
UC Irvine
ICS Technical Reports

Title
BIF : a behavioral intermediate format for high level synthesis

Permalink
https://escholarship.org/uc/item/74g6g7p2

Authors
Dutt, Nikil D.
Hadley, Tedd
Gajski, Daniel D.

Publication Date
1989-02-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74g6g7p2
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
.(Title 17 U.S.C.)

BIF:

A Behavioral Intermediate Format

For High Level Synthesis

BY

Nikil D. Dutt
Tedd Hid.Iey

Daniel D. Gajski

Technical Report 89-03

Information and Computer Science
University of California at Irvine

Irvine, CA 92717

Abstract

This report describes ·a new intermediate format for behavioral synthesis systems,

based on annotated state tables. It supports user control of the synthesis process by allow-

ing specification of partial design structures, user-bindin.gs and ·user modification of com-

piled designs. It is a simple and uniform representation that can be used as an intermedi-

ate exchange format for various behavioral synthesis tools. The format captures synchro-

nous and asynchronous behavior, and serves as a good interface to the user by linking

behavior and structure at each level of abstraction in the behavioral synthesis process.

TABLE OF CONTENTS

CHAPTER

· 1. Introduction ~.. 1

1.1'. Problem Description ... 1

2. Behavioral Synthesis Framework · ·................................. 5

2.1. Synthesis Tasks ... 5

2.2. Typical Synthesis Environment .. 6

3. BIF : The Behavioral Intermediate Format .. 10
3.1. General Description .. 10

3 .2. The Operations-Based State Table Format 13
3.3. The Unit-Based State Table Without Connections 14
3.4. The Unit-Based State Table With Connections 15
3.5. The Control-Based State Table ... 15
3.6. Asynchronous Behavior .. 22

4. User Interaction Scenarios ... 25

4.1. User Specified Structural Constraints ... 25
4.2. User Specified .Bindings .. 26
4.3. Modification of Compiled Designs .. 27
4.4. State Table Modification ... 28

5. Summary .. _......... 29

5.1. Acknowledgements .. 29

6. ·References ... 30

APPENDIX A. A Tutorial Introduction to BIF ... 31

A.1. General Description ... 31

A.2. Specific Descriptions of Each State Table Format·............................. 35

APPENDIX B. BIF Syntax .. 38
B.1. Operations Based State Table Syntax ... 38

B.2 .. Unit Based State Table Syntax ... 43

B.3. Control Based State Table Syntax .. 48

February 10, 1989 BIF Technical Report Pagei

CHAPTER 1.

Introduction

1.1. Problem Description

The task of high level synthesis spans the continuum froni the automatic generation of

a design from a purely behavioral specification, down to the compilation of a completely

specified structural design consisting of a set of components from a given library and their .

interconnection. In the first case (automatic generation), the behavior is specified as a set

of assignment statements to variables, possibly with timing constraints for input-output

pairs. There is no binding of operations to time or to functional units, no binding of vari­

ables to storage elements, and the description does not have any connectivity specified

between storage and functional units. At the other extreme, compilation of structure con­

sists of mapping generic components (or components from one library) to components

derived from another library. The main objective is optimization of that mapping to satisfy

technology constraints such as time, area, power, testability, etc.

The traditional view of behavioral synthesis ([GrKP85] [Thom86] [McPC88] etc.)

assumes that the the synthesis system automatically generates the structural design from a

user specified abstract behavior. Such systems do not permit the user to interact in the

design synthesis and evaluation loop. The major drawback with this appraoch is that the

user cannot impose structural constraints (in the form of an initial design structure), or pro­

vide design hints (in the form of behavioral operators and variables bound to structural

components and connections). The need for such user input is evidenced by the fact that

February 10, 1989 BIF Technical Report Pagel

research in behavioral synthesis algorithms is still in its infancy. Existing algorithms for

syn thesis tasks like state allocation, component binding, etc. are either limited to certain

narrow application areas (e.g. Digital Signal Processing applications), or use restrictive and

simple models which fail to generate realistic designs (e.g. unit-delay, ·unit-cost models,

[PaPM86]). By allowing the user to interact with the design process, the system permits

the user to guide the synthesis tasks by incorporating the designer's knowledge and exper­

tise.

An attempt to rectify this drawback is described in [ThBR87], where "links" are main­

tained between the abstract behavioral entities (variables, operators) and the resultant

structural design (state, component, connection). These links are a useful representation

for performing multi-level simulation, enabling behavioral verification of the synthesized

structure. But on closer examination, this behavior-to-structure linking does not really help

the designer explore different design alternatives. If the synthesized design does not meet

the constraints, the user is forced to re-synthesize the design automatically from th~

abstract behavior by changing some high level constraint.

For instance, knowing that variable "A" in some statement of the behavior is bound

to register Rl in state 2 of the synthesized design doesn't really help the user decide on how

to improve the design; it merely serves as a debugging aid to verify the correctness of the

synthesis algorithms that generated that particular design. Instead, what is really needed is

a mechanism that permits the user to selectively specify the binding of certain behavioral

variables and operators to specific structural components and connections. The user is then

able to .directly influence synthesis of the structural design to meet the desired constraints.

February 10~ 1989 BIF Technical Report Page2

Several requirements emerge from the previous discussion:

(1) partial design specification: the user should be able to specify a partially designed

structure as an initial constraint; the synthesis tools should then be able to complete

the rest of the design.

(2) user-bindings: the user should be able to _selectively bind behavioral operations to par­

ticular states, behavioral operations to components, and behavioral variables to

storage components (e.g. registers) or connections (e.g. buses, wires).

(3) modification of compiled designs: the user should be able to modify a structural

design during or after synthesis 1•

(4) modification of synthesis tools: a consistent and readable intermediate format is

required to enable the addition of new tools and the modification of existing synthesis

tools; the format must allow description of the complete design with links to the

behavior at each stage of the design process.

In this report, we describe a new intermediate representation using annotated textual

state tables which supports the above requirements. We will show how this representation

can be used to describe. the design at each level of abstraction in the synthesis process. It

facilitates easy translation to and from the internal data structures of synthesis algorithms,

thereby allowing interchangeability (and upgrading) of synthesis tools. It also serves as a

useful linking mechanism between the behavior and the structure. Furthermore, users can

interact with the representation at each of the intermediate levels, allowing for user

modification of the partial designs. The state-table based format is flexible yet simple with

1 Modification of compiled design is described in more detail in Section 4, User Scenarios.

February 10, 1989 BIF Technical Report Page3

an overall consistency throughout the levels of abstraction; designers will find this to be a

convenient interface mechanism for interacting with a behavioral synthesis system.

February 10, 1989 BIF TechniCal Report Page4

CHAPTER 2.

Behavioral Synthesis Frarrework

2.1. Synthesis Tasks

Behavioral synthesis is the process of mapping an abstract behavior to a structural

design that satisfies the behavior. The behavior is normally described by a sequence of

language variables and operators, while the structural design is an interconnection of func­

tional units, storage elements operating on a state-by-state basis. The functional units,

storage and connection elements are normally drawn (or allocated) from a given library.

There are several behavior-to-structure mappings that comprise this synthesis task; these

mappings are called bindings. Some of the important mappings are mentioned below.

Resource allocation is the task of determining the type and number of functional

units, storage elements and connections to be used in the ensuing design. The allocated

resources must satisfy the designer's high level constraints.

State binding is the temporal assignment of operation sequences in the behavior to ·

states of the structural design. A state, in this context, has the implicit notion of a syn­

chronous clock which determines the duration of the state.

Unit binding is the task of assigning functional and storage units to particular

behavioral operators and variables.

Connection binding is the task of providing connections between structural com­

ponents to effect the data transfers specified in the behavior.

February 10, 1989 BIF Technical Report Page5

Control synthesis is the task of generating control logic which sequences the design

through the final states of the design, and which produces control signals for performing

operations within each state.

Each of these tasks can be followed by an optimization phase, where, for instance, unit

merging follows unit binding, or connection merging follows connection binding. These

allocation, binding and optimization tasks are closely inter-related; there is no optimal ord­

ering of the tasks and current research in this area attempts to understand their interac­

tion. This underscores the need for. a standard intermediate format that captures the com­

plete design at each of these levels.

2.2. Typical Synthesis Enviromrent

We will use the environment shown in Figure 1 as the synthesis framework to show the

utility of the intermediate form. The figure is organized into three columns: the synthesis

tasks on the left, the user interface on the right, and the intermediate representation in the

middle. The intermediate representation is composed of four basic components: the state

table, the unit list, the connections list, and the symbol list.

The user typically specifies the behavior of. the design in a behavioral specification

language like VHDL [LiGa88] or EXEL [DuGa88]. The language compiler parses the input

into a data structure which is captured in the first level of the intermediate form, by creat­

ing the. the symbol list and the operation sequence table. In addition, if the user has

specified some structure along with the behavior, this structure is captured in the unit and

connectivity lists. Since the designer may not know the duration of the clock while describ­

ing the behavior, the input is naturally described using sequences of groups of operations.

February 10, 1989 BIF Technical Report Page6

SYNTHESIS TASKS.

I

~
I ':;;.

I
I
I
I

· INTERN.AL REPBESENTA'llClN

State Table

Super
State

- - - - -

Op
Based

- - - - -

Unit
Based

Unit
Based
With

Connections

Control
Based

Unit Li.st

- - - - -

- - - - - - - - - -

- - - - -

- - - - -

usmJNTERFACE

I
I
I

4
I
I

~

1
Micro-

~ architecture
Capture

1 and
1 Display
I
~

I
I
I
I
I
~

I
I
I
I
I
I
I
I

Figure 1. A Typical Behavioral Synthesis Enviromnent

This description forms a. two-level hierarchy, where the first level is the sequence of opera-

tion groups, and the second level consists of each operation group individually. The opera-

tion group is much like a basic-block in a standard programming language; it may span

several states depending upon the duration of the system clock. We refer to this intermedi-

February 10, 1989 BIF Technical Report Page7

ate form as the super-state table 1. This table describes the operations performed in each

super-state, and the sequencing between super-states.

In the next level of design, we use a state allocator to "slice" the super-states into

states of the design. Operation sequences are assigned to specific states of the final design.

This task is also called state scheduling in the literature [PaKn87] [PaGa87]. The op-based

state table is generated by this synthesi.s task. This table uses conditional triplets to cap­

ture the behavior of the design on a state-by-state basis. Each triplet describes the condi­

tion tested, the operations performed and the next state to be executed. At this point in

the synthesis framework, the temporal ordering of operations has been fixed, but we have

not specified how exactly these operations are to be performed in hardware; this is deter­

mined by the tasks of resource allocation and binding.

Resource allocation determines the type and number of.structural components needed

to implement the structural design. These components are typically drawn from a generic

library [Dutt88], which contains information about each type of component. Since buses

are also treated as components, this task updates both the unit list and the connection list.

Resource binding assigns specific instances of functional and storage components to

abstract operations and variables in the op-based state table. At this point, the design is

stored in the unit-based state table. This table uses triplets to describe the structural

operation of the design on a state-by-state basis. Each triplet describes the unit generating

the conditional, the units performing the· conditional operations, and the next state to be

executed. The operations in the unit-based state table only specify which· components are

to be used as inputs for the operation; they do not specify the paths for these inputs.

1 The term "super-state" is used to indicate two levels of hierarchy: sequences of super-states, and the actual

February 10, 1989 BIF Technical Report Pages

The task of connection binding adds these connection paths to the unit-based state

table to create a unit-based state table with connections. This table describes the complete

structure of the synthesized data path, but lacks the control signals for the components.

Finally, the task of control generation creates control lines for every functional or

storage unit that needs to be controlled. The control based state table captures this func­

tionality with triplets that describe the control lines conditionally activated in each state,

and the subsequent next state.

At each level of the synthesis process, the appropriate synthesis task can be performed

automatically (by a set of algorithms and rules), or can be performed manually by the user

through the user interface. The user interface displays the units and connections in the

form of a schematic, and displays the state tables visually. This permits the user to

comprehend the complete behavior and structure of the design at each level.

Note that we have introduced this particular framework solely for the purpose of illus­

trating the use of the intermediate form. The tasks of state binding, resource allocation,

unit binding, connection binding and control generation can be performed in d~fferent com­

binations; the annotated state tables described in this report can still be used as the inter­

mediate exchange format between the various syn thesis tasks, regardless of their order of

invocation.

states within a super-state.

February 10, 1989 BIF Technical Report Page9

CHAPTER 3.

BIF : The Behavioral Intermediate Format

3.1. General Description

The ·Behavioral Intermediate Format (BIF) makes use of. state tables annotated with a

list of symbols, units, and connections to describe a design at each level of abstraction in

the synthesis process. Conceptually, a state table is composed of entries which indicate

what actions are performed in each state, the conditions under which those actions are to

occur, and the next state to proceed to after completion of the actions. However, since the

design spans several levels of abstraction (as illustrated in Figure 1) , we maintain a slightly

different format for each abstraction level in the design process.

The state tables and associated information lists are progressively updated as the syn-

thesis process proceeds. At each level of abstraction the user can, either directly or through

the use of tools., modify the state table and/or any of the information lists.

In this section, we will use a simple example to illustrate the basic format of the anno-

tated state tables at each level in the design process. A brief tutorial of the intermediate

form is described in Appendix I, while the detailed syntax is given in Appendix II.

Figure 2 shows a :flowchart for a design that performs the function:

!REG
~ (LIMIT mxl i)

i --1

The design accumulates the sum of all moduli for an externally specified value (LIMIT),

February 10, 1989 BIF Technical Report Page 10

State 0

State 1

State 2

State 3

DONE= 1
DPORT=DONE
TPORT =TICK

LIMIT = LPORT
DONE =0
SET(IR.EG)
TICK= O

CREG =IREG

FALSE TRUE

IREG = IREG - 1 CREG = IR.EG + CREG
TICK = TICK + 1

Hgure 2. Moduli Accumulator Behavior

with respect to every number equal to and below the value set in an internal register IREG.

February 10, 1989 BIF Technical Report Page 11

In this specification, we assume that the user has already specified the states of the

machine. The initial structure specified by the user is shown in Figure 3. LPORT is the

port through which the external limit is specified, while TPORT and DPORT are used to

LPORT
~ ... g: ... : ~ ~
.

DPQRT

I
CREG I DONE ----..... ~o

,~

IREG

LIMIT

TICK (Counter)

. . ..
TPORT

Figure 3. Moduli Accwnulator Initial Structure

February 10, 1989 BIF Technical Report Page 12

output the accumulated sum and a flag signifying end of the task. Internally, the user has

specified the several components and connections: registers IREG, CREG, DONE and

LIMIT; the counter TICK; and the connections between ports LPORT, TPORT, DPORT

and LIMIT, TICK and DONE respectively. IREG is set to a pre-determined start value for

the algorithm, while CREG functions as a temporary register, and TICK keeps track of the

accumulated moduli. LIMIT is loaded with the external value with respect to which the

accumulated moduli is to be computed. DONE indicates the status of the completed task.

In state 0 of the behavior, we load the LIMIT register with the value on LPORT, clear

DONE and TICK, and set IREG to the predetermined value.

States 1 and 2 describe a nested loop, where the outer loop decrements IREG by one,

and the inner loop computes the modulus of LIMIT with respect to the ·current value of

IREG.

When IREG is equal to 0, the task is completed. DONE is set to 1 and is asserted on

DPORT, while the accumulated sum in TICK is sent out on TPORT.

3.2. The Operations-Based State Table Format

Since the input behavior already has states assigned to it, we capture initial behavior

using the operations-base.cl state .table (OBST). The OBST contains triplets for each state,

describing the condition tested, conditional operations performed, and the next state infor­

mation.

Figure 4 shows the operations-based state table for the example shown in Figure 2. In

this example, the user has also specified a partial structure consisting of the external ports

February 10, 1989 BIF Technical Report Page 13

Present Staie Condition (Value) Actions Next State

0 LIMIT = LPORT

- TRUE DONE= o 1

SE.l\IREG)

TICK= o

TRUE DONE= 1 2

1 IREG == 0

FALSE OREG= IREG 3

TRUE OREG = OREG + IREG 2

TICK= TICK+ 1

2 OREG<= LIM

FALSE IREG = IREG - 1 1

3

Figure 4. Operations-Based State Table

and a few registers. This structure is stored in the symbol list and the unit list of the

OBST. The structure is identical to that of Figure 3, since no additional units or connec-

tions have been allocated.

3.3. The Unit-Based State Table Without C-Onnections

The task of unit allocation and unit binding assigns additional components (if neces-

sary) and binds operations in the OBST to specific units. The output of this phase is the

February 10, 1989 BIF Technical Report Page 14

unit-based state table without connections (UBST). Each triplet in this table describes the

condition tested, the unit name and the operation performed by the unit, the list of inputs

used for the operation, and the next state information. Figure 5 shows the UBST for the

design after unit allocation and binding. Figure 6 is a schematic displayed from the unit

and connection lists associated with the UBST. Note that at this point in the design, all

the co~ponents have been allocated to the design by the synthesis system, but no connec­

tions have been generated.

3.4. The Unit-Based State Table With Gmnections

The task of connection binding traverses the UBST to determine the connections

required to effect data transfers between various components in the design. The unit-based

state table with connections (UBCST) is created after connection binding is performed.

The resulting design describes the complete data path excluding control signals for units

and registers. For our running example, Figure 7 shows the UBST for the design after unit

allocation and binding. Figure 8 shows the complete data path schematic generated from

the unit and connection lists associated with the UBCST.

3.5. The Control-Based State Table

The control-based state table (CBST) is created in preparation for the task of control

compilation. Like the previous state table, each entry is a triplet which describes the condi­

tion tested, the control signals asserted on that condition, and the next state information.

Figure 9 shows the CBST for the· design after control generation, while Figure 10 show~ the

schematic of this complete design generated from the unit and connection lists. The com­

plete synthesized design is now represented by the CBST annotated with the unit and

February 10, 1989 BIF Technical Report Page 15

Presait State Condition (Value) Actions Next State

0 LIMIT(REG; Ops: LOAD;

Inps: LPORT)

- TRUE DONE(REG; Ops: CLEAR) 1

IREG(REG; Ops: SET)

TICK(COUNTER; Ops: CLEAR)

DONE(REG; Ops: SET)

TRUE NOR(GNOR_GATE; Ops: GNOR; 2

Inps: IREG.OQ)

1 NOR.00 == 1

CREG(REG; Ops: LOAD)

FALSE NOR(GNOR_GATE; Ops: GNOR; 3

Inps: IREG.OQ)

ALUl(ALU; Ops: ADD

Inps: CREG.OQ, IREG.OQ)

CREG(REG; Ops: LOAD;

TRUE Inps: ALUl.00) 2

TICK(COUNTER; Ops: UP)

CMPl(CMP; Ops: LEQ; Inps:

CREG.OQ, LIMIT.OQ)

2 CMPl.OLEQ == 1

ALUl(ALU; Ops: DEC

Inps: IREG.OQ)

FALSE IREG(REG; Ops: LOAD; 1

Inps: ALUl.00)

CMPl(CMP; Ops: LEQ; Inps:

CREG.OQ, LIMIT.OQ)

3

Figure 5. Unit-Based State Table

February 10, 1989 BIF Technical Report Page 16

LP ORT
!'''''""'~ .. g .. :

CONTROL

UNIT

ACLEAR IO

CLO AD
CREG

IO

CLOAD Lil\1IT
OQ

IO I1

CMPl

OEQ

A CLEAR
TICK (Counter)

CUP 00

I I
DPQRT

:~oNE Oq1------.;;a..> 0

ASET IO

IREG
CLO AD OQ

ALUl
00

.
TPORT

Figure 6. UBST Annotated Structure

February 10, 1989 BIF Technical Report Page 17

Present State Omdition (Value) Actions Next State

0 LIMIT(REG; Ops: LOAD; lnps : LPORl')

- TRUE DONE(REG; Ops: CLEAR) 1

IREG(REG; Ops: SET)

TICK(COUNTER; Ops: CLEAR)

DONE(REG; Ops: SET)

TRUE NOR(GNOR_GATE; Ops: GNOR; 2

lnps: IREG.OQ)

1 NOR.OD== 1

CREG(REG; Ops: LOAD)

FALSE NOR(GNOR_GATE; Ops: GNOR; 3

Inps: IREG.OQ)

MUXl(MUX; Ops: IO; lnps: CREG.OQ)

ALUl(ALU; Ops: ADD

lnps: MUXl.00, IREG.OQ)

TRUE CREG(REG; Ops: LOAD; 2

lnps: ALUl.00)

TICK(COUNTER; Ops: UP)

CMPl(CMP; Ops: LEQ; Inps:

CREG.OQ, LIMIT.OQ)

2 CMPl.OLEQ == 1

MUXl(MUX; Ops: Il; Inps: IREG.OQ)

ALUl(ALU; Ops: DEC; lnps: MUXl.00)

FALSE IREG(REG; Ops: LOAD; Inps: ALUl.00) 1

CMPl(CMP; Ops: LEQ; lnps:

CREG.OQ, LIMIT.OQ)

Figure 7. Unit-Based State Table With Connections

February 10, 1989 BIF Technical Report Page 18

LPORT
... Q .. :

CONTROL

UNIT

February 10, 1989

ACLEAR IO

CLO AD
CREG

OQ

IO

CLOAD Lil\1lT
OQ

IO 11

Cl\1Pl

OEQ

A CLEAR
TICK (Counter)

CUP 00

TPORT

Figure 8. UBCST Annotated Structure

BIF Technical Report

I I
DPQRr

~~ONE OQl------=-~O

ASET IO

IBEG
CLO AD OQ

Page 19

Pra1ent State Condition (Value) Actions Next State

0 LIMIT.CLOAD = 1

- TRUE DONE.ACLEAR = 1 1

IREG.ASET = 1

TICK.ACLEAR = 1

TRUE DONE.ASET = 1 2

1 NOR.00 == 1

FALSE CREG.CLOAD = 1 3

MUXl.CIO = 1

TRUE ALUl.CADD = 1 2

CREG.CLOAD = 1

TICK.CUP= 1

2 CMPLOLEQ == 1

MUXl.Cll = 1

FALSE ALUl.CDEC = 1 1

IREG.CLOAD = 1

3

Figure 9. Control-Bases State Table

February 10, 1989 BIF Technical Report Page 20

LP ORT

... Q .. · .. :

ACLEAR IO

CREG
r- CLOAD OQ
I

r­

' I i
I
I I

- - m - u - ADONE OQl-----;;Jilll>>O ~ I
DPO .. RT

- - - - - - - - - . ASET •

CONTROL

UNIT

I
I
I r----- --------
1 I 1---- --------

I I .J I
_ _J

1 I I r----------- ---------,
I I I I r- -------- --------, L.-·-
1 I I I I I
I I : I I IO L.----
1 I I I .J 1 1 1 1 1 r - cwAn LIIMIT _ .J I I I I I

- - .J : I I I
____ _i I I I

_____ J : :
____ _;. _ _i I
_______ _J

OQ

--------- ---- ----------,
-----------------------, I

--, IO

-, I

11

C:MPl

I I
I I
I I
I I
I I
I L.----

L. - - - - -I I
I I
I I

I I I OEQ
I I I
L. - - - -i- L. - - - - - - - _J

I I
I I
I I
I I
I L. - - - - - ACLEAR
1 TICK (Counter)
L.------ CUP 00

ASET IO

IREG
CLO AD OQ

-------------------- -~----------------------------.J

.
TPORT

Figure 10. CBST Annotated Structure

connection lists.

February 10, 1989 BIF Technical Report Page 21

3.6. Asynchronous Behavior

Designs exhibiting asynchronous behavior can also be described using BIF. Asynchro­

nous behavior is des.cribed using the notions of events and event-states. An "event" is a

change in the value of a signal (or variable) which activates an "event-state"; the event­

state describes the condition(s) tested, the operations to be performed and the next event­

state information. BIF uses a separate event column in the state tables to describe the

event condition which activates the particular state.

In synchronous designs, the system clock is the default event that sequences the design

through different states of the machine. We therefore omit the event field in purely syn­

chronous design descriptions. However, when a design exhibits a mixture of synchronous

and asynchronous behavior, the clock can be used as an explicit event to indicate states

that are entered synchronously.

We will use a modified version of the moduli accumulator shown in Figure 2 to illus­

trate the use of an op-based event state table. Figure 11 shows a flowchart describing 'a

similar moduli accumulator which begins operation only when the signal on the port

START rises. State 0 of the design is entered when this event occurs. Subsequently, states

1 and 2 are synchronous with respect to the clock and therefore use the system dock as the

default event.

Figure 12 shows the operations-based event state table for this new moduli accumula­

tor behavior. The table has an extra column which describes the event triggering entry

into the next event-state. State .0 in this table is entered only on the event START RIS­

ING, while states 1 and 2 have the clock as the default events.

February 10, 1989 BIF Technical Report Page 22

State 0

State 1

State 2

DONE= 1
DPORT =DONE
TPORT =TICK

LIMIT= LPORT
DONE=O
SEJ\IREG)
TICK= 0

FALSE

CREG=IREG

FALSE TRUE

ffiEG =IREG-1 CREG = IREG + CREG
TICK = TICK + 1

Figure 11. Moduli Accumulator with External Event

February 10, 1989 BIF Technical Report ·page 23

Present State Condition (Value) Actions Next State Next State Event

LIMIT = LPORT

0 - TRUE DONE= o 1 (clock)

SEI(IREG)

TICK= O

TPORT =TICK

TRUE DONE= 1 . 0 START== RISING

1 IREG == O DPORT =DONE

FALSE GREG= IREG 3 (clock)

TRUE GREG = GREG + IREG 2 (clock)

TICK = TICK + 1

2 GREG<= LIM

FALSE IREG = IREG - 1 1 (clock)

Figure 12. Operations:--Based Event State Table

February 10, 1989 BIF Technical Report Page 24

CHAPTER 4.

User Interaction Scenarios

The annotated state table representation described in this report serves as a standard

exchange format for use by various synthesis tasks. This format not only permits

modification, upgrading and replacement of the tools for various synthesis tasks, but also

provides a "manual override" feature by allowing the user to perform any or all of these

synthesis tasks manually._ This is a unique advantage of the state table representation over

fiowgraph-based representations, which only capture the abstract behavior, or netlist-based

representations which capture pure structure. In this chapter we describe several user

interaction scenarios that demonstrate the utility of the state table format as a convenient

intermediate representation.

4.1. User Specified Structural Constraints

Quite often, the designer may want to specify some initial hardware allocation or some

partial design structure as a starting point for the synthesis tasks. By doing this, the user is

specifying structural constraints before the task of synthesis begins.

4.1.1. Partial Resource Allocation

If the user partially allocates resources. such as a certain number of functional units,

storage elements and buses, these resources are stored in the unit list. These pre-specified

units constrain the task of resource allocation (see Figure 1).

February 10, 1989 BIF Technical Report Page 25

4.1.2o Partial Design Structure

The user may wish to specify a partial design structure consisting of an interconnec­

tion of pre-allocated functional units, storage elements and buses. The components in the

partial design are stored in the unit list, while the connections are captured in the connec­

tion list. This partial design constrains both the task of resource allocation and connection

binding.

4.2. User Specified Bindings

In addition to specifying partial resources and their connections, the user may Wish to

selectively bind certain behavioral operations and variables to components and connections.

This is useful, for instance, when the designer has determined the critical path in the

design, and wants to force the binding of fast components along the critical path in the

behavior. Some input behavioral languages like EXEL [DuGa88] have special constructs

that allow the user to selectively bind resources to abstract variables and operations.

This type of binding is a user specified behavior-to-structure ''link" that must be used

as a constraint through all the synthesis levels. The pre-allocated components constrain the

resource allocation task, while the user-bindings constrain both the resource and connection

binding tasks. We represent each such binding explicitly in the state table by annotating

the corresponding behavioral variable or operator with the structural component or connec­

tion it is bound to.

February 10, 1989 BIF Technical Report Page 26

4.3. Modification of Corq>iled Designs

An experienced designer who sees the structure generated by an automatic synthesis

system can, quite often, eyeball parts of the synthesized structure that are inefficient,

unrealistic or which just seem odd to the experienced eye. The designer may want to

correct the design by manually modifying parts of the compiled structural design. This

type of user modification is a unique feature supported by BIF; existing behavioral syn-

.thesis systems do not permit such modifications.

A typical example would be an automatically synthesized structure where a register A

is cleared by loading the value "O" from a constant register 1. If the register A is loaded

through another source, the design also has a mux at the input to register A to switch

between the two sources. For this design, the designer would like to modify the generated

design manually by replacing loading of the zero register with the activation of the asyn-

chronous clear input on the register. This eliminates the zero register, as well as the mux at

the input to register A.

These kinds of changes are handled very cleanly in BIF. Structural changes to the

compiled design are updated in the unit list and the connection list. Since there is no

guarantee that the design will still function correctly after user-modip.cation, the behavior

must be verified on this new design structure by simulation. If the simulation does not

satisfy the intended behavior, the complete synthesis process must be restarted from the

beginning, using the user specified structural changes as an additional structural ·constraint.

1 The design model behind most existing synthesis tools cannot handle asynchrony, and hence cannot generate
the asynchronous signal required to clear the register.

February 10, 1989 BIF Technical Report Page 27

If the designer modifies the synthesized design by changing the unit list, the synthesis

process must start from the state binding phase. If only the connections have been

modified in the structure, then resynthesis can begin at the connection binding phase.

4.4. State Table Modification

If we. allowed complete freedom for the user to perform any or all of the syn thesis tasks

in the design process, the user would have to modify the state table in addition to the unit

and connection lists.

Since this type of modification can easily cause the behavior of the design to be

violated, state table modification must immediately be followed by a simulation to verify

that the functionality of the original specification has not changed. Following verification,

synthesis tasks can begin from the level where the user change is affected.

For instance, if the user modifies the op-based state table, we first require a

verification of the new op-based state table. If the behavior of the new table is unchanged,

we use this new state table as a starting point for the ensuing synthesis tasks of resource

allocation, resource binding, connection binding and control generation.

February 10, 1989 BIF Technical Report Page 28

CHAPTER 5.

Summary

In this report, we described· BIF, an intermediate representation format that captures

the complete behavior and structure of a design at each level of the behavioral synthesis

process. This representation obviates the need to maintain complex behavior-to-structure

links from the abstract behavior down to the final structure, by capturing these links only

where necessary: at each level of the design process._

BIF is an intermediate form which supports several novel design scenarios:

specification of partial design structures, user binding of behavioral constructs to structural

elements, and user modification of compiled designs. This permits synthesis tools to be

interchanged, and also allows the user to manually replace the task of a synthesis tool.

The resulting design paradigm allows an evolution towards completely automatic syn.­

thesis, where synthesis tasks that are not fully understood may be performed manually by a

designer, while well understood tasks are performed using synthesis algorithms-_ Synthesis

algorithms can therefore be easily incorporated, modified, upgraded or replaced as neces-

sary.

5.1. Aclmowledgemmts

The authors are grateful to Joe Lis and Nels Vander Zanden for their helpful com­

ments.

February 10, 1989 BIF Technical Report Page 29

CHAPrER 6.

References

[ChGa89] G. D. Chen and D. D. Gajski, "An Intelligent Component Database for
Behavioral Synthesis," Technical Report (in preparation), U.C. Irvine, February, 1989.

[DuGa88} N. D. Dutt and D. D. Gajski, "EXEL: An Input Language for Extensible Register
Transfer Compilation," Technical Report 88-11, U.C. Irvine, April, 1988.

[Dutt88] N. D. D:utt, "GENUS: A Generic Component Library for High Level Synthesis,"
Technical Report 88-22, University of California at Irvine, September, 1988.

[GrKP85] J. Granacki, D. Knapp, A. Parker, "The ADAM Advanced Design Automation
System: Overview, Planner and Natural Language Interface," 22nd Design Automation
Conference (June, 1985).

[LiGa88a] Y.-L. Lin and D. D. Gajski, "LES: A Layout Expert System," IEEE Trans. on
Computer-Aided Design, Vol. CAD-7, Number 8, Aug. 1988.

[LiGa88b] J. S. Lis and D. D. Gajski, "Synthesis from VHDL," Proc. ICCD, Oct. 1988.

[McPC88] M.C. McFarland, A.C. Parker and R. Camposano, "Tutorial on High Level Syn­
thesis," 25th Design Automation Conference, July 1988

[PaGa86] B. Pangrle, D. Gajski, "Slicer: A Sfate Synthesizer for Intelligent Silicon ·compila­
tion" Proceedings ICCAD86 Santa Clara, CA, (Oct, 1986).

[PaKn88] P.G. _Paulin and J.P. Knight, "Force Directed Scheduling in Automatic Data
Path Synthesis," Proc. 24th IEEE Design Automation Conference, ·Miami, FL, June 1987.

[PaPM86] A. C. Parker, J. Pizarro, M-. Milnar, "MAHA: A Program for Datapath Syn­
thesis" 23rd Design Automation Conference IEEE, Las Vegas, NV (July, 1986).

[THBR87] D. E. Thomas, R. L. Blackburn and J. V. Rajan, "Linking the Behavioral and
Structural Domains of Representation for Digital System Design," IEEE Trans. CAD, Vol.
CAD-6, No. 1, January 1987.

[Thom86] D. E. Thomas, "Automatic Data path Synthesis," Design Methodologies, (S.
Goto, editor), Chapter 13, Elsevier Science Publishers, 1986.

[VaGa88] N. Vander Zanden and D. D. Gajski, "MILO: A Microarchitecture and Logic
Optimizer," Proc. 25th D. A. C., Anaheim, CA, June 1988.

February 10, 1989 BIF Technical Report Page 30

APPENDIX A.

A Tutorial Introduction to BIF

A.1. General Description

This. section is devoted to a syntactical description of ~he text-based form for state

table representation. The row-column approach to state table display (e.g. Figure 4) does

not work well for text viewers or editors. It is necessary to provide an alternate format that

is easy to enter or edit using a common text editor such as vi or emacs. This format depicts

row entries as successive vertical entries in a text file with corresponding key words

representing the various state table constructs.

Each of the four state tables has a common structural format composed of a con st ant

ordering of keywords and delimiters.

• Table Identifier

At the beginning of a given table there is a keyword which identifies which of the four

state tables it is.

OPS_BASED /*operations-based.*/ .
/* table entries * /

UNIT_BASED_NC /*unit-based without connections.*/
/* table entries * /

UNIT_BASED /*unit-based with connections. * /
/* table entries * /

CONTROL....BASED /* control-based. * /
/* table entries * / ·

• State Entries

February 10, 1989 BIF Technical Report Page 31

Following the table identifier are any number of state entries composed of the keyword

STATE, a colon (':'), a number identifying the state, a possible unconditional action entry,

and a number of triplets describing the conditions, the actions to be performed in that

state, and the next state, along with an optional event for the next state. Commas (',')

separate all entries following state number, and a semicolon (';') terminates the list of

entries. (The ellipses (' ... ') in all of the following examples indicate entries omitted for rea-

dability).

STATE: 2 /* state two. * /
... , /* first entry * / .
... , /* nth entry * /
... ; /* last entry * /

• Unconditional Action Entry

The unconditional action entry specifies an action that is to always take place in that

state. It is delimited by curly brackets ('{}') and is composed of the keyword

UNCOND_.ACTIONS, a colon, and a list of actions in a format identical to the actions list

in a triplet entry (See below).

{
UNCOND_.ACITONS:

}

•Triplets

Each triplet is delimited by curly brackets and is composed of three parts: condition,

actions, and next state information.

{
COND: ... ;
ACTIONS: ... ;
NXTSTATE: ... ;

February 10, 1989

/* condition * /
/ * actions * /
/* next state * /

BIF Technical Report Page 32

}

• Omditions

Conditions are indicated by the keyword COND,. a colon, an expression possibly

enclosed in parentheses(()), and a semicolon.

COND: (...); /* Expression is represented by ellipsis*/

• Expressions

The expression in the condition is any kind of logical construct that will evaluate to

either TRUE (non-zero) or FALSE (zero). (Keywords true and false are legitimate expres­

sions). Currently, sum-of-products form of boolean equations, comparison to constants, and

equality checks against constants are allowed, with variables having slightly different mean­

ings in the operations-based state table form. Operators are too numerous to describe here.

See appendix B for a BNF description of ex-pressions and operators.

COND: (X OR Y); /* Operations-based state table * /

COND: (X ORY> 4); /* Operations-based state table*/

COND: (AULSUM > 64); /*any other state table*/

COND: (AUl.sum AND CMPl.ogt); /*any other state table*/

• Else Expression

The else special-case is evaluated uniquely among the expressions. If the expression in

a condition is the keyword ELSE then all conditions in previous triplets up to a previous

ELSE expression (or the beginning of the state entry) are considered to be relevant to this

condition. That is, if all previous conditions fail then the ELSE condition evaluates to

TRUE. If one or more previous conditions do not fail then the ELSE condition evaluates to

February 10, 1989 BIF Technical Report Page 33

FALSE. (NOTE:. This may require restructuring of the entries by the user to ensure correct

condition grouping).

{

},
{

},
{

};

COND: (X != O);
/* next state and actions * /

COND: (Y != O);
.... /* next state and actions * /

COND: (E); /* TRUE only if X==O and Y ==0 * /
/* next state and actions * /

• Next State Specification

The state to proceed to after completing the list of actions is indicated by the keyword

NXTSTATE, a colon, a state number, an optional event specification and ·a terminating

semicolon.

NXTSTATE: 4; / * Proceed to state 4 after actions * /

•Events

The optional event triggering the next state transition is specifie~ by the keyword

EVENT followed by a colon and an expression using the EXEL [DuGa88] syntax form for

asynchronous event timing. For sequential designs where states are activated by the clock

the keyword CLOCK can be used.

NXTSTATE: 4, EVENT: GPORT == rising;

NXTSTATE: 5, EVENT: CLOCK;

February 10, 1989 BIF Technical Report Page 34

Note that omitting the event specification for the next state implies a transition on the

next clock.

• Actions List

Actions to perform in a given state are indicated by the keyword ACTIONS, a colon,

and a comma separated ac.tion list terminated by a semicolon.

ACTIONS:
... ,
... ,
... ,

•Actions

/* First action * /
/* nth action * /
/ * Last action * /

The specification format for a single action is differs among the four state table for-

mats. See the specification for each table format under heading Actions.

Fields or entries that are not used in a particular state table can be left blank, or the

keyword null can be used.

C-style commenting (i.e. /* comment * /) is allowed anywhere in the state table.

A.2. Specific Descriptions of Each State Table Forllllt

A.2.1. Operations-based State Table

The operations-based state table describes actions to be performed in each state in

terms of assignment statements. Variable names are not bound to units and instead

represent values to be input ?ind output at various stages of the design. •Actions

February 10, 1989 BIF Technical Report Page 35

Actions, listed following the keyword ACTIONS, are expressions, variables, and con-

stants combined by logical or arithmetical operators. See the EXEL [DuGa88] input

language description for a complete description of the expression format.

ACTIONS:
x = y + 32,
X{0 .. 3} = O,
Z = X * Y;

/* Addition * /
/ * Selector function * /

/* Multiplication * /

Unique to the operations based table is component binding specifications. Optionally

immediately following any variable name can be a component name surrounded by curly

brackets. This will be interpreted to mean that that variable will be represented by that

component in that particular action.

A.2.2. Unit-based State Table With and Without Gmnections

Both the unit-based state table (UBCST) and the unit-based state table without con-

nections (UBST) have the same syntax. Their differences are conceptual and external only.

•Actions

Actions, listed following the keyword ACTIONS in the state table, are represented by

a unit name followed by a group of, attributes delimited by parentheses.

ACTIONS:
CNT2 (...), /*Counter named CNT2 * /
MUXl (...), /*Multiplexor named MUXl * /
ALUl (...); /*ALU named ALUl */

• Unit Attributes

Unit attributes describe a unique unit name, the operations performed by the unit,

and the inputs to the unit. They are listed within the parentheses as unit name, semicolon,

February 10, 1989 BIF Technical Report Page 36

the keyword OPS, a colon, a list of operations corresponding to control input names, a

semicolon, the keyword lNPS, a colon, and a list of output pin names from other units.

CNT (counter; OPS: inc,dec; INPS: ALUl.sum, CTR.I[O])

•Pin Narres

Pin names are formed by concatenating the actual pin name of the unit with the

unique unit name.

COND: (ALUl.sum == 0) /*unit-based state table*/

A.2.3. Control-based State Table

The control-based state table describes actions in terms of the values of each unit's

control input lines. At each state the pin names of each unit are given with the values they

are to assume in that state, either 1 or 0.

ACTIONS:
ADDl.carryin = O,
ALUl.czero = 1,
ALU2.crinhi = 1,
SHFl.cen = 1;

February 10, 1989 BIF Technical Report Page 37

APPENDIX B.

BIF Syntax

B.1. Operations Based State Table Syntax

State Table

table table_ident entries ';' ·

State Table Identifier

table_ident OPS_BASED

entries

entry

state

State Table Entries

entry I entries ';' entry

Single State Table Entry

Present State

STATE ':'state triplets I
STATE ':'state UC_ACTIONS
uncond_actions triplets

dig_seq

Unconditional Actions

uncond_actions action I uncond_actions ',' action

Triplets

triplets: triplet I triplets ',' triplet

February to, 1989 BIF Technical Report Page 38

Single Triplet

triplet

Condition

condition

empty I
'{'
COND ':' condition ';'
ACTIONS ':' actions ';'
NXTSTATE ':'state ';'
'}'

'(' cond_expr ')'

Condition Expression

cond_expr variable compare_op expr I pinname compare_op expr I
booLexpr

Compare Operation Types

compare_op '=='I'!~' I'<' I'>' I'<=' I'>='

Actions

actions action I actions ',' action

Single Action

action empty I unit_action I ops_action

Unit Based Action

uni t_action compJtame '(' comp_type ';'operations ';'inputs ')'

Operations Based Action

ops_action variable ':=' expr

Component Name

February 10, 1989 BIF Technical Report Page 39

comp_name identifier

Component Type

comp_type identifier

Operations

operations empty I OPS ':' op_list

Operations List

op_list op I op_list ',' op

Single Operation

op empty I op_type

Operation Type

op_type identifier

Inputs

inputs empty I INPS ':' inp_list

Input List

inp_list: input I inp_list ','input

Single Input

input empty I variable I pinname

Expression

expr arith_expr I booLexpr I shift_expr

February 10, 1989 BIF Teclmical Report Page 40

Arithmetic Expression

arith_expr '(' arith_expr ')' I
arith_expr '+' arith_expr I arith_expr '-' arith_expr I
arith_expr '*' arith_expr I arith_expr '/' arith_expr I
variable-I pinname I dig_seq

Boolean Expression

booLexpr lgbLexpr I btbLexpr

Logical Boolean Expression

lgbLexpr '(' lgbLexpr ')' I
lgbl_expr LAND gbLexpr I lgbLexpr LOR gbLexpr I
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbLexpr 1·
lgbLexpr LXQR gbLexpr I lgbLexpr LXNOR gbLexpr I
variable I pinname I dig_seq

Bitwise Logical Boolean Expression

btbLexpr '(' btbLexpr ')' I
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I
btbLexpr 'A' btbLexpr I btbLexpr ,_, btbLexpr I
btbLexpr ,_ &' btbLexpr I btbLexpr ,_,, btbLexpr I
btbLexpr ,A_, btbLexpr I
variable I pinname I dig_seq

Shi ft Expression

shift_expr

Variable

variable

Pi,n Name

pinname

February 10, 1989

'(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
variable I pinname I dig_seq

value_ident

compJtame '.' portname

BIF Technical Report Page 41

Port Name

portname value_ident

Port or Variable Identifier

value_ident identifier I
identifier '[' dig_seq ']' I
identifier '{' dig_seq ' .. ' dig_seq '}' I
identifier '{' bound_coniponent '}"

Bound Component

bound_com ponen t identifier

Identifier

Lex Format: [a-zA-Z][a-zA-Z0-9_]*

identifier IDENTIFIER

Digit Sequence

Lex Format: [0-9xX]+

dig_seq DIGSEQ

February 10, 1989 BIF Technical Report Page 42

B.2.
Unit Based State Table Syntax

State Table

table table_ident entries ';'

State Table Identifier

table_ident · UNIT_BASED

State Table Entries

entries entry I entries ';' entry

Single State Table Entry

entry STATE ':'state triplets I STATE ':'state UC_A.CTIONS
uncond_actions triplets

Present State

state dig_seq

Unconditional Actions

uncond_actions action I uncond_actions ',' action

Triplets

triplets: triplet I triplets ','triplet

Single Triplet

triplet

February 10, 1989

empty I
'{'
CON.D ':'condition ';'
ACTIONS ':' actions ';'
next_state_info ';'
'}'

BIF Technical Report Page43

Next State Information

next__sta te_info NXTS TATE ':' state
NXTSTATE ':' state; event

Asynchronous Event

event

Condition

condition

EVENT ':' cond_expr I
CLOCK

'(' cond_expr ')'

Condition Expression

cond_expr pinname compare_op expr I booLexpr

Compare Operation Types

compare_op '=='I'!=' I'<' I'>' I'<=' I'>='

Actions

actions action I actions ',' action

Single Action

action empty I comp_name 'C comp_type ';' operations ';'inputs ')'

Component Name

comp_name identifier

Component Type

comp_type identifier

February 10, 1989 BIF Technical Report Page 44

Operations

operations empty I OPS ':' op_list

Operations List

op_list op I op_list ',' op

Single Operation

op empty I op_type

Operation Type

op_type identifier

Inputs

inputs empty I INPS ':' inp-1.ist

Input List

inp_list: input jinp_list ','input

Single Input

input empty I pinname

Expression

expr arith_expr I bool_expr I shift_expr

Arithmetic Expression

arith_expr

February 10, 1989

'(' arith_expr ')' I
arith_expr '+' arith_expr I arith_expr '-' arith_expr I
arith_expr '*' arith_expr I arith_expr '/' arith_expr I
pinname I dig_seq

BIF Technical Report Page45

Boolean Expression

booLexpr lgbLexpr I btbLexpr

Logical Boolean Expression

lgbLexpr '(' lgbLexpr ')' I
lgbLexpr LAND gbLexpr I lgbLexpr LOR gbLexpr I
lgbLexpr LNOT gbLexpr I lgbLexpr LNAND gbLexpr I
lgbLexpr LXOR gbLexpr I lgbLexpr LXNOR gbLexpr I
pinname I dig_seq

Bitwise Logical Boolean Expression

btbLexpr '(' btbLexpr ')' I
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I
btbLexpr '"' btbLexpr I btbLexpr ,_, btbLexpr I
btbLexpr '-&' btbLexpr I btbLexpr ,_,, btbLexpr I
btbLexpr ,,._, btbLexpr I
pinname I dig_seq

Shi ft Expression

shift_expr

Pi,n Name

pinname

'(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
pinname I dig_seq

comp_name '.' value_ident

Port or .Variable Identifier

value_i.dent

Identifier

identifier jidentifier '[' dig_seq ']' I
identifier '{' dig_seq ' .. ' dig_seq '}'

Lex Format: [a-zA-Z][a-zA-Z0-9_]*

. identifier IDENTIFIER

February 10, 1989 BIF Technical Report Page 46

Digit Sequence

Lex Format: [0-9xX]+

dig_seq DIGSEQ

February 10, 1989 BIF Technical Report Page 47

B.3.
Control Based State Table Syntax

State Table

table table_ident entries ';'

State Table Identifier

table_ident CONTROL_l3ASED

. '

State Table Entries

entries entry I entries ';' entry

Single State Table Entry

entry STATE ':'state triplets I STATE ':'state UC~CTIONS
uncond_actions triplets

Present State

state dig_seq

Unconditional Actions

uncond_actions action I uncond_actions ',' action

Triplets

triplets: triplet I triplets ',' triplet

Single Triplet

triplet

February 10, 1989

·empty I
'{'
COND ':' condition ';'
ACTIONS ':' actions ';'
next_state_info ';'
'}'

BIF Technical Report Page 48

Condition

condition '(' cond_expr ')'

Condition Expression

cond_expr pinname compare_op expr I booLexpr

Compare Operation Types

compare_op '=='I'!=' I'<' I'>' I'<=' I'>='

Actions

actions action I actions ',' action

Single Action

action empty I pinname ':=' dig_seq

Expression

expr arith_expr I booLexpr I shift_expr

Arithmetic Expression

arith_expr '(' arith_expr ')' I
arith_expr '+' arith_expr I arith_expr '-' arith_expr I
arith_expr '*' arith_expr I arith_expr '/' arith_expr I
pinname I dig_seq

Boolean Expression

booLexpr lgbLexpr I btbLexpr

Logical Boolean Expression

February 10, 1989 BIF Technical Report Page 49

lgbl_expr '(' lg bLexpr ')' I
lgbl_expr LAND gbl_expr j Igbl_expr LOR gbLexpr I
lgbl_expr LNOT gbl_expr j IgbLexpr LNAND gbl_expr I
lgbl_expr LXOR gbl_expr j IgbLexpr L!(NOR gbl_expr I
pinname I dig_seq

Bitwise Logical Boolean Expression

btbLexpr '(' btbLexpr ')' I
btbLexpr '&' btbLexpr I btbLexpr 'I' btbLexpr I
btbLexpr , ... , btbLexpr I btbLexpr ,_, btbLexpr I
btbLexpr ,_ &' btbLexpr I btbLexpr '-I' btbLexpr I
btbLexpr '"-' btbLexpr I
pinname I dig_seq

Shi ft Expression

shift_expr '(' shift_expr ')' I
shift_expr SHL shift_expr I shift_expr SHR shift_expr I
shift_expr ROTR shift_expr I shift_expr ROTL shift_expr I
pinname I dig_seq

Pi,n Name

pinname comp_name '.' value_ident

Port or Variable Identifier

value_ident

Identifier

identifier jidentifier '[' dig_seq ']' I
identifier'{' dig_seq ' .. ' dig_seq '}'

Lex Format: [a-zA-Z][a-zA-Z0-9_]*

identifier IDENTIFIER

Digit Sequence

Lex Format: [0-9xX]+

dig_seq DIGSEQ

February 10, 1989 BIF Technical Report Page 50

