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Orientation Relationships in Precipitation Systems 

U. Dahmen 

Materials and Molecular Research Division, 
Lawrence Berkeley Laboratory, 

Department of Materials Science and Mineral Engineering, 
University of California, Berkeley, California 94720 

ABSTRACT 

Based on a survey of the literature on orientation relationships in 

precipitation systems a unified view of all the kno"rn relationships in 

b~c/hcp and bee/fcc systems is presented. Within each set of crystal 

systems, orientation relationships are closely connected by small fixed 

rotations whose magnitude depends only on crystal symmetries. Close 

parallels exist between the two sets of crystal systems, bee/fcc and 

bcc/hcp. The regularities observed in the literature survey lead to 

the hypothesis that precipitate and matrix tend to be related by an 

invariant line strain. The relative rotation of the tv;·o lattices pre-

dieted by this hypothesis is determined as a function of the lattice 

para,neter ratio and is consistent with a large number of experimental 

studies. In the analysis of simple non--coherent precipitate morphologies 

the criterion of directional mismatch is demonstrated to be superior 

to the commonly used planar mismatch criterion. The precipitate morphology 

sensitively reflects variations in orientation relationships. Morphologies 

of coherent and equilibrium semicoherent precipitates are governed by 

more complex criteria but are also dominated by basically crystallographic 

requirements. 

INTRODUCTION 

The orientation relationship (OR) between two phases of different 

crystal structure is important because it has a strong bearing on 
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microstructure-property relationships. Of the many processes in which 

OR's play a crucial role, the nucleation, growth and distribution of 

carbides or nitrides in steels, the formation of martensite, or the 

epitaxial growth of one phase on the surface of another are only a few 

examples. Many papers have been published analysing precipitate morphologies 

and interphase interfaces in terms of OR's which were found experimentally, 

mainly by selected area diffraction in transmission electron microscopy . 

Usually the OR of a precipitate is established as an experimental fact and 

the morphology is rationalized in terms of low index planes with minimum 

mismatch. This mode of analysis is the most common and follows naturally 

from the experimental determination of an OR by electron diffraction. 

Spots in the diffraction patterns are reflections with non-zero structure 

factor arising from sets of crystallographic planes. Only low-order 

reflections are normally recorded and analysed. A typical analysis 

searches for an orientation in which the matrix and the precipitate appear 

simultaneously in some low-index zone. When this is the case, the 

directions of the two zone axes are approximately parallel. If a matrix 

and a precipitate spot within this zone lie along the same direction, the 

corresponding crystallographic planes are parallel. Hence it is common 

practice to express OR's in terms of a plane and a direction in the 

precipitate which are parallel to a plane and a direction in the matrix. \.<Tith 

this information, an OR can be plotted on a composite stereographic projection. 

Using either the stereogram or the diffraction patterns directly, 

one can look for poles or reflections which are close together. While the 

stereogram displays only angular relationships between the crystallographic 

planes in three dimensions, a diffraction spot pattern shows both angles 



-3-

and spacings between planes, but only in a two-dimensional section. Hence 

if a precipitate spot is close to a matrix spot, the corresponding crystal 

planes are nearly parallel and have a small mismatch. If is often con-

eluded that precipitate growth will be easy, normal to such a plane. This 

method of morphological analysis has been used with remarkable success in 

a variety of systems. 1 Typical examples are the work of Dyson et. al. on 

2 
{100} needles of Mo2c in ferrite and Potter's more complex case of twinned 

{112} plates of v
3
N in vanadium. 

The type of analysis described above is limited in three ways; 

1) Only low-index poles or reflections are considered which often leads 

to an over-simplification of OR's. This is partly the reason for the 

relatively small number of OR's that are well established. Between 

fcc and bee structures, the best known OR's are the ones determined by 

Bain3, Nishiyama and Wassermann (NW)
4

•5 and Kurdjumov and Sachs (KS) 6 

while those of Greninger and Troiano (GT) 7 and Pitsch8 are less widely 

known. Between bee and hcp structures, only the Pitsch and Schrader 

(PS) 9 and the Burgers10 OR are well-known and that of Potter2 has been 

found only recently. The Jack OR11 contains elements of both the 

Burgers and the Potter OR and is usually only approximate. As will 

become clear later, it is desirable to increase the accuracy of experimental 

d ' ' b h f ' d'ff ' lZ K'k h' 1' 13 h' h eterm1nat1ons y t e use o m1cro 1 ract1on , 1 uc 1 1nes , or 1g 

1 '1 . 14 ang e t1 t1ng • 

2) As a result of the analysis of electron diffraction patterns in which 

spots represent crystal planes, only the matching of planes is usually 

considered. However, Murphy and Whiteman
15 

in their analysis of epsilon 

16 carbide in martensite, as well as Bywater and Dyson in their work on 

Cr2N in steels recognized the importance of directional rather than 
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planar misfit. This point will be shown more clearly in the course 

of this paper. 

3) The most important limitation of a conventional analysis is that it 

cannot predict an OR from first principles. One can explain particle 

2 
morphologies if the OR is known , or for a given morphology rationalize 

17 why one OR is more favorable than another , one can even postulate an 

OR if the morphology is known18 , but so far there has been no study which 

has predicted both OR and morphology from first principles. An attempt to 

19 find theoretical limits for OR's was made independently by Sleeswyk 

and Ryder and Pitsch
20

• On the assumption that one plane and one 

19 direction within that plane remain unrotated, Sleeswyk derived a "scatter 

region" for the OR between austenite and cementite while Ryder and Pitsch20 

used the same hypothesis to find an "orientation region" for grain boundary 

precipitatesof Fe in a CaFe alloy. The "zero misfit analysis" of Lupton 

d W · 21 d f Sl k' h h . d. OR' b an arr1ngton ma e use o eeswy s ypot es1s to pre 1ct s etween 

ferrite and cementite in pearlite nucleated in a eutectoid steel. The 

"scatter region" derived from Sleeswyk"s hypothesis is in excellent 

agreement with experiments but does not allow the prediction of OR's 

accurate enough to distinguish between any of the OR's mentioned above. 

22 23 
A completely different approach is that of Jack ' who analysed 

OR's of interstitial phases in terms of different coordinations of 

interstitial atoms. His approach is the most lucid one because of its 

physical meaning but it is limited to interstitial phases and can only 

make rough predictions. 
24 Along similar lines, Andrews et. al. developed 

an understanding of the similarities and differences of precipitate and 

· f •t
25 ·1 b·d 26 11 MC matr1x structures or cement1 e , eps1 on car 1 e as we as 

7 3 

b .d 27 . . . f . . car 1 e prec1p1tates 1n a err1te matr1x. While giving a good 
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explanation of the individual atomic rearrangements involved, these 

models do not permit a prediction of OR's. 

It is clear from this brief review that in spite of different 

attempts no unique method has been found capable of predicting OR's and 

morphologies accurately. In the present paper it is shown how the concept 

of the invariant line can be used to unify the different approaches to 

OR prediction, and to illuminate the fundamental mechanisms involved. 

A comparison of the available experimental evidence on OR's with the 

predictions shows excellent agreement. Since by far the greatest number 

of all experimentally determined OR's concern the precipitation in bee/fcc 

or bcc/hcp systems, the theory is developed using the example of these 

two groups of systems. It will therefore be useful to review the known 

OR's for each group, their interrelationships within each group, and the 

connections between the two groups. 

A Systematic View of the known Orientation Relationships 

A well-known commonality of OR's is that close-packed planes in 

the two structures tend to be parallel. The atomic arrangement of two 

superimposed close-packed planes is shown in Fig. l(a). Open circles 

represent the atoms in a {110} bee plane, solid circles show the hexagonal 

arrangement of the atoms in either a {111} fcc or an (OOOl)hcp plane. The 

symmetries of these two-dimensional arrangements are twofold and sixfold 

rotations as emphasized by the rectangle connecting the atoms in the bee 

close-packed plane and the hexagon connecting the atoms in the fcc (or hcp) 

close-packed plane. In spite of their different symmetries the two atomic 

arrangements are obviously very similar. As is well-known, two small 

orthogonal strains are sufficient to produce one lattice from the other. 
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In the position of highest composite symmetry shown in Fig. l(a) these 

two strains lie along the <001> and <llO>bcc directions. One consequence 

of this choice of strain is that the close-packed directions in the two 

lattices are misaligned by an angle of 5.26°. It should be emphasized 

that this angle is independent of the relative lattice parameters of the 

two structures and is entirely determined by their respective symmetries. 

A rotation of one of the lattices through this angle of 5.26° will bring 

one set of close-packed directions into coincidence. This new configuration 

is shown in Fig. l(b). The overall symmetry of this rotated arrangement 

is obviously lower than in Fig. l(a); the rotation has destroyed the two 

mirror planes normal to the principal axes of the strain. 

Specialized as they may seem, these two arrangements of atoms in 

close-packed planes describe the four largest groups of OR's reported 

in the literature, those of Nishiyama-Wassermann (NW) and Kurdjumov-Sachs 

(KS) in bee/fcc systems and those of Pitsch-Schrader (PS) and Burgers in 

bcc/hcp systems. These four OR's are illustrated in stereographic 

projections in Figs. 2 and 3. All four stereograms are projected normal 

to the close-packed planes in the two structures in order to match with 

Fig. 1. Open circles represent bee poles, solid circles fcc or hcp 

poles. The indices of fcc poles are underlined and those of hcp poles 

are given in four-index notation. As a reminder of the atomic arrangements 

in the close-packed planes, a rectangle and a hexagon have been outlined 

in the stereograms in their relative positions. The more symmetric 

unrotated OR's are shown in Figs. 2(a) and 3(a). In the bee/fcc case, this 

is known as the Nishiyama-Wassermann (NW) OR and in the bcc/hcp case the 

Pitsch-Schrader (PS) OR. A relative rotation of 5.26° brings NW to the 
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Kurdjumov-Sachs (KS) OR and PS to the Burgers OR (Figs. 2(b) and 3(b)). 

The analogy between the two sets of crystal systems can be carried 

further. Just as the 5.26° rotation brought two new low-index poles 

into coincidence, so can a second rotation around these newly coincident 

poles bring another set of low-index planes into coincidence. This new 

axis of rotation is shown in Figs. 2(b) and 3(b) and the poles brought 

into coincidence are (OOl)fcc with (lOl)bcc in Fig. 2(b) and (lOll)hcp 

with (lOl)bcc in Fig. 3(b). In the bee/fcc case this produces the Pitsch 

OR while in bcc/hcp it results in the OR first reported by Potter. All 

of these rotations are independent of the lattice parameters of the two 

phases (except the Burgers-to-Potter rotation which depends on the c/a-

ratio of the hcp phase). 

In principle any OR can be related to a standard OR such as NW or 

PS by a given rotation. While the three sets of analogous OR's illustrated 

above cover all the well-known OR's for bcc/hcp systems, there are two 

more in bee/fcc systems which have no counterpart in bcc/hcp. One of 

these is the Greninger and Troiano (GT) OR intermediate between NW and 

KS. 0 The rotation angle is 2.5 from NW. The other one is the famous 

Bain OR which can be produced from NW by a 9.74° rotation around [OOl]bcc 

to bring into coincidence (OlO)fcc with (OlO)bcc and (OOl)fcc with 

(lOl)bcc as well as (lOO)fcc with (lOl)bcc. This is clearly evident 

from Fig. 2(a) which also shows that axis of rotation. Because of its 

importance, the Bain OR is shown separately in Fig. 4. The fourfold 

rotational symmetries of the two crystal structuresare symbolized by 

square outlines. Again solid circles are fcc poles with the corresponding 

indices underlined. The axis of rotation which produces the NW OR of 
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Fig. 2(a) is shown. Because of the four-fold composite symmetry of the 

Bain OR, there are four such rotation axes, each one producing a different 

variant of the NW relationship. In addition there is another set of four 

equivalent rotation axes, at 45° to the ones mentioned above. A 9.74° 

rotation around any of these axes produces the "inverse NW" 28 OR which is 

identical to the Pitsch OR. The rotation axis relating the Bain OR to 

the particular variant of the Pitsch OR mentioned in Fig.2(b) is also 

indicated in Fig. 4. From these two figures it is clear that the Pitsch 

OR is connected to both the KS and the Bain OR, and the interrelations 

are shown in a diagram in Fig. 5. This diagram does not exist for the 

bcc/hcp case because there is no counterpart to the high-symmetry Bain 

OR. 

In summary, the unified description of the major OR's which has 

been given above has two important merits; 

1) It demonstrates that all the well-known OR's of one set of crystal 

systems are connected with each other by some small relative rotation 

and are therefore not as radically different as they might seem. 

2) A comparison of two different sets of crystal systems (bee/fcc and 

bcc/hcp) shows them to be largely analogous. 

The Invariant Line 

A familiar concept in the crystallographic theories of phase trans-

formations is that of a lattice correspondence and a transformation 

. 29 stra1n . The Bain correspondence and the Bain strain3 give an example 

so well-known it need not be illustrated here. The lattice correspondence 

describes a unit cell in the parent lattice which can be deformed by the 

transformation strain to become a unit cell in the product lattice. The 
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transformation strain is a homogeneous deformation applied equally to 

all unit cells in a crystal. Originally meant only for a discrete point 

lattice, i.e. the atoms on the corners of the unit cell, the transformation 

strain is identical to a strain describing a continuum deformation. This 

interplay between continuum and crystallography is essential to a number 

of important concepts as for example the theory of martensitic trans-

f . 31' 32' 33 d 0 1 . h 34 ormat1ons an - att1ce t eory • A homogeneous strain, whether 

describing the rearrangement of discrete lattice points or the deformation 

of a continuum, can be expressed mathematically as a linear homogeneous 

transformation given by a transformation matrix 1. It can be shovJtl that 

for such a transformation, lines remain lines and planes remain planes, 

but angles and lengths may be distorted
29

. 

The transformation strain, as it applies to bcc/hcp transformations, 

is illustrated for two dimensions in Figs. l(a) and 6(a), representing 

the superposition of a bee and an hcp close packed plane. A unit cell 

in the bee lattice for example all the open circles in Fig. l(a) - is 

transformed into a unit cell in the hcp lattice (solid circles) by an 

expansion b along the y-direction and a contraction a along the x-direction. 

This defines both the lattice correspondence and the transformation strain. 

The two axes x and y are the principal axes of the transformation and the 

operation may be written as the diagonal matrix ~ = (a 0) when related to 
0 b 

the principal coordinate system. The length of a vector ~ will change to 

/~/ = /A ~j during the transformation. This is the well-known descrin

tion of the deformation of a circle (u 2 + u 2 = 1) into an 
X y 

ellipse (v 2 /a 2 + v 2 /b 2 = 1) with major axes a and b. An illustration 
X y 

of this continuum deformation is given in Fig. 6(a) where the circle 
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represents the bee and the ellipse the hcp close-packed plane. Any radius 

vector on the circle will in general change both length and direction 

during the transformation. A special vector is the one ending at point 

B because it changes direction from B to B' but its length is preserved. 

If the directional change from B to B' is compensated by a rigid body 

rotation of the transformed structure (ellipse) it will become an invariant 

line, a direction in the crystal which remains unrotated and unstretched 

during the transformation. This is shown for a continuum transformation 

in Fig. 6(b) and for discrete lattices in Fig. l(b). Fig. l(b) shows that 

the invariant line may be visualized as a row of atoms which is common to 

both structures. Due to the special choice of lattice parameters in Fig. 

l(b), the invariant line coincides with a low-index (close-packed) 

crystallographic direction. This will not usually be the case and the 

invariant line can be any non-rational direction. It can be shown quite 

generally that any transformation strain relating two lattices may be 

changed to a plane strain by a rigid body rotation if one of the three 

34 
principal strains is opposite to the other two • The most general plane 

strain is identical to an invariant line strain. (Note that an invariant 

plane strain as used in the theory of martensitic transformations is a 

special case of an invariant line strain). 

As a basis for the prediction of OR's, it is now hypothesized that 

a precipitate lattice tends to be related to the matrix lattice by an 

invariant line strain. The invariant line lies in the precipitate/matrix 

interface. A habit plane which contains an invariant line and another 

direction of small strain can minimize the elastic strain energy of a 

coherent plate shaped nucleus. After the loss of coherency, the inter-

face and hence the morphology of the semicoherent precipitate, is 
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determined by the minimum interfacial energy such as defined by Bollmann 

d N
. 35 an 1.ssen • In general, this semicoherent interface will be different 

from the coherent habit plane sharing with it only the invariant line36 • 

For the present purpose, the hypothesis that an invariant line strain 

is produced by a small rotation around one of the principal axes of the 

transformation strain is sufficient to analyze and predict OR's. The 

angle of this rotation, such as shown in Figs. 1 and 6, can be determined 

by matrix algebra. Any linear homogeneous transformation 1 may be 

decomposed into a rigid body rotation R through some angle 8 and a pure 

deformation ~37 . If the matrix~ is referred to the principal axes of 

the deformation it has only diagonal elements. Thus, in two dimensions, 

A. vector ~ is an invariant line if it is unchanged under the operation 

~: 

and det jA-ti 0, 

i.e. d lacose -1 
et . e -as1.n 

bsin8 
bcos8 

which when solved for e gives 

e l+ab cos --- a+b 

0 

(1). 

Recognizing that the principal distortions a and b must have a constant 

ratio for a given bee/fcc or a bcc/hcp transformation, the angle e simply 

a a 
becomes a function of the dimensionless parameter hcp (or fcc). This 

a a 
bee bee 

plot applies to the rotation of two close-packed planes as they are shown 
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in Fig. 1. Note that 8 varies rapidly between zero and a flat maximum at 

0 The dotted line in Fig. 7 indicates 8 = 5.26 , the rotation that 

makes close-packed directions parallel, as in Fig. l(b), whereas no 

rotation (8=0°) is shown in Fig. l(a). Figs. 2 and 3 show in stereograms 

the OR's corresponding to the no-rotation line (PS and NW) and the 5.26° 

rotation line (Burgers and KS). Assuming an experimental error limit of 

±0.5°, all systems lying on the curve in Fig. 7 having lattice parameter 

ratios between 1.21 and 1.36 would be experimentally determined as belonging 

to the Burgers OR (KS OR in bee/fcc). According to Ryder and Pitsch, the 

error limit for OR's determined by conventional electron diffraction is 

38 
even larger Hence most of the experimental evidence does not permit 

a distinction between for example an exact Burgers OR and one that lies 

within ±0.5° of Burgers. In other words, the experimental data fits 

equally well the prevalent crystallographic idea which allows only zero 

and 5.26° rotation and the continuum concept proposed here which allows a 

continuous spectrum of rotation. 

Comparison of predicted and observed orientation relationships 

In Fig. 7, the experimental data of 12 different bcc/hcp systems are 

shown in relation to the curve predicted by an invariant line rotation. 

0 Only three different OR's have been reported; the PS-OR (8=0 ), the 

Burgers OR (8=5.26°), and the Potter OR (denoted by open circles, 6=5.26° 

plus another small rotation¢ around the close-packed directions). The 

experimental OR's for ten out of 12 systems lie within ±0.5° of the 

predicted value. The Burgers OR was found in seven systems, mostly 

transition metal carbides and nitrides,namely Mo 2c in Mo 39 , 

V41 42 l b d F 43,44 . v
2
c in , w

2
c in W , epsi on car i e in e , cr

2
N 1n 

Nb
2

C in Nb
40

, 

Fe
16 

and the 
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s-phase in S-Al-Ag
45

• As evident from Fig. 7, only cr
2
N in Fe is more 

than 0.5° from the predicted OR. 16 The original reference does not allow 

a closer examination of this discrepancy since the OR was determined in 

{100} sections instead of the necessary {110}. 

The most striking effect was found in Mo2c. When precipitating in 

ferrite is showed no rotation1 while the same Mo
2
c in a molybdenum matrix 

followed the Burgers OR
39

. This significant difference has not been 

explained before but now becomes clear from the viewpoint of the present 

approach; the lattice parameter ratio for Mo
2

c in ferrite clearly lies 

outside the range for which rotations are predicted (see Fig. 7). 

The case of bee/fcc systems is complicated by the existence of a 

larger number of low-index OR's due to the higher overall symmetry. 

However, the same principle can be applied and tested on a number of 

systems. A test case analogous to Mo 2c in a ferrite or a molybdenum 

matrix is bee iron, vapor deposited on {111} surfaces of different fcc 

materials. When deposited on silver or gold substrates, the lattice 

parameter ratio afcc/ is larger than 1:2 , no rotation is predicted, 
abcc 

just as for Mo
2
c in ferrite. Experimental evidence confirmed that the 

NW OR f 11 d . 1 46. was o owe stn .. ct y On other fcc substrates such as copper 

a 
or nickel fcc/ab cc 

is smaller than ;z- and a rotation ranging from 

0 to 5.26° has been 
47 48 0 reported ' where the theory predicts 5.4 and 5.7 . 

48 
Echigoya et. al. attempted to explain this result by optimizing an 

"area of good fit", first introduced 
49 

by Hall et. al. It can be shown 

analytically however, that any such area of good fit must be independent 

of rotation. Variations occur only as an artifact when using graphical 

instead of analytical techniques. On the otherhand, the predictions of 
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the present theory are in good general agreement with these experiments. 

A spread of OR's such as observed for Fe on Ni and Cu substrates has 

1 b f d . h f 1 c . c c 11 28 •49 
a so een oun ln ot er system~ or examp e r 1n u- r a oys 

Such variations would be expected whenever the interfacial energy, or 

the coherency strain energy has only a shallow minimum at the OR which 

provides an invariant line. 

Returning to cases for which the observed spread of OR's is negligible, 

such as the refractory bcc/hcp systems it can be shown that even the 

subtle difference between the Burgers and the Potter OR is predictable in 

the present approach. Fig. 3(b) illustrates that these two OR's are 

related by a small rotation around a common close-packed direction. The exact 

amount of rotation depends on the c/a - ratio of the hexagonal system, 

0 but is usually less than 2 . As before, we can compare this crystallographi-

cally determined angle to the angle of rotation necessary for an invariant 

line, take into account experimental error limits, and compare the pre-

dieted OR's with the ones observed. The principal distortions a and bare 

now related to a new set of crystallographic axes, the coincident poles of 

Fig. 3(b). With the axis of rotation along the close-packed direction, 

a plot of the rotation angle¢ versus lattice parameter ratio ahcp/ab cc 

looks similar to Fig. 7. This is shown in Fig. 8 for some slightly 

different c/a- ratios. On the line of no rotation (abscissa), the OR 

is that of Burgers, and the Potter OR is indicated by horizontal lines 

at angles ¢ which depend on the c/a - ratio. Note that a rotation is 

possible (¢f0) only when the lattice parameter ratio is between 1.23 

and 1.33, the crossover points of the curve in Fig. 7 with the 8=5.26° 

(Burgers) line. This simply means that within this bracket of rotation, 
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the Burgers OR is reached before an invariant line is produced. An 

invariant line can therefore be found by either a continued rotation 

around the same axis beyond 5.26° or by using a newly established 

rotation axis (the close-packed direction) perpendicular to the first 

axis (the normal to the close-packed planes). The second possibility 

usually leads to the smallest total rotation and is observed experimentally. 

This is shown in Fig. 8 for the systems Nb
2
N in Nb, Ta2N in Ta, v3N in V 

and Ta2c in Ta, all of which fall into the critical range of lattice 

parameter ratios ahcp/ab (open circles in Fig. 7). All these systems 
cc 

were experimentally determined to follow the Potter OR and deviate less 

0 than 0.5 from the OR's predicted on the basis an invariant line. Hence 

the same principle which explains the different OR's of Mo 2c when 

precipitated in ferrite or in molybdenum can be used to show why and 

how far some systems deviate from the parallelism of close-packed planes. 

The AgAl system investigated by Plichta and Aaronson
45 

also falls 

into this range and should, but does not, exhibit the Potter OR, manifested 

in a 1° misorientation between the close packed planes. Since these 

investigators used an accurate method for the determination of OR's, this 

misorientation is beyond experimental error limits. The reason for this 

system to have close packed planes in both matrixand precipitate exactly 

parallel must be the fact that the precipitates are grain boundary nucleated. 

The OR could thus be determined by the interface energy criterion as given 

by Bollmann and Nissen35 • This criterion was in fact applied successfully 

45 to this system by Plichta and Aaronson , and subsequently, their computer 

1 h d . . . 1' 36 resu ts were s own to pre 1ct an 1nvar1ant 1ne • 
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Morphology - planar versus directional matching 

As mentioned earlier, precipitate morphologies have often been 

rationalized in terms of their corresponding OR's. The criterion 

commonly used is that of minimum planar mismatch. It is now shown that 

this criterion, based on an analysis of electron diffraction patterns, is 

in error. Fig. 9 illustrates a typical situation in the study of OR's 

using the familiar example of two close-packed planes, one in a bee lattice 

(open circles) and one in an hcp lattice (full circles). The corresponding 

electron diffraction pattern has been drawn in Fig. 9(b). From this spot 

pattern, the OR would be analyzed as [0001] II [110] and (lOlO) II (llZ), 

obviously the Burgers OR. (Note that in this particular case directions 

and planes are interchangeable). The most common mode of analysis will 

then identify spots in the diffraction pattern which are close together, 

such as (2020) and (llZ). These two sets of planes are parallel and have 

a small mismatch in spacing. Hence precipitate growth should be easy, 

normal to these planes, in a [llZ] direction. That this is a misconception 

can be seen by going back to the real space configuration. Atoms in the 

(llZ) I (lOlO) planes, indicated by lines, are related by a shear. This 

shear has no effect on the plane spacing but it will obviously lead to 

large distortions if a precipitate grows normal to these planes. There is, 

however, a direction in which the distortions are small. In Fig. 9(a) this 

is the close-packed direction [lll]. Thus the criterion of directional 

matching predicts an easy-growth direction at right angles to the one 

predicted on the basis of planar matching. 

The example in Fig. 9 was chosen because of its simplicity. However, 

the principle can be expressed more generally using matrix algebra. In 
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particular, the properties of reciprocal space are known to be reciprocal 

to those of real space. If the real space lattices of matrix and pre

cipitate are related by a matrix ~ their reciprocal lattices are related 

A-1 T ~so 
by (A ) , the transpose of the inverse of A • The basis made by the 

three eigenvectors of ~ is reciprocal to that formed by the three eigen

vectors of (A- 1 )T. The corresponding eigenvalues are the inverse of each 

other. Thus any direction of smallest mismatch in reciprocal space has a 

direction of smallest inverse mismatch in real space normal to it. Hence, 

even though the well-known direction-plane relationship between real and 

reciprocal space means that good directional match in reciprocal space 

implies a good plane matching in real space, it is the other implication 

which underlies the morphology; namely that good directional match in 

reciprocal space also means good directional match in real space, normal 

to the corresponding reciprocal space directions. As a special case, an 

invariant line in reciprocal space implies a perpendicular invariant line 

(not an invariant plane) in real space. The conclusion drawn from Fig. 9 

is therefore valid in general. 

Comparison of predicted and observed morphologies 

16 
Bywater and Dyson have shown that all the experimental data available 

to them agreed with the criterion of directional mismatch. Implicity, their 

analysis rested on the assumption that precipitate growth will proceed best 

in the directions of small mismatch. The same argument will be used here 

by postulating that precipitate dimensions tend to be inverse to the 

directional mismatch. Before comparing the morphologies thus predicted 

with experimental observations, it should be emphasized that this is a 

rather simplifying assumption applicable only to non-coherent precipitates. 

Several important features involved in the determination of morphologies 

have been neglected, among them the structure and energy of the interface, 
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lattice anisotropies, and the mechanisms of coherency loss and of growth. 

In spite of these limitations, the assumption is a reasonable first 

approximation, particularly for the case of precipitates growing in a 

highly dislocated matrix where the loss of coherency and the structure of 

the interface are less important. 

The OR's calculated in the preceding section would predict precipitate 

needles along the invariant line directions. The bee crystallographic 

indices of the invariant line have been indicated below the curve in Fig. 

7. A comparison with published experimental results shows good agreement. 

1 51 
Mo 2c in Fe (lattice parameter ratio 1.49) forms <100> needles • . cr

2
N 

in Fe (ratio 1.37) forms <311> needles
16

, E-carbide in Fe (ratio 1.35) was 

15 
reported as <211> needles . The needle axis lie indeed in the regions 

predictedby the invariant line criterion. However all the systems within 

0 
the range of rotations exceeding the 5.26 necessary to reach the Burgers 

OR, show a platelike morphology. The most striking feature, first reported 

by Potter
2

, is extensive twinning of the precipitate plates. This can be 

explained by the amount of rotation around the close packed direction which 

is required to produce an invariant line (see Figs. 3(b) and 8). For Ta2N 

in Ta52 , Nb
2

N in Nb
52 

and v
3
N in v2

, this rotation is within 0.1° of the 

ideal Potter OR (See Fig. 8). If this ideal OR was followed exactly, pairs 

of two precipitate variants would be in twin orientation and could form 

53 
a twinned precipitate in which both parts follow the same OR This 

can be seen most clearly by a hypothetical twinning operation on the (101) 

mirror planes of the matrix when matrix and precipitate are in the Potter 

OR. 

As a symmetry operation of the bee lattice it creates no boundary in 

the matrix while the same operation produces a (lOll) twin in the precipitate. 
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Hence the OR presents no barriers to twinning in those systems that 

follow the exact Potter OR. It is well-known that twinning can relieve 

long-range stresses in one direction and allow a change of morphology 

from needles to twinned plates. The origin of the twins, mechanical 

or growth-type, is formally of no importance though in practice they 

will of course be growth twins. It is worth noting that of the four 

systems falling in the range of the Potter OR three show twinning in 

1 ' . h T C . T 14 ' 54 . 1 ' d a most every prec1p1tate, owever, a 2 1n a 1s rare y tw1nne . 

In this system, the invariant line rotation is almost one degree from 

the Potter OR. In twinned Ta2c precipitates the~efore, at least 

one of the twin-related parts must deviate from its ideal OR, or if they 

both follow the same OR, they are not in exact twin orientation. This 

could explain why twinned precipitates are rare in this one system and 

frequent in the other three. 

In summary, most of the reported precipitate morphologies agree 

with the hypothesis of particle dimensions tending to be inverse to the 

directional mismatch. The direction of the precipitate needles follows 

the same trend as the invariant line, namely from <100> towards <111> 

with decreasing lattice parameter ratio. This direction is somewhat 

more sensitive to the ratio of lattice parameters than the OR. When the 

OR rotates through 5.26°, the invariant line turns through ~30°. A more 

striking indication of the delicate balance that determines particle 

morphologies is the transition from needles to twinned plates in the 

range of lattice parameter ratios between 1.23 and 1.33. The good 

agreement between the observed morphologies and the theory lends strong 

support to the invariant line hypothesis. 
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Other morphologies,are expected and have been observed for large 

semicoherent precipitates with a well-developed interfacial structure 

and for fully-coherent small precipitates. In particular, it was found 

that small coherent plate-shaped precipitates follow a systematic pattern 

which is entirely consistent with the concept of an invariant line strain 

as the stress-free transformation strain. In contrast to current beliefs, 

it was concluded that the OR and habit plane of plate-shaped coherent 

precipitates are dominated by crystallography rather than elastic 

. 55 an1sotropy This conclusion is supported by the observation that, 

regardless of the elastic constants of the bee matrix, coherent precipitate 

plates of both fcc and hcp structure were found on {100} planes when the 

lattice parameter ratio was to the right of the curve in Fig. 7,
18

•
56

•57 

and on or near {310} planes for a ratio of between 1.33 and 1.37
18

•40 •41 •55 . 

The fact that this behavior was identical for fcc and hcp precipitates 

stresses once more the close similarities apparent from the OR's in Figs. 

2 and 3. 

When the precipitates loose coherency and form well developed semi-

coherent interfaces with the matrix, the morphology can be predicted on 

33 
the basis of a known OR by 0-lattice theory or similar crystallographic 

b d . h' h . f 49 H arguments ase on opt1mum mate 1ng at t e 1nter ace • ence at any 

stage of a precipitation sequence, it should be possible to predict the 

corresponding morphology simply on the basis of the known equilibrium 

precipitate structure. 

SUMMARY 

In an attempt to understand and predict orientation relationships 

(OR's), a systematic review of the known OR's found in bee/fcc and bee/ 
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hcp systems has shown strong similarities between the OR's in the two 

groups. All the different OR's within each group were found to be closely 

related by small relative rotations whose magnitude is determined by 

lattice symmetries alone and is independent of lattice parameters. Based 

on a survey of a large body of experimental data, however, it was determined 

that OR's depend critically on the relative lattice parameters of the 

phases involved, and it was hypothesized that two phases tend to be related 

by a general plane strain, i.e. an invariant line strain. The rigid body 

rotation around a principal axis that is necessary to convert a general 

transformation strain into an invariant line strain was calculated as a 

function of the lattice parameter ratio. It was found that the observed 

OR's in most precipitation systems clustered, within the range of 

experimental error, around the calculated OR's. A critical test was the 

5° difference in OR which was found in both bcc/hcp and bee/fcc systems 

when the lattice parameters ratio crossed a limiting value. The theory 

agreed well with these observations. 

It was further shown that the criterion of planar matching often 

applied in the analysis of precipitate morphologies is in error and a 

better criterion is that of directional matching. Good agreement with 

experimentally determined morphologies indicated that this simple criterion 

was appropriate for the analysis of some non-coherent needle-shaped 

precipitates. The needle axis was predicted and confirmed to be much 

more sensitive to the lattice parameters ratio than the OR. Different 

criteria hold for plateshaped coherent or fully grown semicoherent 

precipitates, but in these two cases also, crystallography was found to 

be the dominating factor. 
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FIGURE CAPTIONS 

Fig. 1. Superposition of close-packed planes of bee crystal (open 

circles) and fcc or hcp crystal (full circles). The lattices 

of open and full circles are related by small strains along x 

andy directions in a). In b) a small relative rotation of 

5.26° has brought close-packed directions into coincidence. 

Fig. 2. Composite stereograms showing the most common orientation 

relationships in bee/fcc systems, that of Nishiyama-Wassermann 

in a) and Kurdjumov-Sachs in b). As in Fig. 1, open circles 

represent bee, full circles fcc poles. The two OR's are related by 

a 5.26° rotation which is emphasized by the relative positions 

of a rectangle and a hexagon symbolizing the symmetries of 

close-packed planes in bee and fcc lattices. The connection 

with the orientation relationships of Bain and Pitsch are 

indicated by their axes of rotation. 

Fig. 3. Composite stereograms showing the most common orientation 

relationships in bcc/hcp systems, that of Pitsch-Schrader in 

a) and that of Burgers in b). Open circles represent bee, 

full circles hcp poles. Note the complete analogy to bee/fcc 

systems shown in Fig. 2. The connection with the Potter 

orientation relationship is indicated by its rotation axis -

note the parallel to Fig. 2(b). 

Fig. 4. The Bain orientation relationship as it would be produced by 

rotation around the axis marked in Fig. 2(a). Open circles 

are bee, full circles fcc poles. Note the high composite 

symmetry emphasized by the squares. Rotations of 9.74° 
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around the axes indicated lead to either the Nishiyama

Wassermann or the Pitsch (also called inverse Nishiyama

Wasserman) orientation relationship, cf. Fig. 2. 

Fig. 5. Symmetry diagram pointing out the interrelationships between 

different variants of the four main orientation relationships 

in bee/fcc systems. P=Pitsch, KS=Kurdjumov-Sachs, NW=Nishiyama-

Wassermann. The lines indicate small relative rotations. 

Fig. 6. The lattice strain of Fig. 1 in continuum representation. The 

circle (bee plane) is transformed into an ellipse (fcc or hcp 

plane) by a small strain. A small rotation bringing B and B' 

into coincidence produces an invariant line, (b). 

Fig. 7. Rotation angle e necessary to produce an invariant line by 

rotation around the normal to the close-packed planes, (see 

Fig. 1), as a function of lattice parameter ratios (calculated 

from equ. (1)). A 0° rotation leads to the Nishiyama-Wassermann 

or Pitsch-Schrader relationships and a line at 5.26° rotation 

marks the Kurdjumov-Sachs or Burgers relationships. The curve 

indicates a continuous dependence on lattice parameter ratios. 

Experimentally observed orientation relationships for twelve 

different bcc/hcp systems are given by circles. Open circles 

indicate a slight deviation from the parallelism of close

packed planes, i.e. the Potter relationship. 

Fig. 8. Plot of invariant line rotation~ as in Fig. 7, for bcc/hcp 

systems in the range of the Potter relationship (open circles 

in Fig. 7). Here the axis of rotation is the common close

packed direction. Curves are given for three different 

c/a ratios. 
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Fig. 9. Real space lattice in Kurdjumov-Sachs or Pitsch-Schrader 

orientation relationship (a) and corresponding composite 

electron diffraction pattern (b). Good match in the <llZ> 

direction in the diffraction pattern implies an easy growth 

direction of <lll>, not <llZ>. 
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