so that

P1(zs) = P10, P2(zs) = 0 and P3(zs) = 0.

4.4.2 No ambient stratification

For weakly stratified environments with N2 ≈ 0 the buoyancy flux is

controlled by the chemistry, while the species concentrations when the ambient

concentrations are uniform are governed by the entrainment and reaction rates.

The governing equations are

dQ

dz
= 2αM1/2,

dM

dz
=
BQ

M
, (4.20a)

dB

dz
= −κP1P2

M
,

dPi

dz
= 2αRiM

1/2 + ψi
P1P2

M
, (4.20b)

When the reaction rate is small, i.e. κ ≈ 0, and B = B0, we recover the

well-known similarity solution of MTT56

Q =
6α

5

(
9αB0

10

)1/3

z5/3, M =

(
9αB0

10

)2/3

z4/3, (4.21)
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Figure 4.2: Numerical solutions to equations (4.20a)–(4.20b), showing Γb profiles

for Ĥr = −10 (left), 0 (center), 10 (right) and ψ3 = .1 (dashed line), 1 (dotted

line), 10 (solid line). The circles represent the profiles of Γb corresponding to the

exact solution (4.27) in the large reaction rate limit with ψ3 = 10. Here ν = 100,

P10 = 1, Rc = 1, W1 = W2 = 1, and ψ̂3 = ψ3.

for which the volume flux increases monotonically and the velocity decreases mono-

tonically due to entrainment.

For forced plumes one may define the nondimensional parameter (see

Hunt & Kaye, 2005)

Γb =
5Q2B

8αM5/2
(4.22)

which is a function of height. This parameter has been used to indicate whether

the plume is forced (Γb < 1) and is hence jet-like, pure (Γb = 1) or lazy (Γb > 1).

For our model, where the plume is pure at the source, we can use this parameter to

determine quantitatively the deviation from pure plume behaviour with chemical

reactions.

In Figure 4.2 we plot profiles of Γb for different values of Ĥr and ψ1

in order to discuss three distinct behaviours of the plume. In the first case the
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reaction is exothermic (Ĥr < 0) so the plume density decreases in opposition to

the increase in density by entrainment. As fluid is entrained, the reaction plays

a more important role and the plume becomes lazy with a deficit of momentum,

but if κ or P1 is too small the effects of reaction never dominate and the solution

continues to behave as a pure plume described by equations (4.21). In any case, at

large distances from the source species P1 will be completely consumed and we can

use the similarity solutions with a virtual origin correction (Caulfield & Woods,

1995).

In the second case there is no heat generated or absorbed (Ĥr = 0) but

for this reaction the production of species 3 acts to increase the average density of

the plume. Since the chemical components have different densities, the buoyancy

flux will be a function of the average mixture concentration (Ȳ ), which is coupled

to the entrainment and reaction rates. Therefore, the plume will be dominated by

momentum with jet-like characteristics (Γb < 1), while there is sufficient quantities

of species 1 but will behave as a pure plume at larger distances from the source,

where the reaction is weak. Finally, in the endothermic case we expect similar

characteristics, although with an approximately constant κ. Since the heat of

reaction is relatively large, the density difference, ρ0 − ρ > 0, will decrease and

the plume will have jet like characteristics. Ultimately the reaction will absorb a

sufficient amount of thermal energy and the density deference ρ0 − ρ < 0 will led

to a negatively buoyant plume that will behave as a fountain (Bloomfield & Kerr,

2000).

We can quantify the critical conditions for the plume to be bounded

or unbounded as a function of the chemically related parameters P10, Ĥr and ψ3.

This is shown in Figure 4.3. For relatively small source concentrations and heats of

reaction the chemistry will be unable to decrease the density below the ambient and

the plume will be unbounded. For a large source concentration and heat of reaction,

the plume will eventually become neutrally buoyant and spread out horizontally.

We have quantified the transition zone between lazy and forced plumes in Figure
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Figure 4.3: (Left) Variation in the heat of reaction separating bounded and un-

bounded solutions as a function of the source concentration P10 for ψ3 = .1 (dotted

line) and 10 (solid line). (Right) Boundary separating a lazy and forced plume as

a function of Hr and ψ3 for P10 = 1. Here ν = 100, Rc = 1, W1 = W2 = 1 and

ψ̂3 = ψ3.

4.3. Because of the term Q/P̄ in 4.19, the heat of reaction and reaction rate must

be sufficiently large for an effectively exothermic reaction to exist.

4.4.3 Large reaction rate and large heat of reaction

When the reaction is very fast, i.e. K � 1, the ambient chemical species

in the plume (2) is consumed on a time scale much shorter than the residence

time in the plume. As a result the concentration of species 2 in the plume is very

small and the vertical gradient in the flux P2 is approximately zero (dP2/dz ≈ 0).

Then the constancy of P2 shows that ψ2P1P2M
−1 ≈ −2αR2M

1/2 and this may be

substituted into the equations for B and P1 to give

dQ

dz
= 2αM1/2,

dM

dz
=
BQ

M
, (4.23)

dB

dz
= −2αM1/2χ,

dP1

dz
= −2αRc

ψ1

ψ2

M1/2, (4.24)

where χ = −Rcψ
−1
2 κ = gRcρ0β∆Hr/CpW2 and we have assumed that Ȳ �

β∆Hr/Cp for convenience. The quantity χ is positive for endothermic reactions
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and negative for exothermic reactions. Once the source chemical is completely con-

sumed so that P1 = 0, the reaction stops and we have the usual plume equations

of MTT56 from that height up. There is a boundary layer in which the buoyancy

flux tends to a constant, that we ignore.

The buoyancy and volume flux equations can be combined and integrated

to obtain

B = B0 − χQ. (4.25)

The three equations (4.23) and (4.25) can be combined to form a single equation

in terms of volume and momentum fluxes and integrated to obtain

dQ

dz
= 2α

(
5χ

12α

)1/5

Q2/5 (ε−Q)1/5 , (4.26)

where ε = 3B0/2χ.

Now (4.26) can be integrated to give

2α

(
5|χ|
12α

)1/5

(z − zs) =

∫ Q

0

q−2/5

(|ε| ∓ q)1/5
dq =

5

3
|ε|−1/5Q3/5

2F1(1/5, 3/5; 8/5;Q/ε),

(4.27)

in terms of hypergeometric functions and where the choice of signs is − for χ > 0

and + for χ < 0. In both cases, we find for small z − zs

Q =

(
6α

5

)5/3(
5εχ

12α

)1/3

(z − zs)
5/3. (4.28)

In the endothermic case with χ > 0, the plume becomes a fountain, provided P10

is not too small, and terminates at Q = ε with

2α

(
5χ

12α

)1/5

(zmax − zs) =
5

3
ε2/5 Γ(8/5)Γ(4/5)

Γ(7/5)
. (4.29)

In the exothermic case, the plume continues to rise and behaves for large z as

2α

(
5|χ|
12α

)1/5

(z − zs) =
5

3
Q2/5 Γ(8/5)Γ(2/5)

Γ(3/5)Γ(7/5)
. (4.30)

The mass flux has a (z − zs)
5/2 dependence. Of course this is a transitory phase

until P1 = 0 at which the usual MTT56 solution applies again. This scenario is
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similar to plumes with decreasing source strengths (Scase et al., 2006), in which

there is a narrowing of the plume at some height.

The parameter Γ starts at 1 and tends to −∞ as z → zmax in the en-

dothermic case. It starts at 1 and grows slowly in the exothermic case, before

ultimately returning to 1 when the reaction ends. We have plotted the Γb profiles

against the numerical solution in Figure 4.2 for ψ3 = 10. The reduced model yields

a good approximation until species 1 has reduced to a sufficiently small value, so

that dP2/dz ≈ 0 is no longer valid. At this point the reaction no longer dominates

the buoyancy flux and the plume transitions to the usual plume model of MTT56

with similarity solutions (4.21).

4.4.4 Stratified ambient

In order to examine the importance of non-uniform stratification and how

the properties of the plume depend on the coupling between species and density

entrainment, we extend the results of Caulfield & Woods (1998) to the case with

reaction. We define static ambient profiles of power-law form (β ≥ 0)

ρa = ρ0 (z/zs)
β, N2 = N2

s (z/zs)
β−1, R2 = Rc(z/zs)

γ, (4.31)

where zs is the height of the source, N2
s is the stratification of the ambient and Rc

is the concentration of species 2 at the source. In order to focus on the effects of

chemistry in a simple yet informative way we will not examine the effects of others

species in the ambient, so we take R1 = 0.

For a plume in a constant-stratification ambient, MTT56 found that the

maximum rise height of the plume is determined from

H = (2α)−1/2B
1/4
0 N−3/4

s , (4.32)

as a function of initial buoyancy flux and buoyancy frequency. We use this to scale

vertical height and the other quantities of interest.

z = ẑH, B = B̂B0, Q = Q̂(2α)4/3B
1/3
0 H5/3, (4.33)

M = M̂(2α)2/3B
2/3
0 H4/3, Pi = RcP̂i(2α)4/3B

1/3
0 H5/3. (4.34)
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With this same scaling in mind we scale the reaction rate and enthalpy of reaction

as follows

λi = ψi
Rc(2α)2/3H7/3

B
1/3
0

, $ = κB−1
0 R2

c(2α)2H7/3 = λ̂3(Ĥr +Q/F̄ ). (4.35)

In addition we scale the density, ambient species concentration and buoyancy fre-

quency with ρ0, Rc and N2
s respectively and the ambient stratification becomes

ρa = (νz)β, N2 = (νz)β−1, R2 = (νz)γ. (4.36)

In non-dimensional form the plume equations with hats dropped are

dQ

dz
= M1/2, (4.37a)

dM

dz
=

BQ

M
, (4.37b)

dB

dz
= −N2Q−$

P1P2

M
, (4.37c)

dPi

dz
= RiM

1/2 + λi
P1P2

M
, (4.37d)

and the boundary conditions are

Q = M = P2 = 0, B = 1, P1 =
P10

Rc(2α)4/3B
1/3
0 H5/3

= φ at z =
1

ν
(4.38)

We have solved the governing equations (4.37a–4.37d) numerically and

plotted our results in Figure 4.4 and 4.5. Since we are mainly interested in the

effect of chemistry on the maximum rise height, we only vary the chemically related

parameters and set the ambient density stratification to be linear, i.e. β = 1. In

addition we fix the chemical concentration ratio φ = 1 in order to reduce our

parameter space and concentrate on the effect of λ, $ and γ.

In Figure 4.4 we have plotted the profiles for a positive, zero and negative

heat of reaction $ to be consistent with the rest of the Chapter. We have chosen

to display a large rate constant, λ3 = 10 to elucidate the effects of reaction and a

power coefficient γ = −.1, which one would likely encounter in industrial settings.

The species fluxes in the plume are a function of entrainment and reaction rate,
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which of course is dependent on the heat of reaction and average mixture density.

Nonetheless P1 has a maximum value at the source which decreases with height by

reaction and P2 has a minimum value at the source that increases by entrainment

and decreases by reaction. Similarly P3 increases with reaction from an initially

zero boundary condition and has the same characteristics as species one since

dP1/dz ∝ dP3/dz. Naturally, the reaction will have the largest contribution to the

plume dynamics near the source but far above this point the source species will be

sufficiently small and the plume will be governed by the model of MTT56.

The buoyancy flux is controlled by two processes: entrainment of dense

ambient fluid and exothermic or endothermic chemical reactions. In the case of a

constant ambient density gradient the former always acts to decrease the buoyancy

flux and ultimately force the plume to become neutrally buoyant and spread out

horizontally. For environments with a decreasing stratification in height the plume

will be unbounded but we will not discuss this case further (Caulfield & Woods,

1998). The latter will cause B to increase near the source for exothermic reactions

but decrease faster for endothermic reactions. The momentum flux, generally grows

with distance from the source but ultimately becomes zero, which corresponds to

the maximum rise height when the plume density is larger than the ambient.

For an exothermic or endothermic reaction this point will occur at a larger or

smaller value respectively, compared to a plume with no reaction. Finally, the

volume flux will always increase with distance from the source although it will be

coupled to the reaction dynamics through the entrainment rate. Since we have

made the Boussinesq assumption, the plume radius cannot expand or contract

with an exothermic or endothermic reaction respectively, which is appropriate for

relatively weak heats of reaction.

We have plotted the maximum rise height Hmax = zmax/2.57 scaled with

the exact solution (see MTT56) when no reaction is present in Figure 4.5. In this

case the density field is linear (N2 = 1) and the species concentration R2 is allowed

to vary as a power law with exponent γ. Therefore for γ < 0 the concentration
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decreases with height and for γ > 0 the concentration increases with height. In

general, when γ � 1 the ambient species will only exist at levels very close to

the source and as a result the plume can only entrain a very small amount of this

chemical which leads to small amount of reaction and the maximum rise height

will be approximately the same at MTT56. When γ � 1 the ambient species

concentrations is very large above z = 1. Since this chemical concentration is very

large here, species 1 gets consumed rapidly in this region regardless of reaction

rate and the solutions converge onto a single value. In addition the maximum rise

height increases with an exothermic reaction and decreases with an endothermic

reaction as we expect.

There is an interesting behaviour near γ = 1 for the exothermic case

since Hmax is larger for smaller reaction rate constants. This occurs because the

entrainment rate is larger in a region of denser ambient fluid when the reaction

is fast due to the reaction induced fluid acceleration in this region. In addition,

there is an interesting result for γ � 1 and Ĥr = 0 since Hmax ≈ 1 and therefore

independent of the chemical reaction. In this case $ ∝ Q/F̄ , a function of height

and F̄ ∝ Q(νz)γ, which increases non-linearly with γ. Therefore $ ≈ 0 for γ � 1

and the reaction has a negligible effect on the plume dynamics.

4.5 Non-Boussinesq plume

4.5.1 Plume equations

When the plume density is much larger than a reference density, corre-

sponding to the ambient, the Boussinesq assumption breaks down. In this case we

need to reformulate the problem without this assumption. We follow Rooney &
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Linden (1996) and define fluxes with top hat profiles as

πρ0Q
′(z) = 2π

∫ ∞

0

rwρ dr = πρ̄w̄b2, (4.39a)

πρ0M
′(z) = 2π

∫ ∞

0

ρrw2 dr = πρ̄w̄2b2, (4.39b)

πV ′(z) = 2π

∫ ∞

0

rw dr = πw̄b2, (4.39c)

πρ0P
′
i (z) = 2π

∫ ∞

0

ρYirw dr = πρ̄Ȳiw̄b
2 (4.39d)

for mass, momentum, volume and species respectively. Following the procedure

for a Boussinesq plume the appropriate equations can be derived by integrating
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equations (4.7a–4.7d) across the plume, yielding

dQ′

dz
= 2α

(
ρa

ρ0

)1/2

M ′ 1/2, (4.40a)

dM ′

dz
= g

(
ρa

ρ0

− Q′

V ′

)
Q′V ′

M ′ , (4.40b)

dV ′

dz
= 2α

M ′ 1/2

(ρa/ρ0)1/2
− σ

Q′V ′

M ′ , (4.40c)

dP ′
i

dz
= 2αRi

(
ρa

ρ0

)1/2

M ′ 1/2 +
ωi

ρ0

Q′V ′

M ′ . (4.40d)

With these definitions the density is ρ̄ = ρ0Q
′/V ′, the velocity is w̄ = M ′/Q′ and

the plume radius is b2 = Q′V ′/M ′. In this analysis we have used the entrainment

assumption ue = αw(ρ/ρa)
1/2, which is consistent with the experimental results

of Ricou & Spalding (1961) and has been used by Rooney & Linden (1996) and

Woods (1997). To compute the right hand sides of equations (4.40c) and (4.40d)

we express the concentrations in terms of fluxes using P ′
i = ρȲiV

′/ρ0. Then

σ
Q′V ′

M ′ = Ωρ2Y1Y2
Q′V ′

M ′ = ρ2
0Ω
P ′

1P
′
2

M ′
Q′

V ′ , (4.41)

ωi

ρ0

Q′V ′

M ′ = ±ρ0KWi

W1W2

P ′
1P

′
2

M ′
Q′

V ′ = ψi
P ′

1P
′
2

M ′
Q′

V ′ . (4.42)

In addition we can define a buoyancy flux as in equation (4.12c); this gives

B = gV ′
(
ρa

ρ0

− Q′

V ′

)
, (4.43)

and the momentum flux equation becomes

dM ′

dz
=
BQ′

M ′ . (4.44)

The governing equation for B is then

dB

dz
= −N2V ′ − κ

ρa

ρ0

P ′
1P

′
2

M ′
Q′

V ′ , (4.45)

where

κ = gρ0ψ3

[
β∆Hr

W3Cp

+
Q′

P̄ ′

]
= ψ̂3(Ĥr +Q/P̄ ′), (4.46)
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and P̄ ′ =
∑3

i=1W3P
′
i/Wi. Finally, the boundary conditions at the source are

Q′ = M ′ = 0, B = B0, V ′ = B0ρ0/gρa, P ′
2 = P ′

3 = 0, P ′
1 = P ′

10 at z = zs.

(4.47)

Note that these equations are formally identical to the Boussinesq equations for a

uniform ambient density and negligible reaction rate but generally differ, owing to

the factor (ρa/ρ0)
1/2 and Q′/V ′ appearing in the equations. One important differ-

ence is the extra term in the volume flux equation (4.40c) that allows the plume

to expand or contract with an exothermic or endothermic reaction respectively.

We do not pursue the stratified non-Boussinesq case: it is relevant only

to situations like volcanic plumes with very hot gases rising high into the stratified

atmosphere. In engineering applications with non-Boussinesq plumes, stratifica-

tion does not play an important role. Of course this case can be investigated as a

straightforward combination of § 4.4.4 and of § 4.5.1.

4.5.2 No ambient stratification

Following § 4.4.2, the equations take on a simpler form when the vertical

density and species gradients go to zero. When κ′ ≈ 0 the reaction has a negligible

effect on the plume dynamics and we may combine the above equations with B =

Bo to obtain

Q′ =
6α

5

(
9αBo

10

)1/3

z5/3, M ′ =

(
9αBo

10

)2/3

z4/3. (4.48)

These solutions are the analog of the Boussinesq similarity solutions and may be

shown to be equivalent equivalent when ρ = ρ0. We should note that ρa = ρ0

when the ambient density is uniform. From these solutions we can define a non-

dimensional source parameter as (Carlotti & Hunt, 2005)

Γnb =
5BQ′2

8αM ′5/2
(4.49)

which may be defined at any height to indicate whether the plume is dominated

by buoyancy or momentum.
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Figure 4.6: Numerical solution to the Boussinesq and non-Boussinesq equations

for no ambient stratification showing Γb (dashed line) and Γnb (solid line) corre-

sponding to ψ3 = .1 (left), 1 (center) and 10 (right) and Ĥr = 10 (upper) and 10

(lower). The circles represent the infinite reaction model. Here ν = 100, P10 = 1,

R2 = 1, W1 = W2 = 1, and ψ̂3 = ψ3
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In Figure 4.6 we plot profiles of Γ and Γnb as a function of the reaction rate

for a strongly exothermic and endothermic reaction. The two models are identical

in form except for the factor Q′/V ′, multiplying the reaction rate in equations

(4.41, 4.42, 4.45). This term is always less than one (otherwise we have a fountain)

and dP ′
1/dz effectively reduced in comparison to the Boussinesq model. Therefore,

for regions close to the source (where species 1 is relatively large) the Boussinesq

model releases more thermal energy for an exothermic reaction (Γb > Γnb) and

absorbs more thermal energy for an endothermic reaction (Γb < Γnb). For large z

there is a higher concentration of species 1 in the plume for the non-Boussinesq

model, which allows the density to sustain a smaller value (Γb < Γnb).

We have plotted the plume radius as a function of height in Figure 4.7

for the Boussinesq and non-Boussinesq formulations. Near the source, the density

of the plume is small relative to the ambient and since the mass flux of both

formulations are the same, the volume flux for the non-Boussinesq plume is larger

(Woods, 1997). The effect of an exothermic reaction is then to make the expansion

larger, since the density difference will have a greater sustained value above the

source. At sufficiently large distance above the source, such that species 1 is

sufficiently consumed, the plume density will approach the ambient density and

the volume flux will behave as a Boussinesq plume. In the case of an endothermic

reaction the absorption of thermal energy will cause the density of the plume

to decrease relative to the ambient. For sufficiently large heats of reaction the

plume density will be larger than the ambient density and since the mass flux

for both formulations is the same, the volume flux will be smaller for the non-

Boussinesq formulation. Since the volume flux for the non-Boussinesq formulation

experiences a change in volume with reaction, the plume radius will narrow for

large endothermic reactions as opposed to the Boussinesq model.
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(solid line) equations for no ambient stratification, showing the plume radius b
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ν = 100, P10 = 1, R2 = 1, W1 = W2 = 1, and ψ̂3 = ψ3. The dashed and dot-

dashed lines are the non-Boussinesq and Boussinesq infinite reaction rate solutions

respectively.

4.5.3 Large reaction rate and no ambient stratification

As for the Boussinesq plume, we can determine an asymptotic solution

for a non-Boussinesq plume rising in an ambient with zero stratification and a

large reaction rate K. In this case the rapid consumption of of species 2 leads

to ψ2P
′
1P

′
2Q

′/M ′V ′ ≈ −2αRcρ
1/2
a M ′1/2/ρ

1/2
0 and the volume and buoyancy flux

integrate to

B = B0 − χQ′. (4.50)

Since the equations are the same as for the Boussinesq case, we recover the same

results as (4.26)–(4.30) with Q replaced with Q′; thus

2α

(
5|χ|
12α

)1/5

(z − zs) =
5

3
|ε|−1/5Q′3/5

2F1(1/5, 3/5; 8/5;Q′/ε). (4.51)
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4.6 Conclusion

We have developed a model for a plume rising into an unbounded ambient

with a reaction between the source plume chemical species and the ambient with a

non-negligible heat of reaction, in the case of a second-order non-reversible chemical

reaction. This model extends the work of CLSC to account for a source term on

the buoyancy flux, which is a function of the heat released or absorbed. We first

investigate the limiting case of a Boussinesq plume, where density effects are only

important on the buoyancy terms. The difference with respect to the original

plume equations of MTT56 is an extra term in the buoyancy flux equation which

depends strongly on the species flux equations. In the case of an unstratified

ambient and with certain approximations, we can obtain an exact solution for an

infinite reaction rate, which indicates that the volume (Q ∝ z5/2) and momentum

flux equations have different power laws than the similarity solution of MTT56

(Q ∝ z5/3). Furthermore, we showed that the reaction will cause the plume to

behave ‘lazy’ for an exothermic reaction and ‘forced’ for an endothermic reaction.

In the former case the plume ultimately asymptotes to a pure plume when the

sources species is consumed but in the later case a fountain may form provided the

reaction rate and heat of absorption is sufficiently large.

For a density and chemically stratified ambient we examined the effects

of reaction rate and heat of reaction on the maximum rise height of the plume in

comparison to the linear density model of MTT56. Interestingly, the maximum

rise height may decrease for large reaction rates and an exothermic reaction since

the reaction will be strongest near the source, where the source species and density

are the largest. Moreover, for strongly decreasing ambient chemical stratifications

the maximum rise height will be the same as for a non-reacting plume, since only

a small amount of species 2 can be entrained.

Finally we have extended our model to a non-Boussinesq plume using an

entrainment rate that depends on the ratio of plume to reference density. In this
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case the two formulations are comparable only when the plume density is similar to

the ambient density, which is always true at large heights above the source. Either

way an exothermic reaction will cause the reaction rate to decrease, since it depends

on the density and an endothermic reaction will cause the reaction rate to increase.

This will have an important effect of the source parameter Γ and plume property

profiles since the reaction rate in non-uniformly modified. Furthermore, the plume

radius can have very different profiles, owing to the effects of compressibility on the

non-Boussinesq formulation. In the case of an exothermic or endothermic reaction

the plume will expand or contract respectively, more than the Boussinesq model.

This Chapter, in part, has been submitted to Journal of Fluid Mechanics,

2008, Conroy, D. T. and S. G. Llewellyn Smith (Cambridge University Press).
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Introduction to gas hydrates

5.1 Background

Below the sea floor methane gas is known to exist in extremely large

quantities, accumulating in the sediment of the deep and cold oceanic and per-

mafrost regions. Due to the large pressure and cool temperatures the gas reacts

with the surrounding water to form a crystalline substance known as a clathrate.

The fate of these reserves is very important to climate on earth because methane

is a much more efficient greenhouse gas then carbon dioxide (Kvenvolden 1993).

Gas hydrates are crystalline compounds made up of water molecule cages

held together by hydrogen bonding. A guest gas contained within the center cavity

stabilizes the structure under low temperatures and high pressures. A picture

illustrating this molecular structure is shown in figure 5.1 with about 21 water

molecules forming the cage and one methane molecule in the center. Depending

on the size of the guest gas, hydrates are known to form type 1, 2 or H. For

example methane and hydrogen form type 1 and isobutane and propane (these are

larger molecules) form type 2 (Sloan 1990, Sloan 2003). In addition the bulk gas

concentration is related to the hydrate number, nh = Nw/Ng, which is the molar

ratio of water to gas. For methane and isobutane nh ≈ 5.75 and 17 respectively.

Naturally formed gas hydrates contain mostly methane and a few hy-

92
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Figure 5.1: Clathrate hydrate structure for methane. There are approximately

21 molecules of water to every molecule of methane. For a large number of

molecules bound together there are about 5.75 molecules of water to gas since

a water molecule is associated with multiple cages (Kenneth D. Jordan personal

communication).

drocarbons such as ethane, propane and iso-butane. These crystals are generally

found in the ocean attached to the sediment that makes up the sea floor, where

the temperatures are cold and pressures high. Their location is additionally con-

strained to regions of sufficiently high gas concentration such as the mid ocean

ridges, where there is a large source of organic matter. The current research and

interest in this substance generally falls within the following seven categories:

1. Energy source

Conservative estimates of methane gas supplies in oceanic sediments are

placed at around 1016 kg of carbon, making this the largest supply of hy-

drocarbons on earth (Kvenvolden 1993, Buffett 2000). Because of this large

potential supply of energy many countries have shown interest in mining these

reserves as a supplement or alternative to petroleum based fuels. One strat-

egy for recovery is to convert a hydrate-bearing region into a well, where gas

is removed from its crystal structure by depressurization or thermal stimula-

tion (Holder 1984). Other techniques are possible, such as inhibitor or steam

injection and research on this topic is still in the beginning stages.
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2. Chemosynthetic colonies

Ice worms have been found on exposed mounds using the methane rich de-

posits as food and shelter in the deep unlit places of the ocean (Sassen

1999). These organisms are non-photosynthetic life forms that use a pro-

cess known as chemosynthesis to convert methane into energy. Due to their

relatively new discovery and unique life history, an active area of research

centers around them.

3. Gas storage

Because of the high concentration of gas stored in hydrates, about 170 m3 of

gas per 1 m3 of methane hydrate at STP conditions, the hydrate form has

become a recent topic of interest for the transport of gases such as methane

and hydrogen. A project is currently being undertaken by the Department of

Energy on the storage of natural gas (http://www.doe.gov) The hope is that

the clathrate structure can hold large concentration of gas at much lower

pressures than their liquid counterpart.

4. Carbon sequestration

The potential onset of global warming due to industrial carbon dioxide emis-

sions, has resulted in an interest in carbon dioxide sequestration in the form

of hydrates at the bottom of the ocean. This idea is being actively pursued

by many agencies such as the Department of Energy. The idea is to pump

the gas into the sediment, where it forms a hydrate that binds to the porous

skeleton (Brewer 2000). Indeed this process will be necessary to replace

mined methane hydrates in order to prevent sediment weakening that could

lead to slope instability.

5. Inhibition in gas pipelines

Hydrate inhibition in pipelines historically was the first major research en-

deavor on this substance. Essentially, if any moisture is present in the sys-

tem and the proper conditions are met (i.e. cool temperatures and high
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pressure), hydrates will grow on the walls and ultimately block the pipeline

(Sloane 1990). This problem inspired the establishment of the hydrate phase

diagram, figure 5.2, and the pursuit of chemicals, such as salt and methanol,

that depress the melting point and inhibit formation.

6. Desalination

Due to the fact that gas hydrates reject salt as they grow and can form at high

pressures and relatively moderate temperature, there has been some interest

in using them to desalinate sea water. This idea is actively being pursued

by many commercial and government agencies such as Oak Ridge National

Laboratories (http://sps.esd.ornl.gov/desalinationpage.html). The objective

here is similar to the effect of freezing sea water by bringing the temperature

below its freezing point, but using pressure which may be more efficient.

One possible technique is to utilize the ocean water column to achieve the

high pressure needed to increase the three-phase temperature above the local

water temperature and bubble carbon dioxide gas through a long tube that

spans the whole depth. The hydrate will form a rind around the bubbles

and subsequently rise to the surface, where it melts to form freshwater. Over

time the rejected salt will occupy the lower section of the pipe and expelled

fresher water at the top, similar to a natural convection regime.

7. Global warming

Since there are large quantities of methane contained at the bottom of the

ocean world wide and the fact that CH4 is 23 times more effective as a

greenhouse gas than CO2 on a per mole basis, it would be catastrophic if

even a small fraction of this gas were to reach the atmosphere (Kvenvolden

1993, Buffett 2000). In fact one proposed end to the last ice age has been

attributed to a large sudden release of these stored methane deposits. A

positive feedback loop occurs when an increase in sea floor water temper-

ature destabilizes the hydrate, releasing gas into the atmosphere (Dickens
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1999). As a result the atmospheric temperature rises, melting the polar ice

caps and increasing the ocean water level. Eventually the large hydrostatic

pressure could re-stabilize the remaining hydrate reserves, thus reaching an

equilibrium.

5.2 In-situ setting

Most of the world’s supplies of methane hydrates are located on the conti-

nental margins, where they are attached to the sea floor sediment. These areas are

rich with thermogenic based methane deposits and organic matter, which partially

turns into methane gas after bacterial methanogenesis. In addition the sea bed is

sufficiently deep (≈ O(1km) below the ocean surface), where gas hydrates are in

equilibrium with the surrounding sea water, as a result of the large hydrostatic

pressure and relatively cool temperatures.

A representative stability diagram is shown in figure 5.3 for the deep ocean

regions. The bold curve represents the three-phase boundary (water, hydrate,

gas) which increases with the hydrostatic pressure. The dotted lines represent

actual temperature profiles which are shown to increase with depth caused by the

geothermal gradient and towards the ocean surface due to solar radiation. Because

of the equilibrium constraint the hydrate can only exist if the temperature is less

than its equilibrium value or to the left of the bold curve in the diagram. In

addition, the equilibrium curve will depend on the dissolved methane and salt

concentration and therefore the true profile will be site-dependent.

The hydrate-bearing region may be determined by core sample or bottom

simulating reflector (a method for determining the base of the hydrate stability

zone through an anomalous seismic reflection) and is generally found to be a band

of some thickness and depth below the seafloor (Kvenvolden et al., 1993). The top

of this layer cannot exist above the seafloor since the sediment acts as a barrier

to keep the hydrate in place. The bottom of the hydrate layer is bound by the
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Figure 5.2: Gas hydrate equilibrium phase diagram for methane and water. The

different labeled regions show the phases that exist for a given sample with tem-

perature and bulk composition. The diagonal line separating the mixed hydrate-

water region (H-Lw) and the liquid region is called the liquidus curve. Here, it

is approximately linear and governs the interface temperature for dissolution or

melting models. The line separating the mixed hydrate-water region (H-Lw) and

the vapor-liquid water region (V-Lw) is the three phase-curve and governs the

maximum temperature the hydrate can reach in dissociation models. From Sloane

(2003).
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Figure 5.3: Diagram for in situ hydrate deposits. The bold curve represents the

three-phase line as a function of pressure and the dotted line represents the tem-

perature as a function of depth in the ocean. The seafloor is idealized as the coldest

point in the system, with the temperature increasing towards the ocean surface

due to solar radiation and increasing towards the Earths center because of the

geothermal gradient.

three-phase curve and exists as a result of a flux of heat from the Earth’s core.

The distribution of gas hydrates within the oceanic sediments varies by

location, although in general there will always be a mixture of sediment, seawater

and hydrate. The sediment varies from course grains to silt, corresponding to a

hydrate distribution of disseminated grains and pore fillings to nodules and veins

respectively (Dillon 2003). The bottom of the BSR (bottom simulating reflector)

varies by location. For example, at Blake Ridge in the Gulf of Mexico, the location

of the BSR varies from around 0.2-0.8 km corresponding to a water column depth
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Table 5.1: Properties of the fluid hydrate and sediment used in the plots. Taken

from Rempel (1997).

Constant Value Constant Value
ρl 1000 kg/m3 KH .49 W/(m ·K)
ρH 930 kg/m3 Kl .569 W/(m ·K)
ρs 2240 kg/m3 Ks 1.9 W/(m ·K)
CP` 4200 J/(kg ·K) Dg 10−9 m2/s
CPH 2080 J/(kg ·K) Ds 10−9 m2/s
CPp 900 J/(kg ·K) L 430× 103 J/kg
n 0.5

of approximately 1-4 km (Dillon 2003).

5.2.1 Cold vents

There are offshore regions such as Vancouver island where cold vents seep

high concentrations of methane through the sediment. As a result large concentra-

tions of methane hydrate are found near the seafloor and may span horizontal dis-

tances reaching in the range of kilometers. At the Vancouver island site, sediment

core samples taken by Lu et al.(2005) and Riedel et al.(2006) were between 2-8 me-

ters below the seafloor. This sediment consisted of finely laminated glaciomarine

clays and silts with massive hydrates containing saturations up to Sh = .78. In

some cases this level of saturation spanned several meters but ultimately decreased

rapidly with depth.

5.2.2 Gas hydrate physical properties

Physical properties associated with methane gas hydrates such as ther-

mal, chemical and phase equilibrium have been investigated by many authors (see

Rempel 1997, Sloane 1990, Handa 1990, etc.). We have included only a small

fraction of that data in tables (5.1) and (5.2).
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Table 5.2: Solubility of methane in water as a function of temperature. Taken

from Rempel (1997) and Handa (1990).

Pressure 65 bar
salinity 0

Γ 1.05× 104K
Teq 282.05K

C`(Teq) 1.85× 10−3

To 275.25K
C`(To) 1.201× 10−3

Ch .13

5.3 Previous work

Gas hydrate dissociation essentially relies on deviations in system prop-

erties from equilibrium, which may arise through temperature, pressure and con-

centration. In response, the hydrate changes phase, since it is now theoretically

unstable, in order to bring system back into equilibrium. These types of processes

are known as moving boundary problems and have been widely studied with ref-

erence to ice formation, the casting of alloys, liquid spray combustion and many

more. A good introduction to these topic can be found in the classic texts of Crank

(1984) and Carslaw and Jaeger (1946) in which the process can be described by

heat conduction with an appropriate condition for the moving interface that de-

pends on the latent heat of formation. More complicated models arise for binary

or supercooled systems due to interfacial instability, where the phase boundary

becomes unstable, forming an array of dendritic structures. These are most com-

monly seen naturally in snow flakes and sea ice and an excellent introduction can

be found in Davis (2001) and Worster (2000). A similar process occurs in con-

nection with gas hydrate formation and dissociation, which are described further

below.
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5.3.1 Dissolution and Formation

When in-situ conditions are within the hydrate stability zone, hydrate

will decompose if the dissolved methane concentration in the water is less than

the equilibrium concentration at the water temperature. This condition is usually

constrained by the liquidus relationship which expresses the melting temperature

as a function of species concentration and pressure. Alternatively if the gas concen-

tration is larger than its equilibrium value the hydrate will grow either internally

by increasing the hydrate saturation and/or externally by thickening the hydrate

zone.

In the literature most studies have concentrated on the latter, with the

purpose of predicting the methane hydrate distribution in the sediment. Rem-

pel and Buffett (1997) considered a two-phase (hydrate and water) system in a

porous medium of constant porosity, with a cooled lower boundary and a constant

dissolved methane concentration upper boundary. The location of the hydrate-

water interface was determined as a function of time by solving the conservation

equations for thermal energy, mass, and gas concentration. Xu and Ruppel (1999)

considered a similar problem, but solved the system of equations with a steady-

state assumption and flux of energy, mass and methane at the lower boundary and

constant temperature, pressure and methane concentration on the upper bound-

ary. The important results obtained from this analysis were an estimate for the

upper and lower bound of the hydrate and methane hydrate stability zones. Liu

and Flemings (2007) extended these models to include the multiphase flow of gas

through the sediment that is generated from below the hydrate stability zone.

They assumed that a mixed phase of hydrate, gas and water was always in equilib-

rium and solved the multiphase flow equations with the assumption of negligible

latent heat release. They found that for large gas fluxes the hydrate concentration

is larger near the surface, which is what is observed in regions with cold seeps.
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5.3.2 Dissociation

When the temperature of the water increases so that the concentration of

the liquid is now less than the equilibrium value at that temperature, the hydrate

will dissolve in a way that can be modeled by the approaches used above. However,

if the temperature of the water rises above the three-phase region, the hydrate will

dissociate into a gas and a liquid rather than dissolved gas and liquid as in the

dissolution case. Past studies of hydrate dissociation have primarily looked at one-

dimensional Stefan problems in a porous domain with a similar formulation to the

melting of ice. The complication then is to model accurately the motion of the gas

and its effect on the heat and mass transfer. Kamath and Holder (1987) performed

experiments for the dissociation of propane and methane hydrates by circulating

relatively warm water above the upper surface. They assumed a nucleate boiling

phenomenon (sometimes used in conjunction with boiling heat transfer) for the

heat transfer and used Rohsenhow’s correlation to obtain estimates for the rate of

gas release that showed relatively good accuracy with experimental data. Selim

and Sloan (1989) considered a simple analytic model for the rate of dissociation

in a semi-infinite plane in response to an increase in upper boundary temperature.

They ignored the motion of the water and the effect of fluid saturation on the

relative permeability and determined gas release rates as a function of boundary

temperature.

Tsypkin (2001) considered a multiphase flow and looked at the stratum

and interface temperature as a function of permeability in response to different

upper boundary pressures in a depressurizing well. He linearized the governing

porous medium equations and solved for the temperature, pressure and water

saturation by a similarity solution. The main results showed that under certain

conditions, mainly a large drop in stratum pressure or increase in permeability, the

dissociation can lead to the formation of ice, creating a boundary for gas extraction.

Most recently Ahmadi et al.(2004) obtained a numerical solution for the rate of

gas production from dissociating hydrate in a depressurized well. They solved the
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thermal energy and pressure equation coupled to the Clausius-Clapeyron equation

and Stefan condition at the moving interface. These equations were solved on both

sides of the interface without consideration of a water phase, using an explicit finite

difference method. The position of the moving interface was obtained from the

Stefan condition and numerically was fixed until the position moved the equivalent

of one grid space.

5.4 Modeling the decomposition of gas hydrates in porous

media

We know from the previous section that gas hydrates are naturally found

in the sediment beneath the sea-floor and in permafrost regions. A simple diagram

of this situation is shown in Figure 5.4, where the region z ≤ s is filled with a

gas hydrate with some spatially dependent hydrate saturation and water fills the

pore space in the region z ≥ s. There is an interface, labeled z = s(t), separating

these two regions that moves in time due to deviations in phase equilibrium. With

reference to the phase diagram shown in Figure 5.2 the hydrate bearing region

corresponds to the region labeled H-Lw, where hydrate is in equilibrium with the

dissolved gas in the water. From the lever rule we can determine the hydrate

saturation as a function of the temperature and total concentration provided we

know the liquidus relationship. The liquidus is the curve separating H-Lw from

the water region and is analogous to the solubility curve. In the liquid region

(z > s(t)) the temperature may lie above the three-phase point in which case

dissociation occurs when the concentration is below the liquidus value at the given

temperature. Furthermore this region may lie above (as far as temperature) the

three-phase point, shown as the V-Lw region of the phase diagram, in which case

the hydrate will decompose into water and gas.

In the porous medium we have in general a mixed phase of hydrate, gas,

water and solid matrix of some time and spatially dependent fraction. Provided
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Figure 5.4: Setup for the hydrate dissolving case with hydrate in the lower half

plane and water in the upper. s(t) is the position of the moving interface with

velocity ds/dt in the downward direction and has an initial position of s = 0.

the length scales at the size of the interstices are small in comparison to the size

of the domain, we can treat the system in an average sense. Since gas hydrates

generally occur in clays, silts and fine sands this restriction is not a problem. In this

case we seek a volume averaging approach, which is taken over some representative

volume R that is sufficiently large to contain many pore spaces (Bear 1991).

5.4.1 Mass conservation

We consider mass conservation within a volume V in the following form

∂

∂t

∫
R

ρdV = −
∫

S

(ρwqw + ρgqg) · n dS (5.1)

with ρ the average density defined as

ρ = nSwρw + nSgρg + nShρh + (1− n)ρs, (5.2)

n is the porosity, Sw is the water saturation and the subscripts w, g, h and s

represent water, gas, hydrate and solid respectively. Here we take the solid matrix

and hydrate to be rigid and stationary although the hydrate can grow, resulting

in an increase in Sh. Applying the divergence theorem we may express the above

equation as ∫
R

(
∂ρ

∂t
+∇ · (ρwqw + ρgqg)

)
dV = 0. (5.3)
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Since this equation is true for an arbitrary control volume R, this integrand must

be zero everywhere,
∂ρ

∂t
+∇ · (ρwqw + ρgqg) = 0. (5.4)

Assuming that the densities of the hydrate, solid and water are constant as well

as the porosity (n) we can express this as

∇ · (ρwqw + ρgqg) = nρh
∂Sh

∂t

(
ρw

ρh

− 1

)
+ nρw

∂Sg

∂t

(
1− ρg

ρw

)
− nSg

∂ρg

∂t
(5.5)

where we have used the fact that Sw + Sg + Sh = 1. Therefore if the hydrate

fraction or the gas fraction increase, the fluids will be squeezed out due to volume

expansion associated with a change in phase.

In the porous media literature it is common to define a component mass

conservation equation as follows (Bear 1991):

∂

∂t
(nSwρw + nρw0Sh) +∇ · (qwρw) = −rgw, (5.6)

∂

∂t
(nSgρg + nρg0Sh) +∇ · (qgρg) = rgw, (5.7)

which when summed is equal to the total mass conservation equation (5.4). The

second term on the left hand of this equation accounts for the water or gas trapped

within the solid with fraction ρw0 = nhρhMw/(Mg +nhMw) and ρg0 = ρhMg/(Mg +

nhMw), were nh is the hydrate number (≈ 5.7 for methane), Mw is the molecular

weight of water and Mg is the molecular weight of gas. The term on the right hand

side accounts for gas dissolution and may be defined as (see Esposito (1999))

rgw = kgAg(Ceq − Cw), (5.8)

which expresses the rate of dissolution or formation of gas as a function of the

surface area Ag, kinetic coefficient kg and deviation in dissolved species concentra-

tion, Cw from the equilibrium value Ceq. In this equation we have used a kinetic

relationship where the coefficient kg must be determined experimentally.
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5.4.2 Temperature equation

For the conservation of heat in the system we assume that the temper-

ature of each component (i.e. hydrate, water, etc.) is at the same temperature.

Using similar arguments as for the mass conservation we can write the energy

equation as

∂ρH

∂t
+∇ · (ρwHwqw + ρgHgqg) = ∇ · (K∇T ), (5.9)

where H is the total enthalpy and K is the average conductivity

ρH = nSwρwHw + nSgρgHg + nShρhHh + (1− n)ρsHs, (5.10)

K = nSwKw + nSgKg + nShKh + (1− n)Ks. (5.11)

In the above definition of conductivity we assumed that the direction of conduc-

tivity is parallel to the laminar layers. This assumption is appropriate because

the hydrate most likely formed initially in order to align itself with the prevail-

ing temperature gradient. Since dH/dT = CP by definition of specific heat, we

can expand the derivatives with constant specific heats (a good approximation for

small changes in temperature and pressure) as

ρCP
∂T

∂t
+ (ρwC

w
P qw + ρgC

g
P qg) · ∇T = (5.12)

∇ · (K∇T ) + nρhL
∂Sh

∂t
+ (Hw −Hg)

(
dnρgSg

dt
+∇ · (qgρg)

)
(5.13)

where L = Hh − H` is the latent heat of dissociation and we have assumed the

densities of the water, hydrate and solid to be constant. Therefore if the hydrate

dissociates, latent heat will be absorbed, and if the gas dissolves the heat of dis-

solution will be absorbed as well. Generally the amount of gas dissolution will be

small in comparison to advection or conduction and we can ignore this term. The

average specific heat is defined as

ρCp = nSwρwC
w
p + nSgρgC

g
p + nShρhC

h
p + (1− n)ρsC

s
p (5.14)
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Similarly to dissolution we can close the above equation by specifying the solidifi-

cation or melting term as (see Worster 2000)

∂Sh

∂t
= khAh(Teq − T ) (5.15)

which expresses the rate of decomposition or formation of gas as a function of

the surface area Ah, kinetic coefficient kh and deviation in temperature from the

equilibrium value Teq from the phase diagram. The common assumption with

reference to mushy layers is to assume that khAh is large so that the phase change

occurs over a smaller time scale than other processes in the system. This result

implies that the hydrate is always in equilibrium with the water, T = Teq and we

will make this assumption.

5.4.3 Species equation

In a similar way we can express the total gas concentration for an averaged

region as

∂Cρ

∂t
+∇ · (ρwCwqw + ρgCgqg) = ρw∇ · (D∇Cw) (5.16)

where C is the total concentration which is composed of the gas concentration Cg

(generally equal to unity), the dissolved gas concentration Cw. In addition, D is

the mass diffusivity of dissolved gas in water and we have assumed that species

can only diffuse in the water. Here we have

ρC = nSwρwCw + nSgρgCg + nShρhCh, (5.17)

D = nSwDw. (5.18)

In this expression we have assumed that the hydrate concentration is constant (i.e.

Ch ≈ .13 for methane) and the gas concentration is constant (Cg = 1). Expanding

this equation and rearranging we obtain

nSw
∂Cw

∂t
+ qw · ∇Cw = ∇ · (D∇Cw) + rgw(Cw − Cg) + (5.19)

n
∂Sh

∂t

(
ρh

ρw

(Cw − Ch) +
ρg

ρw

(Cg − Cw)

)
, (5.20)
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an expression for the change in dissolved gas concentration in the water. The

second expression on the right hand side represents the increase in concentration

due to dissolution and the last term represents the change in concentration due to

hydrate dissociation or formation.

We can use a similar equation for the salt concentration expressed as

nSw
∂Cs

w

∂t
+ qw · ∇Cs

w = ∇ · (Ds∇Cs
w) + n

∂Sh

∂t

ρh

ρw

Cw. (5.21)

Here the only production term comes from the change in hydrate saturation, which

acts to increase the salt concentration when this term is positive. In general this

equation can be neglected when hydrate formation or decomposition is slow.

5.4.4 Interface conditions

At the interface one can use ‘pill box’ arguments to obtain jump con-

ditions across the liquid/liquid-hydrate interface. Applying Leibniz’s rule to the

equations in conservation form, we obtain in the limit as the control volume goes

to zero

[qw] = nVn[Sw] + nVn
ρw0

ρw

[Sh] (5.22)

[ρgqg] = nVn[ρgSg] + nρg0Vn[Sh] (5.23)

(nρhL+ nρg0(Hg −Hw))Vn[Sh] = [K∇T · n] (5.24)(
n(Cw − Ch) + n

ρg0

ρw

(Cg − Cw)

)
Vn[Sh] = [D∇C · n] (5.25)

T = Teq = Tm + Γ(C − Cm) (5.26)

where [] denote jumps in the bracketed quantity, Vn is the interfacial velocity and

Γ is the slope of the liquidus curve in Figure 5.2. The first two equations describe

the velocity of the gas and water at the interface due to hydrate decomposition

or formation. Equation (5.24) is known as the Stefan condition and expresses

the velocity of the moving boundary as a function of the thermal diffusion and

latent heat. In (5.25) we have assumed that the dissolution term drops out, which

is consistent for an equilibrium constraint. The last equation is the equilibrium
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condition and it expresses the interfacial temperature in terms of concentration

(i.e. liquidus curve on the phase diagram).

5.4.5 Multiphase flow equations

The above equations are closed with an appropriate expression for the

velocity, which is commonly assumed to follow Darcy’s law:

qw = −Πw

µw

(∇Pw + ρwg) , qg = −Πg

µg

(∇Pg + ρgg) (5.27)

where µ is the viscosity and Πw(Sw) is the saturation dependent water permeability.

The permeability and capillary pressure (Pc = Pg−Pw) relationships are in general

non-linear functions of water saturation that are determined experimentally. Here

we use the model of Genuchten (1996) expressed as

Πw = Π Πrw, Πrw = S1/2
e

(
1−

(
1− S1/m

e

)m)2

, (5.28)

Πg = ΠΠrg, Πrg = (1− Se)
1/2
(
1− S1/m

e

)2m
, (5.29)

Pc =
ρwg

α
fc, fc =

(
S−1/m

e − 1
)1−m

, (5.30)

where Π is the absolute permeability used for a single phase flow, Se = (Sw −

Swo)/(1 − Swo) is the equivalent saturation, scaled by the zero water phase flow

saturation Swo, and the coefficients m and α are determined experimentally for the

different combinations of the two fluids and sediment properties.

We can combine (5.6), (5.7) and (5.27) to obtain the saturation equation

n
dSw

dt
+∇ · qw = −rgw

ρw

− nρw0

ρw

dSh

dt
, (5.31)

qw =
Mw

Mw +Mg

(
qt −Mg∇ · Pc +Mgρwg

(
ρg

ρw

− 1

))
, (5.32)

where qt = qg+qw is the total flow rate and the mobility functions areMw = Πw/µw

and Mg = Πg/µg. In the special case of constant densities we can combine the

conservation of water and gas equations to obtain

∇ · qt = rgw

(
1

ρg

− 1

ρw

)
+ n

dSh

dt

(
1− ρw0

ρw

− ρg0

ρg

)
, (5.33)
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which expresses the divergence in qt in terms of gas dissolution and hydrate disso-

ciation.

5.4.6 Discussion of boundary conditions

In general there are many ways in which a boundary condition could be

applied in order to cause the hydrate to dissociate but we will only concentrate on

a few that are applicable to natural settings.

Temperature increase

If the overlying water column were to increase in temperature for some

reason such as a response to global warming or an anomalous pulse in temperature

the hydrate would dissolve, melt or dissociate in order to maintain equilibrium

with the methane and salt concentration fields. In addition, it is possible for there

to be sea floor lifting that will displace the hydrate region into a level of warmer

ocean water. In either case the dissociation will occur provided the temperature

of the water is larger than the equilibrium value for the concentration and will be

rate-limited by thermal (in the case of melting or dissociation) or mass diffusion

(in the case of dissolving).

Pressure decrease

Gas hydrates are unstable to decreases in pressure, which are possible if

the sea level decreases or if there is sea bed lifting. In response the equilibrium

temperature of the hydrate will decrease, causing the hydrate fraction to dissociate,

therefore absorbing latent heat, and decreasing the dissolved methane concentra-

tion until a new balance is reached. At the same time there will be a flux of heat

from the upper fluid that will act to dissociate the hydrate from the outside.
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Concentration decrease

In the case where the dissolved methane concentration in the water de-

creases below its equilibrium value, possibly due to the methane source turning

off, the hydrate will melt or dissolve. In most cases dissolution will occur at a rate

that is dependent on mass diffusion but for very large concentration differences

the rate of phase change will be dependent on the rate of heat transfer and the

hydrate will essentially melt.
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Gas hydrate dissolution and

melting in porous media

6.1 Abstract

In this chapter we formulate a model that is appropriate for hydrate dis-

sociation in a porous media without an applied fluid flow. Two simplified models

were developed and solved analytically in an unbounded domain, using a simi-

larity solution in order to determine the appropriate melting or dissolution rates

in natural settings. The first model uses a pure hydrate saturation, which is an

idealized setting with reference to sediments containing cold seeps. The second

model relaxes this assumption and allows for arbitrary hydrate saturation and a

mixed medium with constant thermal properties.

6.2 Introduction

As discussed in the previous Chapter 5, gas hydrates are contained within

the ocean sediment in extremely large quantities, worldwide. Since these deposits

are sensitive to thermal as well as pressure fluctuations created by global warm-

ing or some other mechanism, it is important to understand the stability of the

hydrates within the sedimentary layers. In this chapter we explore a model appro-

112
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priate for temperatures below the three-phase point, such that a gas phase cannot

exist. This region of the phase diagram is known as the hydrate stability zone in

which conditions are similar to the melting of a solid in contact with a binary fluid.

These types of problems have been studied extensively by a number of investiga-

tors using the Stefan condition, which is essentially an interfacial jump condition

for the enthalpy transport. A excellent review of these methods can be found in

Davis (2001), Worster (2000) and Crank (1984). Generally in multi-component

models the decomposition of the solid occurs in response to deviations in phase

equilibrium, which manifests itself from changes in temperature, pressure and con-

centration. A familiar example is the dissolution of ice cubes in saltwater, where

the temperature of the solution is allowed to drop below 0◦C. Since the salt causes

the melting point to be depressed, the ice dissolves and absorbs latent heat, thus

dropping the temperature. Indeed this fact is the reasoning for pouring salt onto

icy roads in the winter.

With reference to gas hydrates, similar processes have been examined in

regards to solidification in the sediment. Rempel & Buffett (1997) considered a

two-phase (hydrate and water) system in a porous medium of constant porosity,

with a cooled lower boundary and an an upper boundary with a constant dis-

solved methane concentration. The location of the hydrate-water interface was

determined as a function of time by solving the conservation equations for thermal

energy, mass, and gas concentration. Xu & Ruppel (1999) considered a similar

problem, but solved the system of equations with a steady-state assumption and

flux of energy, mass, and methane at the lower boundary and constant tempera-

ture, pressure, and methane concentration on the upper boundary. The important

results obtained from this analysis were an estimate for the height of the hydrate

stability zone and methane hydrate stability zone upper and lower boundaries.

In this Chapter we examine the melting and dissolution process of gas hy-

drates in homogeneous porous media, in a similar fashion to the classical methods

discussed in the preceding paragraphs. The sections are broken up as follows: In
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liquid

liquid/solid mixture

liquidus

C

T

Tm

Cm Cs

T∞

C(T∞)

Figure 6.1: Phase diagram for a binary mixture of methane and water. The shaded

area indicates a region of mixed hydrate and water and the diagonal line is the

liquidus curve.

Section 3 we present the general model, in Section 4 we simplify these equations for

pure hydrate saturation in one-dimension, then we relax the saturation to values

less than unity in Section 5 and finally in Section 6 we conclude.

6.3 Model description

In this chapter we restrict ourselves to temperatures and concentrations

that lie below the 3-phase point so that there is no gas phase. Therefore the

temperature and liquid concentration in the system must be less than Tm and Cm

respectively as shown in Figure 6.1. We will apply a constant temperature and

concentration in the far field, which acts to destabilize the hydrate and dissolve

it. This boundary condition can be imagined to be equivalent to a decrease in

pressure, since the equilibrium temperature will decrease, thus setting up a similar

temperature and concentration scale. One can argue that the hydrate will dissolve

internally but this will act on a much faster time scale and we can just take this

region at the new equilibrium state.

Here we are interested in the configuration illustrated in Figure 6.2, in
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hydrate/water mixture

water

C = C∞

T b = T b∞

T u = T u∞

z = s(t)
ds
dt

Figure 6.2: Setup for the hydrate dissolving or melting case with hydrate in the

lower half plane and water in the upper. s(t) is the position of the moving interface

with velocity ds/dt and has an initial position of s = 0.

which a rigid homogeneous matrix exists in an unbounded domain. Initially the

region z ≤ 0 is filled with a gas hydrate of some spatially dependent hydrate

saturation and water fills the pore space in the region z ≥ 0. This interface, labeled

z = s(t), moves with time, due to deviations in phase equilibrium and therefore

the velocity must scale with the magnitude of this difference (i.e. temperature and

concentration).

Without the gas phase we can simplify the equations presented in Chapter

5 and we present them here for convenience.

Upper layer

Without gas or hydrate, there is no possibility of a phase change and we

have the following equations in the upper layer

∂qw
∂z

= 0 → qw = qs
w, (6.1)

∂T

∂t
+ ξqs

w

∂T

∂z
= αu

∂2T

∂z2
, (6.2)

n
∂Cw

∂t
+ qs

w

∂Cw

∂z
= Dw

∂2Cw

∂z2
, (6.3)
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where qs
w is the water velocity at the interface, z = s(t), and we have taken the

properties to be constant,

αu =
nKw + (1− n)Kp

(1− n)ρpCs
P + nρwCw

P

, ξ =
nρwC

w
s

(1− n)ρsCs
P + nρwCw

P

, (6.4)

where the notation has been defined in Chapter 5. We should note that a conse-

quence of one-dimensional flow is that the temperature within the porous media

is constant in space, although a function of time by mass conservation.

Lower layer

In the lower layer there is only one mobile component (i.e. water) but

the hydrate, which shows up as an effective porous media, is allowed to dissolve or

melt into the water. The proper equations in the case are

∂qw
∂z

= nρh (1− r)
∂Sh

∂t
, (6.5)

ρCP
∂T

∂t
+ ρwC

w
P qw

∂T

∂z
=

∂

∂z

(
K
∂T

∂z

)
+ nρhL

∂Sh

∂t
, (6.6)

nSw
∂Cw

∂t
+ qw

∂Cw

∂z
=

∂

∂z

(
D
∂Cw

∂z

)
+ n(Cw − Ch)r

∂Sh

∂t
, (6.7)

qw = − Π

µw

(
∂Pw

∂z
+ ρwg

)
, (6.8)

where r = ρh/ρw, and we have used the single phase flow version of Darc’y Law.

These equations are much more complicated than for the upper layer, owing to the

change in mixture fraction. The dissolving or melting of the hydrate acts as a heat

sink and a source of dissolved methane gas. In addition we will force the reactive

porous media to be in equilibrium such that the temperature and concentration

are tied to the equilibrium condition,

T = Tm + Γ(Cw − Cm), (6.9)

where Γ is the slope of the ideal liquidus line.
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Interface conditions

At the interface between the two regions we have the jump conditions

q+
w = q−w + nS−h

ds

dt
(1− r) , (6.10)

nρhLS
−
h

ds

dt
= K

∂T

∂z

∣∣∣∣
−
− K

∂T

∂z

∣∣∣∣
+

, (6.11)

r
ds

dt
(Cw − Ch) = Dw(1− S−h )

∂C

∂z

∣∣∣∣
−
− Dw

∂C

∂z

∣∣∣∣
+

, (6.12)

where the (+) and (−) symbols denote the upper and lower layers respectively and

the interface velocity is Vn = ds/dt.

In this chapter we will consider two situations; one in which the bottom

layer is completely filed with hydrate (Sh = 1) and the other in which we will relax

this assumption.

6.4 Simple dissolution model

As noted in the introductory chapter, cold vents off Vancouver island

proved to contain large concentrations of methane hydrate (Sh ≈ .79), due to a

flux of highly concentrated dissolved methane gas from below the hydrate stability

zone. If the flow at this location were to suddenly turn off for whatever reason the

hydrate layer may dissolve if the methane concentration of the overlying layer is

less than the equilibrium value at the local ocean temperature.

In this section we will look at an idealized scenario, in which the upper

and lower layers are infinitely long and the hydrate saturation is pure (Sh = 1)

below z < s(t). From the interfacial mass condition the velocity of the liquid at

the interface is given as

qs
w = n(1− r)

ds

dt
, (6.13)

since there is no flow through the solid lower layer. From mass conservation this

must also be the velocity throughout the vertical extent. Then from Darcy’s equa-
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tion the pressure gradient is determined from

dP

dz
= ρwg − qs

w

µw

Π
= ρwg − n(1− r)

µw

Π

ds

dt
. (6.14)

Finally we have the following governing equations

∂T

∂t
= αb

∂2T

∂z2
, z < s(t), (6.15)

∂T

∂t
+ ξqs

w

∂T

∂z
= αu

∂2T

∂z2
, z > s(t), (6.16)

∂Cw

∂t
+ qs

w

∂Cw

∂z
= D

∂2Cw

∂z2
, z > s(t), (6.17)

∂Cs

∂t
+ qs

w

∂Cs

∂z
= Ds∂

2Cs

∂z2
, z > s(t), (6.18)

where we have included the salt concentration equation to be explored later the

averaged thermal diffusivity ia a constant expressed as

αb =
nKh + (1− n)Ks

(1− n)ρsCs
P + nρhCh

P

. (6.19)

These equations are closed provided we know the interface temperature, concen-

tration and position. In general this requires three equations, which are satisfied

by the following jump conditions

K
∂T

∂z

∣∣∣∣
b

− K
∂T

∂z

∣∣∣∣
u

= nρhL
ds

dt
, (6.20)

Dw
∂C

∂z

∣∣∣∣
u

= r
ds

dt
(CH − CI), (6.21)

Ds∂C
s

∂z

∣∣∣∣
u

= −rds

dt
Cs

I , (6.22)

TI = Tm + Γ(CI − Cm), Γ =
∆T

∆C
=

T u
∞ − T b

∞
C(T u

∞)− C(T b
∞)
, (6.23)

where u and b denote the upper and lower layer respectively, TI = T (s, t) the

interface temperature and CI = Cw(s, t) the interface methane concentration and

Cs
I = Cs(s, t) is the interface salt concentration.
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6.4.1 Solution

We seek a similarity solution to the governing equations with variable

η = z/2
√
Dt and interface position s = 2λ

√
Dt. Here λ is an eigenvalue to be

determined as part of the solution and we have taken the interface position to

scales with the rate of methane diffusion. For this solution to exist we consider

the boundary and initial conditions:

T b(−∞, t) = T b(z, 0) = T b
∞, T u(∞, t) = T u(z, 0) = T u

∞, (6.24)

Cw(∞, t) = Cw(z, 0) = C∞, Cs(∞, t) = Cs(z, 0) = Cs
∞. (6.25)

Using the non-dimensional scales Cw = C ∆C + C∞ and T = θ∆T + T u
∞

we have the following set of ODE’s

θb
ηη + 2ηθb

ηL
b
e = 0 η < λ, (6.26)

θu
ηη + 2θu

ηL
u
e (η − ξγλ) = 0 η > λ, (6.27)

Cηη + 2Cη(η − γλ) = 0 η > λ, (6.28)

C s
ηη + 2C s

η (η − γλ) = 0 η > λ, (6.29)

where γ = n(1 − r), Lb
e = D/αb (Lu

e = D/αu) is the Lewis number and we have

assumed that the diffusivity of methane gas and salt are equal. The interface

conditions are

θb
η − σθu

η = 2StLebλ, η = λ, (6.30)

Cη = 2r(Ch − CI)λ, η = λ, (6.31)

C s
η = −2r

(
C s

I +
C∞
∆C

)
λ, η = λ, (6.32)

θI = CI − 1 + C∞, η = λ, (6.33)

where σ = Ku/Kb, St = nLρh/∆T (ρCP )b, is the Stefan number, C∞ = (C∞ −

C(T b
∞))/∆C and Ch = (CH − C∞)/∆C. We have the following boundary condi-

tions:
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θb(−∞) = −1, θb(λ) = θu(λ) = θI , θu(∞) = 0, (6.34)

C (∞) = 0, C (λ) = CI , C s(∞) = C s
∞, C s(λ) = C s

I . (6.35)

Integrating equations (6.26)–(6.28), applying the boundary conditions

and the definition of the error function (erf) we have

θb + 1

θI + 1
=

erfc(−η
√
Leh)

erfc(−λ
√
Leh)

, η < λ, (6.36)

θu

θI

=
erfc

(√
Le`(η − ξγλ)

)
erfc

(√
Le`(λ− ξγλ)

) , η > λ, (6.37)

C

CI

=
erfc (η − γλ)

erfc (λ− γλ)
η > λ, (6.38)

C s − C s
∞

C s
I − C s

∞
=

erfc (η − γλ)

erfc (λ− γλ)
, η > λ. (6.39)

Then from the interface flux conditions we can express the interface temperatures

and concentration as

θI =
F (−λ

√
Leh)St

√
Leh − 1

1 + σ
√

Le`√
Leh

F (−λ
√

Leh)

F(
√

Le`(λ−ξγλ))

, (6.40)

CI =
2rChF (λ− γλ)

2rF (λ− γλ)− 1
, (6.41)

C s
I

C s
∞

=
1 + 2rF (λ− γλ)B

1− 2rF (λ− γλ)
, (6.42)

where F (ν) =
√
π λ erfc(ν) exp(ν2)/2 and B = C∞/(C

s
∞ − C∞). The eigenvalue

λ may be determined by combining the above expressions with the equilibrium

condition

F (−λ
√
Leh)St

√
Lehλ− 1

1 + σ
√

Le`√
Leh

F (−λ
√

Leh)

F(
√

Le`(λ−ξγλ))

=
2nrλChF (λ− γλ)

−1 + 2nrλF (λ− γλ)
− 1 + C∞. (6.43)

We can further simplify this expression, since the hydrate and water densities

are approximately equal (i.e. γ � 1). Furthermore the diffusivity of heat is
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approximately 2 orders of magnitude larger than that of mass and we can make a

small Lewis number limit (Leu, Leb � 1).

√
π

2
St
√
Lehλ− 1

1 + σ
√

Le`√
Leh

=
2nλChF (λ)

−1 + 2nλF (λ)
− 1 + C∞. (6.44)

This is an eigenvalue equation for the eigenvalue λ and is represented as a function

of St, Ch and C∞.

We solved equation (6.44) numerically and plotted the solution as a func-

tion of the three parameters C∞,Ch and St in Figure 6.3. Ch is the ratio of the

typical difference in gas concentration between the hydrate and liquid to the scale

of concentration variations in the liquid. Since mass diffusion is our slowest scale,

this is the governing parameter in the system rather than the Stefan number, St,

as seen in Figure 6.3. In our case Ch � C∞, so this parameter is controlled by

∆C, which by equilibrium is equivalent to the temperature difference ∆T . Thus as

the far field temperature is increased, Ch is decreased and the melting rate is sub-

sequently increased as we expect. In addition the parameter C∞ has an important

effect on the dissolution rate because it controls the far field gas concentration. As

C∞ is decreased, mass diffuses away from the boundary, causing the liquidus tem-

perature to decrease. This has the effect of dissolving the hydrate and therefore

as C∞ is decreased further the dissolving rate of hydrate increases in tandem.

In the previous analysis we have ignored the effect of salinity on the sys-

tem, which will alter the equilibrium condition at the boundary. This assumption

is valid provided the salt concentration is approximately uniform. We expect this

to occur if the dissolution process is slow, since the salinity field will be able to

diffuse at a faster rate than the moving boundary. Therefore, in the limit λ ∼ 0

equation (6.42) is approximately

C s
I

C s
∞

= 1 +
2F (λ)

1− 2F (λ
(1−B) ≈ 1 +

√
πλ(1−B) ≈ 1, (6.45)

and the interfacial salt concentration is approximately equal to the far field con-

dition.
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Figure 6.3: Eigenvalue λ as a function of Ch from the solution to equation (6.44)

for St = 10 (dotted line) and 100 (solid line) and C∞ = .5 (left) and −.5 (right).

Here Leh = .004, Le` = .0063 and n = .5.

6.5 Simple mushy layer model

As we can see from Table 5.1 in Chapter 5 the thermal conductivities of

the hydrate and liquid are very similar as well as their densities therefore we will

take Kh = K` and ρh = ρ` (thus r = 1). In this case there is no fluid velocity and

the governing equations become

∂T

∂t
=

K

(ρCP )b

∂2T

∂z2
+

nρhL

(ρCP )b

∂φ

∂t
, z < s(t), (6.46)

∂C

∂t
=

∂

∂z

(
D
∂C

∂z

)
, z < s(t), (6.47)

∂T

∂t
= αw

∂2T

∂z2
, z > s(t), (6.48)

∂C`

∂t
= Dw

∂2C`

∂z2
, z > s(t), (6.49)

T = Tm + Γ(Cw − Cm), (6.50)
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with the following interfacial conditions

q+
w = q−w , (6.51)

nρhLS
−
h

ds

dt
= K

∂T

∂z

∣∣∣∣
−
− K

∂T

∂z

∣∣∣∣
+

, (6.52)

ds

dt
(Cw − Ch) = Dw(1− S−h )

∂C

∂z

∣∣∣∣
−
− Dw

∂C

∂z

∣∣∣∣
+

. (6.53)

Since the Lewis number is small for this system, as discussed previously,

we will examine the solutions for a small Lewis number Le � 1. This implies that

we can ignore mass diffusion in comparison to thermal diffusion to leading order,

which is commonly done in connection to solidification (Rempel & Buffett 1997

and Worster 2000). As a consequence of this assumption we have Sh = 0 at the

interface and the conditions here reduce to

Sh = 0, [Tz] = 0. (6.54)

Furthermore, equation (6.47) requires the total concentration C = C̄(z)

to be constant in time with some initial hydrate distribution. Solving this equation

for Sh, differentiating with respect to time and combining with internal equilibrium

we obtain the following expression

Sh =
C̄(x)/n− Cw

Ch − Cw

, (6.55)

∂Sh

∂t
=
∂T

∂t

Γ−1

(Ch − Cw)2

(
C̄

n
− Ch

)
, (6.56)

which expresses the change in hydrate saturation in terms of temperature. There-

fore if the temperature of the bottom layer increases the hydrate will dissolve in

order to increase the methane concentration in the water to its new equilibrium

value.

We can combine equations (6.46) and (6.56) to obtain a modified version

of the heat equations as

∂T

∂t

[
1− nρhL

(ρCP )bΓChn

C̄/Ch − n

(1− Cw(T )/Ch)
2

]
=

K

(ρCP )b

∂2T

∂z2
= Ω

∂T

∂t
, (6.57)
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which is nonlinear due to the hydrate fraction dependence of the specific heat, ρCP ,

and the temperature dependence of the internal dissolved hydrate concentration,

Cw.

6.5.1 Solution

The modified form of the temperature equation (6.57) for the reactive

porous media is difficult to solve in closed form but we can make some appropriate

simplifications for our system. For methane hydrate there is a relatively high gas

concentration so Ch � Cw and we can neglect the term Cw/Ch in this equation.

In addition we will assume that the total concentration of gas is constant in space

(C̄ = C0) and that the average specific heat is constant. Therefore,

Ω = 1 +
St

Ch

(
1− β

Ch

)
, (6.58)

where β = C0/2n∆C and we note the fact that C0 = ShnCh + n(1− Sh)Cw. Now

we have the simplified set of equations

∂T

∂t
= α̂

∂2T

∂z2
, z < s(t), (6.59)

∂T

∂t
= αu

∂2T

∂z2
, z > s(t), (6.60)

C` = C∞, z > s(t), (6.61)

TI = Tm + Γ(C∞ − Cm), z = s(t), (6.62)

∂T

∂z

∣∣∣∣
u

=
∂T

∂z

∣∣∣∣
b

, z = s(t), (6.63)

where the concentration in the upper layer is equal to its initial condition and

the equation in the bottom layer has a modified term for the thermal diffusivity

α̂ = αb/Ω. We solve the above equation, using a similarity variable defined as η =

z/2
√
αut and interface speed s = 2λm

√
αut with the same non-dimensionalization

of the temperature and concentration of the previous section.
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Figure 6.4: Eigenvalue λ (solid line) and λm
√
αu/D (dotted line) as a function

of C∞ from the solution to equation (6.67) and (6.44) for St = 2, 10, 100. Here

αu/αb = .62, CH = 100 and n = .5.

θb + 1

θI + 1
=

erfc(−η
√
ω)

erfc(−λm
√
ω)

η < λm, (6.64)

θu

θI

=
erfc(η)

erfc (λm)
η > λm. (6.65)

(6.66)

Here ω = α`/α̂ = α`Ω/αH and θI = C∞ − 1. From the continuity of heat flux

condition at the interface, the eigenvalue equation is

1− C∞
F (λm)

=

√
ω C∞

F (−λm
√
ω)
, η = λm. (6.67)

The formulations for the two methods presented in this chapter are in-

herently different because we have relaxed the pure hydrate saturation assumption
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in the last case. The assumptions however, going into these two methods are

essentially the same (i.e. Le � 1 and γ � 1) and it is interesting to compare

the two methods. We have plotted the solutions to the two methods in Figure

6.4, corresponding to equations (6.44) and (6.67) as a function of the parameter

C∞. As we expect the two solutions show that the decomposition rate is larger

when the concentration at infinity is less than the equilibrium value and as the

temperature difference in the system increases. Clearly the mushy layer model

yields larger eigenvalues λ, since the hydrate saturation is less than unity and the

decomposition rate scales with the thermal diffusion rather than mass diffusion.

It is interesting to note from this figure that for large values of C∞ the

hydrate is dissolving because the eigenvalue scales with mass diffusion (indicated

by a λ = O(1)). On the other hand when the temperature or concentration scale

is relatively large λ increases and the appropriate scale for the advancing front is

with thermal diffusion (i.e. the hydrate is melting).

Relationship to in situ deposits

Gas hydrates initially form in the ocean because there is a source of

methane and the temperature, pressure and concentration conditions are optimal

for growth. If the source is ever turned off or the surrounding water temperature

increases the hydrate will dissolve or melt until the appropriate equilibrium con-

ditions are met. This result may not be all that important with respect to global

warming because the methane is in aqueous form and the time scale for the ocean

to turn over is very large. This model gives us a physical understanding of the

dissolution mechanism and an idea of the dissolution rates. For example, with a

value of λ in the range .01-10 the interface may have displaced a distance of a few

meters, depending on the temperature and concentration conditions.
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6.6 Conclusion

In this chapter we investigated the dissolution and melting of gas hy-

drates in response to deviations in phase equilibrium in the case that temperature

is below the three phase point. Two simplified models were developed and solved

analytically to determine the velocity of the interface as a function of the temper-

ature and concentration difference in the system. In the first model, we assumed

a pure hydrate lower layer, which is a simplified analogue to sedimentary regions

with cold vents. In this case we found that the hydrate dissolves if the temperature

is increased above its equilibrium value at the local methane concentration and if

the far field concentration is dropped below the equilibrium value at the far field

temperature. In the second model we relaxed the pure hydrate assumption and

formulated the problem with an arbitrary hydrate saturation in the lower layer.

Since the Lewis numbers are small for natural systems we neglected mass diffusion

and obtained a modified heat equation with an effective diffusivity that decrease

with phase change via latent heat release. The interface velocity in this case was

shown to depend on the same environmental conditions such as temperature and

concentration but were faster, owing to the internal dissolution.
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Gas hydrate dissociation in

porous media

7.1 Abstract

The dissociation of gas hydrates in the ocean sediment by warming ocean

water temperatures may contribute to global warming by the release of stored

methane into the atmosphere. Gas hydrates are a solid compound composed of

water and gas that will decompose by the transfer of thermal energy supplied by

the environment. Since naturally occurring deposits exist in conjunction with the

sedimentary layer that make up the sea-floor, the dissociation process will generate

a two-phase flow that will be transported through the sediment and into the ocean

water column. We develop a mathematical model based on a set of conservation

laws for temperature, mass and momentum that are then solved numerically and

also analytically for some reduced cases. We compare solutions for gas flow rate,

gas saturation profiles as well as the evolution of the upper and lower gas flow rates

and moving boundary velocity as a function of the degree of thermal forcing and

sediment properties. Finally we discuss possible gas fluxes into the ocean, which

may have practical applications to in situ deposits.

128
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7.2 Introduction

Gas hydrates are crystalline ice-like compounds made up of water molecule

cages held together by hydrogen bonding. A guest gas contained within the center

cavity stabilizes the structure under low temperatures and high pressures. They

can be found below the seafloor attached to the sediment that makes up the conti-

nental margins or bound to the subsurface of the permafrost regions. Generally the

geographical locations of in situ deposits are constrained by the source of methane,

which may form by bacterial methanogenesis of buried organic matter. The for-

mation mechanism can be described by Rempel & Buffett (1997) by the extraction

of dissolved gas at a hydrate boundary in order to maintain thermodynamic and

compositional equilibrium. There are offshore regions such as Vancouver island,

where cold vents seep high concentrations of methane through the sediment. As

a result large concentrations of methane hydrate are found near the seafloor and

may span horizontal distances reaching in the range of kilometers. At the Van-

couver island site, sediment core samples taken by Lu et al. (2005) and Riedel

et al. (2006) were between 2-8 meters below the seafloor. This sediment consisted

of finely laminated glaciomarine clays and silts with massive hydrates containing

saturations up to Sh = .78. In some cases this level of saturation spanned several

meters but ultimately decreased rapidly with depth.

It is widely believed that large quantities of methane gas are trapped

within oceanic sediments and could potentially surpass known fossil fuel reserves

to make them the largest hydrocarbon sources on earth (Buffett, 2000). Since

hydrates will decompose in response to an increase in water temperature above

the three-phase point, there is concern over the fate of these methane deposits,

since methane is a strong greenhouse gas, as a result of continued global warming

(Kvenvolden, 1993; MacDonald, 1990). In addition there has been global interest

in the recovery of these hydrocarbons as a potentially new energy source using

various extraction schemes such as depressurization or hot water injection. It is
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for these reasons that we are interested in the dissociation rates and gas fluxes

through the sediment in response to an increase in boundary temperatures.

Previous mathematical models have centered around one-dimensional

Stefan type melting problems attributed to Stefan (1891) and discussed exten-

sively in Crank (1984). In these types of models the transport of thermal energy

to the solid-liquid phase boundary causes decomposition and subsequent movement

of this interface at a non-linear rate. Naturally the change in density between the

two phases induces fluid motion by mass conservation, which in the case of a porous

medium can be described by Darcy’s law. Using this basic mechanism Selim &

Sloan (1989) considered a simple analytic model for the rate of dissociation in a

semi-infinite plane in response to an increase in upper boundary temperature. They

ignored the motion of the water and the effect of fluid saturation on the relative

permeability and determined gas release rates as a function of boundary tempera-

ture. Tsypkin (2001) considered a multiphase flow and looked at the stratum and

interface temperatures as a function of permeability in response to different upper

boundary pressures in a depressurizing well. He linearized the governing porous

medium equations and solved for the temperature, pressure and water saturation

by a similarity solution. The main results were that under certain conditions,

mainly a large drop in stratum pressure or increase in permeability, the dissocia-

tion can lead to the formation of ice, creating a boundary for gas extraction. Most

recently Ahmadi et al. (2004) obtained a numerical solution for the rate of gas

production from dissociating hydrates in a depressurized well. They solved the

thermal energy and pressure equation coupled to the Clausius–Clapeyron equa-

tion and Stefan condition at the moving interface. These equations were solved on

both sides of the interface without consideration of a water phase, using an explicit

finite difference method. The position of the moving interface was obtained from

the Stefan condition, using a low-order numerical scheme.

Experimentally, gas hydrate dissociation schemes have been performed

in the laboratory under high pressures in which the hydrates were formed from
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dissolved methane gas rather than from fine snow (Stern et al., 2003). Kamath

& Holder (1987) performed experiments with a mixture of propane and methane

hydrates by circulating relatively warm water above the upper surface. They

assumed a nucleate boiling phenomenon for the heat transfer using Rohsenhow’s

correlation to obtain estimates for the rate of gas release that they attempted to

fit with experimental data. Yousif et al. (1990) used a depressurization scheme

at isothermal conditions and tracked the position of the moving boundary and

gas volume exiting the porous medium. They compared there results with an

analytical solution based on Darcy’s law with a formulation in terms of pressure

with a negligible change in gas saturation.

All of these studies have ignored the inherent non-linearity in a multiphase

porous media flow as a result of the coupling between the two immiscible fluids.

As a result the models developed in these studies will have significant inaccuracies

unless the properties of the system fall within a narrow parameter space. In this

Chapter we model the problem by employing a set of one-dimensional conservation

laws that describe the transport of thermal energy, mass and momentum through

a homogeneous porous media, including the effect of strong non-linearities due to

the saturation-dependent capillary pressure and permeability functions. The non-

linear coupled partial differential equations are solved numerically and also exactly

for some reduced cases to determine the gas flux out of the sediment as a function

of thermal forcing and sediment properties. In order to understand the most basic

mechanism in hydrate dissociation we will take the hydrate saturation to be very

large, such that there cannot be any internal phase changes often encountered with

mushy layers (Worster, 2000). This idealized model is appropriate in sediments

with cold seeps, where the hydrate concentration are extremely high.

In section 7.3 we develop the appropriate model for the dissociation prob-

lem and in section 7.4 we non-dimensionalize these equations and describe the ap-

propriate scaling. In section 7.5 we present solutions to some reduced models. In

section 7.6 we show some result from the numerical solution and compare them



132

qgb qwb
z = 0

T = TD
z = s(t)

z = `w

z = `h

ds/dt

P = Po, T = T`w

Hydrate layer

Liquid layer

Water column

Figure 7.1: Diagram showing a porous medium of finite size, containing a hydrate

layer (initial thickness `h) below z = s(t) and a liquid layer (initial thickness `w)

above z = s(t). The dissociation front moves downwards with velocity V = ds/dt

and the hydrate is replaced with water and gas with boundary velocities qwb and

qgb for the water and gas respectively. The gas is transported through the sediment

and finally enters the water column, where the gas rises as bubbles.

against the reduced models. Finally in section 7.7 we conclude.

7.3 Model Formulation

In this analysis we focus only on the sediment, which we consider to be a

homogeneous, rigid matrix as shown in Figure 8.1. The sediment is separated into

two regions: a hydrate layer below the solid-fluid phase boundary z = s(t) and a

liquid layer above z = s(t). We are interested in modeling the dissociation and flux

rate of gas through the sediment in response to a sudden application of a constant

temperature boundary condition at z = `w. The application of this thermal field

will destabilize the crystalline solid, which will release water and gas that will

be transported as a two-phase flow. Since hydrate dissociation requires the fluid

adjacent to the three-phase boundary (hydrate-water-gas) to be warmer than the

dissociation temperature and the rate will depend on the degree of this difference,

the flow field is intimately coupled to the rate of thermal energy transport.
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liquid

liquidus
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hydrate/gas

liquid/hydrate mixture

TD0

CmC(T∞) C

T

CH

T`h

T`w

Figure 7.2: Typical phase diagram for a binary mixture of methane gas and water in

which gas hydrates (solid ice-like structure) form. The thick dashed line represents

the path for the problem presented in this Chapter.

Since we are dealing with a binary system, we are naturally concerned

with the phase diagram. Our path corresponds to the thick dashed line in Figure

7.2, where the conditions in the hydrate never enter the mixed phase region because

we assume pure hydrate saturation. Generally, one would need to consider the

transport of species such as dissolved methane and salt but we make a small Lewis

number assumption. Therefore the the salt concentration is zero and dissolved

methane concentration is constant (C = C(TD0)) at the interface.

In the sections that follow we will develop the model corresponding to the

three parts of the problem: thermal energy transport, two-phase flow in a porous

medium and moving boundary problem.

7.3.1 Thermal Energy Transport

A constant temperature is applied at the upper boundary, z = `w, which

will diffuse downwards, towards the hydrate layer. Once the temperature adjacent

to the hydrate-fluid boundary is larger than the dissociation temperature there will
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be a flux of gas and water through the porous media from the decomposing hydrate

surface. The presence of the gas in the sediment will change the average thermal

properties of the system and a positive flux of mass can transport cool fluid away

from the phase boundary, thus reducing the dissociation rate. The transport of

thermal energy in this way can be described by the following advection-diffusion

equations

Ce
∂Tw

∂t
+ Ve

∂Tw

∂z
=

∂

∂z

(
Ke

∂Tw

∂z

)
, s(t) < z < `w, (7.1)

∂Th

∂t
= αhe

∂2Th

∂z2
, `h < z < s(t), (7.2)

where Tw is the temperature in the upper layer, Th is the temperature in the

lower layer and we assume that there is no flow of water in the hydrate bearing

region. The variables Ce, Ve, Ke and αhe are defined in terms of fluid and sediment

properties as

Ce = nSwρwCw + nSgρgCg + (1− n)ρsCs, (7.3)

Ve = nSwρwCwVw + nSgρgCgVg, (7.4)

Ke = nSwKw + nSgKg + (1− n)Ks, (7.5)

αhe =
nShKh + nSwKw + (1− n)Ks

nShρhCh + nSwρwCw + (1− n)ρsCs

=
Kh

Ch

(7.6)

where n is the porosity, C is the specific heat, ρ is the density, K is the thermal

conductivity, V is the velocity, S is the saturation and the subscripts w, h, g and

s correspond to water, hydrate, gas and solid matrix respectively. In this Chapter

we will set Sh = 1, corresponding to a hydrate saturated pore space, which is the

maximum amount of gas storage possible.

In addition we apply the following boundary and initial conditions

Tw(0, zw) = Tw0, Tw(t, `w) = T`w, (7.7)

Th(0, zh) = TD0, Th(t,−`h) = TD0, (7.8)

where TD0 is the initial dissociation temperature and the initial temperature in

the liquid layer has some vertical profile that will be taken in this Chapter to be

either TD0 or T`w.
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7.3.2 Two–phase flow in a porous medium

Once the hydrate decomposes, there will be a flux of both water and

gas out of the interface that will move up or down depending on the properties

of the system. The gas will then migrate through the sediment as a multiphase

flow until it reaches the upper boundary and exits the sediment. These types

of flows have commonly been studied in hydrology and petroleum engineering

using multiphase flow extensions to the well-known single-phase porous medium

equations (Bear, 1991; Aziz & Settari, 1979; Peaceman, 1977). The equations for

mass and momentum conservation are

∂ nSwρw

∂t
+
∂qwρw

∂z
= 0, (7.9)

∂ nSgρg

∂t
+
∂qqρg

∂z
= 0, (7.10)

qw = nSwVw = −κw

µw

(
∂Pw

∂z
+ ρwg

)
, (7.11)

qg = nSgVg = −κg

µg

(
∂Pg

∂z
+ ρgg

)
, (7.12)

where n is the porosity, κw(Sw) and κg(Sw) are the water and gas permeability’s and

µ is the viscosity. By definition the water saturation is the ratio of water volume

to volume of void space so naturally the following condition holds Sw + Sg = 1.

In addition we can relate the difference in phase pressure to the capillary pressure

Pc(Sw) = Pg − Pw, which depends on the surface tension in the sediment.

The permeability and capillary pressure relationships are in general non-

linear functions of water saturation that are determined experimentally. Here we

use the model attributed to Genuchten (1996) expressed as

κw = K krw, krw = S1/2
e

(
1−

(
1− S1/m

e

)m)2

, (7.13)

κg = Kkrg, krg = (1− Se)
1/2
(
1− S1/m

e

)2m
, (7.14)

Pc =
ρwg

α
fc, fc =

(
S−1/m

e − 1
)1−m

, (7.15)

where K is the absolute permeability used for a single phase flow, Se = (Sw −
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Swo)/(1 − Swo) is the equivalent saturation, scaled by the zero water phase flow

saturation Swo, and the coefficients m and α are determined experimentally for the

different combinations of the two fluids and sediment properties. Finally, the gas

density can be determined from the ideal gas law

ρg =
Pg

RT
, (7.16)

where R is the gas constant and we assume the water density to be constant.

Pressure and saturation equation

Combining equations (7.9)-(7.12) to eliminate the time derivative of sat-

uration, assuming that the density of water is constant and that the density of gas

is a function of pressure only, which is valid for small temperature changes, we get

n(1− Sw)
∂ρg

∂Pg

∂Pg

∂t
= ρg

∂

∂z

[
KW

µw

(
∂Pg

∂z
− ∂Pc

∂z
+ ρwg

)]
+

∂

∂z

[
ρgKg

µg

(
∂Pg

∂z
+ ρgg

)]
,

(7.17)

which is known as the pressure equation (Bear, 1991; Aziz & Settari, 1979). Sim-

ilarly equations (7.9)-(7.12) can be combined to eliminate pressure in favor of the

water saturation to obtain

n
∂Sw

∂t
+
∂qw
∂z

= 0, (7.18)

qw =
Mw

Mw +Mg

[
qt +Mg

∂Pc

∂z
+Mgρwg

(
ρg

ρw

− 1

)]
. (7.19)

Here Mw = K/µw is the water mobility, Mg = K/µg is the mobility for the gas

phase and qt = qw + qg is the total flow rate.

In the special case that the gas density is constant, which will only be true

to leading order when `w and the fluid velocity are small, the pressure equation

(7.17) takes on the much simpler form

∂qt
∂zw

= 0, (7.20)

in which case the total flow rate is constant in space.
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Upper Boundary Condition

At the upper boundary, where the gas discharges into the ocean water

column, the conditions on saturation, flow rate and pressure are unknown and must

be determined as part of the solution. For large reservoirs the flow of fluid leaving

the sediment will be quickly dissipated and we can assume that a boundary layer

exists such that outside this region the velocity is zero and the pressure is equal

to the hydrostatic pressure Po. Since a multiphase flow will still exist outside the

porous medium, we can assume that the form of equations (7.9)-(7.12) still applies

and write the Darcy’s law-assuming that the thickness of the boundary layer is

very small, following Wu et al. (1996) as

qw = qwu = −Kkrw

µw

(−χ(Pw − Po) + ρwg) , (7.21)

qg = qgu = −Kkrg

µg

(−χ(Pg − Po) + ρgg) , (7.22)

where χ = 1/∆z, is some arbitrarily large number and Po is the pressure just

outside the porous medium. This formulation essentially is the simplest approach

without solving the outer problem.

7.3.3 Moving Boundary Problem

As the hydrate dissociates there will, in general, be a change in density

that by mass conservation will induce a fluid velocity adjacent to the phase bound-

ary z = s(t). By transforming the mass conservation equations (7.9) and (7.10)

into integral form and applying them across the interface we obtain the jump

conditions

qw = n
ds

dt
(Sw − βw), βw =

ρwo

ρw

, ρwo =
nhρhMw

Mg + nhMw

, (7.23)

qg = n
ds

dt
(Sg − βg), βg =

ρgo

ρg

, ρgo =
ρhMg

Mg + nhMw

, (7.24)

for the water and gas velocities. Since the hydrate is some mixture of gas and water

we define the equivalent partial densities, ρwo and ρgo, as a function of hydrate
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number, nh, hydrate density, ρh and molecular weight, M . Adding equations

(7.23) and (7.24) the total velocity for incompressible flow is

qt = σ
ds

dt
,

σ

n
= 1− 1

(
ρwo

ρw

+
ρgo

ρg

)
, (7.25)

At the hydrate-liquid interface we assume that when the water temper-

ature rises above the dissociation temperature, the solid decomposes at a rate

dependent on the difference in heat flux flowing into and out of this interface.

This conservation law, known as the Stefan condition, is

Kh
∂Th

∂z
−Ke

∂Tw

∂z
= nρhL

ds

dt
, Th = Tw = TD. (7.26)

In general the hydrate dissociation temperature is some function of pres-

sure, which can be defined by the well known Clausius–Clapeyron equation

lnP = A− B

TD

, (7.27)

for hydrate-specific constants A and B (Sloan, 1990).

7.4 Non-dimensionalization

The system of equations presented so far may be non-dimensionalized in

the following way

ẑw =
zw

`w
, ẑh =

zh

`h
, ŝ =

s

`h
, (7.28)

T̂ =
T − TD0

T`w − TD0

, ρg = ρ̂ρgb, P = P̂ ρwg`w + Po, (7.29)

where ρgb is the gas density at z = 0, Po is the pressure at the seafloor z = `w and

TD0 is the initial dissociation temperature evaluated at the hydrostatic pressure.

Naturally the velocity in the system scales with the dissociation rate, which from

the Stefan condition has the form qst = ∆T Kavg/(ρhL `w). With this boundary

speed we scale the fluid velocities as follows

q̂ =
q

nqst
, t̂ =

t qst
`w

. (7.30)
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Finally the average thermal conductivity and specific heat are scaled with there

initial values as

Ĉe =
Ce

nρwCw + (1− n)ρsCs

=
Ce

Cavg

, (7.31)

K̂e =
Ke

nKw + (1− n)Ks

=
Ke

Kavg

, (7.32)

The resultant form of the governing equations with these non-dimensional vari-

ables will be discussed in the subsequent sections. We now drop hats on all non-

dimensional quantities.

7.4.1 Thermal Energy

With these new variables the governing equations for thermal energy take

on the following form

Ce
∂Tw

∂t
+ Ve

∂Tw

∂zw

=
1

Pew

∂

∂zw

(
Ke

∂Tw

∂zw

)
, (7.33)

∂Th

∂t
=

1

Peh

∂2Th

∂zh
2
, (7.34)

ds

dt
= d1

∂Th

∂zh

− r`Ke
∂Tw

∂zw

, (7.35)

Ve = qw (cw − ρcg) + qtρcg, (7.36)

Ce = Sw (cw − ρcg) + ρcg + cs, Ke = b1 Sw + b2, (7.37)

where the Péclet numbers for the two regions are expressed as

Pew = St−1, Peh = r2
`

αavg

αhe

St−1, St =
ρhL

∆T Cavg

, (7.38)

in which αavg = Kavg/Cavg, r` = `w/`h is the ratio of the initial water to hydrate

layer depth, d1 = r2
`Kh/Kavg, qt = σr−1

` ds/dt, St is the Stefan number and the

other parameters have the form:

cw =
nρw Cw

Cavg

, cg =
nρgbCg

Cavg

, cs =
(1− n)ρsCs

Cavg

, (7.39)

b1 =
nKw − nKg

Kavg

, b2 =
nKg + (1− n)Ks

Kavg

. (7.40)
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The thermal constants cw, cg and cs represent the specific heat ratios of the three

material components – water, gas and porous medium – respectively to the initial

average value of the system. In addition the constants b1 and b2 represent the

thermal conductivity ratios of the difference between the water and gas to the initial

average value of the system and the ratio between a gas to water saturated porous

medium. In the special case that the difference between the thermal properties

of the gas and water are sufficiently small and the gas density is constant, the

variables V̂e, Ĉe, and K̂e will be decoupled from the saturation equation.

Finally the boundary and initial conditions in non-dimensional form are

Tw = Tw(0, zw) = Tw0, Tw(t, 1) = 1, (7.41)

Tw(s/r`) = Th(s) = TD, (7.42)

Th = Th(0, zh) = 0, Th(t,−1) = 0. (7.43)

7.4.2 Mass Flux

In the non-dimensional variables the pressure and saturation equations

become

ct(1− Sw)
∂P

∂t
=
Bgrρ

rµ

ρ
∂

∂zw

[
krw

(
∂P

∂z
− Jc

∂fc

∂z
+ 1

)]
+Bgrρ

∂

∂zw

[
krgρ

(
∂P

∂z
+ rρρ

)]
,

(7.44)

∂Sw

∂t
+
∂qw
∂zw

= 0,

(7.45)

qw = fwqt + hwBg(rρρ− 1) + hwBc
∂fc

∂zw

,

(7.46)

where ct = dρg/dPg is a compressibility factor, Bg = Kρwg/(µgqstn) is the ratio of

gravitational to viscous forces, Bc = Kρwgα
−1/(nqst`wµg) is the ratio of capillary

to viscous forces, Jc = Bc/Bg = α−1/(`w), is the ratio of capillary to gravitational
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Figure 7.3: Water mobility functions fw and hw, capillary pressure fc, dfw/dSw,

and diffusivity hw(dfc/dSw) as a function of saturation for m = .9 (solid line) and

m = .7 (dotted line)

forces, rρ = ρgb/ρw is a density ratio, fw = krw/(krw + rµkrg), rµ = µw/µg is the

viscosity ratio and hw = fwKrg. We have plotted the last two mobility functions as

well as the capillary pressure, dfw/dSw, and the saturation diffusivity, hw(dfc/dSw)

against the water saturation for different vales of the fitting parameter m in Figure

7.3. From here on we will assume a constant gas density (ρ = 1), which is valid

for small pressure changes. This is possible if the flow rates are sufficiently small

and the vertical rise height, `w − s(t), of the gas is small.

At the lower boundary we have the following condition

qw(t, s/r`) =
1

r`

ds

dt
(Sw − βw), (7.47)
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which can be combined with (7.46) to obtain an equation that is solely a function

of saturation in the following form

1

r`

ds

dt
(Sw − βw) = fw

σ

r`

ds

dt
+ hwBg(rρ − 1) + hwBc

∂fc

∂zw

.

(7.48)

We have assumed a constant gas density and σ/n = 1− (ρw0 + ρg0/rρ)/ρw.

At the upper boundary we have the following equations

qw =
Bg

rµ

krw(χPw − 1), qg = Bgkrg(χPg − rρ), (7.49)

which can be combined with the definition of capillary pressure and total velocity

to obtain the flow rate as a function of saturation in the following form

qw = fwqt +Bghw(rρ − 1)−BghwχJcfc. (7.50)

Dissociation temperature

The dissociation temperature, which we have assumed to be solely a

function of pressure, is expressed using the Clausius–Clapeyron equation in non-

dimensional form as

TD =
B/∆T

A− ln [ρwg`wPw + Po]
− TD0

∆T
. (7.51)

where the water pressure is used since it is the wetting fluid. The pressure distri-

bution can be obtained from Darcy’s law, which can be recast in the form

qw = −Bg

rµ

krw

(
∂Pw

∂zw

+ 1

)
, qg = −Bgkrg

(
∂Pg

∂zw

+ rρ

)
,

(7.52)

where the variables are assumed to be order one quantities. Supposing that we have

scaled the equations appropriately, the pressure distribution will be dominated by

hydrostatic forces in the case that Bg � 1. Integrating the above equation in this

limit we obtain the hydrostatic pressure distribution, Pw = 1− zw, which may be
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combined with the Clausius–Clapeyron equation to obtain an expression for the

dissociation temperature with height in the following form.

TD =
B/∆T

A− ln [ρwg`w (1− zw) + Po]
− TD0

∆T
(7.53)

Since we will not look at large changes in the liquid layer height, `w − s(t), and

the gravitational number will be large in most geological settings we will take the

dissociation temperature to be constant with T = TD0.

7.4.3 Fixed Boundary Problem

In this Chapter we fix the position of the moving boundary by using the

Landau transformation (Crank, 1984; Furzeland, 1980) defined as

xw = 1− 2(zw − 1)

s/r` − 1
, xh = 1− 2(zh + 1)

s+ 1
, (7.54)

which fixes the moving boundary at x = −1. The required derivatives, using the

chain rule, are now written as

∂

∂zw

=
dxw

dzw

∂

∂xw

=
−2

(s/r` − 1)

∂

∂xw

, (7.55)

∂2

∂zw
2

=

(
dxw

dzw

)2
∂2

∂x2
w

=
4

(s/r` − 1)2

∂2

∂x2
w

, (7.56)

∂

∂t
=

∂

∂t
+

dxw

dt

∂

∂xw

=
∂

∂t
+

ds

dt

1− xw

(s/r` − 1)r`

∂

∂xw

. (7.57)

in the liquid layer and similarly for the equations in the hydrate layer. By making

this transformation we have essentially displaced the dynamics of the moving inter-

face into the governing equations. The downside of this method is the addition of

the extra term in the governing equations, which comes from the time derivative.

The benefit is that we don’t need to deal with a moving boundary and numerically

one that will lie between two grid points.
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These equations then take on the following form

∂Tw

∂t
+

(
(1− xw)

c4 (s/r` − 1)

ds

dt
− 2Ve

Ce(s/r` − 1)

)
∂Tw

∂xw

=

4

Ce(s/r` − 1)2Pew

∂

∂xw

(
Ke

∂Tw

∂xw

)
, (7.58)

∂Th

∂t
+

ds

dt

(1− xh)

s+ 1

∂Th

∂xh

=
4

(s+ 1)2 Peh

∂2Th

∂xh
2
, (7.59)

ds

dt
=

2r`Ke

(s/r` − 1)

∂Tw

∂xw

− 2 d1

(s+ 1)

∂Th

∂xh

, (7.60)

∂Sw

∂t
+

ds

dt

1− xw

r` (s/r` − 1)

∂Sw

∂xw

− 2

(s/r` − 1)

∂qw
∂xw

= 0, (7.61)

qw = fwqt + hwBg (rρρ− 1)− hw
2Bc

(s/r` − 1)

∂fc

∂xw

, (7.62)

and hold in the fixed domain (−1, 1).

7.5 Reduced models

7.5.1 Large Stefan number problem

With the scaling given in Section 7.4 the Stefan number gives a measure

of the degree of separation between the time scales for the evolution of the tem-

perature and saturation. When this number is large the rate of phase change will

be small, resulting in a small advective transport of thermal energy. In this case

the temperature in the large St limit will be dominated by diffusion in the form

∂

∂zw

(
Ke

∂Tw

∂zw

)
= 0. (7.63)

In the case that the difference in thermal conductivity between the gas an liquid

is small or the thermal conductivity of the sediment dominates, we can express

Ke = b1 Se + b2 ≈ b2 and the above solution takes on the quasi-linear form

Tw = 1 +
1

1− r−1
` s

(zw − 1) . (7.64)

For hydrate layers that are initially at the dissociation temperature, and

thus will remain so for all time, the speed of the moving boundary, obtained from
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the Stefan condition, is determined from the expression

ds

dt
=

r`b2
s/r` − 1

. (7.65)

This can be integrated to determine the interface position as a function of time:

s(t) = r` − r`

√
1 + b2t. (7.66)

This relationship shows that the position of the hydrate phase boundary has a

square root dependence on time, which is characteristic of a diffusion-dominated

mode of heat transport.

Large Viscous Forces

For relatively small permeabilities, Bc ∼ 0 and Bg ∼ 0 , or large flow rates

(qt � Bg, Bc) advective forces will dominate and the terms involving gravitational

and capillary forces in equation (7.46) can be neglected. The equations in this case

can be solved using the method of characteristics, where the advective term in the

fixed domain reduce to

∂Sw

∂t
+

[
ds

dt

1− xw

r` (s/r` − 1)
− 2

(s/r` − 1)

dfw

dSw

qt

]
∂Sw

∂xw

= 0,

(7.67)

which has the general form dSw/dt + u(xw, t, Sw)dSw/dxw = 0. Moving at the

characteristic velocity, dxw/d t = u the saturation is constant and we can solve

the ode for the position of the characteristics as

xw(Sw, t) = 1− 2σ
dfw

dSw

+

[
ξ + 2σ

dfw

dSw

− 1

]
(1 + 2b2t)

−1/2 ,

(7.68)

where ξ = xw(0).

Since the sediment is initially water saturated, a shock-separating a mix-

ture of water and gas from water saturated sediment, must form immediately at

the moving boundary xw(0) = −1 and propagate downstream. The speed of the
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shock can be determined by re-writing equation (7.67) in integral form and taking

the limit in which dx→ 0, yielding the following expression

dXs

dt
=

[
ds
dt

1−xw

r`(s/r`−1)
Sw − 2 fwqt

(s/r`−1)

]
[Sw]

, (7.69)

in terms of the conditions on either side of the shock. Since the shock speed is

equal to the water velocity at xw = Xs, dXs/dt = u and we can determine the

water saturation behind the shock from

dfw

dSw

=
(1− fw)

1− Sw

. (7.70)

This solution is similar to the well known Buckley–Leverett (Bear, 1991) solution.

Here though we have a moving boundary, albeit transformed onto a fixed domain,

that generates a flow through the sediment.

7.5.2 Large Capillary Forces

For porous media with low void fractions, such as clay, capillary forces

dominate gravitational forces at small length scales. Since in this case the sediment

makes up the bulk of the mass, the thermal properties of the medium will be

dominated by the solid structure and we can assume that they are constant. In

addition if we assume that the specific heat of the gas and liquid are sufficiently

similar (c1 ∼ c2) the governing equations reduce to

∂T

∂t
+ CT

ds

dt

∂T

∂zw

= αT
∂2T

∂z2
w

(7.71)

∂Sw

∂t
+ CS

ds

dt

∂Sw

∂zw

=
∂

∂zw

(
αS
∂Sw

∂zw

)
, (7.72)

ds

dt
= −d2

∂T

∂zw

, (7.73)

n

r`

ds

dt
(Swb − βw) = fwqt − αs

dSw

dzw

, (7.74)

where the thermal properties CT = cgσ/csr` and αT = b2/csPew are evaluated at

the initial concentration and the saturation functions are given as

CS =
σ

r`

dfw

dSw

, αS = Bchw
dfc

dSw

. (7.75)
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The last two conditions equations (7.73) and (7.74) are applied at the moving

boundary to determine the interface speed and saturation.

We can simplify the above equations by extending the upper boundary

to infinity and applying a uniform initial temperature T (zw, 0) = 1 and saturation

Sw(zw, 0) = Si within the porous media. In this case we introduce a similarity

variable of the form η = z/2
√
αT t and an assumed interface speed of s = 2λr`

√
αT t,

where λ must be determined as part of the solution. With this new variable the

system of equations reduce to the following ODEs:

d2T

dη2
=

dT

dη
(2CTλr` − 2η) , (7.76)

d

dη

(
αS

αT

dSw

dη

)
=

dSw

dη
(2CSλr` − 2η) , (7.77)

dT̂w

dη
= −2λα

b2
, (7.78)

2nαTλ

(
Sw − βw −

fwσ

n

)
= −αs

dSw

dη
. (7.79)

Since the temperature equation is decoupled from the saturation equation we can

solve for the temperature field exactly in the form

T = 1− erfc(η − CTλr`)

erfc(λ− CTλr`)
, (7.80)

λ =
b2

αT

√
π

exp (−(CTλr` − λ)2)

erfc(λ− CTλr`)
. (7.81)

If the saturation within the sediment only varies by a small amount then

we can perform a regular perturbation in the small parameter, ε = Si − Swb,

where the boundary conditions have the perturbed values Sw(η = ∞) = Swb + ε

and Sw(η = λ) = Swb. In this case the series, up to second order, has the form

Sw = Swb + εS1(η)+ ε2S2(η) and the non-linear saturation functions have the form

αs = α0 +εα1 +ε2α2 and Cs = C0 +εC1 +ε2C2. At first order we have the equation

S ′′1 = 2S ′1αT (λr`C0 − η) /α0, whose solution in terms of error functions as

S1 = 1−
erfc

(
(η − C0λr`)

√
αT

α0

)
erfc

(
(λ− C0r`λ)

√
αT

α0

) (7.82)
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The condition at the moving boundary at first order will have the form.

nλ

(
Swb − βw −

fw(Swb)σ

n

)
=

− ε√
π

(
α0

αT

)1/2 exp

(
−
(
(C0λr` − λ)

√
αT

α0

)2
)

erfc
(
(λ− C0r`λ)

√
αT

α0

) , (7.83)

which must be solved numerically for the interface saturation Swb.

7.6 Numerical Results

We have solved the set of coupled equations defined in Section 7.4.3 nu-

merically for a fixed domain, using a finite difference discretization with two dif-

ferent methods for the temperature and saturation equations. The temperature

equation was solved implicitly using the method of Furzeland (1980) by making

guess at the future value of the interface position and correcting this guess it-

eratively using the Stefan condition. The saturation equation was solved using

methods presented in Aziz & Settari (1979) or Peaceman (1977) by first guessing

the saturation values at the upper and lower boundaries and then correcting them

at each time step using equations (7.48) and (7.50).

The two properties, temperature and saturation, are coupled and must

be solved simultaneously. For relatively large Stefan numbers we can separate

timescales such that the evolution of the temperature profiles is much faster than

the saturation profiles. In this limit the dissociation rate is relatively slow since the

ratio of available thermal energy to latent heat is small and the temperature field

controlled by diffusion is able to evolve with a quasi-stationary boundary. In our

scaling we have defined a timescale with the Stefan number so we are in a long-time

limit for the temperature equation, expressed by the large effective diffusivity.
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Figure 7.4: Plot of the exact solution (dotted line) to the reduced model presented

in section (7.5), using the method of characteristics and numerical solution (solid

line). Here St = 1000, m = .9, rρ = .1 and the solutions are plotted at t =

.01, .05, .5.

7.6.1 Comparison with reduced models

We have developed two reduced models, corresponding to a decoupling

of the saturation equation from the temperature equation for sediment dominated

thermal properties, and simplification of the saturation equation for two different

limits. In the first case we assumed a large St limit, which allows the temperature

field to be quasi-steady with respect to the saturation and neglected capillary and

gravitational forces in comparison to viscous forces. We plotted a representative

solution to this reduced model against the numerical solution in Figure 7.4 for dif-

ferent points in time, showing excellent agreement. The capillary and gravitational

forces can be very large for St� 1; none the less this solution gives a good check

on the numerical solution.

In the second case we extended the upper boundary to infinity and ob-

tained a similarity solution for the temperature and linearized saturation equation.

We plotted a representative solution to the reduced model in Figure 7.5 against

the numerical solution. Since we have decoupled the temperature equation from
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Figure 7.5: Temperature and saturation profiles in the sediment for the reduced

model (dotted line) of section (7.5) and the numerical solution (solid line). Here

St = 10, m = .9 and Bc = 10000.

the saturation equation and there are no further simplifications, the two solutions

for temperature are in excellent agreement as we expected. On the other hand,

the saturation equation has been linearized about the interface saturation, which

is only valid for very small values of ε. For this reason the error associated with re-

duced model will be smallest near the moving boundary as we can see from Figure

7.5.

7.6.2 Diagnostics

In this section we plot the profiles for temperature, saturation, flow rate

and pressure as well as the evolution of the boundary velocities for variations in the

four parameter values St, Bc, Bg and rρ. The other parameter values, affecting

the thermal energy equation, have been fixed to the physically realistic values

displayed in Table 7.1. Since we will be looking at relatively large Stefan numbers

the dissociation rate will not be very sensitive to changes in the thermal properties

of the sediment and we can focus on the parameters appearing in the saturation
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Table 7.1: Non-dimensional groups and constants used in the Chapter correspond-

ing to berea sandstone, methane gas, water and methane hydrate.

Parameter Value Parameter Value
d1 1 cs .37
cw .79 cg .04
b1 .022 b2 .98
rµ 200 r` 1
A 49.32 B 9459
χ > 103 L 429.66J/g
ρwo 805.3Kg/m3 ρgo 124.7Kg/m3

equation.

In general the Stefan number will take on a value of approximately

St = 50/∆T for methane hydrates, with temperature differences no larger than a

few degrees, depending on the water depth amongst other things. The capillary

and gravitational forces can vary substantially, for different sediment properties.

For example berea sandstone (K = 1×10−13m2) will have parameter values of ap-

proximately Bg = 5×103`w/∆T and Bc = 5×103/∆T . In addition the parameter

rρ, which relates the density of gas to the density of water, will vary greatly with

pressure according to the ideal gas law.

Effect of the Stefan number

The Stefan number St represents the amount of available thermal energy

to the energy required to cause a change in phase from solid to liquid. As one can

imagine then, the dissociation rate ds/dt is strongly dependent on this number and

for constant latent heat represents the amount of thermal forcing in the system. We

can write this number as St = αavg/`wqst, relating the thermal diffusion velocity

to the boundary velocity. Since time is scaled with this parameter and the fluid

velocity with qst, it gives an indication of the time scale separation between the

saturation and thermal energy equations. For relatively large St, we are looking at
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Figure 7.6: Profiles for temperature Tw, water pressure Pw, gas saturation Sg and

gas flow rate qg for St = 10 and t = .03 (solid line); St = 10 and t = .3 (dashed

line); St = 100 and t = .03 (dotted line); St = 100 and t = .3 (dashed-dotted

line). Here Bg = 1000, Bc = 10000, rρ = .1 and m = .9.

the long time behavior of the temperature equation and the temperature profiles

as predicted in Section 7.5 and shown in Figure 7.6 are linear and quasi-steady. At

early times the temperature will be evolving in time with a diffusion-dominated

mode of heat transport but the transport of released gas will not have traveled

very far from the moving boundary, leaving the saturation equation relatively

unchanged.

In Figure 7.6 we have plotted the profiles for temperature, pressure, gas

saturation and gas flow rate for two different values of St and instants in time.
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Figure 7.7: Lower boundary gas velocity qgb, upper boundary gas velocity qgu and

moving boundary velocity ds/dt as a function of time for St = 10 (solid line) and

100 (dash-dot line) .Here Bg = 1000, Bc = 10000, rρ = .1 and m = .9.

In general a small Stefan number will result in a larger boundary velocity due

to an increase in the degree of thermal forcing, but since we have scaled time

with this parameter the non-dimensional equations experience a decrease in the

effective thermal diffusivity. As a result the non-dimensional dissociation rate

increases with St and with it the gas flow rate through the sediment. At large

times the saturation equation becomes quasi-steady, with small adjustments due

to the moving boundary and the flow rate will be almost constant. In addition the

pressure distribution in the sediment, as indicated in the upper right hand plot

of Figure 7.6 is approximately linear and hydrostatic, due to the relatively large

gravitational forces compared to viscous forces, expressed by Bg � 1.

In Figure 7.7 we have plotted the upper and lower boundary flow rates

and moving boundary velocity as a function of time for different values of the Stefan

number. When this number is large the temperature diffuses more rapidly, thus

increasing the dissociation rate and decreasing the time to quasi-steady state, in

which equation (7.64) is valid. As a result the lower boundary flow rate increases,

since it is proportional to ds/dt, and with it the gas breakout time and upper
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boundary flow rate. At latter times the dissociation rate is still faster for large

values St, due to a faster thermal diffusion towards the moving boundary, which

forces the gas flow rate out of the sediment to be larger.

Effect of capillary forces

The capillary number defines a ratio between capillary to viscous forces

and tends to dominate when the surface tension is high (low permeability sedi-

ments), when the length scale, `w is small (Bc � Bg) or for relatively small fluid

velocities (Bc � 1). Capillary forces will act in a similar way to thermal diffusion

in that the water will be transported into regions of relatively high gas saturations.

Consequently the gas will be forced to diffuse away from the moving boundary, at

some velocity that is predicted to increase with the non-dimensional group Bc.

In Figure 7.8 we have plotted the upper and lower gas flow rates as well

as the dissociation rate as a function of time and capillary number. The interface

velocity ds/dt has the same characteristics as that of the previous section due to

the relatively large Stefan number and weak coupling of the saturation equation

to the temperature equation. Since a larger capillary number tends to diffuse the

gas more rapidly into high water saturations the gas reaches the upper boundary

sooner than for a smaller value of Bc. In addition the gas flux out of the sediment

approaches quasi-steady state on a slower time scale for larger Bc due to the nature

of a diffusive dominated flow. In addition, we have plotted the gas saturation and

flow rate profiles as a function of Bc and time in Figure 7.8. When the capillary

forces are small, gas builds up behind the propagating front and for sufficiently

small values will be discontinuous with similarities to the large viscous force model

of Section 7.5. When the capillary forces are increased, the diffusive term becomes

larger, smoothing out this jump and increasing the speed of the gas front.
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Figure 7.8: Lower boundary gas velocity qgb, upper boundary gas velocity qgu and

moving boundary velocity ds/dt as a function of time and profiles for gas saturation

Sg and gas flow rate qg for Bc = 1000 and t = .03 (dashed line); Bc = 10000 and

t = .03 (dotted line); Bc = 1000 and t = .3 (solid line); Bc = 10000 and t = .3

(dash-dot line). Here Bg = 1000, St = 100, rρ = .1 and m = .9.
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Effect of gravitational forces

Gravitational forces within a porous media arise as a result of the density

difference between the two fluids and tends to force the lighter fluid out of the

sediment. The strength of this force can be encompassed in the term Bg(rρ − 1),

which tends to zero as the density difference decreases or the flow rate becomes

large. When the gravitational forces dominate the gas saturation evolves as a result

of a shock propagation through the sediment in a similar way to the discussion

in Section 7.5. Since the saturation velocity is a decreasing function of water

saturation, the gas saturation builds up behind the shock front resulting in the

relatively constant values as seen in Figure 7.9. On the other hand, when capillary

forces are relatively large, this front becomes smother due to diffusion and we get

more curved profiles. At quasi-steady state the gas flow rate has a small vertical

gradient that in the absence of capillary forces must coincide with nearly constant

saturation values, except near the upper boundary, where the saturation gradient

is very large. In addition, smaller values of Bg will result in a larger pressure at

the moving boundary due to a relatively larger flow rate through the sediment,

but will still look nearly hydrostatic due to Bg � 1.

We have also plotted the upper and lower boundary velocities in Figure

7.9 as a function of time for different values of Bg. Since stronger gravitational

forces will increase the saturation velocity the gas front will reach the upper bound-

ary more quickly and approach a quasi steady state on a smaller time scale. At

larger times the gas flow rate is nearly constant, only changing as the boundary

recedes, and consequently the upper boundary flow rate will be dominated by the

decreasing dissociation rate.

Effect of rρ

The parameter rρ represents the difference in density between the gas and

water and gives a measure of the total velocity in the sediment due to a change

in density from hydrate to fluid phases. Since the critical temperature of methane
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Figure 7.9: Lower boundary gas velocity qgb, upper boundary gas velocity qgu

and moving boundary velocity ds/dt as a function of time and profiles for water

pressure Pw, gas saturation Sg and gas velocity qg for Bg = 1000 and t = .03

(dashed line); Bg = 10000 and t = .03 (dotted line); Bg = 1000 and t = .3 (solid

line); Bg = 10000 and t = .3 (dash-dot line). Here Bc = 10000, St = 100, rρ = .1

and m = .9.
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is relatively low (less than the freezing point of water) the hydrocarbon will not

become a liquid at high pressures, which is the opposite of carbon dioxide, and

consequently its density can become comparatively large for deep deposits. When

this parameter is small the volume occupied by the gas is larger, which drives

the gas saturation up and forces – by mass conservation – the fluid velocities to

increase as seen in Figure 7.10. This increase in velocity allows for a faster gas

front speed through the sediment and requires a larger pressure gradient, which

must come from an increase in moving boundary pressure.

In addition, we have plotted the evolution of the boundary flow rates in

Figure 7.10, for two different values of rρ. This plot shows larger gas flow rates

at the upper and lower boundaries, due to a larger qt, that result in faster gas

breakout times when rρ is small.

Volume fluxes

One of the main interests in the development of this model is to investigate

the amount of gas released from the seafloor by dissociating gas hydrates. We can

gain a better understanding of this by plotting the volume of gas released within

a specified time interval defined as

Vgas =

∫ 10/St

0

qgu dt. (7.84)

The integral extends to 10/St because time scales with the Stefan number and

therefore is a better choice physically. We plot contours of the Stefan number

against the other three groups, Bc, Bg and rρ, discussed in this Chapter in Figure

7.11 and 7.12. Since St is proportional to the inverse of the temperature difference

∆T and in which the fluid velocity scales, the total volume of gas released into

the ocean will be strongly related to this number. In fact, as we can see from the

figures this is the most important group for our system. The capillary and gravi-

tational forces will also increase the total volume released since they will increase

the gas velocity through the sediment. Although, this effect is only expected to be
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Figure 7.10: Lower boundary gas velocity qgb, upper boundary gas velocity qgu

and moving boundary velocity ds/dt as a function of time and profiles for water

pressure Pw, gas saturation Sg and gas velocity qg for rρ = .005 and t = .003

(dashed line); rρ = .01 and t = .003 (dotted line); rρ = .005 and t = .03 (solid

line); rρ = .01 and t = .03 (dashed-dotted line). Here Bg = 200, Bc = 1000,

St = 100 and m = .9.
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Figure 7.11: Contour plot of equation (7.84) as a function of St and Bc (left) or

Bg (right). Here Bg = 100 (left only), Bc = 100 (right only), `w = 2, m = 0.9,

r` = `w/2, Peh = .79/St, Pew = 1/St, b1 = 0.05, b2 = 0.97, cw = 0.4, cg = .02,

cs = 0.6, d1 = 1, rµ = 300, βw = .8, ε = 0.5, γ = 0.5 and rρ = 0.1.

important at early times. At steady state the total mass flow rate will be constant

in space and equal to the lower boundary gas velocity, which scales with the Stefan

number. Furthermore, the density ratio, rρ, is a measure of the gas density which

decreases with deeper deposits. Since the total mass of methane in the hydrate is

constant, a decrease in this ratio will cause the total volume of gas in the sediment

to increase. Therefore the volume of gas released will increase with a decrease in

the gas density.

7.6.3 Geophysical relevance

In the previous section we discussed some general characteristics of the

dissociation problem for different parameter values corresponding to the degree

of thermal forcing and sediment properties. In general the structure of in situ

deposits may vary substantially, depending on their geographic location but here

we will discuss some results for the idealized case in which this study applies. To

reduce the parameter space we will set `w = 1 m, rρ = .1 and use sediment prop-

erties corresponding to berea sandstone, which allows us to focus on the effect of
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Figure 7.12: Contour plot of equation (7.84) as a function of St and rρ. Here

Bg = 100, Bc = 100, `w = 2, m = 0.9, r` = `w/2, Peh = .79/St, Pew = 1/St,

b1 = 0.05, b2 = 0.97, cw = 0.4, cg = .02, cs = 0.6, d1 = 1, rµ = 300, βw = .8,

ε = 0.5 and γ = 0.5

the driving temperature difference ∆T . In this case qst ≈ 5× 10−8∆T , which sets

the time to t ≈ 2× 107 t̂/∆T and the filtration rate to qg = 5× 10−8∆T q̂g. From

the figures in the previous section it would take approximately .3/∆T yrs for the

gas front to reach the upper boundary and will have a quasi-steady flow rate of

.4As ∆Tm3/yr, where As is the surface area. For large temperature differences

this result indicates that there may be a significant flux of gas entering the ocean

water column from dissociating gas hydrates. In reality there may be layers of im-

permeable rock at some distance above the hydrate layer, which may significantly

reduce the gas flow rate as well as a cyclic upper boundary temperature that may

promote formation during the cool seasons, further reducing the effective gas flux

over geological time scales.
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7.7 Conclusion

In this Chapter we have explored gas hydrate dissociation in homoge-

neous porous media and the gas velocity through the sediment as a function of

time for different parameter values. The governing equations corresponding to

saturation, temperature and hydrate boundary evolution were solved numerically

using a front-fixing scheme and exactly for a few reduced cases. The reduced

models were shown to have excellent agreement with the numerical solution in the

case of viscous dominated flow, using the method of characteristics, and relatively

good agreement for the capillary dominated flow, using a similarity solution to

a linearized form of the saturation equation. We plotted the temperature, water

pressure, gas saturation and gas flow rate profiles as well as the evolution of the

upper, lower and moving boundary velocities as a function of the parameter space

St, Bc, Bg and rρ. The Stefan number, which is a measure of the thermal forcing

in the system, is the dominant factor effecting the dissociation rates of the hydrate

and gas velocity throughout the sediment. For small values of St the hydrate will

decompose quickly, as a result of a larger degree of thermal forcing, forcing more

mass through the sediment and into the ocean. The capillary number relates the

importance of capillary forces to viscous forces in the sediment and has the effect

of diffusing the gas released at the moving boundary to the upper surface. There-

fore larger values of this parameter lead to greater gas fluxes through the sediment

and a decrease in gas saturation at the moving boundary due to diffusion. The

gravitational number expresses the importance of gravitational forces relative to

viscous forces and tends to increase the gas velocity for large values. In addition

the density ratio rρ determines the volume occupied by the gas at the hydrate

interface and increases for deep deposits. For small values of this parameter the

gas occupies a larger pore volume, which results in larger gas saturations and flow

rates through the sediment. Finally, for deposits that are relatively close to the

sea-floor, the volume flux of gas can be substantial for large temperature differences



163

and surface areas, possibly on the order of grams per year.



8

Dendrite solidification

8.1 Abstract

In this Chapter we solve the steady dendrite problem, growing into a su-

per cooled binary fluid using slender body theory. We consider the full interfacial

conditions, including curvature, binary and kinetic-under cooling effects and solve

the leading order outer problem using the Wiener-Hopf technique. In the case of

a pure liquid we investigate the effect of kinetic under cooling on the interface dis-

placement and compare the results with the similarity solution of Ivantsov (1947).

The method is appropriate for slender dendrites and is found to be equivalent to

the similarity solution in the small Peclet number limit. The growth rate can be

determined uniquely, provided the thickness of the dendrite is known at some po-

sition, rather than the radius of curvature. Furthermore we investigate the multi

component case and determine the interface position and the growth velocity.

8.2 Introduction

Dendritic solidification has been a topic of considerable interest for many

years since it is a phenomenon that is commonly found in many natural and in-

dustrial settings (Langer 1980). Provided a fluid is super-cooled (the temperature

is below the equilibrium value) and the flux of heat is sufficiently greater than the

164
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surface energy, perturbations of the interface will grow into needle-like structures

similar to the diagram in Figure 8.1 (Davis 2001). Since the solid is constantly try-

ing to maintain its relatively warmer equilibrium temperature, the phase boundary

grows, releasing latent heat. Therefore the dendrite will increase its thickness and

length with time. A single dendrite growing into an under-cooled melt was shown

by Ivantsov (1947) to have a parabolic shape in the case of zero surface energy

and attachment kinetics. The temperature field and surface shape are given by a

similarity solution which yields a family of solutions as a function of growth ve-

locity and radius of curvature at the tip. The similarity solution has been further

studied by Horvay and Cahn (1961) and Canright and Davis (1989) in connection

with different solidifying shapes.

The similarity solutions are not unique since the radius of curvature must

be known (e.g. from experimental data) in order to obtain the growth velocity. This

problem can be resolved by introducing curvature effects, since a length scale will

be introduced into the problem. Unfortunately, the highly non-linear structure

of the boundary conditions makes analytical solutions difficult to obtain in closed

form and many investigators have sought to bypass this by solving the problem

asymptotically for small surface energy (Xu 1991). In addition, alot of numerical

work has been performed on the full problem using various techniques such as level

set methods and phase field methods, which yield good agreement with theory and

are capable of handling side branching (Kobayashi 1993 and Gibou et. al. 2003).

Furthermore, the formation of dendritic structures is common in binary

fluids, such as saltwater systems and metal alloys, which are of interest in environ-

mental settings and may be industrially undesirable (e.g. by weakening materials).

In this case mass diffusion may play an important role since the interfacial tem-

perature will be a function of species concentration via the phase diagram. Simple

one-dimensional models have been investigated thoroughly by many authors such

as Worster (2000) and Davis (2001) and extended to dendrite growth and mushy

layers (reactive porous media composed of a dendritic array). Dendritic arrays have
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been further analyzed by Spencer and Huppert (1995) who were able to determine

the growth rate as a function of dendrite spacing.

In many dendrite solidification problems the structure of the solid may

be regarded as relatively thin. Because of the small length scale compared to the

extent of the ambient fluid we may attempt to solve the problem asymptotically

using slender body theory. This technique has so far not been applied to a dendrite

in a way that includes the full set of equations, although it has been used for etching

problems (see Kuiken 1984). As a consequence of this technique, the first-order

problem with respect to the outer field involves a solid of zero thickness and has a

form which is amenable to the Wiener-Hopf technique (Noble 1958). This method

is commonly used for the solution of half-plane diffraction problems but has been

extended to the propagation of diffusion flames (Wichman and Williams 1983) and

chemical etching (Kuiken 1984).

The main disadvantage of the techniques is that we cannot accurately

deal with the tip of the dendrite, where the curvature is large and one must resort

to a numerical treatment. On the other hand the effects of kinetic under-cooling

can be included without much complication. In this Chapter we only consider

the two dimensional case although it is possible to extend the method to a three

dimensional axisymetric dendrite. Generally, given the appropriate conditions, the

dendrite interface will be unstable, leading to the formation of side branches but

we will not discuss those here (i.e. we will assume that surface energy dominates

and the surface is smooth).

This Chapter is organized up as follows. In section 8.3 we present the

model for a dendrite growing into a super-cooled binary melt with a constant ve-

locity. We consider the full interfacial temperature condition, including curvature

and kinetic under cooling effects and appropriately non-dimensionalize the equa-

tions. In section 8.4, we use slender body theory to replace the unknown boundary

position with a line along the length of the dendrite. Furthermore we set up the

Wiener-Hopf technique to be solved later. In section 8.5 we investigate the pure
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Figure 8.1: Steady state dendrite growing into an under-cooled melt.

liquid case without curvature effects and compare the results with the similarity

solution found by Invantsov (1947). In addition, we examine the impact kinetic

under cooling has on the interface position. In section 8.6 we solve the problem

for a binary fluid and look at the effects of species related parameters such as

concentration and diffusion rate. Finally, in section 8.7 we conclude.

8.3 Model description

We look for steady solutions to the dendrite problem shown in Figure 8.1

in the coordinate system moving at the speed V (provided solutions exist). The

usual equations describing this problem from Davis (2001) are

V
∂T

∂x
= κ`∇2T, liquid, (8.1)

V
∂T

∂x
= κs∇2T, solid, (8.2)

V
∂C

∂x
= D∇2C, liquid, (8.3)

for temperature T and species concentration, C (note: we have used the Galilean

transform ∂
∂t

= V ∂
∂x

). These equations represent diffusion with advection, that is

an artifact of the moving reference frame. On the boundary Ω, we can use ’pill
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box’ arguments to express the interfacial jump conditions as

ρsLVn =
κs

ρsCPs

n · ∇T |s −
κ`

ρ`CP`

n · ∇T |`, (8.4)

(C − Cs)Vn = −Dn · ∇C, (8.5)

where κ is the thermal diffusivity, L is the latent heat, CP is the specific heat, D

is the species diffusivity, ρ is the density, Cs is the solid concentration, Ω is the

location of the interface, Vn is the normal velocity of the interface and from now on

we will assume that the properties are the same for the liquid and solid. The first

equation is the Stefan condition and expresses the velocity of the interface in terms

of the net rate of heat flux away from the interface. The second equation is the

equivalent of the Stefan condition for mass diffusion. Furthermore the interfacial

temperature condition is expressed as (Davis 2001)

T = Tm

[
1 +

Es

L
∇ · n

]
+m(C − Cm)− Vn

µ
, (8.6)

where Es is the surface energy per unit area, m, is the liquidus slope, µ is the kinetic

coefficient and ∇·n is the curvature. This equation is essentially the liquidus curve

shown in figure (8.2), modified for kinetic under-cooling and the Gibs-Thompson

effect.

We can write the position of the interface for z > 0 in parametric form

z = ±h(x, t) and then determine the unit normal to the surface from n = ∇(z −

h)/|∇(z − h)| = (−hx, 1)/
√

1 + h2
x at the upper surface, where we are pointing

out of the solid. The curvature is determined from the divergence of the normal

vector ∇ · n = hxx/(1 + h2
x)

3/2. We can express the speed of the front normal to

itself as Vn = ht/
√

1 + h2
x = V hx/

√
1 + h2

x for the steady class of problems.

8.3.1 Non-dimensionalization

With reference to the phase diagram in Figure 8.2, the far field tempera-

ture and concentration are set to T∞ and C∞ respectively. The temperature of the

dendrite phase boundary will be larger than T∞, since the fluid is super-cooled and
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Figure 8.2: Typical phase diagram for a binary mixture of methane gas and water

in which gas hydrates (solid ice-like structure) form.

will lie on the liquidus line in the case of zero surface energy and infinite kinetic

coefficient. Therefore we non-dimensionalize temperature by T = T∞ + θ∆T with

∆T = Tm−T∞, concentration by C = C∞+C ∆C with ∆C = Cm−C(T∞), length

scales by κ/V and the interface position by h = δy(x), where δ is a scale for the

thickness of the dendrite and the liquidus slope m = ∆T/∆C.

θx = θxx + θzz, liquid/solid, (8.7)

σCx = Cxx + Czz, liquid, (8.8)

where σ = κ/D is the Lewis number. At the interface z = ay(x), we have in the

region z > 0

Sayx = [−ayxθx + θz]
s
`, (8.9)

(Cs − C )aσyx = −ayxCx + Cz, (8.10)

θ − 1 + Cm = C + Γ
ayxx

(1 + a2y2
x)

3/2
− µ̄

ayx√
1 + a2y2

x

,

(8.11)

and a similar set for z < 0. Here Γ = EsTmV/L∆Tκ, µ̄ = V/µ∆T , S = L/Cp∆T ,

a = δV/κ and the brackets are meant to imply solid minus liquid. In addition, as
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will become clearer latter, we differentiate the Stefan condition along the surface

as follows

t · ∇ (Sayx) = t · ∇ ([−ayxθx + θz]
s
`) , (8.12)

where t is the tangent vector and t · ∇ = (∂x, ayx∂z)/
√

1 + a2y2
x.

8.4 Solutions

8.4.1 Long Thin Dendrites

We will assume slender body theory with a � 1 and expand in the

unknown powers of a: θ = θ + aθ1..., y = y + ay1 + .... We will set aS = O(1), a

large Stefan number limit, but we specify the the size of µ̄ or Γ latter on. In many

cases, such as gas hydrates, CS � C , so we will take this limit in (8.10).

8.4.2 Inner Problem

We re-scale the vertical direction with z = aZ in order to magnify the

region surrounding the dendrite. The equations become

a2θx = a2θxx + θZZ , liquid/solid, (8.13)

Sa2yx = [−a2yxθx + θz]
s
`, Z = y(x), (8.14)

θ − 1 = C − Cm + Γ
ayxx

(1 + a2y2
x)

3/2
− µ̄

ayx√
1 + a2y2

x

(8.15)

To leading order we have in the solid

θZZ = 0 (8.16)

which integrates to a constant that must be equal to zero due to the symmetry

condition θZ(0) = 0. Therefore we can ignore the change in vertical temperature

gradient in the solid as well as by x-diffusion. We should note that in our case the

solid always has a constant concentration Cs. The problem is now in a form that

is solvable by the Wiener-Hopf technique (see Noble 1958), which is the subject of

the next section.
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Figure 8.3: Steady-state dendrite growing into an under-cooled melt: outer prob-

lem.

8.4.3 Outer Problem:Wiener-Hopf

For the outer problem we have the following equations

θx = θxx + θzz, z > 0, z < 0, (8.17)

σCx = Cxx + Czz, z > 0, z < 0, (8.18)

Sayx = −θz|bu, z = 0, (8.19)

Saσγyx = −Cz|bu, z = 0, (8.20)

θ − 1 = −Cm + C + αθz|bu − βθxz|bu, z = 0, (8.21)

where γ = CS/S, α = µ̄/S, β = Γ/S, u denotes upper (positive gradient), b denotes

bottom (negative gradient) and the dendrite is now a line along the positive x-axis

shown in Figure 8.3. Equations (8.19) and (8.20) can be combined to obtain a flux

condition

σγθz(x, 0) = Cz(x, 0). (8.22)

We split the upper (denoted u) and lower half (denoted b) of the domain shown in

Figure 8.3 as follows
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∂θu

∂x
=
∂2θu

∂x2
+
∂2θu

∂z2
−∞ < x <∞ z ≥ 0 (8.23)

∂θb

∂x
=
∂2θb

∂x2
+
∂2θb

∂z2
−∞ < x <∞ z ≤ 0 (8.24)

σ
∂Cu

∂x
=
∂2Cu

∂x2
+
∂2Cu

∂z2
−∞ < x <∞ z ≥ 0 (8.25)

σ
∂Cb

∂x
=
∂2Cb

∂x2
+
∂2Cb

∂z2
−∞ < x <∞ z ≤ 0 (8.26)

with the far field conditions of boundedness

(θu, θb,Cu,Cb) → 0 as z →∞ or x→ −∞, (8.27)

and the intrfacial temperature on the upper and lower side of the dendrite are

θu = 1− Cm + C − α
∂θu

∂z
+ β

∂2θu

∂x∂z
, (8.28)

θb = 1− Cm + C + α
∂θb

∂z
− β

∂2θb

∂x∂z
, (8.29)

By taking the Fourier transform in x defined by

θ̂(k, z) =

∫ ∞

−∞
θ(x, z)eikxdx, (8.30)

θ(x, z) =
1

2π

∫ ∞

−∞
θ̂(k, z)e−ikxdk, (8.31)

we have the following transformed problem

∂2θ̂u

∂z2
− θ̂uk(k − i) = 0, θ̂u(k,∞) = 0, (8.32)

∂2θ̂b

∂z2
− θ̂bk(k − i) = 0, θ̂b(k,−∞) = 0, (8.33)

∂2Ĉu

∂z2
− Ĉuk(k − σi) = 0, Ĉu(k,∞) = 0, (8.34)

∂2Ĉb

∂z2
− Ĉbk(k − σi) = 0, Ĉb(k,−∞) = 0, (8.35)
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with the following equations along the strip, z = 0

∂θ̂−u
∂z

=
∂θ̂−b
∂z

, θ̂−u = θ̂−b , (8.36)

∂θ̂+
u

∂z
= −∂θ̂

+
b

∂z
, θ̂+

u = θ̂+
b , (8.37)

∂Ĉ −
u

∂z
=
∂Ĉ −

b

∂z
, Ĉ −

u = Ĉ −
b , (8.38)

∂Ĉ +
u

∂z
= −∂Ĉ

+
b

∂z
, Ĉ +

u = Ĉ +
b , (8.39)

θ̂+
u = Ĉ +

u −
i(1− Cm)

k + iε
− ∂θ̂+

u

∂z
(α+ ikβ)− β

∂θu

∂z

∣∣∣∣
x=0

, (8.40)

θ̂+
b = Ĉ +

b −
i(1− Cm)

k + iε
+
∂θ̂+

b

∂z
(α+ ikβ) + β

∂θb

∂z

∣∣∣∣
x=0

. (8.41)

Here the superscripts (+) and (−) denote functions that are analytic in the upper

and lower planes respectively and we have represented 1 by e−εx where we take

ε = 0+ at some latter point in the analysis. The second condition is a physical

result that comes from symmetry. The general solution to the above differential

equations is

θ̂u = C1e
−z
√

k(k−i), θ̂b = C2e
z
√

k(k−i). (8.42)

Ĉu = C3e
−z
√

k(k−σi), Ĉb = C4e
z
√

k(k−σi). (8.43)

where we have used the boundary conditions at infinity. We cut the k-plane for θ

along the imaginary axis from i to i∞ and from 0− to−i∞ so that Re(
√
k(k − 1)) ≥

0 outside of the cuts. For C we cut along the imaginary axis from iσ to i∞ and

from 0− to −i∞.

The Wiener-Hopf procedure is then to split the conditions at z = 0 in

terms of plus (+) and minus (−) functions in order to determine the constants
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C1 − C4. We can combine equations (8.40)–(8.42) to get the following

∂θ̂+
u

∂z
+
∂θ̂−u
∂z

+
√
k(k − i)

(
C +

u − Cm

)
=

−
√
k(k − i)

[
− i

k + iε
− ∂θ̂+

u

∂z
(α+ ikβ) + θ̂−u

]
+
√
k(k − i)β

∂θu

∂z

∣∣∣∣
x=0

, (8.44)

∂θ̂+
b

∂z
+
∂θ̂−b
∂z

−
√
k(k − i)

(
C +

b − Cm

)
=√

k(k − i)

[
− i

k + iε
+
∂θ̂+

b

∂z
(α+ ikβ) + θ̂−b

]
+
√
k(k − i)β

∂θu

∂z

∣∣∣∣
x=0

, (8.45)

which may be subtracted to get

∂θ̂+
u

∂z

(
1− α

√
k(k − i)

)
=
√
k(k − i)

(
i(1− Cm)

k + iε
− θ̂+

u − Ĉ +
u

)
, (8.46)

In addition, by eliminating the constants in equations (8.43), we obtain the follow-

ing

∂Ĉ +
u

∂z
+
∂Ĉ −

u

∂z
= −

√
k(k − σi)

(
Ĉ +

u + Ĉ −
u

)
, (8.47)

∂Ĉ +
b

∂z
+
∂Ĉ −

b

∂z
=
√
k(k − σi)

(
Ĉ +

b + Ĉ −
b

)
, (8.48)

which may be subtracted and combined with equation (8.22) to obtain

−Ĉ +
u =

σγ√
k(k − i)

∂θ̂+
u

∂z
+ Ĉ −

u , (8.49)

an expression for the interfacial species concentration. Combining equations (8.46)

and (8.49) we have

∂θ̂+
u

∂z
αK(k) = −i(1− Cm)

k + iε
+ θ̂−u + Ĉ −

u +
β

2

(
∂θb

∂z
− ∂θu

∂z

)∣∣∣∣
x=0

, (8.50)

where

K(k) = 1− α−1√
k(k − i)

+
σγ/α√
k(k − iσ)

+ ik
Γ

µ̄
= K+(k)K−(k), (8.51)

The functions K+ and K− are analytic in the upper and lower half planes respec-

tively, and may be obtained by inspection or from the general procedure of Noble
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(1988). Equation (8.50) can now be re-written, for small surface energy (i.e. β = 0

and Γ/µ̄ = 0) as

α
∂θ̂+

u

∂z
K+(k) +

[
(1− Cm)i

K−(−iε)(k + iε)

]
+

=

θ̂−u + Ĉ −
u

K−(k)
+

[
−i(1− Cm)

K−(k)(k + iε)
+

i(1− Cm)

K−(−iε)(k + iε)

]
−

= PL.

(8.52)

Both sides are functions analytic in the upper (+) and lower half planes (+). As

k →∞ along the positive real axis we assume that the second term goes to zero,

which can be verified after we obtain the solution, and therefore from the Louville’s

theorem PL = 0.

8.5 Pure liquid

For a pure liquid the melting temperature has a constant equilibrium

value (Cm = 0) and the solid must also be pure (Cs = 0).

8.5.1 Isothermal solid

In this case equation (8.51) reduces to K(k)α = −1/
√
k(k − i) = K+K−

where K+ = α−1
√
k and K− = −1/

√
k − i. Now equation (8.52) may be written

as

∂θ̂+
u

∂z

[
1√
k

]
+

−
[
i
√
−iε− i

k + iε

]
+

= 0, (8.53)[
i
√
k − i

k + iε
− i
√
−iε− i

k + iε

]
−
− θ̂−u

[√
k − i

]
−

= 0.

(8.54)

Now we can combine these equations with equations (8.40) and (8.41) to obtain
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∂θ̂+
u

∂z
=

√
1 + ε

√
k i
√
−i

k + iε
, (8.55)

θ̂−u + θ̂+
u = − i

√
−i
√

1 + ε

(k + iε)
√
k − i

= C1, (8.56)

which are the temperature and vertical temperature gradient along the phase

boundary z = 0. With the aid of the inverse transform equation (8.55) can be

expressed as

∂θu

∂z
=

√
1 + ε

2π

∫ ∞

−∞

i
√
k
√
−i

k + iε
e−ikxdk, (8.57)

For ε = 0 we can solve this integral by using a key hole contour with a loop around

the brunch cut along the positive real axis to obtain

∂θu

∂z
=

1

2π

∫ ∞

0

e−νx

√
ν

dν =
−1√
πx
, (8.58)

where we have made use of the transformation k = −iν

Combining equations (8.42) and (8.56) and using the inverse transform

the temperature in the upper half plane can be expressed as

θu =
i
√
−i
√

1 + ε

2π

∫ ∞

−∞

e−
√

k(k−i)z−ikx

(k + iε)
√
k − i

dk, (8.59)

for the entire liquid domain. With ε = 0 this equation can be solved following

Wichman and Williams (1982) by introducing the polar coordinates x = −rcos(φ),

z = rsin(φ) (0 ≤ φ ≤ π), where r =
√
z2 + x2 and φ = tan−1(−z/x). The solution

is

θu = erfc

(√
r − x

2

)
, (8.60)

and has the expected error function solution from self similarity (Horvay and Cahn

1961).
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Results

From the Stefan condition, equation (8.19) we can integrate equation

(8.58) to obtain

y =
2

Sa
√
π

√
x+ c1, (8.61)

where c1 is determined form the near nose region but for the leading order dis-

placement we can apply the condition y(0) = 0 and therefore c1 = 0. This solution

is essentially unavoidable since there is no length scale in the system and could

be determined from similarity. If we recast this equation in dimensional form we

can obtain a family of solutions for the growth rate as a function of the dendrite

thickness

V =
16κ

S2π

x

h2
. (8.62)

Provided we know the ratio x/h2 from experiments or a numerical solution we can

find the velocity V as a function of the thermal diffusivity of the liquid and the

Stefan number. Therefore from this expression we can see that the growth velocity

increases if heat can be diffused more rapidly or if the temperature gradient is

increased. Furthermore we can obtain an expression for the normal velocity in

dimensional form as

Vn =
4
√
κV

S
√
πx
. (8.63)

The solution should be compared against the result of Ivantsov (1947), which yields

a solution in terms of the experimentally determined radius of curvature of the tip.

Comparison with the similarity solution

We can compare our result with the similarity solution of Ivantsov (1947),

in which the interface position is given by (see Horvay and Cahn 1961)

y =
2
√
P

a

√
P + x, (8.64)
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where P = V R/2κ is the Peclet number, R is the radius of curvature at the tip

and P is determined form

S−1 =
√
πP eP erfc(P ). (8.65)

For large x we can combine equations 8.61 and 8.64 to obtain an expression for P ,

√
πP = S−1, (8.66)

which is equal to equation 8.65 in the limit of a small Peclet number. Since P

decreases with the radius of curvature, our solution is approximately equivalent

to the similarity solution for slender dendrites, which is in accordance with our

assumption.

8.5.2 Kinetic under-cooling included

Here we solve for the vertical flux along the dendrite surface with the

effect of kinetic under-cooling included (α 6= 0). In order to do this we first

need to obtain the analytic functions K+ and K− by using the general splitting

technique discussed in Noble (1988)

Splitting

In general the functions analytic in the upper and lower half plane in

equation (8.51) are

K−(k) = exp

[
1

2πi

∫ id+∞

id−∞

lnK(ξ)

k − ξ
dξ

]
, (8.67)

K+(k) = exp

[
1

2πi

∫ ic+∞

ic−∞

lnK(ξ)

ξ − k
dξ

]
, (8.68)

where 0 < c < Im(k) < d < i and we can imagine a rectangle in the complex plane

where the two functions are analytic. We can solve equation (8.68) by closing the

contour in the lower half plane with a loop around the cut that extends from 0

to i∞. We do not include the simple pole at ξ = k, where it is within the strip
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of analycity since it lies outside our contour. With the substitution ξ = −iu and

k = −iγ we have

lnK+ =
1

2πi

∫ ∞

0

[
log

(
1 + i

α−1√
u(u+ 1)

)
− log

(
1− i

α−1√
u(u+ 1)

)]
du

u− γ
,

(8.69)

With the well known trigonometric identity arctan(z) = [log(1− iz)− log(1 + iz)] i/2

this integral is

lnK+ =
1

π

∫ ∞

0

arctan

[
α−1√
u(u+ 1)

]
du

u− γ
, (8.70)

where u represents a purely real variable. By integrating this integral by parts and

substituting in the variable y =
√
u(u+ 1) we get

lnK+ +
1

2
log(−γ) =

α−1

π

∫ ∞

0

log
(
−1/2− γ +

√
1 + 4y2/2

)
y2 + α−2

dy = f. (8.71)

For small α the second term integrates to zero and we are left with the separations

found by inspection in section (8.5.1).

Determination of the vertical gradient

From equation (8.52) and the inverse Fourier transform we have

θz =
1

2π

∫ ∞

−∞

−iα−1

K−(0)

K−(k)

K(k)k
exp−ikx dk, (8.72)

along the interface, where we are using the minus function for reasons that will be

apparent latter. If we close the contour in the lower half plane, where K−(k) is

analytic we loop around the branch cut from 0 to −i∞ and express the integral as

θz =
−α−2

πK−(0)

∫ ∞

0

K−(γ) exp(−γx)√
γ(γ + 1) + α−2√

γ(γ+1)

dγ

γ
, (8.73)

where γ is purely a real variable. From equation (8.71) and K = K−K+ we have

the following

θz =
1

π

∫ ∞

0

[
iα
√
γ(γ + 1)− 1

]
α2γ3/2(γ + 1) + γ1/2

e−γx−f+fo dγ, (8.74)
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Figure 8.4: Interface position y from equation (8.76) and (8.74) as a function of x

for α = .05, .1, .5, 1 and with Sa = 1.

in which case we take the real part of the integral and fo is f evaluated at γ = 0.

Note: f0 is a real number as a function of α and f will in general be complex.

We can gain some understanding of the nature of this integral by examining the

behavior far from the origin. In this case it can be shown that −γx >> f0 − f

and now we can obtain an asymptotic solution using Watson’s Lemma (See Bender

and Orszag). By expanding the product multiplying the exponential we have the

solution as x→∞

θz =
−1√
πx

+
α2

2
√
π x3/2

− 3(α4 − α2)

4
√
π x5/2

+ ... (8.75)

From this result we can see that as x increases or α decreases the isothermal

solution is obtained.
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We have plotted the interface position

Say = −
∫
θz dx+ C1, (8.76)

in Figure 8.4 as a function of α, where y(0) = 0 for the first order displacement.

When the effect of kinetic under-cooling is large the temperature along the interface

is depressed, resulting in a slower growth speed. As a result the phase boundary

will melt back. It is interesting to not that the parabolic profile is no longer

obtained near the nose although for large distance this solution is the same as the

isothermal case.

From equation (8.75) we know that the temperature gradient for large x is

asymptotically equivalent to the isothermal case since the surface slope decreases in

this region. With reference to the Stefan condition, the normal velocity must also

be approximately equivalent here. Therefore we can express the growth velocity

as

V =
16κ

S2π

1

xh2
x

, (8.77)

which is independent of the kinetic under-cooling parameter α. With this rela-

tionship the velocity has a family of solutions for the surface slope, which could be

obtained experimentally.

8.5.3 Vanishing x-diffusion

Since heat is dissipating from the solid into a large body of fluid that lies

above and below the x-axis, we expect vertical diffusion to dominate diffusion in

the horizontal direction, except near the nose. Neglecting this term the equations

reduce to

θx = θzz, z > 0, z < 0, (8.78)

Sayx = −θz, z = 0, (8.79)

θ = 1− αθz, z = 0. (8.80)
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The boundary conditions in this case are

θ(0, z) = 0, (8.81)

θ(x,∞) = 0, (8.82)

where the first condition arises from the solution in the region x < 0. The set of

equations can be solved by Laplace-transforms defined as

θ̂(s, z) =

∫ ∞

0

θ(x, z)(e)−sxdx, (8.83)

θ(x, z) =
1

2πi

∫ c+i∞

c−i∞
θ̂(s, z)esxds. (8.84)

The transformed equations are

θ̂zz = sθ̂, (8.85)

θ̂(s,∞) = 0, (8.86)

θ̂(s, 0) =
1

s
− αθ̂z, (8.87)

with the solution

θ̂ =
e−

√
sz

s (1− α
√
s)
, (8.88)

θ =
1

2πi

∫ c+i∞

c−i∞

e−
√

sz

s (1− α
√
s)

esxds. (8.89)

Differentiating equation (8.89) with respect to z, we have the following

reduced equation along the interface

θz(0, x) = − 1

2πi

∫ c+i∞

c−i∞

esx

√
s

ds− α

2πi

∫ c+i∞

c−i∞

esx

1− α
√
s

ds, (8.90)

where we have used a partial fraction expansion and the linearity property of the

inverse Laplace transform. The first integral can be evaluated by deforming the

contour around the left half plane with a loop around the branch point at s = 0 and

the negative real axis. For the second integral we can use the same contour, where

the pole at s = 1/α2 an be neglected since it lies outside the contour. Therefore

θz(0, x) = − 1√
πx

+
α2

π

∫ ∞

0

e−rx

√
r

1 + α2r
dr =

− 1√
πx

+
1

8
√
πx

ex/2α2

D−2

(√
2x

α

)
, (8.91)
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where D−2 is the parabolic cylinder function defined as (see Abromowitz and Ste-

gun)

D−2(p) = ep2/4

√
π

2

[√
π

2
e−p2/2 − p erfc

(
p√
2

)]
. (8.92)

We have the solution as x→∞

θz =
−1√
πx

+
α2

2
√
π x3/2

− 3α4

4
√
π x5/2

+ ... (8.93)

We can determine the temperature profiles by manipulating equation

(8.89) as follows

θ + αθz =
1

2πi

∫ c+i∞

c−i∞

esx−
√

sz

s
ds. (8.94)

The contour integral can be completed by deforming the contour onto the left half

plane with a loop around the branch cut along the negative real line and a pole at

the origin. The resultant first order ode is

θ + αθz = erfc

(
z

2
√
x

)
. (8.95)

This can be solved using an integrating factor (ez/α/α) to obtain

θ = erfc

(
z

2
√
x

)
+ ex/α2−z/α

[
erf

(
z

2
√
x
−
√
x

α

)
+ erf

(√
x

α

)]
− αθz(0, x).

(8.96)

In Figure 8.5 we have plotted the vertical temperature gradient θz from

the Wiener-Hopf formulation equation (8.74), the asymptotic solution for large x

equation (8.75) and the solution for vanishing x-diffusion equation (8.91). As we

expect none of the solutions are equivalent near x = 0 since we expect horizontal

diffusion to be important in this area.

8.6 Binary substance

Here we retain all the terms related to species such as Cm, σ, γ, and etc.

and solve for the flux, temperature and concentration using the same techniques
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Figure 8.5: θz as a function of x for α = .1 (left) and α = 1 (right) for equation

8.74 (solid line), equation 8.91 (dotted line) and equation 8.75 (dashed line).

as the previous section on a pure liquid. To be consistent we take Γ/µ̄� 1 so that

curvature effects can be ignored although this will not be the case near the tip,

where the slope yx � 1.

8.6.1 Wiener-Hopf

For the zero kinetic under-cooling case (α = 0) the shape will be con-

trolled by the rate of diffusion of heat relative to solute. The (+) and minus (−)

functions are K+ = α−1
√
k and K− = σγ/

√
k − iσ − 1/

√
k − i respectively. On

using equation (8.52) and the inverse transform with ε = 0, we have the following

integral

∂θu

∂z
= −B

√
i

1

2π

∫ ∞

−∞

e−ikx

√
k

dk, (8.97)

where k is still an imaginary number and B = (1−Cm)/(1−σ1/2γ). The solution

is of the same form as the pure case:

∂θu

∂z
=

2B√
πx
, (8.98)
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Furthermore, the species flux is given by

∂Cu

∂z
=

2Bσγ√
πx

. (8.99)

From this equation the normal velocity and interface position as a function of x

are given from equation (8.19) to be

Sayx =
2B√
πx
, (8.100)

Say = 4B
x1/2

√
π
. (8.101)

From this we can express the growth rate as

V = VisoB
2 =

16κ(1− Cm)2

π(S − Csσ1/2)2

x

h2
, (8.102)

where Viso is the velocity for the isothermal case and x is dimensional. The im-

portant result here is that although the profile is parabolic it will have a thickness

that is dependent on the chemical properties. For a fixed temperature scale and

variable far field concentration, the largest velocity will occur when C∞ = Cm,

the maximum concentration. Alternatively no growth is possible if C∞ = C(T∞),

the liquidus concentration since there would be no flux of mass to the interface.

Furthermore, the growth velocity increases when the Stefan number decreases for

the usual reasons and when Cs decreases; hydrate concentration is small relative

to the concentration scale.

In the limit of a large Lewis number (i.e. the species diffusion is infinite),

the concentration field will be approximately constant and the velocity reduces to

the isothermal case, provided Cm = 0. On the other hand in the limit of a small

Lewis number the velocity is approximately

V =
16D(1− Cm)2

πC 2
s

x

h2
, (8.103)

in which the velocity scales with mass diffusion and the parameter concentration

Cs. This result is equivalent to the planar growth of a binary fluid discussed by

Worster (2000) in that Cs replaces S when species diffusion is small. Generally

this is the case for many fluids (salt, gas hydrate, etc.) since σ ≈ 100.
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8.6.2 Vanishing x-diffusion

This problem is similar to the pure case but another equation is required

to account for the transport of solute concentration. We have the following equa-

tions

θx = θzz, σCx = Czz, (8.104)

and on the interface we have

θ = 1− Cm + C − αθz, (8.105)

σγθz = Cz, Sayx = −θz, (8.106)

with the far field conditions θ(x,∞) = C (x,∞) = 0 and the far left conditions

θ(0, z) = C (0, z) = 0. Invoking the Laplace transform and applying the boundary

conditions we have

θ = B
1

2πi

∫ c+i∞

c−i∞

esx−
√

sz

s(1−
√
sα̂)

ds, (8.107)

C = Bσ1/2γ
1

2πi

∫ c+i∞

c−i∞

esx−
√

sσz ds

s(1−
√
sα̂)

, (8.108)

after using the inverse Laplace transform and α̂ = α/(1−σ1/2γ). The temperature

equation has the same form as for the pure liquid case and will have the same

solution for the temperature as equation (8.91) and (8.96) with the modified form

of the kinetic under-cooling term α̂. It is interesting to note that the effect of

kinetic under-cooling is now scaled with the Lewis number and the parameter γ.

The temperature gradient at the phase boundary therefore is

θz(0, x) = − B√
πx

+ B
α̂2

π

∫ ∞

0

e−rx

√
r

1 + α̂2r
dr =

− B√
πx

+ B
1

8
√
πx

ex/2α̂2

D−2

(√
2x

α̂

)
. (8.109)

In many cases such as the growth of snowflakes, gas hydrates and sea ice

the kinetic coefficient µ� 1 and does not become important unless for very large
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Figure 8.6: Interface position y from equation (8.76) and (8.109) as a function of

x for B = .025, .05, .075, .1 corresponding to thicker profiles respectively and with

Sa = 1 and α̂ = 0.

growth rates. In addition, for binary solidification the kinetic coefficient is scaled

with the Lewis number, which is very small in the applications mentioned above

and therefore has the effect of reducing the effect of under-cooling even further. In

figure (8.6) we have plotted the interface position as a function of the concentration

of the far field temperature difference B ∝ Cm. As mentioned previously, as the

concentration C∞ decreases below the equilibrium value, corresponding to the

local temperature the growth decreases and we obtain the slimmer profiles shown

in figure (8.6).
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8.7 Conclusion

In this Chapter we have investigated the steady dendrite problem for a

binary liquid using slender body theory in order to determine the interface position

to leading order. The essence of this method is to expand the temperature and

interface position about an appropriate length scale for the thickness and solve

the outer problem. Under this assumption the equations are amenable to the

Wiener-Hopf technique, which is a complex variables method that is useful for split

boundary problems. In the case of a pure liquid we were able to verify the interface

profile found by the similarity solution of Ivantsov (1947) for an isothermal solid.

Furthermore we extended the model to include the effect of kinetic under cooling

and found that the profile is no longer parabolic but has a reduced thickness near

the nose region. In addition we investigated the binary liquid problem and found

that the interface retains its parabolic structure although it may have a thinner

shape depending on the far-field concentration relative to its liquidus value and

diffusion relative to heat.
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Summary and Conclusions

9.1 Chemically reacting plumes

Plumes are the most common form of large Reynolds number convection

in the atmosphere and are frequently encountered within occupied spaces (Lin-

den, 2000). Previous studies have not considered the effect of chemical reactions

in the classical plume models of Morton et al. (1956), although there are impor-

tant applications as discussed in the introduction of this thesis. In our studies

we analytically, numerically and experimentally investigated the plume dynamics

associated with a second order non-reversible reaction between the source and en-

trained ambient fluid. The projects can essentially be broken up into two distinct

studies: passive reactions in filling boxes and exothermic/endothermic reactions in

unbounded ambients.

9.1.1 Plumes in ventilated spaces with passive reactions

In this case we examine the evolution of species concentration within

a ventilated room as a fundamental study for contaminate removal in occupied

spaces. We assume that the reaction is passive, such that the plume dynamics do

not couple with the chemistry since the heat of reaction is negligible. Clearly the

evolution of the chemical species depends on the reaction rate, the initial concen-

189
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trations, the shape of the room and the plume dynamics. However in general, we

can break the species evolution into three distinct phases. Initially, as the source

fluid flows into the room, the mean concentration of the input chemical increases

due to the inflow, with some loss due to the reaction with the initial room species.

After a finite time, the layer of fluid contaminated by the inflow reaches the open-

ing to the exterior at the base of the room. During an ensuing intermediate phase,

the rate of increase in the concentration of the input chemical then drops, due to

the extra sink for the input chemical of the outflow through the opening. During

this intermediate stage, the concentration of the input chemical continues to rise,

but at a reduced rate due to the reaction with the fluid in the room. Ultimately,

all the fluid (and hence the chemical) that was originally in the room is lost, both

through reaction and outflow through the opening. Finally, the room approaches

steady state in a few filling box time scales, in which the space in completely filled

with source fluid.

In relation to contaminate transport, if a hazardous chemical enters a

room from a plume source this species will rise to the ceiling before descending

into the occupied zone. Therefore, people must be evacuated before the first ar-

rival time of circulated plume fluid as predicted by Caulfield and Woods (2002).

Although for large reaction rates or a small initial plume species relative to am-

bient species this time will be extended significantly. Alternatively, if the room

is initially contaminated, then a plume will be more efficient at extracting this

chemical since the concentration of the contaminant will always be larger near

the vent. In addition, for large reaction rates and relatively small ambient species

concentrations, this contaminant will be extracted at faster time scales. Further-

more, if the product species is hazardous, a window of time will exist in which

the contaminant is at a sufficiently high concentration (assuming the chemical is

hazardous at high concentrations) but will decrease for weak reaction rates and

relatively small source concentrations.
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9.1.2 Plumes in infinite spaces with exothermic/endothermic reactions

In this study we developed a model for a turbulent plume in an unbounded

ambient, taking into account a general exothermic or endothermic chemical reac-

tion. In many cases, such as pyrophoric materials in air and the dilution of sulfuric

acid in water, the chemical reactions can be highly exothermic; therefore we used

the non-Boussinesq formulation. The problem was essentially separated into two

groups: unstratified and stratified ambients. In this first case we were able to

obtain an exact solution for large heats of reaction, in which the volume flux

scales with z2/5 rather than the z3/5 scaling associated with no reaction. Further-

more, we quantified the deviation from pure plume behavior as a function of the

release/absorption of heat and the reaction rate. In the case of an exothermic

reaction, the plume was shown to behave more plume like, since the buoyancy

force increases relative to momentum. On the other hand an endothermic reaction

yields the opposite behavior although for large amounts of heat absorption the

plume will become a fountain and spread horizontally into the environment.

In the second case, we examined the effect of reaction rate, heat of reaction

and ambient species stratification on the maximum rise height of the plume moving

through a linear density field. The most important finding, was that the maximum

rise height of the plume may decrease with reaction rate for an exothermic reaction.

This is due to a larger entrainment rate near the source, where the density and

reaction rate are strongest.

9.1.3 Future directions

Evaporative cooling

With the growing demand in energy required in the near future, especially

in the developing world, it is becoming increasingly important to offset this growth

with more energy efficient and sustainable technologies. Since many industrialized

countries spend a significant amount of their energy budget on ventilation systems,
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which are relatively inefficient compared with hybrid natural ventilation systems

in certain geographical regions, this is an area in which many improvements may

be possible. One possible technology is evaporative cooling, in which dry air is

mixed with water droplets and forced into an occupied space where the water

changes phase from liquid to vapor. Latent heat is absorbed, thus cooling the

surrounding air. This technology is very popular in hot dry climates such as

the U.S. Southwest and the Middle East, since the cooling efficiency can be very

large and operational costs relatively low in comparison with air conditioners.

Evaporative cooling has been used for years in cooling towers to cool circulated

water (Fisenko et al. 2004). A major drawback is the increased humidity of the

cooled air which may accelerate the corrosion of electronic or other equipment and

create an uncomfortable environment in comparison with dry air. Therefore, a

complete understanding of the cooling rate and transport of moisture in ventilated

spaces is necessary, especially if this scheme is to be integrated into a natural

ventilation framework.

The fundamental fluid dynamical aspect of this problem is the distri-

bution of water droplets with variable size and concentration within a turbulent

plume. As the plume naturally entrains ambient fluid, the water droplets evapo-

rate provided the air is sufficiently dry in order to maintain the equilibrium vapor

concentration. In doing so latent heat is absorbed, thus increasing the density of

the fluid and coupling to the plume dynamics through the buoyancy force. Clearly

this process will increase the humidity as well as cool the air and an understand-

ing of the most efficient control strategies are critical, in order to employ it most

effectively in an air conditioning design.

Batch reactors

Often materials with a specific structure or composition are manufactured

using continuous batch reactors, where fluid is injected into a well mixed space and

a product chemical is extracted from the bulk fluid. Under normal circumstances
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the reaction is passive and the reactants see a homogeneous environment, where the

properties of the system can be described by simple equations that depend on the

inlet flow rates and reaction mechanisms (see Aris 1969). When the reaction has

an exothermic step, the homogeneity may break down with convection dominating

the external mixing for large temperature differences (Campbell et al. 2007). This

process has the potential to behave like a turbulent plume, especially for large ves-

sels with fluid injected from the bottom. Clearly, the mixing process, especially for

unmixed reactors, needs to be well understood so that the manufacturing process

is as efficient as possible.

9.2 Gas hydrates

Methane gas hydrates are contained within the ocean seafloor in ex-

tremely large quantities. Unlike ice, which generally requires cold temperatures

to exist, hydrates, in addition, need to be near a source of methane. Because of

this they are always in a transitory state at sufficiently large times scales, forming

and decomposing in response to the transport of heat, salt and dissolved methane

gas. In this study we have sought to examine how gas hydrates melt, dissolve and

dissociate in a fundamental sense, using equations that are as simple as possible.

In general we considered a homogeneous, rigid matrix that is separated into two

sections: a layer of hydrate mixture in the lower layer and a layer of water and

sediment on top. By conserving heat, species, mass and momentum we were able

to quantify the movement of this interface as a function of appropriate physical

conditions. Due to the complex phase diagram associated with methane hydrates,

the problem can be broken up into two parts: melting/dissolving and dissociation.

In the first case the local fluid temperature is less than the three phase

boundary and the hydrate release s dissolved gas upon decomposition. For pure

hydrate layers (Sh = 1), the velocity of the retreating interface scales with the

rate of species diffusion and therefore will depend on the concentration difference
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in the system. Essentially, if the water temperature increases or the dissolved

methane concentration decreases the decomposition rate will be faster. Moreover,

we examined the effect of an arbitrary hydrate saturation in the lower layer. This

had faster interface velocities, since the amount of heat required to be remove at

this boundary is comparatively smaller.

In the second case, the local fluid temperature is above the three phase

boundary, causing the hydrate to dissociate into water and gas. Compared to the

previous model, dissociation is more complicated because there is a multi-phase

flow through the upper porous layer. Nonetheless we can still use Darcy’s Law

for the flow field with appropriate empirical relationships for the permeability and

capillary pressure. This scenario is possible if the overlying water column tempera-

ture increases (by global warming, seafloor lifting, etc.) or if the pressure decreases

(by a decrease in sea level, seafloor lifting, etc.). We developed a simple model

assuming pure hydrate saturation, constant densities, and a homogeneous porous

matrix, in order to understand physically the mechanisms involved in the problem.

These assumptions, though limiting, are most likely obtainable for sediments with

cold vents, such as those found near Vancouver Island. Here the hydrate layer can

be found meters below the seafloor and the saturations can be larger than eighty

percent. Generally, for gas hydrate dissociation, the controlling parameter is the

Stefan number as this relates the amount of sensible heat to latent heat in the

system. Therefore, if this number decreases (e.g. the water temperature increases

relative to the three phase temperature) the hydrate dissociation increases, causing

the flux of gas into the water column to increase as well.

9.2.1 Mass flux rates

In Chapter 7 we described a simple theoretical method for gas hydrate

dissociation but we did not explore the influence of specific deposits. Here we relate

the results to two test cases associated with regions of high hydrate saturations

(such as off Vancouver island). We assume the methane deposits are within a few
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Figure 9.1: Total mass (in kilograms) of methane gas leaving the seafloor per unit

area in one year as a function of the temperature scale ∆T and liquid layer depth

`w = 1 meter (left) and 4 meters (right). The results are based on the model

developed in Chapter 7. We have used properties for sandstone (solid line) and

clay (dotted line), assuming that the thickness of the hydrate layer is double the

liquid layer.

meters below the seafloor and the porous medium is homogeneous, with appro-

priate thermal and dynamic properties corresponding to sandstone and clay. In

Figure 9.1 we show the total mass of methane gas, mg, (per unit area) leaving the

sea floor in one year as a function of the temperature difference ∆T (boundary

minus equilibrium temperature) and hydrate deposit depth `w. As we expect, mg

increases with the temperature difference and for shallower deposits. Generally,

we expect the gas flow rate to be largest for sandstone, in the large Stefan number

case, where diffusion dominates because the average thermal diffusivity is larger

than clay.

Typically the temperature difference will be no larger than a few degrees

and we can see from Figure 9.1 that the total mass entering the ocean water column

is relatively large.
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9.2.2 Experimental work

When we first starting working on this project we were interested in

performing some experiments to help us understand what was going on and to

compare with our model. We started setting up the experiments with come col-

leagues in the chemistry department at UCI using isobutane as the hydrate former.

The main advantage of this hydrocarbon in comparison to methane is its very low

formation pressure (near 1 atm and ≈ 1.7◦C). Eventually we abandoned the ex-

periments for several reasons, mainly concerning the ability to accurately control

the temperature.

Furthermore, although the experiments may be appropriate for the model

presented in Chapter 7, they cannot be compared to in situ deposits. The main

problem is that in general the length scales in the ocean are much larger than in

the laboratory and we cannot get dynamic similarity (gravitational forces dominate

for deep deposits but capillary forces dominate for shallow hydrate layers). There-

fore, the experiments would be of little interest to geologists or other investigators

interested in the dissociation of hydrates.

9.2.3 Future directions

Variable hydrate saturations

In most cases the hydrate saturation is not pure and the model presented

in Chapter 7 will not apply. The main issue is due to the hydrate bearing region

decomposing internally and thus absorbing latent heat, rejecting methane gas (ei-

ther dissolved or is gas form) and diluting the solute concentration. In Chapter

5 we developed the basic model for this situation, which will serve as a starting

point for an appropriate study. The main source of uncertainty, involves an appro-

priate condition for the hydrate mixture/water interface, which in the small Lewis

number limit implies Sh = 0. Therefore in this limit no gas flux can occur. It may

be possible to overcome this by considering the inner problem but so far this has
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not been done.

9.3 Dendrite solidification

Dendrites are a common occurrence generally appearing with multiple

structures such as snowflakes, sea ice, metal castings and etc. and are important

for many reasons including ocean convection, material strength and many more.

In Chapter 8 we examined a simple case involving a single dendrite growing into a

super-cooled binary fluid. We used slender body theory, which is appropriate for

small Peclet numbers as determined from similarity theory. The dendrite surface

position was found to be parabolic but when kinetic effects were included the

interface position took on a new form with a thinner profile. In addition, the effect

of a binary fluid is to reduce the growth rate since mass diffusion is slower than

heat and therefore dominates the interfacial velocity.

9.3.1 Future directions

Near Nose Region

The analysis presented in Chapter 8 will not apply near the tip of the

dendrite since the scaling associated with slender body theory breaks down in

regions with large curvature. In this case we need to deal with the full non-linear

interfacial conditions, which we can do by rescaling the length with (x, z) = a(ξ, η)

aθξ = θξξ + θηη, η < y(ξ), (9.1)

yξ = [yξθξ − θη]
s
`, η = y(ξ), (9.2)

θ = 1 +
Γ

a

yξξ

(1 + y2
ξ )

3/2
− µ̄

yξ√
1 + y2

ξ

. (9.3)

For small a the temperature field in the liquid and solid to leading order may be

approximated as Laplace’s equation

θξξ + θηη = 0 η < y(ξ). (9.4)
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Due to the complicated nature of the interfacial conditions, a closed form solution

may not be possible although the equations can be solved numerically using bound-

ary element methods. This solution essentially corresponds to the inner solution

and will need to be matched to the outer solution obtained in Chapter 8 in order

to find the growth rate. Of course for zero surface energy and infinite kinetics

the solution is given by the similarity solution. Thus following Horvay and Cahn

(1961) the interface position is

h = 2
√
P
√
x, S−1 =

√
πP , (9.5)

where P is the Peclet number. It would be interesting to solve the equations for

the surface energy and kinetic effects included, which we will complete in due time.
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