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Abstract

The Great Filter refers to a highly speculative theory that implicitly
claims one can test, via a probability model, whether known aspects
of the history of life on Earth are consistent with the hypothesis that
emergence of intelligent life was very unlikely. We describe the theory
and some of the many objections to it. We give a mathematical argu-
ment to show that one objection, namely that it considers only a single
possible linear history rather than multitudinous branching potential
pathways to intelligence, has no force.
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1 Introduction

There is something fascinating about science. One gets such
wholesale returns of conjecture out of such a trifling investment
of fact. Mark Twain.

My upper division students enjoy occasional speculative material as a va-
cation from the usual style of mathematics instruction, so perhaps readers
will also. The mathematics used in this article is at the level of exercises in
a post-calculus course in mathematical probability.

The generally accepted answer to the question

have we observed evidence of extraterrestrial intelligence, either
contemporary (e.g. via radio astronomy) or in the past (e.g.
evidence of previous visits to the solar system)?

is “No”. From this single bit of data, much speculation has resulted, under
the names Fermi paradox and Drake equation. (The Drake equation is an
elaboration of (1) below; that claimed plausible values of its terms lead to
large estimates of the number of extraterrestrial civilizations is the Fermi
paradox). The topic is discussed at length in two non-technical books [2, 8]
and summarized in a well-written Wikipedia article [9], so let me only briefly
recall a central style of argument. Consider the product

Npq (1)

where

• N is the number of Earth-like (loosely, and at formation) planets in
the galaxy

• p is the chance that, on such a planet, an intelligent species at a
technological level comparable to ours will arise at some time

• q is the chance that such a species would survive in such a way as
to be observable (via communication or exploration) to other galactic
species for an appreciable length of time.

More precisely, to define q one should weight by “proportion of time” and
“proportion of space”, relative to lifetime and size of galaxy, that the species
would be observable, but such details are not important in our brief account.
The point is that Npq represents the number of other intelligent species we
expect to observe in the galaxy. Because we don’t observe any, we conclude
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prima facie (treating absence of evidence as evidence of absence) that it
cannot be true that Npq � 1. Since it would be a bizarre coincidence if
Npq ≈ 1, we should conclude that Npq � 1 and so humans are most likely
to be the only technological species in the galaxy.

The issues in the argument above have been developed in many different
directions in the literature. Let me summarize, by slightly caricaturing,
three views of the topic. The first two may well be familiar to the reader
but the third, the starting point for this article, may not be.

The science fiction view. The bar scene in Star Wars is cool; it’s nice
to imagine there are aliens we could communicate with; so let’s think of
reasons why the prima facie conclusion might be wrong, in other words how
there might be extraterrestrial intelligence that we don’t observe.

The hard science view. One can hope to estimate N fairly accurately,
but there is no conceivable way that either p or q could be estimated scien-
tifically. So further theoretical speculation is futile, though devoting a very
small proportion of the science budget to SETI (Search for Extra-Terrestrial
Intelligence – an umbrella term for scientific activities seeking relevant data)
may be reasonable.

A third view. Human beings did not create the Universe or direct the
course of evolution, so N and p are not our responsibility. But q, as applied
to us (i.e. will our species leave its mark on the galaxy?) is presumably
under our control. Viewing q very roughly as the chance that a hypothetical
technological species arising across the galaxy 25 million years in the future
would then be able to observe the then-current or previous existence of hu-
mans, being told that q = 10−6 would be rather depressing. Depressing,
because of the ways this might come about, for instance if humans soon be-
come extinct, or change and cease to interact with the macroscopic physical
universe. Knowing q = 10−6 would be knowing that something like this is
almost certain to happen. Now having decided that Npq is small, implying
pq is very small, the only way to avoid the depressing possibility of q being
very small is to for p to be very small.

So this third view leads to the counter-intuitive conclusion that

we should want p to be very small (2)

where the sense of want is, as above, “to be consistent with humanity sur-
viving long enough to have at least a tiny chance of leaving its mark on the
galaxy”.
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Given the vast divergence of opinions regarding the value of p which have
been expressed by authorities [2, 9], it seems prudent to accept one part of
the hard science view:

there is no conceivable way that p could be estimated scientifically (3)

and have the estimate generally accepted. (Detailed scientific arguments
that p is very small are often referred to as the rare Earth hypothesis [11]).
But note that there is no logical contradiction between believing (3) and
being willing to consider the program

try to ascertain whether what we know about the evolution of life
on Earth is consistent with the possibility that p is very small. (4)

The question is: can we actually carry out anything like this program?

2 The Great Filter

The phrase Great Filter was coined in the 1998 Robin Hanson essay [3].
Hanson pointed out the counter-intuitive conclusion (2) and noted the math-
ematical argument in section 3 as relevant to the program (4). See [1] or
[2] pp. 86–90 for other discussions; in this case the Wikipedia article [10]
is not the most helpful. There are further counter-intuitive corollaries, for
instance [1] that we should not want to discover that life ever evolved on
Mars independently of life on Earth. The filter metaphor is that, in a se-
quence of steps from non-life to a species detectable from outside its solar
system, either the occurrence of some one particular step, or of a sequence
of steps in the necessary order, must be incredibly unlikely, otherwise the
galaxy would be teeming with observable life.

Let me set up the key mathematical idea via a story with more familiar
ingredients. Consider two unlikely events for an individual – say, being
struck by lightning and winning the lottery. Suppose I point to a 50-year-old
man and tell you that sometime since age 20 he won the lottery and sometime
later he was struck by lightning. And suppose the relative probabilities of
these two events are not known, except that each is very unlikely. What can
you say about the probability distribution of the ages at which these two
events occurred?

In thinking about this question with (non-mathematical) intuition, you
might think as follows. The two events split the interval [20, 50] into three
sub-intervals. In general you have to wait longer for a more-unlikely event
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than for a less-unlikely event, so the interval ending with the less-likely of
the two events will probably be longer.

But, within the simplest probability model one might devise for this
story, that conclusion is wrong. Counter-intuitively, regardless of the relative
probabilities, the three intervals have the same mean length. See section 3.

Hanson [3] pointed out that one can try to apply the same argument
to the evolution of intelligent technological species on Earth. Suppose we
identify some key steps between the formation of an Earth-like planet and
technological civilization. He suggested six intermediate steps (I quote five
of his and have modified the sixth).

• Reproductive something (e.g. RNA)

• Simple (prokaryotic) single-cell life

• Complex (archaeatic & eukaryotic) single-cell life

• Sexual reproduction

• Multi-cell life

• Animal-level intelligence

• Technological civilization

The relevant time interval is the interval when life on Earth is possible,
roughly 4 billion years ago to 1 billion years in the future. If we suppose
each of these 7 steps was an unlikely random event then, under the simplest
probability model, the section 3 argument shows that regardless of the seven
actual probabilities, the eight sub-intervals would have random lengths with
equal means. And the data we have on the dates of these events is quite con-
sistent [2] with this model prediction, and so in particular is quite consistent
with the possibility that p is very small.

It is easy to think of numerous objections to the argument above, and
in class I ask students to suggest some. One might object, on philosophical
or religious grounds, to any notion that the existence of the human species
is the result of randomness. One might object that we have no scientific
understanding of how the first few steps happened, so a priori no model
could be reasonable. One might object to the choice of biological “key
steps”. One might object to the particular probability model, and so on.

This article will not consider most of these objections, as they are what
makes the theory highly speculative, and are not susceptible to mathemat-
ical analysis. Instead we focus on another objection, which is that the
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argument presumes the stated steps are “the single path to intelligence”. It
is sometimes argued [5] that convergent evolution implies that there were
only relatively few available pathways for evolution on Earth, but this is a
minority viewpoint amongst evolutionary biologists. And especially when
considering hypothetical independent evolution of life in other solar systems
under somewhat different physical conditions, my personal intuition sug-
gests that there might well be entirely different pathways whose nature we
cannot even imagine.

Section 4 sets up and analyzes a model allowing an arbitrarily large
number of possible branching paths to technological intelligence. Regardless
of the number and structure of possible pathways and regardless of the
chances for each step on each path to actually occur, is it still true that,
conditional on the (assumed unlikely) event that some path does lead to
technological intelligence, the times at which the key steps may occur are
still uniform random? We show that the answer is “yes, essentially”. Section
5 discusses two other variant models, and section 6 provides a final reminder
of the problematic nature of this modeling endeavor.

3 The single path model

We first recall some elementary material. Take n independent random vari-
ables with uniform distribution on [0, 1] and then either re-order them into
increasing order, or condition on their being in increasing order. The re-
sulting random variables 0 < X1 < . . . < Xn < 1 have joint (probability)
density function

fX(x1, . . . , xn) = 1/n!, 0 < x1 < . . . < xn < 1, (5)

that is to say are uniform on the space of possible values. Moreover each of
the n+ 1 random variables giving interval lengths

X1, X2 −X1, . . . , Xn −Xn−1, 1−Xn

has the same distribution, with density

g(u) = n(1− u)n−1, 0 < u < 1

and mean 1/(n+ 1).
The Exponential(λ) distribution has density

f(u) = λe−λu, 0 < u <∞
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and models the time of first occurrence of an event which is ‘purely random”
in the sense of having chance λdt of occurring in a time interval of length dt,
independent of previous events (in less precise language, an event that occurs
at rate λ). Given λ1, . . . , λn, consider random times 0 < Z1 < . . . < Zn <∞
such that the random variables Z1, Z2−Z1, . . . , Zn−Zn−1 are independent
and Zi − Zi−1 has an Exponential(λi) distribution. This is the “prior” or
“unconditional” version of the single path model; with n specified steps such
as those in section 2, and with unlimited time, the i’th step would occur at
time Zi. So we are assuming that, after the (i − 1)’th step, the i’th step
occurs at rate λi. The joint density function of (Z1, . . . , Zn) is then

n∏
i=1

λi exp(−λi(zi − zi−1)), 0 < z1 < z2 < . . . < zn <∞.

Now condition on the event (which will be unlikely if all the λi are small)
that all steps occur before time 1, in other words that Zn < 1. We choose
the time unit to be the length of interval of interest, and condition on all
steps being completed before this time. Writing 0 < Y1 < . . . < Yn < 1 for
the occurrence times of the steps under this conditioning, their joint density
is

fY (y1, . . . , yn) = c exp(−
n∑
i=1

λi(yi − yi−1)), 0 = y0 < y1 < . . . < yn < 1

(6)

where c =
∏

i
λi

P (Zn<1) . This is the “posterior” or “conditional” version of the
single path model, for the times at which steps occurred, given that they all
occurred before time 1.

In the Great Filter argument we are assuming each λi is small. We can
now argue qualitatively as follows. The exponential term in (6) is ≈ 1, that
is

fY (y1, . . . , yn) ≈ c, 0 = y0 < y1 < . . . < yn < 1 (7)

which implies that the distribution of (Y1, . . . , Yn) is approximately the uni-
form distribution (5). So the conclusion is that

the times Y1, Y2 − Y1, . . . , Yn − Yn−1, 1− Yn between steps
all have approximately the same distribution, (8)

with mean approximately 1/(n + 1). This holds regardless of the actual
values of the λi, other than being assumed small, and is the mathematical
content of Hanson’s [3] argument.

We will refer to the quantities Y1, Y2 − Y1, . . . , Yn − Yn−1, 1 − Yn as
inter-step times.
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3.1 Comments

The normalizing constant c in (6) must approximate the normalizing con-
stant 1/n! in (5), so we obtain the approximation

P (Zn ≤ 1) ≈
∏
i λi
n!

for the unconditional probability p in our model. This of course does depend
very much on the actual values of the λi. Like many of the well-known
counter-intuitive results in mathematical probability (e.g. inference from a
positive diagnostic test result for a rare disease), our intuition about the
effect of conditioning can be poor.

There is no great difficulty in replacing these slightly vague approxi-
mations by rigorous inequalities involving maxi λi, but we leave this to the
reader with a taste for calculus approximations. Instead we want to consider
the issue of whether the counter-intuitive result (8) holds only in this precise
setup or whether it is robust under certain variant assumptions. As already
mentioned, the variant on which we focus is replacing the “single possible
path” by “multiple branching possible paths”. This issue of course arises in
general discussion of the Fermi paradox, but apparently has not been dis-
cussed in the specific mathematical context of the Great Filter argument.

4 The branching history model

Here the mathematical setup is a tree, where the root (the top vertex in
Figure 1) represents the original “lifeless newly-formed Earth-like planet”,
and each “child” vertex v represents a different possible “first step” on a
path of steps. For each such v there are different possible “second steps”
w, and so on, and each downward path leads (after some path-dependent
number of steps) to a “leaf” representing a technological species. For each
pair (v, w) of possible successive steps there is a constant λw, and if step
v occurs, then the rate at which step w subsequently occurs equals λw.
For each v, when the first of these possible next steps occurs, the other
possibilities are suppressed. So in unlimited time, there would eventually be
one random path, with a random number L of random steps from the root
= v0, through V1, V2, . . . to a random leaf VL, the successive steps happening
at random times 0 = T0, T1, . . . , TL. This is the “prior” or “unconditional”
version of the branching history model.
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Figure 1. Branching possible histories.

We can now state the question. Assuming the chance p that this random
path reaches a leaf before time 1 is small, but conditioning on this happening,
and thus observing the value of the number of steps L, it it true (as in the
single path model) that the L + 1 inter-step times have approximately the
same distributions, regardless of the shape of the tree and regardless of the
actual values of the λv (assumed small)?

Note we are implicitly assuming that the number of steps to a leaf should
typically be small (e.g. 7, as in the section 2 list) but the branching num-
bers, namely the numbers of alternative next steps after each step, can be
arbitrarily large.

What does intuition suggest? On the one hand, one might argue that
because there can only be one actual realized path, the fact that this path is
random rather than prespecified is hardly important, so that this model is
not essentially different from the single path model. On the other hand one
can think of possibly analogous settings where such arguments are incorrect.
Recall a freshman statistics example. If, hypothetically, 50% of families
had one child and 50% had three children, then the average number of
children equals 2, from the parents’ viewpoint. But 75% of children are
in three-child families, so the average number of children equals 2.5 from
the children’s viewpoint. In looking at the genealogy of a random living
person, this effect continues backwards indefinitely; the 10’th generation
great great . . . great grandfather cannot be a statistically typical member of
his generation, because we know he had a son for sure. So by analogy, the
times of intermediate steps along the random path might not be statistically
typical.
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Anyway, a calculation is required to answer the question.

4.1 Analysis of the branching history model

We first quote further elementary facts about the Exponential(λ) distribu-
tion. Given m independent events where the i’th event occurs at rate µi,
that is m independent random times with Exponential(µi) distributions, the
random time T and random index I of the first event to occur are such that

P (T ∈ [t, t+ dt], I = i) = µi exp(−µ∗t) dt; µ∗ :=
∑
j

µj (9)

which is equivalent to the three properties

T has Exponential(µ∗) distribution

P (I = i) = µi/µ
∗, 1 ≤ i ≤ m

T and I are independent.

We can now readily write down the probability distribution in the un-
conditional branching history model, by simply applying (9) conditionally at
each step. For any path to a leaf starting with the root v0, say v0, v1, v2, . . . , v`,
and any 0 = t0 < t1 < . . . < t` <∞,

P (L = `;Vi = vi, 1 ≤ i ≤ `;Ti ∈ [ti, ti+dti]) =
∏̀
i=1

λvi exp(−λ∗vi−1
(ti−ti−1)) dti

(10)
where

λ∗v :=
∑
{λw : w a possible next step after v}.

We now see that to repeat the argument from the single path model, what
we need to assume is that

each λ∗v is small, (11)

rather than just assuming each λv is small. So we are assuming that after
each step, the chance that some next step occurs is small.

Recall that TL is the time at which some leaf is reached. For the condi-
tioned process we condition on the event TL < 1. Adding tildes to denote
conditioned variables, assumption (11) implies that the exponential terms
in (10) are ≈ 1. So for the conditioned process we have

P (L̃ = `; Ṽi = vi, 1 ≤ i ≤ `; T̃i ∈ [ti, ti+dti]) ≈ c
∏̀
i=1

λ∗vi−1
dti; 0 < t1 < . . . < t` < 1.
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The normalizing constant is c := 1/P (TL < 1). Note that this constant,
and c2(`), c3(`) below, depend on the tree and the whole configuration of
λ-values on the tree, but not on the particular values of vi or ti on the left
hand side. Summing over all paths of a given length ` gives

P (L̃ = `; T̃i ∈ [ti, ti + dti]) ≈ c2(`)
∏̀
i=1

dti; 0 < t1 < . . . < t` < 1,

while conditioning on the value of L̃ gives

P (T̃i ∈ [ti, ti + dti] | L̃ = `) ≈ c3(`)
∏̀
i=1

dti; 0 < t1 < . . . < t` < 1.

This is the analog of (7) in the single path model, and implies that condi-
tional on L̃ = ` the ` + 1 inter-step times T̃i+1 − T̃i have the same mean,
1/(`+ 1).

5 Other variants of the model

5.1 Time-dependent rates

The model above assumed not only that, given previous steps, the waiting
time until the occurrence of a next step was random, but also that the rate
(probability per unit time) did not vary with the time t since the previous
step. Suppose, in the single path model (the branching case is similar),
that for the i’th step we replace the constant rate λi by a time-dependent
rate µi(t). Loosely speaking, imagine that background conditions change
deterministically so as to make occurrence of the (still unlikely and random)
next step become relatively more likely as time t since previous step increases.
The mathematically simplest increasing function is the linear function, so
take

µi(t) = λit (12)

for small constants λi.
It is easy to repeat the analysis where each step i is assumed to occur

at a rate of form (12) for constants λi. It turns out that the basic conclu-
sion, as stated in (8), remains true: conditioned mean inter-step times are
approximately equal (the joint distribution changes from (7) but it retains
the desired symmetry property, technically called exchangeability).

The argument really depends only on the rates µi(t) for each step having
the same functional form (linear, in this case) with differing multiplicative
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constants. But if the functional form varies between steps then we would
lose symmetry, and conclusion (8) would break down.

5.2 Climbing a gentle staircase of complexity

Any way of addressing the overall program (4) must contain some probability
model for the appearance of technological species. But arguably the whole
“Great Filter” scenario reflects a common perceptual bias toward thinking
of chance in terms of unlikely events with dramatic consequences (recall the
iconic examples of winning the lottery or being struck by lightning), a bias
perhaps reinforced by the recent best-seller The Black Swan [7]. An opposite
perception is to think of chance entering via the cumulative effect of many,
individually minor and not unlikely, chance events. Imagine a casino gambler
starting with 50 dollars, betting 1 dollar on red or on black at roulette, and
staying until his fortune reaches 0 or 500 dollars. In the (unlikely) event
of reaching 500 dollars, a textbook exercise shows that (up to endpoint
corrections) the sequence of wins and losses follows almost precisely (that
is, up to endpoint corrections) a process in which the chance of winning is
20/38, rather than the true chance 18/38. So imagine evolutionary history
as a long but not steep staircase; from one level of complexity (of individual
creatures or of ecosystems) the system might next go up to a slightly higher
level or down to a slightly lower level. Conditionally on reaching a high level
(technological civilization), what we observe retrospectively is an overall
increase; but it might be that the natural tendency is always for decrease
to be more likely than increase, and that what we observe is the result of a
very unlikely overall process, analogous to our lucky roulette gambler.

In many ways this is a much more disconcerting scenario, namely that
the whole observed pattern of evolutionary history might be systematically
biased away from what was a priori likely. This does not seem to be statis-
tically testable.

6 Beware of simplistic models

It is surely a truism that, in the vast majority of real-world contexts where
we perceive chance as playing a role, what is actually happening is a com-
plex mixture of random and deterministic effects that is not amenable to
simplistic mathematical modeling at all. So one needs to be very skeptical
of work like ours! Indeed we can demonstrate why, by thinking a little less
superficially about our example of winning the lottery and being struck by
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lightning. Our model assumes that chances, while varying between individ-
uals, are constant in time (e.g. per year) for an individual. Is this true?
There is extremely accurate and accessible data [6] on deaths by lightning
in the U.S., showing that young adult males are relatively more at risk.
Presumably this holds also for being struck by lightning, so the “constant
rate in time” assumption is far from true. Similarly, it is known [4] that
big lottery winners in the U.S. are on average older than the general adult
population, so again the “constant rate in time” assumption is hardly true.
Hence the need for healthy skepticism.

Acknowledgment. I thank an anonymous referee for numerous exposi-
tory improvements.
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