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Abstract 

This report describes ·a new intermediate format for behavioral synthesis systems, 

based on annotated state tables. It supports user control of the synthesis process by allow-

ing specification of partial design structures, user-bindin.gs and ·user modification of com-

piled designs. It is a simple and uniform representation that can be used as an intermedi-

ate exchange format for various behavioral synthesis tools. The format captures synchro-

nous and asynchronous behavior, and serves as a good interface to the user by linking 

behavior and structure at each level of abstraction in the behavioral synthesis process. 
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CHAPTER 1. 

Introduction 

1.1. Problem Description 

The task of high level synthesis spans the continuum froni the automatic generation of 

a design from a purely behavioral specification, down to the compilation of a completely 

specified structural design consisting of a set of components from a given library and their . 

interconnection. In the first case (automatic generation), the behavior is specified as a set 

of assignment statements to variables, possibly with timing constraints for input-output 

pairs. There is no binding of operations to time or to functional units, no binding of vari­

ables to storage elements, and the description does not have any connectivity specified 

between storage and functional units. At the other extreme, compilation of structure con­

sists of mapping generic components (or components from one library) to components 

derived from another library. The main objective is optimization of that mapping to satisfy 

technology constraints such as time, area, power, testability, etc. 

The traditional view of behavioral synthesis ([GrKP85] [Thom86] [McPC88] etc.) 

assumes that the the synthesis system automatically generates the structural design from a 

user specified abstract behavior. Such systems do not permit the user to interact in the 

design synthesis and evaluation loop. The major drawback with this appraoch is that the 

user cannot impose structural constraints (in the form of an initial design structure), or pro­

vide design hints (in the form of behavioral operators and variables bound to structural 

components and connections). The need for such user input is evidenced by the fact that 
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research in behavioral synthesis algorithms is still in its infancy. Existing algorithms for 

syn thesis tasks like state allocation, component binding, etc. are either limited to certain 

narrow application areas (e.g. Digital Signal Processing applications), or use restrictive and 

simple models which fail to generate realistic designs (e.g. unit-delay, ·unit-cost models, 

[PaPM86]). By allowing the user to interact with the design process, the system permits 

the user to guide the synthesis tasks by incorporating the designer's knowledge and exper­

tise. 

An attempt to rectify this drawback is described in [ThBR87], where "links" are main­

tained between the abstract behavioral entities (variables, operators) and the resultant 

structural design (state, component, connection). These links are a useful representation 

for performing multi-level simulation, enabling behavioral verification of the synthesized 

structure. But on closer examination, this behavior-to-structure linking does not really help 

the designer explore different design alternatives. If the synthesized design does not meet 

the constraints, the user is forced to re-synthesize the design automatically from th~ 

abstract behavior by changing some high level constraint. 

For instance, knowing that variable "A" in some statement of the behavior is bound 

to register Rl in state 2 of the synthesized design doesn't really help the user decide on how 

to improve the design; it merely serves as a debugging aid to verify the correctness of the 

synthesis algorithms that generated that particular design. Instead, what is really needed is 

a mechanism that permits the user to selectively specify the binding of certain behavioral 

variables and operators to specific structural components and connections. The user is then 

able to .directly influence synthesis of the structural design to meet the desired constraints. 
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Several requirements emerge from the previous discussion: 

(1) partial design specification: the user should be able to specify a partially designed 

structure as an initial constraint; the synthesis tools should then be able to complete 

the rest of the design. 

(2) user-bindings: the user should be able to _selectively bind behavioral operations to par­

ticular states, behavioral operations to components, and behavioral variables to 

storage components (e.g. registers) or connections (e.g. buses, wires). 

(3) modification of compiled designs: the user should be able to modify a structural 

design during or after synthesis 1• 

( 4) modification of synthesis tools: a consistent and readable intermediate format is 

required to enable the addition of new tools and the modification of existing synthesis 

tools; the format must allow description of the complete design with links to the 

behavior at each stage of the design process. 

In this report, we describe a new intermediate representation using annotated textual 

state tables which supports the above requirements. We will show how this representation 

can be used to describe. the design at each level of abstraction in the synthesis process. It 

facilitates easy translation to and from the internal data structures of synthesis algorithms, 

thereby allowing interchangeability (and upgrading) of synthesis tools. It also serves as a 

useful linking mechanism between the behavior and the structure. Furthermore, users can 

interact with the representation at each of the intermediate levels, allowing for user 

modification of the partial designs. The state-table based format is flexible yet simple with 

1 Modification of compiled design is described in more detail in Section 4, User Scenarios. 
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an overall consistency throughout the levels of abstraction; designers will find this to be a 

convenient interface mechanism for interacting with a behavioral synthesis system. 
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CHAPTER 2. 

Behavioral Synthesis Frarrework 

2.1. Synthesis Tasks 

Behavioral synthesis is the process of mapping an abstract behavior to a structural 

design that satisfies the behavior. The behavior is normally described by a sequence of 

language variables and operators, while the structural design is an interconnection of func­

tional units, storage elements operating on a state-by-state basis. The functional units, 

storage and connection elements are normally drawn (or allocated) from a given library. 

There are several behavior-to-structure mappings that comprise this synthesis task; these 

mappings are called bindings. Some of the important mappings are mentioned below. 

Resource allocation is the task of determining the type and number of functional 

units, storage elements and connections to be used in the ensuing design. The allocated 

resources must satisfy the designer's high level constraints. 

State binding is the temporal assignment of operation sequences in the behavior to · 

states of the structural design. A state, in this context, has the implicit notion of a syn­

chronous clock which determines the duration of the state. 

Unit binding is the task of assigning functional and storage units to particular 

behavioral operators and variables. 

Connection binding is the task of providing connections between structural com­

ponents to effect the data transfers specified in the behavior. 
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Control synthesis is the task of generating control logic which sequences the design 

through the final states of the design, and which produces control signals for performing 

operations within each state. 

Each of these tasks can be followed by an optimization phase, where, for instance, unit 

merging follows unit binding, or connection merging follows connection binding. These 

allocation, binding and optimization tasks are closely inter-related; there is no optimal ord­

ering of the tasks and current research in this area attempts to understand their interac­

tion. This underscores the need for. a standard intermediate format that captures the com­

plete design at each of these levels. 

2.2. Typical Synthesis Enviromrent 

We will use the environment shown in Figure 1 as the synthesis framework to show the 

utility of the intermediate form. The figure is organized into three columns: the synthesis 

tasks on the left, the user interface on the right, and the intermediate representation in the 

middle. The intermediate representation is composed of four basic components: the state 

table, the unit list, the connections list, and the symbol list. 

The user typically specifies the behavior of. the design in a behavioral specification 

language like VHDL [LiGa88] or EXEL [DuGa88]. The language compiler parses the input 

into a data structure which is captured in the first level of the intermediate form, by creat­

ing the. the symbol list and the operation sequence table. In addition, if the user has 

specified some structure along with the behavior, this structure is captured in the unit and 

connectivity lists. Since the designer may not know the duration of the clock while describ­

ing the behavior, the input is naturally described using sequences of groups of operations. 
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Figure 1. A Typical Behavioral Synthesis Enviromnent 

This description forms a. two-level hierarchy, where the first level is the sequence of opera-

tion groups, and the second level consists of each operation group individually. The opera-

tion group is much like a basic-block in a standard programming language; it may span 

several states depending upon the duration of the system clock. We refer to this intermedi-
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ate form as the super-state table 1. This table describes the operations performed in each 

super-state, and the sequencing between super-states. 

In the next level of design, we use a state allocator to "slice" the super-states into 

states of the design. Operation sequences are assigned to specific states of the final design. 

This task is also called state scheduling in the literature [PaKn87] [PaGa87]. The op-based 

state table is generated by this synthesi.s task. This table uses conditional triplets to cap­

ture the behavior of the design on a state-by-state basis. Each triplet describes the condi­

tion tested, the operations performed and the next state to be executed. At this point in 

the synthesis framework, the temporal ordering of operations has been fixed, but we have 

not specified how exactly these operations are to be performed in hardware; this is deter­

mined by the tasks of resource allocation and binding. 

Resource allocation determines the type and number of.structural components needed 

to implement the structural design. These components are typically drawn from a generic 

library [Dutt88], which contains information about each type of component. Since buses 

are also treated as components, this task updates both the unit list and the connection list. 

Resource binding assigns specific instances of functional and storage components to 

abstract operations and variables in the op-based state table. At this point, the design is 

stored in the unit-based state table. This table uses triplets to describe the structural 

operation of the design on a state-by-state basis. Each triplet describes the unit generating 

the conditional, the units performing the· conditional operations, and the next state to be 

executed. The operations in the unit-based state table only specify which· components are 

to be used as inputs for the operation; they do not specify the paths for these inputs. 

1 The term "super-state" is used to indicate two levels of hierarchy: sequences of super-states, and the actual 
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The task of connection binding adds these connection paths to the unit-based state 

table to create a unit-based state table with connections. This table describes the complete 

structure of the synthesized data path, but lacks the control signals for the components. 

Finally, the task of control generation creates control lines for every functional or 

storage unit that needs to be controlled. The control based state table captures this func­

tionality with triplets that describe the control lines conditionally activated in each state, 

and the subsequent next state. 

At each level of the synthesis process, the appropriate synthesis task can be performed 

automatically (by a set of algorithms and rules), or can be performed manually by the user 

through the user interface. The user interface displays the units and connections in the 

form of a schematic, and displays the state tables visually. This permits the user to 

comprehend the complete behavior and structure of the design at each level. 

Note that we have introduced this particular framework solely for the purpose of illus­

trating the use of the intermediate form. The tasks of state binding, resource allocation, 

unit binding, connection binding and control generation can be performed in d~fferent com­

binations; the annotated state tables described in this report can still be used as the inter­

mediate exchange format between the various syn thesis tasks, regardless of their order of 

invocation. 

states within a super-state. 
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CHAPTER 3. 

BIF : The Behavioral Intermediate Format 

3.1. General Description 

The ·Behavioral Intermediate Format (BIF) makes use of. state tables annotated with a 

list of symbols, units, and connections to describe a design at each level of abstraction in 

the synthesis process. Conceptually, a state table is composed of entries which indicate 

what actions are performed in each state, the conditions under which those actions are to 

occur, and the next state to proceed to after completion of the actions. However, since the 

design spans several levels of abstraction (as illustrated in Figure 1) , we maintain a slightly 

different format for each abstraction level in the design process. 

The state tables and associated information lists are progressively updated as the syn-

thesis process proceeds. At each level of abstraction the user can, either directly or through 

the use of tools., modify the state table and/or any of the information lists. 

In this section, we will use a simple example to illustrate the basic format of the anno-

tated state tables at each level in the design process. A brief tutorial of the intermediate 

form is described in Appendix I, while the detailed syntax is given in Appendix II. 

Figure 2 shows a :flowchart for a design that performs the function: 

!REG 
~ ( LIMIT mxl i ) 

i --1 

The design accumulates the sum of all moduli for an externally specified value (LIMIT), 
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State 0 

State 1 

State 2 

State 3 

DONE= 1 
DPORT=DONE 
TPORT =TICK 

LIMIT = LPORT 
DONE =0 
SET(IR.EG) 
TICK= O 

CREG =IREG 

FALSE TRUE 

IREG = IREG - 1 CREG = IR.EG + CREG 
TICK = TICK + 1 

Hgure 2. Moduli Accumulator Behavior 

with respect to every number equal to and below the value set in an internal register IREG. 
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In this specification, we assume that the user has already specified the states of the 

machine. The initial structure specified by the user is shown in Figure 3. LPORT is the 

port through which the external limit is specified, while TPORT and DPORT are used to 

LPORT 
~ ................................................................................. g: ............................................... : ..... ~ ........................... ~ 
. . . . . . . . . . . . 

DPQRT 

I 
CREG I DONE ----..... ~o 

,~ 

IREG 

LIMIT 

TICK (Counter) 

. . ........................................................................................................................................................................ 
TPORT 

Figure 3. Moduli Accwnulator Initial Structure 
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output the accumulated sum and a flag signifying end of the task. Internally, the user has 

specified the several components and connections: registers IREG, CREG, DONE and 

LIMIT; the counter TICK; and the connections between ports LPORT, TPORT, DPORT 

and LIMIT, TICK and DONE respectively. IREG is set to a pre-determined start value for 

the algorithm, while CREG functions as a temporary register, and TICK keeps track of the 

accumulated moduli. LIMIT is loaded with the external value with respect to which the 

accumulated moduli is to be computed. DONE indicates the status of the completed task. 

In state 0 of the behavior, we load the LIMIT register with the value on LPORT, clear 

DONE and TICK, and set IREG to the predetermined value. 

States 1 and 2 describe a nested loop, where the outer loop decrements IREG by one, 

and the inner loop computes the modulus of LIMIT with respect to the ·current value of 

IREG. 

When IREG is equal to 0, the task is completed. DONE is set to 1 and is asserted on 

DPORT, while the accumulated sum in TICK is sent out on TPORT. 

3.2. The Operations-Based State Table Format 

Since the input behavior already has states assigned to it, we capture initial behavior 

using the operations-base.cl state .table (OBST). The OBST contains triplets for each state, 

describing the condition tested, conditional operations performed, and the next state infor­

mation. 

Figure 4 shows the operations-based state table for the example shown in Figure 2. In 

this example, the user has also specified a partial structure consisting of the external ports 
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Present Staie Condition (Value) Actions Next State 

0 LIMIT = LPORT 

- TRUE DONE= o 1 

SE.l\IREG) 

TICK= o 

TRUE DONE= 1 2 

1 IREG == 0 

FALSE OREG= IREG 3 

TRUE OREG = OREG + IREG 2 

TICK= TICK+ 1 

2 OREG<= LIM 

FALSE IREG = IREG - 1 1 

3 .... 

Figure 4. Operations-Based State Table 

and a few registers. This structure is stored in the symbol list and the unit list of the 

OBST. The structure is identical to that of Figure 3, since no additional units or connec-

tions have been allocated. 

3.3. The Unit-Based State Table Without C-Onnections 

The task of unit allocation and unit binding assigns additional components (if neces-

sary) and binds operations in the OBST to specific units. The output of this phase is the 
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unit-based state table without connections (UBST). Each triplet in this table describes the 

condition tested, the unit name and the operation performed by the unit, the list of inputs 

used for the operation, and the next state information. Figure 5 shows the UBST for the 

design after unit allocation and binding. Figure 6 is a schematic displayed from the unit 

and connection lists associated with the UBST. Note that at this point in the design, all 

the co~ponents have been allocated to the design by the synthesis system, but no connec­

tions have been generated. 

3.4. The Unit-Based State Table With Gmnections 

The task of connection binding traverses the UBST to determine the connections 

required to effect data transfers between various components in the design. The unit-based 

state table with connections (UBCST) is created after connection binding is performed. 

The resulting design describes the complete data path excluding control signals for units 

and registers. For our running example, Figure 7 shows the UBST for the design after unit 

allocation and binding. Figure 8 shows the complete data path schematic generated from 

the unit and connection lists associated with the UBCST. 

3.5. The Control-Based State Table 

The control-based state table (CBST) is created in preparation for the task of control 

compilation. Like the previous state table, each entry is a triplet which describes the condi­

tion tested, the control signals asserted on that condition, and the next state information. 

Figure 9 shows the CBST for the· design after control generation, while Figure 10 show~ the 

schematic of this complete design generated from the unit and connection lists. The com­

plete synthesized design is now represented by the CBST annotated with the unit and 
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Presait State Condition (Value) Actions Next State 

0 LIMIT(REG; Ops: LOAD; 

Inps: LPORT) 

- TRUE DONE(REG; Ops: CLEAR) 1 

IREG(REG; Ops: SET) 

TICK(COUNTER; Ops: CLEAR) 

DONE(REG; Ops: SET) 

TRUE NOR(GNOR_GATE; Ops: GNOR; 2 

Inps: IREG.OQ) 

1 NOR.00 == 1 

CREG(REG; Ops: LOAD) 

FALSE NOR(GNOR_GATE; Ops: GNOR; 3 

Inps: IREG.OQ) 

ALUl(ALU; Ops: ADD 

Inps: CREG.OQ, IREG.OQ) 

CREG(REG; Ops: LOAD; 

TRUE Inps: ALUl.00) 2 

TICK(COUNTER; Ops: UP) 

CMPl(CMP; Ops: LEQ; Inps: 

CREG.OQ, LIMIT.OQ) 

2 CMPl.OLEQ == 1 

ALUl(ALU; Ops: DEC 

Inps: IREG.OQ) 

FALSE IREG(REG; Ops: LOAD; 1 

Inps: ALUl.00) 

CMPl(CMP; Ops: LEQ; Inps: 

CREG.OQ, LIMIT.OQ) 

3 .... 

Figure 5. Unit-Based State Table 
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LP ORT 
!'''''""'~ ...................................................................... g .................................................................................. : 

CONTROL 

UNIT 

ACLEAR IO 

CLO AD 
CREG 

IO 

CLOAD Lil\1IT 
OQ 

IO I1 

CMPl 

OEQ 

A CLEAR 
TICK (Counter) 

CUP 00 

I I 
DPQRT 

:~oNE Oq1------.;;a..> 0 

ASET IO 

IREG 
CLO AD OQ 

ALUl 
00 

. . ....................................................................................................................................................................... 
TPORT 

Figure 6. UBST Annotated Structure 
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Present State Omdition (Value) Actions Next State 

0 LIMIT(REG; Ops: LOAD; lnps : LPORl') 

- TRUE DONE(REG; Ops: CLEAR) 1 

IREG(REG; Ops: SET) 

TICK(COUNTER; Ops: CLEAR) 

DONE(REG; Ops: SET) 

TRUE NOR(GNOR_GATE; Ops: GNOR; 2 

lnps: IREG.OQ) 

1 NOR.OD== 1 

CREG(REG; Ops: LOAD) 

FALSE NOR(GNOR_GATE; Ops: GNOR; 3 

Inps: IREG.OQ) 

MUXl(MUX; Ops: IO; lnps: CREG.OQ) 

ALUl(ALU; Ops: ADD 

lnps: MUXl.00, IREG.OQ) 

TRUE CREG(REG; Ops: LOAD; 2 

lnps: ALUl.00) 

TICK(COUNTER; Ops: UP) 

CMPl( CMP; Ops: LEQ; Inps: 

CREG.OQ, LIMIT.OQ) 

2 CMPl.OLEQ == 1 

MUXl(MUX; Ops: Il; Inps: IREG.OQ) 

ALUl(ALU; Ops: DEC; lnps: MUXl.00) 

FALSE IREG(REG; Ops: LOAD; Inps: ALUl.00) 1 

CMPl(CMP; Ops: LEQ; lnps: 

CREG.OQ, LIMIT.OQ) 

Figure 7. Unit-Based State Table With Connections 
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LPORT 
................................................................................. Q .................................................................................. : 

CONTROL 

UNIT 

February 10, 1989 

ACLEAR IO 

CLO AD 
CREG 

OQ 

IO 

CLOAD Lil\1lT 
OQ 

IO 11 

Cl\1Pl 

OEQ 

A CLEAR 
TICK (Counter) 

CUP 00 

TPORT 

Figure 8. UBCST Annotated Structure 
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Pra1ent State Condition (Value) Actions Next State 

0 LIMIT.CLOAD = 1 

- TRUE DONE.ACLEAR = 1 1 

IREG.ASET = 1 

TICK.ACLEAR = 1 

TRUE DONE.ASET = 1 2 

1 NOR.00 == 1 

FALSE CREG.CLOAD = 1 3 

MUXl.CIO = 1 

TRUE ALUl.CADD = 1 2 

CREG.CLOAD = 1 

TICK.CUP= 1 

2 CMPLOLEQ == 1 

MUXl.Cll = 1 

FALSE ALUl.CDEC = 1 1 

IREG.CLOAD = 1 

3 .... 

Figure 9. Control-Bases State Table 
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LP ORT 

................................................................................. Q .......................................... · ........................................ : 

ACLEAR IO 

CREG 
r- CLOAD OQ 
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I 
I r----- --------
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I I .J I 
_ _J 
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I I I OEQ 
I I I 
L. - - - -i- L. - - - - - - - _J 

I I 
I I 
I I 
I I 
I L. - - - - - ACLEAR 
1 TICK (Counter) 
L.------ CUP 00 

ASET IO 

IREG 
CLO AD OQ 

-------------------- -~----------------------------.J 

. . ....................................................................................................................................................................... 
TPORT 

Figure 10. CBST Annotated Structure 

connection lists. 
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3.6. Asynchronous Behavior 

Designs exhibiting asynchronous behavior can also be described using BIF. Asynchro­

nous behavior is des.cribed using the notions of events and event-states. An "event" is a 

change in the value of a signal (or variable) which activates an "event-state"; the event­

state describes the condition(s) tested, the operations to be performed and the next event­

state information. BIF uses a separate event column in the state tables to describe the 

event condition which activates the particular state. 

In synchronous designs, the system clock is the default event that sequences the design 

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous 

and asynchronous behavior, the clock can be used as an explicit event to indicate states 

that are entered synchronously. 

We will use a modified version of the moduli accumulator shown in Figure 2 to illus­

trate the use of an op-based event state table. Figure 11 shows a flowchart describing 'a 

similar moduli accumulator which begins operation only when the signal on the port 

START rises. State 0 of the design is entered when this event occurs. Subsequently, states 

1 and 2 are synchronous with respect to the clock and therefore use the system dock as the 

default event. 

Figure 12 shows the operations-based event state table for this new moduli accumula­

tor behavior. The table has an extra column which describes the event triggering entry 

into the next event-state. State .0 in this table is entered only on the event START RIS­

ING, while states 1 and 2 have the clock as the default events. 
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State 0 

State 1 

State 2 

DONE= 1 
DPORT =DONE 
TPORT =TICK 

LIMIT= LPORT 
DONE=O 
SEJ\IREG) 
TICK= 0 

FALSE 

CREG=IREG 

FALSE TRUE 

ffiEG =IREG-1 CREG = IREG + CREG 
TICK = TICK + 1 

Figure 11. Moduli Accumulator with External Event 
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Present State Condition (Value) Actions Next State Next State Event 

LIMIT = LPORT 

0 - TRUE DONE= o 1 (clock) 

SEI(IREG) 

TICK= O 

TPORT =TICK 

TRUE DONE= 1 . 0 START== RISING 

1 IREG == O DPORT =DONE 

FALSE GREG= IREG 3 (clock) 

TRUE GREG = GREG + IREG 2 (clock) 

TICK = TICK + 1 

2 GREG<= LIM 

FALSE IREG = IREG - 1 1 (clock) 

Figure 12. Operations:--Based Event State Table 
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CHAPTER 4. 

User Interaction Scenarios 

The annotated state table representation described in this report serves as a standard 

exchange format for use by various synthesis tasks. This format not only permits 

modification, upgrading and replacement of the tools for various synthesis tasks, but also 

provides a "manual override" feature by allowing the user to perform any or all of these 

synthesis tasks manually._ This is a unique advantage of the state table representation over 

fiowgraph-based representations, which only capture the abstract behavior, or netlist-based 

representations which capture pure structure. In this chapter we describe several user 

interaction scenarios that demonstrate the utility of the state table format as a convenient 

intermediate representation. 

4.1. User Specified Structural Constraints 

Quite often, the designer may want to specify some initial hardware allocation or some 

partial design structure as a starting point for the synthesis tasks. By doing this, the user is 

specifying structural constraints before the task of synthesis begins. 

4.1.1. Partial Resource Allocation 

If the user partially allocates resources. such as a certain number of functional units, 

storage elements and buses, these resources are stored in the unit list. These pre-specified 

units constrain the task of resource allocation (see Figure 1 ). 
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4.1.2o Partial Design Structure 

The user may wish to specify a partial design structure consisting of an interconnec­

tion of pre-allocated functional units, storage elements and buses. The components in the 

partial design are stored in the unit list, while the connections are captured in the connec­

tion list. This partial design constrains both the task of resource allocation and connection 

binding. 

4.2. User Specified Bindings 

In addition to specifying partial resources and their connections, the user may Wish to 

selectively bind certain behavioral operations and variables to components and connections. 

This is useful, for instance, when the designer has determined the critical path in the 

design, and wants to force the binding of fast components along the critical path in the 

behavior. Some input behavioral languages like EXEL [DuGa88] have special constructs 

that allow the user to selectively bind resources to abstract variables and operations. 

This type of binding is a user specified behavior-to-structure ''link" that must be used 

as a constraint through all the synthesis levels. The pre-allocated components constrain the 

resource allocation task, while the user-bindings constrain both the resource and connection 

binding tasks. We represent each such binding explicitly in the state table by annotating 

the corresponding behavioral variable or operator with the structural component or connec­

tion it is bound to. 
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4.3. Modification of Corq>iled Designs 

An experienced designer who sees the structure generated by an automatic synthesis 

system can, quite often, eyeball parts of the synthesized structure that are inefficient, 

unrealistic or which just seem odd to the experienced eye. The designer may want to 

correct the design by manually modifying parts of the compiled structural design. This 

type of user modification is a unique feature supported by BIF; existing behavioral syn-

.thesis systems do not permit such modifications. 

A typical example would be an automatically synthesized structure where a register A 

is cleared by loading the value "O" from a constant register 1. If the register A is loaded 

through another source, the design also has a mux at the input to register A to switch 

between the two sources. For this design, the designer would like to modify the generated 

design manually by replacing loading of the zero register with the activation of the asyn-

chronous clear input on the register. This eliminates the zero register, as well as the mux at 

the input to register A. 

These kinds of changes are handled very cleanly in BIF. Structural changes to the 

compiled design are updated in the unit list and the connection list. Since there is no 

guarantee that the design will still function correctly after user-modip.cation, the behavior 

must be verified on this new design structure by simulation. If the simulation does not 

satisfy the intended behavior, the complete synthesis process must be restarted from the 

beginning, using the user specified structural changes as an additional structural ·constraint. 

1 The design model behind most existing synthesis tools cannot handle asynchrony, and hence cannot generate 
the asynchronous signal required to clear the register. 
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If the designer modifies the synthesized design by changing the unit list, the synthesis 

process must start from the state binding phase. If only the connections have been 

modified in the structure, then resynthesis can begin at the connection binding phase. 

4.4. State Table Modification 

If we. allowed complete freedom for the user to perform any or all of the syn thesis tasks 

in the design process, the user would have to modify the state table in addition to the unit 

and connection lists. 

Since this type of modification can easily cause the behavior of the design to be 

violated, state table modification must immediately be followed by a simulation to verify 

that the functionality of the original specification has not changed. Following verification, 

synthesis tasks can begin from the level where the user change is affected. 

For instance, if the user modifies the op-based state table, we first require a 

verification of the new op-based state table. If the behavior of the new table is unchanged, 

we use this new state table as a starting point for the ensuing synthesis tasks of resource 

allocation, resource binding, connection binding and control generation. 
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CHAPTER 5. 

Summary 

In this report, we described· BIF, an intermediate representation format that captures 

the complete behavior and structure of a design at each level of the behavioral synthesis 

process. This representation obviates the need to maintain complex behavior-to-structure 

links from the abstract behavior down to the final structure, by capturing these links only 

where necessary: at each level of the design process._ 

BIF is an intermediate form which supports several novel design scenarios: 

specification of partial design structures, user binding of behavioral constructs to structural 

elements, and user modification of compiled designs. This permits synthesis tools to be 

interchanged, and also allows the user to manually replace the task of a synthesis tool. 

The resulting design paradigm allows an evolution towards completely automatic syn.­

thesis, where synthesis tasks that are not fully understood may be performed manually by a 

designer, while well understood tasks are performed using synthesis algorithms-_ Synthesis 

algorithms can therefore be easily incorporated, modified, upgraded or replaced as neces-

sary. 

5.1. Aclmowledgemmts 

The authors are grateful to Joe Lis and Nels Vander Zanden for their helpful com­

ments. 
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APPENDIX A. 

A Tutorial Introduction to BIF 

A.1. General Description 

This. section is devoted to a syntactical description of ~he text-based form for state 

table representation. The row-column approach to state table display (e.g. Figure 4) does 

not work well for text viewers or editors. It is necessary to provide an alternate format that 

is easy to enter or edit using a common text editor such as vi or emacs. This format depicts 

row entries as successive vertical entries in a text file with corresponding key words 

representing the various state table constructs. 

Each of the four state tables has a common structural format composed of a con st ant 

ordering of keywords and delimiters. 

• Table Identifier 

At the beginning of a given table there is a keyword which identifies which of the four 

state tables it is. 

OPS_BASED /*operations-based.*/ . 
/* table entries * / 

UNIT_BASED_NC /*unit-based without connections.*/ 
/* table entries * / 

UNIT_BASED /*unit-based with connections. * / 
/* table entries * / 

CONTROL....BASED /* control-based. * / 
/* table entries * / · 

• State Entries 
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Following the table identifier are any number of state entries composed of the keyword 

STATE, a colon (':'), a number identifying the state, a possible unconditional action entry, 

and a number of triplets describing the conditions, the actions to be performed in that 

state, and the next state, along with an optional event for the next state. Commas (',') 

separate all entries following state number, and a semicolon (';') terminates the list of 

entries. (The ellipses (' ... ') in all of the following examples indicate entries omitted for rea-

dability). 

STATE: 2 /* state two. * / 
... , /* first entry * / . 
... , /* nth entry * / 
... ; /* last entry * / 

• Unconditional Action Entry 

The unconditional action entry specifies an action that is to always take place in that 

state. It is delimited by curly brackets ('{}') and is composed of the keyword 

UNCOND_.ACTIONS, a colon, and a list of actions in a format identical to the actions list 

in a triplet entry (See below). 

{ 
UNCOND_.ACITONS: 

} 

•Triplets 

Each triplet is delimited by curly brackets and is composed of three parts: condition, 

actions, and next state information. 

{ 
COND: ... ; 
ACTIONS: ... ; 
NXTSTATE: ... ; 
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/* condition * / 
/ * actions * / 
/* next state * / 
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} 

• Omditions 

Conditions are indicated by the keyword COND,. a colon, an expression possibly 

enclosed in parentheses(()), and a semicolon. 

COND: ( ... ); /* Expression is represented by ellipsis*/ 

• Expressions 

The expression in the condition is any kind of logical construct that will evaluate to 

either TRUE (non-zero) or FALSE (zero). (Keywords true and false are legitimate expres­

sions). Currently, sum-of-products form of boolean equations, comparison to constants, and 

equality checks against constants are allowed, with variables having slightly different mean­

ings in the operations-based state table form. Operators are too numerous to describe here. 

See appendix B for a BNF description of ex-pressions and operators. 

COND: (X OR Y); /* Operations-based state table * / 

COND: (X ORY> 4); /* Operations-based state table*/ 

COND: (AULSUM > 64); /*any other state table*/ 

COND: (AUl.sum AND CMPl.ogt); /*any other state table*/ 

• Else Expression 

The else special-case is evaluated uniquely among the expressions. If the expression in 

a condition is the keyword ELSE then all conditions in previous triplets up to a previous 

ELSE expression (or the beginning of the state entry) are considered to be relevant to this 

condition. That is, if all previous conditions fail then the ELSE condition evaluates to 

TRUE. If one or more previous conditions do not fail then the ELSE condition evaluates to 
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FALSE. (NOTE:. This may require restructuring of the entries by the user to ensure correct 

condition grouping). 

{ 

}, 
{ 

}, 
{ 

}; 

COND: (X != O); 
/* next state and actions * / 

COND: (Y != O); 
.... /* next state and actions * / 

COND: (E); /* TRUE only if X==O and Y ==0 * / 
/* next state and actions * / 

• Next State Specification 

The state to proceed to after completing the list of actions is indicated by the keyword 

NXTSTATE, a colon, a state number, an optional event specification and ·a terminating 

semicolon. 

NXTSTATE: 4; / * Proceed to state 4 after actions * / 

•Events 

The optional event triggering the next state transition is specifie~ by the keyword 

EVENT followed by a colon and an expression using the EXEL [DuGa88] syntax form for 

asynchronous event timing. For sequential designs where states are activated by the clock 

the keyword CLOCK can be used. 

NXTSTATE: 4, EVENT: GPORT == rising; 

NXTSTATE: 5, EVENT: CLOCK; 
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Note that omitting the event specification for the next state implies a transition on the 

next clock. 

• Actions List 

Actions to perform in a given state are indicated by the keyword ACTIONS, a colon, 

and a comma separated ac.tion list terminated by a semicolon. 

ACTIONS: 
... , 
... , 
... , 

•Actions 

/* First action * / 
/* nth action * / 
/ * Last action * / 

The specification format for a single action is differs among the four state table for-

mats. See the specification for each table format under heading Actions. 

Fields or entries that are not used in a particular state table can be left blank, or the 

keyword null can be used. 

C-style commenting (i.e. /* comment * /) is allowed anywhere in the state table. 

A.2. Specific Descriptions of Each State Table Forllllt 

A.2.1. Operations-based State Table 

The operations-based state table describes actions to be performed in each state in 

terms of assignment statements. Variable names are not bound to units and instead 

represent values to be input ?ind output at various stages of the design. •Actions 
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Actions, listed following the keyword ACTIONS, are expressions, variables, and con-

stants combined by logical or arithmetical operators. See the EXEL [DuGa88] input 

language description for a complete description of the expression format. 

ACTIONS: 
x = y + 32, 
X{0 .. 3} = O, 
Z = X * Y; 

/* Addition * / 
/ * Selector function * / 

/* Multiplication * / 

Unique to the operations based table is component binding specifications. Optionally 

immediately following any variable name can be a component name surrounded by curly 

brackets. This will be interpreted to mean that that variable will be represented by that 

component in that particular action. 

A.2.2. Unit-based State Table With and Without Gmnections 

Both the unit-based state table (UBCST) and the unit-based state table without con-

nections (UBST) have the same syntax. Their differences are conceptual and external only. 

•Actions 

Actions, listed following the keyword ACTIONS in the state table, are represented by 

a unit name followed by a group of, attributes delimited by parentheses. 

ACTIONS: 
CNT2 ( ... ), /*Counter named CNT2 * / 
MUXl ( ... ), /*Multiplexor named MUXl * / 
ALUl ( ... ); /*ALU named ALUl */ 

• Unit Attributes 

Unit attributes describe a unique unit name, the operations performed by the unit, 

and the inputs to the unit. They are listed within the parentheses as unit name, semicolon, 
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the keyword OPS, a colon, a list of operations corresponding to control input names, a 

semicolon, the keyword lNPS, a colon, and a list of output pin names from other units. 

CNT (counter; OPS: inc,dec; INPS: ALUl.sum, CTR.I[O]) 

•Pin Narres 

Pin names are formed by concatenating the actual pin name of the unit with the 

unique unit name. 

COND: (ALUl.sum == 0) /*unit-based state table*/ 

A.2.3. Control-based State Table 

The control-based state table describes actions in terms of the values of each unit's 

control input lines. At each state the pin names of each unit are given with the values they 

are to assume in that state, either 1 or 0. 

ACTIONS: 
ADDl.carryin = O, 
ALUl.czero = 1, 
ALU2.crinhi = 1, 
SHFl.cen = 1; 
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APPENDIX B. 

BIF Syntax 

B.1. Operations Based State Table Syntax 

State Table 

table table_ident entries ';' · 

State Table Identifier 

table_ident OPS_BASED 

entries 

entry 

state 

State Table Entries 

entry I entries ';' entry 

Single State Table Entry 

Present State 

STATE ':'state triplets I 
STATE ':'state UC_ACTIONS 
uncond_actions triplets 

dig_seq 

Unconditional Actions 

uncond_actions action I uncond_actions ',' action 

Triplets 

triplets: triplet I triplets ',' triplet 
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Single Triplet 

triplet 

Condition 

condition 

empty I 
'{' 
COND ':' condition ';' 
ACTIONS ':' actions ';' 
NXTSTATE ':'state ';' 
'}' 

'(' cond_expr ')' 

Condition Expression 

cond_expr variable compare_op expr I pinname compare_op expr I 
booLexpr 

Compare Operation Types 

compare_op '=='I'!~' I'<' I'>' I'<=' I'>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I unit_action I ops_action 

Unit Based Action 

uni t_action compJtame '(' comp_type ';'operations ';'inputs ')' 

Operations Based Action 

ops_action variable ':=' expr 

Component Name 
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comp_name identifier 

Component Type 

comp_type identifier 

Operations 

operations empty I OPS ':' op_list 

Operations List 

op_list op I op_list ',' op 

Single Operation 

op empty I op_type 

Operation Type 

op_type identifier 

Inputs 

inputs empty I INPS ':' inp_list 

Input List 

inp_list: input I inp_list ','input 

Single Input 

input empty I variable I pinname 

Expression 

expr arith_expr I booLexpr I shift_expr 
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Arithmetic Expression 

arith_expr '(' arith_expr ')' I 
arith_expr '+' arith_expr I arith_expr '-' arith_expr I 
arith_expr '*' arith_expr I arith_expr '/' arith_expr I 
variable-I pinname I dig_seq 

Boolean Expression 

booLexpr lgbLexpr I btbLexpr 

Logical Boolean Expression 

lgbLexpr '(' lgbLexpr ')' I 
lgbl_expr LAND gbLexpr I lgbLexpr LOR gbLexpr I 
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbLexpr 1· 
lgbLexpr LXQR gbLexpr I lgbLexpr LXNOR gbLexpr I 
variable I pinname I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr '(' btbLexpr ')' I 
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I 
btbLexpr 'A' btbLexpr I btbLexpr ,_, btbLexpr I 
btbLexpr ,_ &' btbLexpr I btbLexpr ,_,, btbLexpr I 
btbLexpr ,A_, btbLexpr I 
variable I pinname I dig_seq 

Shi ft Expression 

shift_expr 

Variable 

variable 

Pi,n Name 

pinname 

February 10, 1989 

'(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
variable I pinname I dig_seq 

value_ident 

compJtame '.' portname 
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Port Name 

portname value_ident 

Port or Variable Identifier 

value_ident identifier I 
identifier '[' dig_seq ']' I 
identifier '{' dig_seq ' .. ' dig_seq '}' I 
identifier '{' bound_coniponent '}" 

Bound Component 

bound_com ponen t identifier 

Identifier 

Lex Format: [a-zA-Z][a-zA-Z0-9_]* 

identifier IDENTIFIER 

Digit Sequence 

Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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B.2. 
Unit Based State Table Syntax 

State Table 

table table_ident entries ';' 

State Table Identifier 

table_ident · UNIT_BASED 

State Table Entries 

entries entry I entries ';' entry 

Single State Table Entry 

entry STATE ':'state triplets I STATE ':'state UC_A.CTIONS 
uncond_actions triplets 

Present State 

state dig_seq 

Unconditional Actions 

uncond_actions action I uncond_actions ',' action 

Triplets 

triplets: triplet I triplets ','triplet 

Single Triplet 

triplet 
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empty I 
'{' 
CON.D ':'condition ';' 
ACTIONS ':' actions ';' 
next_state_info ';' 
'}' 
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Next State Information 

next__sta te_info NXTS TATE ':' state 
NXTSTATE ':' state; event 

Asynchronous Event 

event 

Condition 

condition 

EVENT ':' cond_expr I 
CLOCK 

'(' cond_expr ')' 

Condition Expression 

cond_expr pinname compare_op expr I booLexpr 

Compare Operation Types 

compare_op '=='I'!=' I'<' I'>' I'<=' I'>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I comp_name 'C comp_type ';' operations ';'inputs ')' 

Component Name 

comp_name identifier 

Component Type 

comp_type identifier 
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Operations 

operations empty I OPS ':' op_list 

Operations List 

op_list op I op_list ',' op 

Single Operation 

op empty I op_type 

Operation Type 

op_type identifier 

Inputs 

inputs empty I INPS ':' inp-1.ist 

Input List 

inp_list: input jinp_list ','input 

Single Input 

input empty I pinname 

Expression 

expr arith_expr I bool_expr I shift_expr 

Arithmetic Expression 

arith_expr 
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'(' arith_expr ')' I 
arith_expr '+' arith_expr I arith_expr '-' arith_expr I 
arith_expr '*' arith_expr I arith_expr '/' arith_expr I 
pinname I dig_seq 
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Boolean Expression 

booLexpr lgbLexpr I btbLexpr 

Logical Boolean Expression 

lgbLexpr '(' lgbLexpr ')' I 
lgbLexpr LAND gbLexpr I lgbLexpr LOR gbLexpr I 
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbLexpr I 
lgbLexpr LXOR gbLexpr I lgbLexpr LXNOR gbLexpr I 
pinname I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr '(' btbLexpr ')' I 
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I 
btbLexpr '"' btbLexpr I btbLexpr ,_, btbLexpr I 
btbLexpr '-&' btbLexpr I btbLexpr ,_,, btbLexpr I 
btbLexpr ,,._, btbLexpr I 
pinname I dig_seq 

Shi ft Expression 

shift_expr 

Pi,n Name 

pinname 

'(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
pinname I dig_seq 

comp_name '.' value_ident 

Port or .Variable Identifier 

value_i.dent 

Identifier 

identifier jidentifier '[' dig_seq ']' I 
identifier '{' dig_seq ' .. ' dig_seq '}' 

Lex Format: [a-zA-Z][a-zA-Z0-9_]* 

. identifier IDENTIFIER 
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Digit Sequence 

Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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B.3. 
Control Based State Table Syntax 

State Table 

table table_ident entries ';' 

State Table Identifier 

table_ident CONTROL_l3ASED 

. ' 

State Table Entries 

entries entry I entries ';' entry 

Single State Table Entry 

entry STATE ':'state triplets I STATE ':'state UC~CTIONS 
uncond_actions triplets 

Present State 

state dig_seq 

Unconditional Actions 

uncond_actions action I uncond_actions ',' action 

Triplets 

triplets: triplet I triplets ',' triplet 

Single Triplet 

triplet 
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·empty I 
'{' 
COND ':' condition ';' 
ACTIONS ':' actions ';' 
next_state_info ';' 
'}' 
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Condition 

condition '(' cond_expr ')' 

Condition Expression 

cond_expr pinname compare_op expr I booLexpr 

Compare Operation Types 

compare_op '=='I'!=' I'<' I'>' I'<=' I'>=' 

Actions 

actions action I actions ',' action 

Single Action 

action empty I pinname ':=' dig_seq 

Expression 

expr arith_expr I booLexpr I shift_expr 

Arithmetic Expression 

arith_expr '(' arith_expr ')' I 
arith_expr '+' arith_expr I arith_expr '-' arith_expr I 
arith_expr '*' arith_expr I arith_expr '/' arith_expr I 
pinname I dig_seq 

Boolean Expression 

booLexpr lgbLexpr I btbLexpr 

Logical Boolean Expression 
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lgbl_expr '(' lg bLexpr ')' I 
lgbl_expr LAND gbl_expr j Igbl_expr LOR gbLexpr I 
lgbl_expr LNOT gbl_expr j IgbLexpr LNAND gbl_expr I 
lgbl_expr LXOR gbl_expr j IgbLexpr L!(NOR gbl_expr I 
pinname I dig_seq 

Bitwise Logical Boolean Expression 

btbLexpr '(' btbLexpr ')' I 
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I 
btbLexpr , ... , btbLexpr I btbLexpr ,_, btbLexpr I 
btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I 
btbLexpr '"-' btbLexpr I 
pinname I dig_seq 

Shi ft Expression 

shift_expr '(' shift_expr ')' I 
shift_expr SHL shift_expr I shift_expr SHR shift_expr I 
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I 
pinname I dig_seq 

Pi,n Name 

pinname comp_name '.' value_ident 

Port or Variable Identifier 

value_ident 

Identifier 

identifier jidentifier '[' dig_seq ']' I 
identifier'{' dig_seq ' .. ' dig_seq '}' 

Lex Format: [a-zA-Z][a-zA-Z0-9_]* 

identifier IDENTIFIER 

Digit Sequence 

Lex Format: [0-9xX]+ 

dig_seq DIGSEQ 
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