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Abstract

Data-Efficient Representation Learning for Gaze Estimation

by

Swati

The human gaze serves as a potential non-verbal cue that enhances human-

computer interfaces, enabling users to engage with devices through eye movements.

The ability to accurately measure and interpret gaze direction plays a critical role

in various domains, including social interactions, assistive technologies, augmented

reality, and psychological research to examine cognitive state.

Over the past decade, gaze estimation has emerged as a prominent area of

interest within the research community. Conventional gaze estimation methods

rely on specialized hardware, including high-resolution cameras, infrared light

sources, and image processing units, to detect eye features like the pupil center

and iris boundary. While these devices offer greater accuracy and precision, their

practical use is limited by factors such as high costs, restricted head movements,

and limited range of allowable distances between user and device. As an alternative

to dedicated gaze-tracking hardware, several techniques have been developed to

infer gaze direction directly from eye images captured by standard cameras on

personal devices such as laptops, tablets, and phones.
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The recent emergence of deep learning techniques has enhanced learning-based

gaze estimation approaches. These appearance-based gaze estimation methods

directly map eye images to gaze targets without the need for explicit detection

of eye features and, therefore, have a strong capability to work in unconstrained

environments. However, the effectiveness of these approaches greatly depends

on having access to extensive training datasets that include a variety of eye

appearances, gaze directions, head poses, lighting conditions, and other variables.

In this thesis, we focus on improving the adaptability and effectiveness of webcam-

based gaze estimation techniques through the application of generative modeling

and representation learning.

First, we propose an easy approach for calibrating a laptop camera with a

commercial gaze tracker, streamlining the process of collecting labeled gaze data

to make it readily accessible for all users. This dataset can then be utilized to

enhance the accuracy of appearance-based gaze estimation methods for new users

and different domains.

Second, we introduce a generative redirection framework designed to manipulate

gaze direction and head pose orientation in synthesized images. This framework

is used to generate augmented, gaze-labeled datasets, thereby enhancing the

performance of gaze estimation methods.

Third, we explore self-supervised contrastive learning to acquire equivariant

xiv



gaze representations through an unlabeled multiview dataset. These gaze-specific

representations are utilized for few-shot gaze estimation, enhancing the efficacy of

user-specific models.

Finally, we present a spatiotemporal model for video-based gaze estimation,

incorporating attention modules to enhance understanding of both local spatial

and global temporal dynamics. Furthermore, we improve the performance of this

model using person-specific few-shot learning through Gaussian processes.
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Chapter 1

Introduction

Human eyes are vital organs for vision and allow us to perceive and make sense

of the world around us. The eyes are important for sensing, and their movement

serves as a key indicator in non-verbal communication and social interactions.

Consequently, in recent years, there has been a growing trend of interactive systems,

including virtual reality (VR) headsets, mobile or wearable devices, desktops, and

robots, that utilize gaze as either a primary or supplementary mode of interaction.

Driver-assistance systems utilize gaze tracking to monitor the driver’s attention

level, helping to identify signs of distraction or fatigue [9, 10, 11]. Clinical practi-

tioners use gaze behavior analysis to gain insights into mental health and assist in

the diagnosis of autism [12, 13]. Additionally, gaze has shown great potential in

human-computer interfaces, enhancing communication and mobility for individuals

with physical impairments [14, 15, 16]. For instance, gaze can enable control of

a screen’s mouse pointer without physical contact [17], or it can be integrated

into a system that detects the user’s gaze direction to steer or move a wheelchair

towards a targeted point [14]. Gaze tracking is also used as a proxy for human

1



visual attention, facilitating the study of cognitive and behavioral analysis [18, 19]

and also has practical applications in the commercial sector [20, 21, 22].

Early gaze estimation techniques were invasive, employing electrooculography

to track eye movements such as saccades, smooth pursuits, and fixations [23].

These methods involved attaching sensors around the eye and measuring poten-

tial differences to assess eye movement [24, 25]. As computer vision technology

advanced, gaze estimation methods evolved to incorporate dedicated hardware,

such as high-resolution cameras and infrared light sources [26, 27]. These methods

are readily available in commercial eye trackers and require explicit eye feature

detection, such as the pupil, iris, eye corners, and corneal-reflection detection. Com-

mercial eye trackers can achieve high accuracy with an angular error of less than

one degree in optimal conditions including indoor settings, restricted head move-

ments, a suitable distance between the camera and the user, and person-specific

calibration [28]. Despite their accuracy, the widespread adoption of commercial

eye trackers in various applications remains challenging due to their high cost and

the need for expert knowledge to set up and operate them. These limitations have

led many research communities to explore gaze tracking methods that only require

easily available off-the-shelf RGB cameras. These cameras can effortlessly be

integrated with various personal devices or ambient displays, making gaze tracking

more accessible and versatile. This thesis primarily concentrates on non-intrusive
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eye tracking methods that utilize images captured by RGB cameras, like those

embedded in laptops or smartphones.

In recent decades, the advancement of deep learning technologies and improve-

ments in optical sensors has led to the emergence of automatic appearance-based

gaze analysis from images [29]. The appearance-based methods directly learn a

mapping from input eye images to gaze direction. They do not depend on explicit

feature detection, which allows them to effectively process low-resolution images

captured by standard RGB cameras and work well in unconstrained environments.

In controlled laboratory settings, where factors like fixed head pose and good

illumination is maintained, appearance-based gaze estimation methods can achieve

a reasonable accuracy, typically around one to two degrees [30]. However, in

real-world conditions, where users have the freedom to move their heads and

operate in varying illumination environments, the accuracy of appearance-based

gaze estimation methods tends to decrease. This decline in performance is also

attributed to the lack of data that covers a wide range of variations.

Deep convolutional neural networks have been utilized in almost every

appearance-based gaze estimation approach due to their ability to learn com-

plex non-linear mappings. Nonetheless, these deep learning approaches require

extensive annotated datasets to deliver accurate results in real-world scenarios.

Generally, the collection of gaze-labeled datasets takes place in controlled labora-
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tory environments, where variables like illumination, camera angles, and head pose

are regulated. Therefore, acquiring large and accurately annotated datasets in

unstructured real-world settings presents challenges, often requiring complex and

costly hardware setups. As a result, cross-domain and few-shot person-specific gaze

estimation models have seen significant advancements. These models enable the

adaptation of trained gaze models to new domains and allow for tuning with just

a few labeled samples from unseen users. However, fine-tuning over-parameterized

deep neural networks with limited data can lead to overfitting. This issue can

hinder their performance in more generalized settings.

Consequently, the main challenges in estimating gaze from webcam images

include (a) acquiring large annotated datasets to enhance out-of-domain gener-

alizability, and (b) adapting gaze estimation models to new users using as few

labeled samples as possible, while still achieving performance improvements. In

this thesis, we propose solutions to address these challenges, aiming to enhance the

performance of webcam-based gaze estimation for both image and video inputs.

1.1 Thesis Contributions

Broadly speaking, the contributions presented in this thesis fall into two

categories: developing efficient techniques to acquire annotated gaze datasets for

appearance-based methods, and enhancing representation learning for the gaze
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estimation task.

For the first category of solutions, we introduce a simplified method for calibrat-

ing commercial trackers to a user’s laptop webcam. This approach facilitates the

quick collection of large, gaze-labeled datasets in unconstrained settings. Addition-

ally, we propose a controllable generative framework designed to create augmented

gaze datasets in various domains. This augmented data is then utilized to enhance

the performance of cross-domain appearance-based gaze estimation.

In the second category, our solutions concentrate on learning effective gaze

representations that encompass an understanding of the gaze estimation task.

We introduce a self-supervised representation learning framework that utilizes

unlabeled image datasets. This framework enables few-shot adaptation of these

representations, enhancing performance in both cross-domain and person-specific

gaze learning. Additionally, we propose a spatio-temporal representation learning

framework specifically for video gaze estimation. We further refine this framework

by implementing few-shot personalization using Gaussian processes for unseen

users, thereby improving its effectiveness.

In the following, we briefly describe the contributions presented in this thesis.

Camera-Tracker Calibration Modern appearance-based gaze tracking algo-

rithms require vast amounts of training data, with images of a viewer annotated

with “ground truth” gaze direction. The standard approach to obtain gaze an-
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notations is to ask subjects to fixate at specific known locations, and then use a

head model to determine the location of “origin of gaze”. We propose using an IR

gaze tracker to generate gaze annotations in natural settings that do not require

the fixation of target points. This requires prior geometric calibration of the IR

gaze tracker with the camera, such that the data produced by the IR tracker

can be expressed in the camera’s reference frame. This contribution introduces

a simple camera-tracker calibration procedure based on the PnP algorithm and

demonstrates its use to obtain a full characterization of gaze direction that can be

used for ground truth annotation.

Gaze Redirection Generative modeling has shown excellent results in generating

photo-realistic images, which can alleviate the need for annotations. However,

adopting such generative models to new domains while maintaining their ability

to provide fine-grained control over different image attributes, e.g., gaze and head

pose directions, has been a challenging problem. We proposes an unsupervised

domain adaptation framework that enables fine-grained control over gaze and head

pose directions while preserving the appearance-related factors of the person. Our

framework simultaneously learns to adapt to new domains and disentangle visual

attributes such as appearance, gaze direction, and head orientation by utilizing a

label-rich source domain and an unlabeled target domain. We empirically show

that the proposed method can outperform state-of-the-art techniques on both
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quantitative and qualitative evaluations. Further, we demonstrate the effectiveness

of the generated augmented image-label pair dataset in the target domain for

improving the performance of the downstream task of gaze estimation.

Gaze Representation Learning Self-supervised learning exploits contrastive

learning to encourage visual representations to be invariant under various image

transformations. However, the gaze estimation task demands not just invariance

to various appearances but also equivariance to the geometric transformations. We

propose a simple contrastive representation learning framework for gaze estimation,

which exploits multi-view data to promote equivariance and relies on selected data

augmentation techniques that do not alter gaze directions for invariance learning.

Our experiments demonstrate the effectiveness of our method on both cross-domain

and few-shot settings of the gaze estimation task.

Spatio-Temporal Personalized Video Gaze Estimation Video gaze esti-

mation faces significant challenges, such as understanding the dynamic evolution

of gaze in video sequences, dealing with static backgrounds, and adapting to

variations in illumination. To address these challenges, we propose a simple and

novel deep learning model designed to estimate gaze from videos, incorporating a

specialized attention module. Our method employs a spatial attention mechanism

that tracks spatial dynamics within videos. This technique enables accurate gaze
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direction prediction through a temporal sequence model, adeptly transforming

spatial observations into temporal insights, thereby significantly improving gaze

estimation accuracy. Additionally, our approach integrates Gaussian processes

to include individual-specific traits, facilitating the personalization of our model

with just a few labeled samples. Experimental results confirm the efficacy of

the proposed approach, demonstrating its success in both within-dataset and

cross-dataset settings. Our method achieves state-of-the-art performance on the

Gaze360 dataset, with or without personalization.

1.2 Structure of the Thesis

This section summarizes each chapter of the thesis along with the contributions.

Chapter 2 provides an overview of related research in gaze estimation methods

and datasets. This chapter also delves into current state-of-the-art deep learning

techniques, offering comparisons and contrasts with the methods we propose.

Chapter 3 details an algorithm for calibrating a commercial screen-based gaze

tracker with a laptop’s web camera. This chapter showcases a more efficient

and accurate approach to gathering extensive gaze datasets and includes a

comparative analysis with previous methods.

Chapter 4 presents a method for controllable gaze and head redirection within
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an unsupervised domain adaptation framework. This chapter also highlights

how the use of generated data through this model enhances performance in

downstream tasks related to gaze and head pose estimation.

Chapter 5 introduces a self-supervised method for learning gaze representations

that are invariant to visual appearances and equivariant to geometric transfor-

mations. This approach successfully enhances performance in both cross-domain

and user-specific gaze estimation tasks, with a limited number of labeled samples.

Chapter 6 introduces a video-based gaze estimation method that utilizes spatial

and temporal attention modules to track the dynamic evolution of eye movements.

Additionally, this chapter discusses a few-shot personalization approach for new

users, implemented through Gaussian processes.

Chapter 7 summarizes the thesis and discusses possible future directions in

webcam-based gaze estimation.
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Chapter 2

Background

Gaze estimation has been extensively studied over a long period, with numerous

methods proposed over time. In this chapter, we begin by exploring the anatomy

of the human eye and then move on to discuss various gaze estimation techniques.

Subsequently, we will provide a concise overview of deep learning techniques utilized

in gaze estimation.

2.1 The Human Eye

The eyes, as the primary organs of the visual system, are adept at receiving

visual images, which are subsequently transmitted to the brain. Their functioning

is analogous to that of a camera. Light reflected from an object enters the eyes

through the pupil and is focused onto a plane to create an image. The cornea, a

transparent outer layer, plays a key role in transmitting and focusing light into the

eye. Some portion of this light enters through a circular aperture in the middle of

the eye, known as the pupil. The size of the pupil is controlled by the iris, which is
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Figure 2.1: Internal anatomy of the eye1.

the colored part of the eye. In bright light conditions, the iris contracts, reducing

the size of the pupil to let in less light. Conversely, in low light conditions, the iris

expands, enlarging the pupil to allow more light to enter. Subsequently, the light

passes through the lens, which collaborates with the cornea to focus light rays

onto the nerve layer lining the back of the eye called the retina. The retina senses

light and creates electrical impulses that are sent through the optic nerve to the

brain to produce vision. The internal anatomy of the eye is shown in Figure 2.1.

Figure 2.2 illustrates the external anatomy of the eye, comprising the sclera,

limbus, iris, pupil, and eyelids. The eyelid is a flexible tissue comprised of skin and

muscles that serve to protect the eyeball by enabling blinking. It is adorned with

hundreds of eyelashes, which function to cover and shield the eyes from foreign
1https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-eye
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Figure 2.2: External anatomy of the eye

particles. The sclera is a white, opaque layer that envelops most of the eyeball’s

exterior. The boundary between the sclera and iris is called the limbus.

Eyes are not perfectly spherical; instead, they consist of a smaller anterior

(front) segment joined to a larger posterior (back) segment. The anterior segment

houses the cornea, iris, and pupil, whereas the posterior segment includes the

vitreous body, retina, choroid, and sclera, which is the outer white shell of the eye.

In the context of gaze estimation, the eyes are typically assumed to be spherical in

shape, with a radius of approximately 12 – 13 mm. There are two axes that model

the gaze direction: the optical axis and visual axis, as depicted in Figure 2.32.

The optical axis, also referred to as the Line of Gaze (LoG), is the line that

passes through the pupil, cornea, and the center of the eyeball. The visual
2The optic axis of the eye is typically defined as a “line of best fit” through the centers of

curvature of each refracting surface within the eye [31, 32]. It is different from the pupillary axis,
which is the line passing through the center of the pupil and perpendicular to the corneal surface.
The angle between the pupillary and the visual axis is known as the κ angle [33].
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Figure 2.3: Visualization of the visual and optical axis on the eyeball model.

axis, also known as the Line of Sight (LoS), is the line that connects the fovea

and the center of the cornea. This axis is regarded as the true gaze direction.

Both the optical axis and the visual axis intersect at the nodal point of the eye,

which is often approximated by the center of the cornea since they are in close

proximity. There is a user-dependent angular offset between these two axes. This

angular offset is typically determined through subject-dependent calibration in

gaze tracking devices. The fovea, situated on the retina, is slightly off-center,

positioned approximately 4− 5◦ horizontally and 1.5◦ vertically below the optical

axis [1, 34]. Consequently, the angular offset, also known as the kappa angle (κ),

can vary among subjects, sometimes up to 3◦ [1]. Moreover, the head pose is

crucial in determining the direction of the gaze. People typically align their head
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movements with eye movements to effectively scan their environment. Therefore,

the combined orientation of the head pose and the LoS offers insights into where

the person is looking.

2.2 Gaze Estimation Methods

Early methods for gaze estimation involved identifying eye movement patterns

like fixation, saccade, and smooth pursuit. This was achieved by attaching sensors

around the eye and measuring potential differences [24, 25]. Contemporary gaze-

tracking methods employ computer vision technologies and utilize images of the

eye and face to estimate gaze directions.

Gaze tracking techniques are broadly categorized into two types: PCCR-based

and Vision-based. PCCR-based (Pupil Center Corneal Reflection) methods utilize

detection of eye features like corneal reflections for interpreting gaze direction.

Conversely, vision-based methods rely on 2D images captured by standard cameras,

employing machine learning to regress the 3D gaze direction directly from these

images. The following subsections provide a brief overview of these techniques.

2.2.1 PC-CR Gaze Estimation

PC-CR gaze estimation techniques are commonly employed in commercial gaze

trackers. These methods utilize infrared light sources to illuminate the eye. This
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illumination leads to multiple reflections at the boundary between the eye lens and

the cornea, resulting in the formation of Purkinje images [35]. In infrared-based

gaze tracking, the first Purkinje image, commonly referred to as the glint, is

predominantly used. PCCR-based methods focus on estimating the pupil center

and corneal reflections (glint) to determine gaze direction. When a person looks

directly at the light source, the glint and the pupil center align. However, as the

person’s gaze shifts away from the light source, the distance between these two

points increases [36].

The infrared-based gaze tracking produces bright and dark pupil effects, which

is useful for pupil detection [37]. The difference between dark and bright pupils is

based on the location of the illumination source with respect to the optics. When

the light source is near the camera’s optical axis, it results in a bright pupil image,

as most of the light is reflected back into the camera. Conversely, if the light source

is positioned away from the camera’s optical axis, the pupil appears dark in the

image. Figure 2.4 shows the bright and dark pupil effect due to IR illumination.

Figure 2.4: Dark (left) and bright (right) pupil effect under IR illumination.
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Figure 2.5 provides an example of PCCR-based gaze estimation. In this

method, a source of invisible near-infrared or infrared light is used to illuminate

the pupil. This illumination leads to observable reflections in both the pupil and

the cornea. These reflections are captured by an infrared camera, and various

vision techniques [38, 39] have been proposed to robustly and accurately extract

the centers of the pupil and the glint. The 2D vector, known as the PC-CR vector,

which is formed between the pupil center and the glint image, is mapped to a

2D point of gaze or a 3D gaze direction. This mapping is achieved by fitting

a polynomial function [40, 41], which is learned during a calibration procedure

performed by the individual prior to using the eye tracker [37]. Figure 2.6 illustrates

an example of corneal reflections along with the PC-CR vector.

Figure 2.6: An example of a glint image (on the left) is shown alongside the PC-CR

vector, which extends from the glint to the pupil center (on the right). This vector

is used to map to either a 2D Point of Gaze (PoG) or a 3D gaze direction.

Additionally, several methods [1, 42, 43, 44, 45, 46] employ a 3D geometric model

to estimate gaze direction. These approaches depend on various eye parameters,

such as cornea radii, angles between visual and optical axes, refraction parameters,
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Figure 2.5: General idea of PCCR-based eye tracking showing eye model, infrared

light source and camera capturing images of glint and pupil center. Reproduced

from Guestrin and Eizenman [1].

iris radius, and the distance between the pupil and cornea centers. These techniques

additionally necessitate camera calibration and a geometric model that includes

the positions of the light sources, camera, and monitor. The fundamental strategy

involves estimating the 3D locations of the cornea center and pupil center, which

are used to estimate the 3D optical axis. Guestrin and Eizenman [1] demonstrate

that with the use of a single camera and multiple light sources (≥ 2), it is feasible

to easily estimate these locations even with free head movements. Since the visual

axis cannot be directly measured from the image, the offset, known as the kappa

angles, between the optical and visual axes is estimated by showing at least one
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Figure 2.7: Example of Screen-Based Eye Tracker - Tobii Pro X2 eye tracker3

point on the screen. In fully calibrated setups, the point of regard is determined

by intersecting the visual axis with the screen.

PCCR-based gaze tracking is primarily employed in two main types of eye

trackers: screen-based and wearable trackers.

Screen-Based Eye Tracker Screen-based eye trackers, also known as remote

eye trackers, operate remotely at a distance in a controlled environment. These

devices are typically long, black rectangles with IR cameras and illuminators

packed together, along with the processing unit. This unit is equipped with image

detection capabilities, 3D eye modeling, and gaze mapping algorithms. Screen-

based eye tracking devices are typically mounted directly below a screen, such as

a monitor or laptop. These devices are used to record eye movements when users

interact with stimuli displayed on the screen. They operate effectively within a

certain distance range, approximately 50 – 90 cm from the user, which provides

sufficient freedom for head movements.
3https://www.tobiipro.com/product-listing/tobii-pro-x2-30/
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Wearable Eye Tracker Wearable eye trackers are designed to be positioned

close to the eye or mounted on eyeglass frames, thereby allowing users to move

freely. These trackers are particularly useful in real-world scenarios where users

need to perform tasks while being monitored. They contain the same eye-tracking

components as screen-based eye trackers. Wearable eye trackers are commonly

recommended for behavioral studies and are frequently used in virtual reality.

Figure 2.8: Example of Wearable Eye Tracker - Tobii Pro Glasses 34

2.2.2 Vision-based Gaze Estimation

In recent decades, due to advancements in computer vision, a wide array of

vision-based gaze estimation methods has been developed. These methods directly

utilize images of the eye or face to interpret the 3D gaze direction or 2D Point of

Gaze (PoG). According to Hansen and Ji [37], vision-based methods are classified

into three categories: 2D regression-based, 3D model-based, and appearance-based.

Following this categorization, we briefly outline these gaze estimation approaches

and discuss recent developments in each area.
4https://www.tobiipro.com/product-listing/tobii-pro-glasses-3/
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2.2.2.1 2D regression-based

2D regression-based gaze estimation methods focus on identifying key points

within eye images and use regression techniques to map these points to the gaze

direction or Point of Gaze (PoG). Many of these methods involve infrared (IR)

cameras to detect geometric features of the eye, like the pupil center and glints.

With IR illumination, the PoG can be directly regressed from the pupil center-glint

vector. As a result, methods that use IR do not necessitate geometric calibration

for converting gaze directions into PoG. Mimica and Morimoto [47] apply least

squares to map pupil-glint vectors to calibration markers using overdetermined

linear equations formed by 2nd-order polynomials. Cherif et al. [48] presents

an adaptive calibration technique that incorporates a secondary calibration for

error correction and utilizes a higher degree polynomial to establish the mapping

function. The findings from a single calibration indicate that increasing the order

of the polynomial results in improved accuracy of gaze estimation. However,

according to Cerrolaza et al. [49], enhancing the order of the polynomial does not

lead to increased accuracy in gaze estimation due to variables like head motion, the

number of calibration markers, the approach used for calculating the pupil-glint

vector, etc.

Non-linear methods using artificial neural networks are also employed to learn

the mapping function between calibration markers and corresponding pupil-glint
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vectors. Demjén et al. [50] conducts a comparison between linear and neural network

regression methods for gaze estimation, demonstrating that neural networks yield

greater accuracy. Gneo et al. [51] utilizes two distinct multilayer feedforward

networks, both using the same eye features as inputs, to compute the X and Y

coordinates of the POG. Wu et al. [52] represents eye image features with an Active

Appearance Model, which combines the shape and texture information in the eye

region. Afterward, a support vector machine is used to classify 36 2D eye feature

points (eye contour, iris, pupil parameters, etc.) into gazing directions. Wang et al.

[53] introduces an enhanced DLSR-ANN (Direct Least Squares Regression-Artificial

Neural Network) method specifically tailored for 2D gaze estimation.

Sesma et al. [54] employs the inner eye corner as a feature point, in contrast to

using corneal reflections, and estimates gaze based on the PC-EC (Pupil Center-

Eye Corner) vector. This method is simpler to implement and has been adopted

in various works [55, 56, 57, 58]. However, since eye corners tend to shift when a

person looks in different directions, they are not considered reliable key points for

gaze estimation. Furthermore, Funes-Mora and Odobez [59] have utilized depth

sensors in conjunction with RGB cameras for 3D rectification of eye images into a

standard head pose viewpoint and scale. This technique aids in achieving head

pose invariance but necessitates learning a person-specific 3D mesh model. Huang

et al. [60] evaluates various combinations of feature extractors such as multi-level
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Histogram of Oriented Gradients (mHoG) and examines four regression methods:

k-nearest neighbors, random forest, gaussian process regression, and support vector

regression. While feature-based methods are generally effective, their accuracy

substantially diminishes in situations involving extreme head movements or when

used in outdoor environments.

2.2.2.2 3D Model-based

3D model-based gaze estimation approaches use a physical model designed

around the human eye’s structure. These models are tailored to each subject

and include geometric representations of the eye and parameters unique to each

individual, like corneal radius and kappa angles. As discussed in Section 2.1, the

human eye can be modeled with 3D geometry consisting of two spheroids, assuming

the diameter of the average human eyeball as ∼ 24mm [61] and an average human

iris as ∼ 12mm [62].

Some methods employ traditional computer vision techniques to identify key

eye features, which are then used to predict gaze. Meyer et al. [63] and Hennessey

et al. [26] are model-based methods that utilize edge detection techniques, such as

the Canny edge detector [64], coupled with an ellipse fitting technique to accurately

extract the most precise pupil contours. Once the pupil boundary is detected, a

calibration process is undertaken to establish the relationship between the ellipse

feature and screen coordinates. This is typically achieved using a homography
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matrix. In a similar vein, Wang and Sung [65] focuses on observing the iris-sclera

boundary and fitting an ellipse to this boundary. These ellipses are then matched

to rotated and projected circles modeled on the surface of a sphere. To facilitate

this approach, they utilize a camera equipped with a zoom lens to capture high-

resolution images of the eye. Further, Takahashi et al. [66] suggests a method for

estimating gaze direction by extracting the iris boundary. Their approach involves

using a lookup table that links the shape of the iris with the corresponding gaze

direction, designed to function in natural light conditions without requiring any

extra light sources. Wood and Bulling [67] uses a commodity tablet device and

employs elliptical model fitting to determine the iris boundary, followed by 3D

back-projections to determine the optical axis and point-of-gaze.

Numerous gaze estimation techniques utilize depth camera technology to create

a 3D model of the eyeball for estimating gaze direction. Jianfeng and Shigang

[68] use an RGB-D camera, specifically the Kinect, to construct a head model

and obtain 3D information about the pupil center. Similarly, Xiong et al. [69]

focuses on tracking the iris center and facial landmarks. These landmarks are then

projected onto a predefined face model, with their 3D locations determined using

the Kinect camera. Wang and Ji [70] employs a hybrid approach that integrates

facial features with eye models to robustly estimate the gaze point.

In most cases, methods that directly utilize single-camera images of the eye or
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face are employed to model the 3D geometry of the eye and estimate gaze direction.

Yamazoe et al. [71] construct a 3D face model over time by tracking keypoints

in images and then apply this model to estimate head pose and determine the

iris centers. Wang and Ji [72] utilize an offline 3D deformable eye-face model

to estimate 3D eye gaze from observed 2D facial landmarks. In their approach,

they conduct a joint optimization of person-specific eye position and visual axis

offset parameters. Wood et al. [73] derived eye posture parameters by directly

fitting a morphable model to the key features of the eye region and illumination,

subsequently using these parameters to estimate gaze direction. Recently, deep

learning techniques have been explored by Park et al. [74] for the estimation of

the iris, eyeball center, and limbus landmarks from an eye image. These features

are then used to estimate gaze direction. Although model-based gaze estimation

methods offer higher precision, they typically require a time-consuming personal

calibration process to accurately estimate parameters specific to each individual.

2.2.2.3 Appearance-based

Appearance-based gaze estimation methods do not necessitate specialized

devices and can make use of standard web cameras to capture images of the eye or

face. These methods directly process the pixel data from these images to produce

either a 3D gaze direction or a 2D point-of-gaze. An early attempt at using CNNs

for gaze estimation was presented in Zhang et al. [75]. The authors introduced
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the concept of employing neural networks for appearance-based gaze estimation.

They trained a LeNet-based architecture to map grayscale eye patches to 3D gaze

vectors. Additionally, head pose information was incorporated by concatenating it

to the fully connected layers preceding the final layer. Zhang et al. [76] expanded

upon this approach by employing the VGG network [77], which resulted in a

significant improvement in performance. Park et al. [74] employ DenseNet-based

CNNs to map intermediate pictorial gazemap representations to 3D gaze, using

these representations as a crucial step in their gaze estimation process. Later,

Zhang et al. [78] employ CNNs to encode full-face images into feature maps and

then learn spatial weights to either suppress or enhance information in various

facial regions. This study demonstrates that full-face images yield better results

than eye images for both 2D and 3D gaze estimation.

Several works [78, 79, 80, 81] employ separate CNN networks to compute

features from both eyes and face and concatenate these features to estimate gaze

direction. Krafka et al. [79] introduced a CNN model that processes fused features

from the face, eye, and facial grid to deduce gaze direction in real time on a

smartphone or tablet screen. This research highlighted that regions of the face

other than the eyes also hold significant information for gaze inference. Chen and

Shi [82] utilizes multi-input dilated-convolutional neural networks, which take as

input both full-face images and two separate eye patches to infer gaze direction.

25



Cheng et al. [83] introduced a coarse-to-fine framework for gaze estimation, which

initially estimates a gaze direction from the face image and then refines it using

the corresponding residual predicted from eye images. Cheng et al. [80] proposes a

face-based asymmetric regression-evaluation network (FARE-Net), which considers

the asymmetry between the two eyes to enhance gaze estimation performance.

Zhu and Deng [84] employs a gaze transform layer to integrate head pose and gaze

direction for more accurate gaze estimation. Murthy and Biswas [85] demonstrate

enhanced performance in gaze estimation by incorporating a difference layer, which

removes common features between the left and right eye images. Subsequently,

they apply an attention mechanism to assign weights to the features of each eye.

2.3 Deep Learning for Gaze Estimation

Recently, deep learning has achieved impressive results in the field of gaze

estimation. This advancement is partly attributed to the development of com-

prehensive gaze datasets. In this section, we will provide a concise overview of

these gaze datasets and explore a selection of deep learning techniques for gaze

estimation that are relevant to this thesis.
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2.3.1 Gaze Datasets

Gaze datasets are collected using specialized acquisition setups where individuals

look at various targets or stimuli. These datasets are made available in the form

of images or videos, along with the 3D gaze direction or 2D point-of-gaze. Some

datasets are collected in controlled environments, while others are gathered in

more natural, uncontrolled, or ‘in the wild’ settings.

Columbia [86] dataset was initially released for eye-contact detection in human-

object interactions but was subsequently adopted by researchers in the field of

gaze estimation as well. Columbia dataset contains 5,880 high-resolution images

collected from 56 participants (32 male, 24 female) using a DSLR camera and

provides images of resolution 5184 × 3456 pixels. The age of participants varies

between 18 and 36 and shows a high range of diversity. Out of 56 people, 21

wore prescription glasses. It is collected in a controlled laboratory setting where

subjects were asked to stabilize their heads using a chin rest and fixate on a grid

of dots attached in front of them on a wall. For each subject, a combination

of five horizontal head poses (0◦,±15◦,±30◦), seven horizontal gaze directions

(0◦,±5◦,±10◦,±15◦), and three vertical gaze directions (0◦,±10◦) is acquired,

giving a total of 105 images per subject. Some examples are demonstrated in

Figure 2.9 and 2.10.

MPIIGaze [75] is a challenging gaze dataset containing 213,659 images collected
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Figure 2.9: Columbia Gaze dataset contains 21 gaze directions for each head pose

- three vertical and seven horizontal. The figure shows seven horizontal gazes for a

particular vertical angle.

Figure 2.10: Columbia Gaze dataset contains five discrete horizontal head poses

varying from −30◦ to 30◦.

from 15 subjects during natural everyday events in front of the laptop over the

course of three months. The number of images collected by each participant varies

in the range between 34,745 and 1,498. It is collected by installing a data collection

software on their laptops, which shows a random sequence of 20 on-screen markers

where users are asked to fixate. As MPIIGaze is collected in the real world, it shows

higher within-subject variations in appearance, such as illumination, make-up, and

facial hair. Furthermore, Zhang et al. [78] provides a subset called MPIIFaceGaze

containing 37667 face images with the hypothesis that the entire face provides more

accurate information about the gaze. A few examples are shown in Figure 2.11.

GazeCapture [79] is a large-scale dataset collected through the Amazon Me-
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Figure 2.11: Example of images from MPIIGaze dataset.

chanical Turk (AMT) platform where workers were provided detailed instructions,

from downloading the application from Apple’s App Store to collecting data. 1249

subjects used iPhones while 225 used iPads, giving a total of ∼2.1M and ∼360k

frames from each of the devices, respectively. Figure 2.12 shows examples of

this dataset. GazeCapture contains around 2,445,504 frames from 1474 subjects

collected when participants are asked to fixate on 13 fixed screen gaze markers for

a total duration of ∼10 minutes. The authors also provide a predefined split of the

train, validation, and test consisting of 1271, 50, and 150 subjects, respectively.

This results in 1, 251, 983, 59, 480, and 179, 496 frames, respectively, in train,

validation, and test split.

ETH XGaze [87] dataset consists of over one million high-resolution images

of varying gaze under extreme head poses. The dataset is collected from 110

participants (47 female and 63 male), aged between 19 and 41 years. For each gaze

point, a total of 18 images (of resolution 6000 × 4000 pixels) were collected by the
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Figure 2.12: Samples from GazeCapture dataset taken using iPhones or iPads.

18 different digital SLR cameras. A custom hardware setup is used with adjustable

illumination conditions and a calibrated system to record ground-truth gaze targets.

The participants were asked to focus on a randomly appearing shrinking circle and

click the mouse when the circle became a dot, providing the gaze point. A few

examples are provided in Figure 2.13.

Figure 2.13: Example of images from ETH-XGaze dataset captured under different

head poses and lighting conditions.
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Figure 2.14: Samples of EyeDiap dataset recorded from RGB-D camera (shown in

left two images) and HD-camera (right two images). Reproduced from [2].

EyeDiap [2] dataset is collected using RGB-D (Microsoft Kinect) and HD

cameras with an ensemble of five LEDs. The data is recorded in a total of 94

sessions from 16 participants (12 males, 4 females). In each session, participants

were seated in front of the setup, within the cameras’ field of view, and asked to

observe various visual targets. These targets included a 3D ball within the scene

and a circle displayed on a computer screen, either in a discrete manner (appearing

at random locations) or in a continuous manner (following a random trajectory).

Some examples from the EyeDiap dataset are illustrated in Figure 2.14, taken

from the original paper.

Gaze360 [88] is a large-scale gaze-tracking dataset designed for robust 3D

gaze estimation in uncontrolled environments. It includes data from 238 subjects,

collected in 5 indoor (53 subjects) and 2 outdoor (185 subjects) settings, covering

a broad range of head poses and distances. The ground truth for the dataset was

established using a Ladybug5 360◦ panoramic camera mounted on a tripod at the

center of the scene. Alongside it, a large, movable rigid target board marked with
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an AprilTag5 and a cross was used. Subjects participating in the data collection

were instructed to fixate on this cross continuously. Overall, the Gaze360 dataset

comprises 129K images for training, 17K images for validation, and 26K images for

testing, each annotated with gaze information. Figure 2.15 shows some samples of

the Gaze360 dataset, reproduced from the original paper.

Figure 2.15: Gaze360 samples with ground truth gaze directions (yellow arrow).

EVE [89] is an end-to-end video-based eye-tracking dataset collected in a

constrained indoor setting using Tobii Spectrum Eye Tracker. It contains around

12 million frames (1920 × 1080 pixels) collected from 54 participants (30 male, 23

female, 1 unspecified) and consists of 4 camera views. The dataset was collected

when participants were shown 1327 unique visual stimuli (1004 images, 161 videos,

and 162 Wikipedia pages) on a 25-inch screen display, adding up to approximately

5https://april.eecs.umich.edu/software/apriltag
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105 hours of video data. It provides 2D PoG and 3D gaze direction labels along

with pupil size annotations and screen content videos. The authors also provide

pre-processed images of eye patches and face images. Samples for this dataset are

shown in Figure 2.16.

Figure 2.16: Example of frames collected from the 4 camera views with example

eye patches shown as insets from the EVE dataset.

2.3.2 Redirection Methods

A variety of techniques have been developed for gaze redirection, focusing on

synthesizing realistic images that not only maintain a high degree of realism but

also effectively alter the perceived direction of gaze. Such approaches focusing on

redirecting the gaze in real images have also emerged as an alternative method

for acquiring training data for gaze estimation. Kononenko and Lempitsky [90]
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introduces a method for gaze redirection that involves pixel-wise replacement using

an eye flow tree, enabling the synthesis of realistic images with gaze directions

adjusted upwards by 10− 15◦. To achieve this, they use a deep warping network

to modify the eye flow tree. This network is trained on eye image pair, consisting

of the appearance of the eyes before and after the redirection. Ganin et al. [91]

apply a deep convolutional network that incorporates coarse-to-fine warping and

pixel correction to produce images with the redirected gaze. Similarly, Yu et al.

[92] utilizes a deep neural network to learn the warping flow field between images,

accompanied by a correction term, for the purpose of gaze redirection. Furthermore,

Wood et al. [93] employs a graphics pipeline for redirecting eye images and fitting

a multi-part eye region morphable model using an analysis-by-synthesis approach.

This method can simultaneously recover the shape, texture, pose, and gaze of the

eye region from a given image. Subsequently, it manipulates the eyes by warping

the eyelids and rendering the eyeballs in the output image. This approach is

particularly effective for large redirection angles, achieving superior results.

Generative Adversarial Networks (GANs), known for their efficacy in image

generation tasks, have also been adopted by researchers for the purpose of gaze

redirection. Chen et al. [94] developed a coarse-to-fine eye gaze redirection model

that merges warping flow field techniques with adversarial learning to create high-

quality redirected images. Additionally, they introduced a numerical and pictorial
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guidance module, which serves to enhance the accuracy and precision of the gaze

redirection process. He et al. [95] propose a GAN-based framework that utilizes a

cycle consistency loss to learn gaze redirection and generate images with a high

resolution. Kaur and Manduchi [96] propose a style-based approach for eye image

redirection. In their method, they utilize mask-based generator networks [97] to

manipulate and control the gaze direction vector.

Gaze redirection has also been employed as an auxiliary task for gaze repre-

sentation learning. Park et al. [3] employ a transforming encoder-decoder based

network [98, 99] to learn the disentanglement of gaze, head pose, and appearance

in the latent space. The authors demonstrate how the gaze latent can be applied to

enhance the performance of personalized gaze estimation tasks. Similarly, Zheng

et al. [4] utilizes a transforming encoder-decoder network for gaze redirection

and is designed to control both labeled factors (such as gaze and head pose) and

pseudo-labeled factors (like appearance and lighting).

Xia et al. [100] proposes a framework for controllable gaze redirection that

achieves both precise redirection and continuous interpolation through conditional

image-to-image translation. Jin et al. [101] have developed a latent-to-latent

framework that projects latent vectors into an embedding space. This approach

allows for an interpretable redirection focused on specific desired attributes, like

gaze and head pose, while preserving other attributes, such as appearance. The
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framework is designed to ensure that there is no loss of information throughout

this redirection process. Recently, neural-radiance fields (NeRFs) [102] have been

utilized by Ruzzi et al. [103] for gaze redirection. In their approach, the authors

focus on disentangling the features of the face and eye regions. This disentanglement

enables the rigid transformation of the eyeballs to a specified gaze direction.

In Chapter 4, we present a gaze redirection framework that emphasizes con-

trollability, learned through a combination of feature disentanglement and an

unsupervised domain adaptation method. Our approach demonstrates a high level

of photo-realism in the generated images and proves to be effective in enhancing

the performance of gaze and head pose estimation tasks.

2.3.3 Representation Learning

Recent advancements in appearance-based gaze estimation methods have been

significantly driven by deep learning. These methods require a substantial amount

of labeled data to realize their full potential in terms of accuracy. Due to the

significant reliance on labels by appearance-based methods, efforts have been made

towards unsupervised and self-supervised gaze representation learning techniques.

Yu and Odobez [7] is a pioneer work in learning low-dimensional gaze representa-

tions without requiring any gaze annotations. Their approach hinges on a gaze

redirection network and utilizes the difference in gaze representation between the
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input and target images as the redirection variable. They employ a redirection

loss in the image domain, which facilitates the joint training of both the gaze

redirection network and the gaze representation network. Subsequently, Sun et al.

[8] introduces the cross-encoder network, which implements a latent code swapping

strategy on image pairs. These pairs are presumed to be consistent in either gaze

(for example, the left and right eyes of the same face) or eye appearance (such as

the left eyes of the same face at different times). In this approach, each eye image

is encoded into two distinct features: gaze and appearance. The cross-encoder

then reconstructs images in the eye-consistent pair using their own gaze features

combined with the appearance features of the other image, and vice versa for the

gaze-similar pair, where each image is reconstructed using its own eye features

and the gaze features of the other. Building upon this, Gideon et al. [104] further

extend this concept by leveraging synchronized multi-view gaze video datasets, like

EVE [89]. They employ the cross-encoder to encode images taken from various

camera viewpoints into four distinct features: head pose, eye appearance, gaze

relative to head pose, and common features shared across views. They implement

a similar latent swapping mechanism, designed to enforce consistency among these

features. This consistency is dependent on whether the images are sampled across

different camera viewpoints, between the left or right eye, or across different points

in time. These methods all make use of an encoder-decoder type of framework,
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which demands a considerable number of parameters for effective representation

learning.

In Chapter 5, we present a self-supervised approach based on contrastive learn-

ing for learning gaze representations. This method is inspired by the computational

efficiency of contrastive self-supervised learning methods compared to generative

approaches [105]. Similar to Gideon et al. [104], our work utilizes multi-view

data and focuses on enforcing equivariance and invariance within the learned gaze

representations.

2.3.4 Temporal Gaze Modeling

Following the release of video gaze datasets [2, 88], several temporal gaze

estimation models have emerged. These models are designed to predict the

direction of eye gaze from a sequence of images. The initial work of Palmero

et al. [106] employs a recurrent CNN framework in which the static features

of the face, eye region, and facial landmarks, extracted from each frame, are

concatenated. These combined features are then input into a recurrent module,

which is responsible for predicting the 3D gaze direction of the final frame in the

sequence. Similarly, Kellnhofer et al. [88] proposes a video gaze tracking model

that employs a bidirectional LSTM [107]. This model processes input from both

past and future frames and outputs a single element. The authors use sequences
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of 7 frames to predict the gaze direction of the central frame in the sequence.

Wang et al. [108] released a dataset that captures human eye images and the

corresponding ground-truth gaze positions on a screen while subjects engage in

activities like browsing websites or watching videos. They proposed a dynamic

gaze transition network to detect the transitions of eye movements over time and

refine static gaze predictions using the dynamics learned from these transitions.

Recently, Park et al. [89] collected a large-scale video-based eye-tracking dataset

with ground-truth Point of Gaze (PoG) on a screen. The authors propose to jointly

consider the spatio-temporal evolution of visual stimuli, as represented by screen

content videos, to enhance the accuracy of PoG estimates on the video data.

In Chapter 6, we introduce a spatio-temporal model specifically designed for

video gaze estimation. This model incorporates attention networks to capture the

intricate spatial and temporal dynamics involved. Our empirical findings demon-

strate that the application of both spatial and temporal attention mechanisms can

significantly enhance the performance of video gaze tracking.

2.3.5 Few-shot Personalization

As discussed in Section 2.3.3, appearance-based methods for gaze estimation

are highly dependent on extensive annotated datasets to achieve high accuracy.

However, this reliance poses a significant challenge in real-world scenarios, particu-
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larly when it comes to generalizing these models to unseen users. Various methods

have been proposed to adapt pre-trained models to new users by employing only

a small number of labeled samples for each individual. Liu et al. [109] utilize a

two-branch differential network that is capable of predicting the differences in

gaze direction for the same subject. As a result, during the inference stage, the

gaze direction of a new sample can be predicted using just a few subject-specific

calibration samples. Park et al. [3] leverages the learned gaze representations and

applies meta-learning [110] to develop person-specific gaze networks using only

a few examples. Chen and Shi [5] introduces a gaze decomposition method that

involves learning a person-dependent bias during training. If no labeled samples

are available for a new user during inference, this bias is set to zero. Otherwise,

the bias is estimated using these few labeled samples.

In Chapter 6, we utilize Gaussian Processes to personalize the video gaze

estimation model. This involves learning an additive bias correction model spe-

cific to each individual using only a few labeled samples. We demonstrate that

personalization notably improves performance. Moreover, a key advantage of our

approach is the ability to generate uncertainty estimates for each predicted gaze

direction. This feature is particularly beneficial in identifying and eliminating

erroneous predictions.
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Chapter 3

Camera-tracker calibration for

accurate gaze annotation of images

and videos

3.1 Introduction

There has been substantial recent interest in appearance-based eye gaze tracking

technology. The most successful such systems are based on machine learning algo-

rithms that require an extensive amount of annotated image data sets for training.

Compared to other applications (e.g., image classification), image annotation for

gaze tracking has a fundamental difficulty because it is hard to measure one’s gaze

direction precisely by observing a picture. The standard method for annotating

images with gaze direction is to ask subjects to fixate at a known location on a

screen, typically identified by a specific marker. This procedure directly yields the

gaze point, in screen coordinates, or, if the camera is geometrically calibrated with

the screen, in camera coordinates. Estimation of the actual gaze direction requires
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identification of the 3-D location of another point along the visual axis (referred

to as gaze origin), which usually implies computing head pose. Several popular

data sets have been built this way (see Section 3.2).

This standard procedure, however, has two main drawbacks. First, it inherently

generates only sparse samples. Second, the accuracy of gaze direction annotations

may be impaired by various factors. For example, it is well known that, during

fixation, the gaze is not entirely stable. A study with 5 subjects [111] showed

horizontal and vertical fluctuations during visual fixation with a standard deviation

of approximately 0.1◦ in both directions, while a later study with 3 subjects [112]

found the average fixational area (defined as the solid angle in which gaze remains

for 95% of the time during fixation) to be of 1.2◦. Larger deviations were measured

for subjects who were myopic [113] or had other forms of visual loss [114]. The

errors in pose estimation also contribute to gaze direction errors. For example, for

a viewer located at a distance of 50 cm from the camera, a 2 cm depth estimation

error results in a 1◦ gaze reconstruction error when the visual axis is at 30◦ from

the camera’s optical axis. In order to enable the acquisition of large, accurately

annotated image data sets, some researchers have resorted to synthetic eye images

based on carefully designed 3-D models [115, 116]. However, these synthetic images

may not represent real-world conditions, as they may fail to model the diversity

of morphological characteristics of human faces or the complex photometry of
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illumination and reflection.

In this chapter, we propose the use of infrared (IR)-based gaze tracking de-

vices to annotate image data acquired by a camera (such as the webcam in a

laptop computer). IR-based gaze tracking is a mature technology [1, 117], with a

number of commercial devices available for different market sectors such as video

games [118], virtual reality [119], user interface [120], marketing research [121],

and optometry [122]. We are considering here desktop-based trackers, which are

typically attached to the bottom of a computer screen, and in particular, head-pose

free trackers that let the user move their head within a certain range of locations

and orientations.

An IR-based tracker is capable of producing high-rate, time-stamped measure-

ments, including those of the visual axis, synchronized with images captured by

the camera. This setup provides the necessary annotations. Unfortunately, this

data is expressed in reference to the tracker frame, not the camera frame. Our

main contribution is introducing an easy-to-use procedure to compute the rigid

transformation between the two systems. This knowledge allows us to express all

geometric-based annotations with respect to the camera frame. This approach

is particularly useful, for instance, in training appearance-based gaze tracking

algorithms. Our method requires a user to directly look at the camera for a few

seconds while moving their head to different locations in front of the screen. Note
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that the camera-tracker calibration is user-independent; that is, it will also work

for any other users, provided that the relative geometry of the camera and tracker

is not modified. In practice, this means that the tracker should remain rigidly

attached to the screen after calibration, or another calibration would be called

for. After calibration, large data sets with images and desired annotations can be

collected without requiring the subject to fixate on specific points on the screen.

In general, we may expect to obtain reliable gaze data annotation by using

specialized IR-based tracking devices. For example, the Tobii Pro Nano tracker

used in our experiments has a nominal accuracy (average error or bias) of 0.3◦,

and a nominal precision (RMS error across samples) of 0.1◦ in optimal conditions

(also see [28, 123] for in-depth performance analysis of a lower quality IR tracker,

the Tobii EyeX). However, any residual error in the proposed gaze camera-tracker

calibration procedure will contribute to errors in the measured visual axis. Note

that our approach can only produce annotations when the user is within the

operating range of distances from the tracker (45–85 cm for the Tobii Pro Nano).
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3.2 Ground-Truth Gaze Annotation

3.2.1 Fixation Method

Several gaze-annotated image data sets have been created and made available

for training and testing appearance-based gaze algorithms [79, 86, 87, 124, 125, 126].

To create these data sets, participants were asked to move their heads while fixating

at specific known locations (known as gaze points). The visual axis for each eye

in both images is estimated by determining a “gaze origin”, a generic term for a

point on the visual axis located within the eyeball. This is normally obtained

using a face model. Note that face models are commonly employed for image

normalization [124, 127], with the purpose of canceling out most of the head pose

variability. Typically, the normalization procedure begins with face detection [128],

followed by the detection of facial landmarks [129]. These landmarks are matched

with a reference 3-D face model, such as the Surrey Face Model [6]. For example,

Gross et al. [130] selects 4 eye corners and 9 nose landmarks to estimate the head

pose using the Perspective-n-Point (PnP) method [131]. The 3-D gaze origin is

commonly identified as the midpoint of the line connecting the eye corners. The

visual axis is subsequently derived by joining the gaze origin with the gaze point.
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3.2.2 Using an IR Gaze Tracker

An IR tracker computes the pupillary axis, that is, the line through the center of

corneal curvature and the center of the pupil [31, 32]. The orientation of the visual

axis with respect to the pupillary axis is described by the two kappa angles, which

are estimated via per-individual calibration that involves fixation on a number of

target points on the screen. Note that this calibration procedure is different from

the proposed camera-tracker calibration. High-end two-cameras, two-illuminators

IR trackers can produce measurements with high accuracy while allowing for free

head motion (within a certain range of distance and head orientations).

IR gaze trackers normally provide access through their API (e.g., the Tobii Pro

SDK) to two relevant measurements: (1) the gaze point, or point of regard, which

is the intersection of the visual axis with the screen, expressed in the screen’s

reference frame (in pixels units); and (2) the gaze origin, which is a point on the

visual axis contained within the eyeball, expressed in mm in the tracker’s reference

frame. While it is reasonable to think that the returned location of gaze origin

may be at the corneal center of curvature [1], the Tobii documentation does not

give any detail on its actual location besides it being within the eyeball.

Employing an IR tracker for automatic gaze annotation, instead of depending on

discrete fixation targets, could facilitate data collection in more ‘natural’ scenarios,

like reading text. This approach also has the potential to simplify the process of
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gathering larger datasets. Prior work [89] utilized gaze point information from an

IR gaze tracker as an alternative to the location of a fixation pattern. Adhering

to the standard procedure outlined above, the visual axis is then estimated by

connecting the transformed location of the gaze point, now in the camera’s frame

of reference, with the gaze origin point, which is estimated using a face model. In

this work, we propose using the tracker to provide not only the gaze point but also

the gaze origin. It is reasonable to expect that the sophisticated procedure an IR

tracker uses to estimate the gaze origin location, which involves corneal reflection

from a system with two projectors calibrated with two cameras [1], would yield

more reliable results than a purely image-based algorithm relying on a general 3-D

model. However, to utilize the gaze origin position estimated by the tracker, it is

first necessary to find the relative pose of the camera with respect to the tracker

such that the gaze origin can be expressed in the camera’s reference frame. In the

next section, we propose a simple calibration procedure that accomplishes that.

3.3 Camera-Tracker Calibration Algorithm

In the subsequent discussion, we will assume that the camera and the tracker

are rigidly connected to each other. A common setup involves a tracker attached to

the bottom of a screen of a laptop or desktop computer, with the camera embedded

in the screen. Practically, if a gaze tracker is re-positioned each time it is used
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Figure 3.1: (a) When the user looks directly at the camera, the visual axis of either

eye intersects with the camera’s optical center. As a result, the gaze origin of that

eye projects within the image of the pupil. (b) When the user looks away from

the camera, the gaze origin might project outside the pupil’s image.

(for instance, at the start of a session), it would necessitate a new calibration.

Additionally, we assume that the intrinsic camera parameter matrix K and the

radial distortion parameters have already been estimated.

Our goal is to estimate the relative pose (Rc
t ,T

c) of the IR tracker with respect

to the camera, such that a 3-D point pt in the tracker’s reference frame can be

expressed in the camera’s frame as pc = Rc
tp

t + Tc. We propose a calibration

procedure that uses the 3-D location of the gaze origin for either eye, as estimated

by the tracker and hence expressed in the tracker’s reference frame. If we can

determine the location of the projection of these points onto the camera’s focal

or image plane and create multiple pairs (3-D location – 2-D projection) as the

user moves their head to different locations, we can employ the Perspective-n-
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Point (PnP) algorithm [132] to calibrate camera and tracker. PnP determines the

camera’s pose based on the images of 3-D points in space with known locations,

e.g., 3D gaze origin and their corresponding 2D pupil center images, as shown in

Figure 3.1. While PnP is commonly used with a single image containing multiple

known 3-D points in space, our proposed procedure, which involves multiple images,

each with two known points in space (the gaze origin of the left and right eye), is

also valid.

The challenge at hand is to determine the projection of the gaze origin onto

the camera’s focal plane. An eye’s gaze origin is not directly observable, so there

is no simple way to identify it in an image of the user, except for one specific

situation: when the user is looking directly at the camera. In this case, it can

be assumed that the image of the gaze origin for either eye is located within the

image of that eye’s pupil. This assumption is based on the fact that the visual

axis is approximately crossing the camera’s optical center when the user is looking

directly at the camera. Hence, all points within the visual axis project onto the

same pixel in the camera’s focal plane. Given that the visual axis contains the

gaze origin and that the visual axis can be expected to go through the pupil, it

follows that the image (projection) of the gaze origin should be contained in the

pupil’s image. Note that the same should not be expected when the user gazes at

a point that is away from the camera, e.g., at the opposite end of the screen from
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where the camera is located (see Figure 3.1). For simplicity and due to the lack of

precise information, we will assume that the image of the gaze origin when the

user is looking at the camera is positioned at the center of the pupil image. This

assumption allows us to use PnP with the gaze origin as a 3-D point and the pupil

center as its projection on the image.

The calibration process is as follows: the user is instructed to move their head

to various positions within the gaze tracker’s coverage range. At each position,

the user is prompted to look at the camera, and one or more images are captured.

For each image, the locations of the pupils in both eyes are determined. With this

information, PnP can be applied to the pairs (3-D gaze origin – 2-D pupil center)

to compute the calibration parameters (Rc
t ,T

c). In the next section, we outline

some specifics of our implementation of this calibration procedure.

3.3.1 Implementation Details

For our experiments, we attached a small brightly colored paper ring around

the camera of the laptop used for data acquisition (MacBook Pro). This colored

ring served as a visual guide to help users clearly identify the camera’s position for

effective data collection. Participants were instructed to position their heads at

various distances from the camera and at multiple vertical and horizontal locations

within an imaginary cube of approximately 300× 300× 300 mm in size. At each
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location, users were then prompted to either gaze at the colored ring or directly at

the camera and press a key. Following this, images and gaze data were collected for

approximately 3 seconds, which equated to roughly 10 frames of data acquisition.

The automatic detection of the pupil center location was achieved using the

algorithm described in [74]. This algorithm computes a set of visual landmarks from

the image, which are detected from heatmaps generated by a stacked-hourglass

network [133] trained on synthetic eye images (UnityEyes [115]). We take the

pupil center to coincide with the midpoint of the “iris boundary” landmarks. From

the 3-D locations of gaze origin (computed by the gaze tracker) and 2-D location

of the pupil center detected in each image, we compute the calibration parameters

(Rc
t ,T

c) using PnP. We use the solvePnPRansac1 implementation of PnP from

OpenCV. This algorithm can take an arbitrary number of points and is robust to

the presence of outliers. Outliers may occur, for example, when the user’s gaze

unintentionally moves away from the camera.

3.4 Experiments

We conducted a study with five participants (four female, one male), with two

main goals: (1) evaluate the accuracy of the proposed calibration algorithm; (2)

compare the location of the gaze origin estimated by the IR tracker with that
1https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#

ga50620f0e26e02caa2e9adc07b5fbf24e
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estimated using a face model, and assess the discrepancy between the visual axes

computed with the two methods. All participants did not wear eyeglasses, and

images were taken in a well-lit environment. During the calibration process, it is

important to ensure optimal imaging conditions. However, once calibrated, the

system can be used for any users and under various lighting conditions without

the need for recalibration.

Participants were seated in front of a 13-inch Apple MacBook Pro, and a Tobii

Pro Nano tracker was attached to the bottom of the screen using a magnet. It

is worth noting that alternative configurations, such as placing the tracker in

different locations, are possible. Additionally, the tracker was repositioned for each

new participant, each time requiring a new calibration procedure. The laptop’s

camera captured images at a resolution of 1280 × 720 pixels. Each image was

timestamped and matched with the closest measurement provided by the tracker.

If the tracker didn’t return gaze values for either eye, for example, due to blinking,

the corresponding image was discarded.

A standard tracker calibration procedure was first conducted for each partic-

ipant, using the Tobii Pro Eye Tracker Manager utility with a 9-point fixation

pattern. The calibration was then evaluated by asking the participant to again

fixate on the markers of the same 9-point fixation marker and measuring the

average angular error (we used the validation code provided by Tobii2). We verified

2https://github.com/tobiipro/prosdk-addons-matlab
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that, for each participant, the average angular error for both eyes was less than 1◦.

After IR tracker calibration, each participant performed the camera-tracker

calibration procedure detailed in the prior section. In addition, we conducted a

second data collection exercise which is mainly used for the final evaluation of the

quality of camera-tracker calibration. Participants were instructed to focus their

gaze on a marker that sequentially appeared at 9 different positions on a regular

calibration pattern. The purpose of this was to obtain images and associated

gaze data for a representative range of gaze directions. The actual location of the

marker on the screen (which is critical for fixation-type calibration procedures)

was irrelevant to this study. For this data acquisition, participants were asked

to find a comfortable position to fixate the points of the pattern. The distance

between the participant’s head and camera varied between 55 cm and 70 cm, and

the measured gaze varied within a range of approximately 25◦ (pitch) and 30◦

(yaw). Approximately 150 images were acquired for each participant during this

second data collection phase.
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3.5 Results

3.5.1 Calibration Accuracy Evaluation

We considered two metrics for evaluating the accuracy of camera-tracker

calibration. The first metric is reprojection error eR. In this metric, each gaze origin

location for either eye, which was computed by the tracker for the images used in

calibration while the user looking at the camera, is transformed to the camera’s

reference frame using the parameters estimated by PnP. After this transformation,

these gaze origin points are projected onto the camera’s focal plane through

the intrinsic parameter matrix K. If PnP was successful, the reprojection error

(distance between this projected point and the pupil center location for that eye)

should be small. To evaluate eR, we consider the same data points used to compute

(Rc
t ,T

c), with users looking at the camera. We computed the reprojection error (in

pixels) for each participant for all gaze origin points within the inlier set determined

by the PnP algorithm. Note that the proportion of inliers across participants

varied between 41% and 70%. The average reprojection error per participant is

shown in Table 3.1. Note that this is consistently less than 1 pixel. Sample images

from the inlier set are shown in Figure 3.2, showing good localization of the gaze

origin projection within the corresponding eye’s pupil image.

The second evaluation metric, known as pupil inconsistency eP , was measured
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Participant eR (pixels) eP (pixels) eG (mm) eV (degs)

Left Right Left Right Left Right Left Right

P1 0.62 0.59 0.40 0.36 48.9 45.4 1.91 1.86

P2 0.57 0.69 0.49 0.16 82.2 81.2 1.81 2.01

P3 0.58 0.54 0.97 0.91 62.0 60.9 1.64 1.53

P4 0.72 0.75 0.42 0.94 77.6 76.0 2.68 2.62

P5 0.56 0.70 0.84 0.45 49.3 45.6 1.28 1.63

Table 3.1: Experimental results for the left and right eyes of our participants. eR:

reprojection error. eP : pupil inconsistency error. eG: distance between gaze point

location computed with a 3-D face model [6] and with the IR tracker. eV : the

angular difference between the associated visual axes. Note that eR values were

computed on the images used for camera-tracker calibration (with the participants

looking at the camera), while the other measurements are for the second data set,

with the participants looking at different locations on the screen.

using the second data set where participants were looking at different points on

the screen, away from the camera. For this evaluation, we initially computed

the screen-camera calibration using the algorithm proposed by Rodrigues et al.

[134]. Subsequently, for each measurement, we transformed both the gaze point

and gaze origin obtained from the tracker into the camera’s reference frame, using

the obtained parameters (Rc
t ,T

c) from PnP. The line connecting these two points

represents the estimated visual axis, which is subsequently projected onto the

55



Figure 3.2: Sample images collected for camera-tracker calibration. Note that

the participants are looking at the camera, with their heads moving in different

locations between images. The pupil center location is shown as a yellow dot, and

the projection of the gaze origin (computed by the IR tracker) is shown in aqua.

These images belong to the set of inliers as determined by the PnP algorithm.

camera’s focal plane using the intrinsic camera matrix K. Since the visual axis

can be assumed to go through the eye’s pupil, its projection should cross the

pupil image. Accordingly, we define a measure of inconsistency as the distance

between the projected visual axis and the pupil image. We measure this quantity

as follows. First, we determine the radius r of the pupil image (assumed circular

for simplicity’s sake) by computing the foreshortening of the actual pupil radius

R, which is a measurement provided by the Tobii Pro SDK: r = f ·R/Z, where

f is the camera’s focal length and Z is the distance between the pupil and the

camera. Then, we measure the distance d between the projected visual axis and

the pupil center (where the latter is computed using the algorithm of [74]) and

define eP = max(0, d − r). Note that eP = 0 when the visual axis projection

crosses the pupil image. The values of eP averaged over all images in the second

data set for each participant are shown in Table 3.1. Figure 3.3 shows examples

with eP = 0 (first three columns) and with eP > 0 (fourth column).
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Figure 3.3: Sample images of participants looking at different locations on the

screen. The pupil center is shown as a yellow dot, while the projection of the gaze

origin (as computed by the IR tracker) is shown colored in green. The red arrow

shows the projection of a 40 mm long segment, starting from the gaze origin and

aligned along the visual axis. Note that in the first three columns, the projection

of the visual axis crosses the pupil image (eP = 0). For the images in the fourth

column, eP > 0.

3.5.2 Gaze Origin Computation: IR Tracker vs. Face Model

The proposed camera-tracker calibration algorithm enables the use of IR

trackers to accurately measure the gaze origin (expressed in the camera’s reference

frame), which can be used to compute the visual axis as the line joining the gaze

origin with the gaze point. It is interesting to compare the location of the gaze

origin from the IR tracker with that computed using a face model. We used the

3-D face model from [6], as described in Section 3.2.1, to estimate the gaze origin

for all images in our second data set.

Table 3.1 shows the average distance eG between the gaze origin locations

produced by the two procedures. The large discrepancy (up to 82 mm of distance)

can be explained in large part by depth (Z) errors in the data from the face
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Figure 3.4: Sample images of participants looking at different locations on the

screen, with a 40 mm segment of visual axis shown starting from the gaze origin,

computed using a 3-D face model (shown with red color) and from the IR tracker

(shown in aqua color), and joining the same gaze point (as computed by the IR

tracker). The 2-D image projections of the eye corners are shown in yellow color.

model, possibly due to the imperfect fit of the 3-D model. The sample images in

Figure 3.4 display, for each eye, the projection of the gaze origin estimated by the

two methods, as well as the detected eye corners, which are employed to calculate

the gaze origin using the face model (Section 3.2.1). It is worth noting that, at

least for these examples, the gaze origin from the face model (red dots) appears

to be clearly incorrect, as it seems to be located below the pupil. This would

suggest an upward gaze, which is inconsistent with the fact that in these images,

the participants were looking at a point below the camera. Figure 3.4 also shows

the projection of the visual axes, obtained by joining the two different gaze origins

with the same gaze point (from the IR tracker). The average angle between these

two estimated visual axes, eV , is shown for each participant in Table 3.1.
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3.6 Summary

IR gaze trackers have the potential to be highly valuable for collecting extensive

image datasets annotated with gaze information. Unlike traditional modalities

requiring fixation of specific locations, IR trackers make it possible to measure gaze

in dynamic settings, e.g., while reading text on the screen. In order to leverage the

3-D data produced by the IR tracker (and not just the gaze point on the screen), it

is necessary to first find the relative pose of the tracker with respect to the camera.

We have proposed a simple calibration procedure that asks the user to simply look

at the camera from various head positions.

Our camera-tracker calibration enables the determination of the visual axis in

the camera’s reference frame, obtained by joining the “gaze origin” produced by

the IR tracker with the gaze point on the screen, also computed by the tracker.

We compare this quantity with that obtained by joining the gaze point with a

different gaze origin location, computed through a 3-D face model, which is the

standard procedure for obtaining gaze direction from fixation. Our results show

that the average angular difference between these two axes can reach values as

large 2◦, suggesting that using a 3-D face model to estimate the gaze origin may

introduce non-negligible errors.

There are clear limitations to the use of IR trackers for gaze annotation of

images. The range of head locations and orientations from which gaze can be
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computed accurately is constrained. While appropriate for interaction with a

laptop or desktop computer, an IR tracker may not be used for applications that

call for larger viewing distances or angles [123]. In addition, tracking accuracy is

critical if this is to be used for ground-truth measurements, which means that only

high-quality (and thus expensive) models (such as the Tobii Pro Nano used in this

study) should be used for this purpose.
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Chapter 4

Unsupervised domain adaptation for

controllable gaze and head

redirection

4.1 Introduction

Gaze behavior plays a pivotal role in the analysis of non-verbal cues and can

provide support to various applications such as virtual reality [135, 136], human-

computer interaction [137, 138], cognition [139, 140], and social sciences [141, 142].

Recent gaze estimation models rely on learning robust representations, requiring a

time-consuming and expensive step of collecting a large amount of training data,

especially when labels are continuous. Although various methods [115, 116, 143]

have been proposed to circumvent the data need, to generalize in-the-wild real-world

scenarios remains a challenge and is an open research problem.

Different gaze redirection methods [4, 96, 100] have been explored as an alternate

solution for generating more labeled training data using generative adversarial
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networks (GANs) [144] based frameworks. These generative methods require a

pair of labeled images across both source and target domains to learn image-

to-image translation; thus, these methods fail to generalize faithfully to new

domains. Furthermore, various visual attributes are entangled during the generation

process and cannot be manipulated independently to provide fine-grained control.

Consequently, these methods have limited applicability, as in order for the generated

data to be useful on downstream tasks, the variability of these visual attributes

across the generated data plays a key role in their success. Few works [145, 146]

on neural image generation attempt to manipulate individual visual attributes

in-the-wild real-world scenarios; however, they are constrained by the availability of

simulated data with pre-defined labeled attributes. The recent work [147] proposes

contrastive regression loss and utilizes unsupervised domain adaption to improve

gaze estimation performance.

In this chapter, we propose a novel domain adaptation framework for the task

of controllable generation of eye gaze direction and head pose orientation in the

target domain while not requiring any label information in the target domain. Our

method learns to render such control by disentangling explicit factors (e.g., gaze

and head orientations) from various implicit factors (e.g., appearance, illumination,

shadows, etc.) using a labeled-rich source domain and an unlabeled target domain.

Both disentanglement and domain adaptation are performed jointly, thus enabling
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(a) Previous approaches [3, 4]

Unsupervised

Supervised

copy

(b) Proposed method

Figure 4.1: Comparison of existing and proposed method. In (a), previous

approaches [3, 4] assume conditional image-to-image translation (X1
S → X2

S) using

a pair of labeled samples from a single domain DS and use a transforming function

F in the latent space to ensure disentanglement. Here, DS and DT represent

the source and target domains. In (b), our method auto-encodes the images XS,

XT from both domains into a common disentangled space using labels only from

source, and transfers latent factors via a simple copy operation.

the transfer of learned knowledge from the source to the target domain. Since

we use only unlabeled target-domain data to train our framework, we call it as

unsupervised domain adaptation [148, 149].

Figure 4.1 illustrates the differences between the proposed method and previous

approaches [3, 4]. Previous approaches use a pair of labeled samples (X1
S, X

2
S) from

the source domain DS to learn the conditional image-to-image translation while

disentangling visual attributes using a transforming function F . In particular,

Park et al. [3] provides control over only explicit factors while Zheng et al. [4]

manipulate both explicit and implicit visual attributes. In contrast, our method

can perform controllable generation without any input-output paired samples
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and apply auto-encoding of images XS and XT from source DS and target DT

domains into a common disentangled latent space. Concurrently, we adapt the

latent representations from the two domains, thereby allowing the transfer of

learned knowledge from the labeled source to the unlabeled target domain. Unlike

previous approaches, the proposed method is less constrained by label information

and can be seamlessly applied to a broader set of datasets and applications.

We train our method on GazeCapture [79] dataset and demonstrate its efficacy

on two target domains: MPIIGaze [75] and Columbia [86] and obtain improved

qualitative and quantitative results over state-of-the-art methods [3, 4]. Our

experimental results exhibit a higher quality in preserving photo-realism of the

generated images while faithfully rendering the desired gaze direction and head

pose orientation.

The main contributions of this chapter can be summarized as follows:

1. We propose a domain adaptation framework for jointly learning disentan-

glement and domain adaptation in latent space, using labels only from the

source domain.

2. Our method utilizes auto-encoding behavior to maintain implicit factors

and enable fine-grained control over gaze and head pose directions and

outperforms the baseline methods on various evaluation metrics.

3. We demonstrate the effectiveness of generated redirected images in improving
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the downstream task performance on gaze and head pose estimation.

4.2 Related Work

For a comprehensive overview of gaze redirection methods, we refer the reader to

Section 2.3.2. In this section, we offer a brief review of related work on disentangling

representations, which is relevant to the discussions in this chapter.

The goal of learning disentangled representations is to model the variability of

implicit and explicit factors prevalent in the data-generating process [150]. Fully

supervised methods [151, 152, 153] exploit the semantic knowledge gained from

the available annotations to learn these disentangled representations. On the other

hand, unsupervised methods [154, 155] aim to learn the same behavior without

relying on any labeled information. However, these methods offer limited flexibility

in selecting a specific factor of variation and primarily focus on single-domain

representation learning problems [156]. Unsupervised cross-domain disentangled

representation learning methods [157, 158] exploit the advantage of domain-shared

and domain-specific attributes in order to provide fine-grained control on the

appearance and content of the image. For instance, synthetic data is utilized by a

few recent works [145, 146] to control various visual attributes while relying on

the pre-defined label information associated with the rendered image obtained

through a graphics pipeline. On the other hand, Liu et al. [159] provide control over
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Figure 4.2: Overview of CUDA-GHR. Ea encodes the target domain image XT

to zaT , and the source domain image XS to zaS while Eg encodes the target pseudo

gaze label ĝT and ground-truth source gaze label gS to zgT and zgS, respectively.

The overall image representations are formed as ZS = zaS ⊕ zgS and ZT = zaT ⊕ zgT

(where, ⊕ is concatenate operation). These domain-specific encoded embeddings

ZT and ZS are passed through a shared generator network G along with the

corresponding head poses (pseudo head pose label ĥT for the target domain, and

ground-truth head pose label hS for source domain). These embeddings are also

passed through a feature domain discriminator DF . DT and DS represent two

domain-specific image discriminators. The labels in red color are the ground-truth

labels, while in green color are the generated pseudo-labels.

different image attributes using the images from both source and target domains

and is trained in a semi-supervised setting. However, their approach only considers

categorical labels and thus has limited applicability. In contrast, the method

described in this chapter allows controllable manipulation of continuous-valued

image attributes (such as gaze and head pose) in the cross-domain setting.
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4.3 Proposed Method

Our goal is to learn a controller network C such that given an input image XT

and subset of explicit factors {ei} (e.g., gaze and head pose directions), it generates

an image XO satisfying the attributes described by {ei}, i.e., C : (XT , ei) → XO.

To achieve this, we design a framework that learns to disentangle the latent space

and manipulate each explicit factor independently. We start with the assumption

that there are three factors of variations: 1) appearance-related such as illumination,

shadows, person-specific, etc., which might or might not be explicitly labeled with

the dataset, 2) eye gaze direction, and 3) head pose orientation. We train our

network in an unsupervised domain adaptation setting by utilizing a fully labeled

source domain and an unlabeled target domain considering distribution shift across

datasets into account. Recall that we have the gaze and head pose labels only for

the source domain. Therefore, we aim to disentangle and control these three factors

of variations in the latent space and simultaneously transfer the learned behavior

to the unsupervised target domain. We named our framework as CUDA-GHR.

4.3.1 Model

The overall architecture of the CUDA-GHR is shown in Figure 4.2. We denote

S as the source domain and T as the target domain. Further, following the

notations used in [3], we represent the appearance-related latent factor as za and
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gaze latent factor as zg.

The initial stage of our network consists of two encoders: (a) an image encoder

Ea encodes the implicit (appearance-related) factors of an image Xi and outputs zai

such that i ∈ {S, T}, and (b) a separate MLP-based gaze encoder Eg encodes the

input gaze gi corresponding to the image Xi to a latent factor zgi . For the source

domain, we use ground-truth gaze label gS as input to Eg while for the unlabeled

target domain, we input pseudo gaze labels ĝT obtained from a pre-trained task

network T that predicts gaze and head pose of an image. Note that T is trained

only on source domain data. Thus, the overall embedding Zi related to an image

Xi can be formed by concatenating these two latent factors, i.e., Zi = zai ⊕ zgi

(here ⊕ denotes concatenation). Further, Zi and head pose label hi are given as

input to a decoder G based on the generator used in HoloGAN [160] as it allows

the head pose to be separately controlled without any encoder. This generator

G decodes the latent Zi and head pose hi to an output image given by X̂i and is

trained in an adversarial manner with the discriminator network Di. Note again

that for labeled source images, we use ground-truth head pose label hS while we

take pseudo head pose label ĥT produced by task network T for unlabeled target

domain inputs. In addition, we use a feature domain discriminator DF to ensure

that the latent distributions of ZS and ZT are similar.

At inference time, the gaze and head pose directions are controlled by passing
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an image from the target domain XT through the encoder Ea and desired gaze

direction g through Eg, giving us Ea(XT ) and Eg(g) respectively. These two

latent factors are concatenated and passed through the generator G along with

the desired head pose h to generate an output image X̂g,h
T with gaze g and head

pose h, i.e.,

X̂g,h
T = G(Ea(XT )⊕ Eg(g), h) (4.1)

Likewise, we can also control the individual factor of gaze (or head pose) by

providing desired gaze (or head pose) and pseudo head pose (or gaze) label

obtained from T to generate gaze redirected image given as

X̂g
T = G(Ea(XT )⊕ Eg(g), ĥT ) (4.2)

and head redirected image given as

X̂h
T = G(Ea(XT )⊕ Eg(ĝT ), h) (4.3)

4.3.2 Learning Objectives

The overall objective of our method is to learn a common factorized latent space

for both the source and target domains, allowing for easy control of individual

latent factors to manipulate target images. To ensure this, we train our framework

using multiple objective functions, each of which is explained in detail below.
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Reconstruction Loss. We apply pixel-wise L1 reconstruction loss between the

generated image X̂i and input image Xi to ensure the auto-encoding behavior.

LR(X̂i, Xi) =
1

|Xi|
||X̂i −Xi||1

Thus, the total reconstruction loss is defined as

Lrecon =
∑

i∈{S,T}

LR(X̂i, Xi)

Perceptual Loss. To ensure that our generated images perceptually match the

input images, we apply the perceptual loss [161] which is defined as a mean-square

loss between the activations of a pre-trained neural network applied between the

generated image X̂i and input image Xi. For this, we use VGG-16 [77] network

trained on ImageNet [162].

LP(X̂i, Xi) =
4∑

l=1

1

|ψl(Xi)|
||ψl(X̂i)− ψl(Xi)||2

where ψ denotes VGG-16 network and l is the index of activation layer of ψ.

Therefore, our overall perceptual loss becomes

Lperc =
∑

i∈{S,T}

LP(X̂i, Xi)

Consistency Loss. To ensure disentangled behavior between implicit and explicit

factors, we apply a consistency loss between the generated image X̂i and input

image Xi. For this, we use a pre-trained task network T which predicts the
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pseudo-labels (gaze and head pose) for an image. The consistency loss consists of

two terms: (a) label consistency loss is applied between pseudo-labels for input

and the generated images to preserve the gaze and head pose information, and (b)

redirection consistency loss guarantees to preserve the pseudo-labels for redirected

images. For latter (b), we generate gaze and head redirected images using Equation

4.2 and 4.3 respectively, by applying gaze and head pose labels from source domain.

We enforce the gaze prediction consistency between X̂g
T and XS, and head pose

prediction consistency between X̂g
T and XT , i.e., T g(X̂g

T ) = T g(XS) and T h(X̂g
T ) =

T h(XT ). A similar argument holds for the head redirected image X̂h
T , i.e., T g(X̂h

T )

= T g(XT ) and T h(X̂h
T ) = T h(XS). Here, T g and T h represent the gaze and head

pose predicting layers of T . The overall gaze consistency loss will become

Lgc = La(T g(X̂S), T g(XS)) + La(T g(X̂T ), T g(XT ))︸ ︷︷ ︸
label consistency loss

+

La(T g(X̂g
T ), T

g(XS)) + La(T g(X̂h
T ), T g(XT ))︸ ︷︷ ︸

redirection consistency loss

Similarly, we can compute the head pose consistency loss Lhc as follows:

Lhc = La(T h(X̂S), T h(XS)) + La(T h(X̂T ), T h(XT ))︸ ︷︷ ︸
label consistency loss

+ La(T h(X̂g
T ), T

h(XT )) + La(T h(X̂h
T ), T h(XS))︸ ︷︷ ︸

redirection consistency loss

Here, La is defined as:

La(û̂ûu,uuu) = arccos
(

û̂ûu · uuu
||û̂ûu|| · ||uuu||

)
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Hence, total consistency loss becomes

Lconsistency = Lgc + Lhc

GAN Loss. To enforce photo-realistic output from the generator G, we apply

the standard GAN loss [144] to image discriminator Di.

LGAND
(Di, Xi, X̂i) = log Di(Xi) + log(1−Di(X̂i))

LGANG
(Di, X̂i) = log Di(X̂i)

The final GAN loss is defined as

Ldisc =
∑

i∈{S,T}

LGAND
(Di, Xi, X̂i)

Lgen =
∑

i∈{S,T}

LGANG
(Di, X̂i)

Feature Domain Adversarial Loss. We employ a latent domain discriminator

network DF and train it using the following domain adversarial loss [163] to push

the distribution of ZT closer to ZS.

Lfeat(DF , ZT , ZS) = log DF (ZS) + log(1−DF (ZT ))

Overall Loss. Altogether, our final loss function for training encoders and

generator network is

Loverall = λRLrecon + λPLperc + λCLconsistency + λGLgen + λFLfeat

Here, λR, λP , λC , λG, and λF represent the weights applied to each loss function.
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4.4 Experiments

4.4.1 Data Pre-processing

We follow the same data pre-processing pipeline as done in Park et al. [3]. The

pipeline consists of a normalization technique [127] initially introduced by Sugano

et al. [124]. It is followed by face detection [128] and facial landmarks detection

[129] modules for which open-source implementations are publicly available. The

Surrey Face Model [6] is used as a reference 3D face model. Further details can

be found in Park et al. [3]. To summarize, we use the public code1 provided by

Park et al. [3] to produce image patches of size 256× 64 containing both eyes. The

inputs gaze g and head pose h are 2-D pitch and yaw angles.

4.4.2 Architecture Details

Our framework CUDA-GHR. We use DenseNet architecture [164] to imple-

ment image encoder Ea. The DenseNet is formed with a growth rate of 32, 4

dense blocks (each with four composite layers), and a compression factor of 1. We

use instance normalization [165] and leaky ReLU activation function (α = 0.01)

for all layers in the network. We remove dropout and 1 × 1 convolution layers.

The dimension of latent factor za is set to be equal to 16. Thus, to project CNN

features to the latent features, we use global-average pooling and pass through a
1https://github.com/swook/faze_preprocess
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Layer name Activation Output shape

Fully connected LeakyReLU (α = 0.01) 2

Fully connected LeakyReLU (α = 0.01) 2

Fully connected LeakyReLU (α = 0.01) 2

Fully connected None 8

Table 4.1: Architecture of gaze encoder Eg

fully-connected layer to output 16-dimensional feature from Ea. The gaze encoder

Eg is a MLP-based block whose architecture is shown in Table 4.1. The dimension

of zg is set as 8.

For the generator network G, we use HoloGAN [160] architecture shown in

Table 4.2. The latent vector z for each AdaIN [166] input is processed by a 1-layer

MLP, and the rotation layer is the same as the one used in the original paper [160].

The latent domain discriminator DF consists of 4 MLP layers as shown in Table

4.3. It takes the input of dimension 24 and gives 1-dimensional output. Both

image discriminators DT and DS are PatchGAN [167] based networks as used in

Zheng et al. [4]. The architecture of the discriminator is described in Table 4.4.

The task network T is a ResNet-50 [168] model with batch normalization [169]

replaced by instance normalization [165] layers. It takes an input of 256 × 64

and gives a 4-dimensional output describing pitch and yaw angles for gaze and

head directions. It is initialized with ImageNet [170] pre-trained weights and is

fine-tuned on the GazeCapture training subset for around 190K iterations. The
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Layer name Kernel Activation Normalization Output shape

Learned Constant Input - - - 512×4×2×8

Upsampling - - - 512×8×4×16

Conv3d 3×3×3 LeakyReLU AdaIN 256×8× 4×16

Upsampling - - - 256×16×8×32

Conv3d 3×3×3 LeakyReLU AdaIN 128×16×8×32

Volume Rotation - - - 128×16×8×32

Conv3d 3×3×3 LeakyReLU - 64×16×8×32

Conv3d 3×3×3 LeakyReLU - 64×16×8×32

Reshape - - - (64 · 16)×8×32

Conv2d 1×1 LeakyReLU - 512×8×32

Conv2d 4×4 LeakyReLU AdaIN 256×8×32

Upsampling - - - 256×16×32

Conv2d 4×4 LeakyReLU AdaIN 64×16×64

Upsampling - - - 64×32×128

Conv2d 4×4 LeakyReLU AdaIN 32×32×128

Upsampling - - - 32×64×256

Conv2d 4×4 Tanh - 3×64×256

Table 4.2: Architecture of the generator network G

GazeCapture validation subset is used to select the best-performing model. The

initial learning rate is 0.0016, decayed by a factor of 0.8 after about 34K iterations.

Adam [171] optimizer is used for optimization with a weight decay coefficient of

10−4. Note that T remains fixed during the training of our whole pipeline. The

architecture of T is summarized in Table 4.5.
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Layer name Activation Output shape

Fully connected LeakyReLU (α = 0.01) 24

Fully connected LeakyReLU (α = 0.01) 24

Fully connected LeakyReLU (α = 0.01) 24

Fully connected None 1

Table 4.3: Architecture of latent domain discriminator DF

Layer name Kernel, Stride, Padding Activation Normalization Output shape

Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) - 64× 32×128

Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) InstanceNorm 128×16×64

Conv2d 4×4, 2, 1 LeakyReLU (α = 0.2) InstanceNorm 256×8×32

Conv2d 4×4, 1, 1 LeakyReLU (α = 0.2) InstanceNorm 512×7×31

Conv2d 4×4, 1, 1 - - 1×6×30

Table 4.4: Architecture of the image discriminator networks DT and DS.

4.4.3 Training Details

We train our framework in two settings: GazeCapture→MPIIGaze, trained

with GazeCapture [79] as source domain and MPIIGaze [75] as target domain,

and GazeCapture→Columbia is trained with Columbia [86] as the target domain.

For GazeCapture, we use the training subset from the data split as labeled source

domain data. From MPIIGaze and Columbia, we respectively choose the first 11

and 50 subjects as unlabeled target domain data for training. We call them as

‘Seen’ subjects as our network sees them during training while remaining users fall

into ‘Unseen’ category. We evaluate our method on three test subsets: ‘Unseen’,

‘Seen’ and ‘All’. ‘All’ includes both ‘Seen’ and ‘Unseen’ participants data.
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Module/Layer name Output shape

ResNet-50 layers with MaxPool stride=1 2048×1×1

Fully connected 4

Table 4.5: Architecture of the task network T

Hyper-parameters. We use a batch size of 10 for both GazeCapture→MPIIGaze

and GazeCapture→Columbia and are trained for 200K and 81K iterations, re-

spectively. All network modules are optimized through Adam [171] optimizer

with a weight decay coefficient of 10−4. The initial learning rate is set to 0.0005

which is decayed by a factor of 0.8 after approximately 34K iterations. For

GazeCapture→MPIIGaze, we restart the learning rate scheduler after around 160K

iterations for better convergence. The weights of the objective function are set as

λR = 200, λP = 10, λC = 10, λG = 5 and λF = 5.

4.4.4 Evaluation Metrics

We evaluate our framework using three evaluation metrics as previously adopted

by [4]: perceptual similarity, redirection errors, and disentanglement errors.

Learned Perceptual Image Patch Similarity (LPIPS) [172] is used to

measure the pairwise image similarity by calculating the distance in AlexNet [173]

feature space.

Redirection Errors are computed as angular errors between the estimated
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direction obtained from our task network T and the desired direction. It measures

the accomplishment of the explicit factors, i.e., gaze and head directions in the

image output.

Disentanglement Error measures the disentanglement of explicit factors like

gaze and head pose. We evaluate g → h, the effect of change in gaze direction

on the head pose, and vice versa (h→ g). To compute g → h, we first calculate

the joint probability distribution function of the gaze direction values from the

source domain and sample random gaze labels. We apply this gaze direction to

the input image while keeping the head pose unchanged and measure the angular

error between head pose predictions from task network T of the redirected image

and the original reconstructed image. Similarly, we compute h→ g by sampling

random head pose orientations from the source labeled data.

4.5 Results

We adopt FAZE [3] and ST-ED [4] as our baseline methods. Both FAZE and

ST-ED are based on transforming encoder-decoder architecture [98, 99] and apply

known differences in gaze and head rotations to the embedding space for translating

the input image to a redirected output image. FAZE inputs an image containing

both eyes, which is the same as our method; thus, it is necessary to compare. We
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use original implementation2 and trained models provided by the FAZE authors

for comparison. We re-implement the ST-ED on images containing both eyes

for a fair comparison with our method using the public code3 available. We use

the same hyperparameters as provided by the original implementation. For the

accurate comparison, we replaced tanh non-linearity with an identity function and

removed a constant factor of 0.5π in all the modules. FAZE learns to control only

explicit factors (gaze and head pose orientations), while ST-ED controls implicit

factors, too. Note that for the ST-ED baseline, we compare only by altering explicit

factors. Furthermore, we also compare CUDA-GHR to baseline ST-ED+PS, which

is trained with source data GazeCapture and using pseudo-labels for the target

dataset (MPIIGaze or Columbia). The pseudo-labels are obtained in the same

manner as CUDA-GHR.

Quantitative Evaluation. Table 4.6 summarizes the quantitative evaluation

of both our experiments GazeCapture→MPIIGaze and GazeCapture→Columbia.

The left half of Table 4.6 shows evaluation on MPIIGaze test subsets {‘Seen’,

‘Unseen’, ‘All’}, and we observe that our method outperforms the baselines (even

ST-ED+PS) on all the evaluation metrics for each test subset. We get lower LPIPS

(even on ‘Unseen’ users), indicating the generation of better quality images while

achieving the desired gaze and head directions attested by lower gaze and head
2https://github.com/NVlabs/few_shot_gaze
3https://github.com/zhengyuf/STED-gaze
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GazeCapture→MPIIGaze GazeCapture→Columbia

Test Set Method LPIPS ↓ Gaze Head g → h ↓ h→ g ↓ LPIPS ↓ Gaze Head g → h ↓ h→ g ↓

Redir. ↓ Redir. ↓ Redir. ↓ Redir. ↓

Unseen

FAZE 0.311 6.131 6.408 6.925 4.909 0.435 9.008 6.996 6.454 4.295

ST-ED 0.274 2.355 1.605 1.349 2.455 0.265 2.283 1.651 1.364 2.190

ST-ED+PS 0.266 2.864 1.576 1.472 2.346 0.266 2.117 1.437 1.124 2.356

CUDA-GHR 0.261 2.023 1.154 1.161 1.829 0.255 1.449 0.873 1.209 1.514

Seen

FAZE 0.382 5.778 6.899 5.311 5.172 0.486 10.368 7.231 7.302 4.788

ST-ED 0.315 2.405 1.669 1.209 2.341 0.319 2.484 1.616 1.343 2.456

ST-ED+PS 0.288 2.269 1.888 1.179 2.229 0.299 2.071 1.536 1.088 2.330

CUDA-GHR 0.278 1.905 0.979 0.761 1.236 0.282 1.328 0.831 0.646 0.996

All

FAZE 0.370 5.840 6.828 5.613 5.123 0.481 10.214 7.226 7.214 4.737

ST-ED 0.307 2.392 1.660 1.232 2.359 0.314 2.473 1.618 1.350 2.435

CUDA-GHR 0.275 1.922 1.012 0.844 1.341 0.279 1.337 0.832 0.707 1.045

Table 4.6: Quantitative Evaluation. Comparison of CUDA-GHR with the state-

of-the-art methods [3, 4]. GazeCapture→MPIIGaze is evaluated on MPIIGaze

subsets, and GazeCapture→Columbia is evaluated on Columbia subsets. All errors

are in degrees (◦) except LPIPS, and lower is better.

redirection errors. We also obtain better disentanglement errors, exhibiting that

our method successfully controls each explicit factor individually. The improved

performance on ‘Unseen’ users shows the superiority and generalizability of our

method over baselines. We also notice improvements over the ST-ED+PS baseline,

exhibiting that domain adaptation is essential to achieve better performance.

We show the evaluation of GazeCapture→Columbia experiment on the right

half of Table 4.6. Note that due to the small size of the Columbia dataset, we

initialize the model for this experiment with the previously trained weights on

GazeCapture→MPIIGaze for better convergence. Recall that we do not use any

labels from the target domain dataset in any experiment. As shown in Table 4.6,
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Gaze Source Input Image FAZE[3] ST-ED[4] CUDA-GHR

(a) Gaze Redirected images

Head Source Input Image FAZE[3] ST-ED[4] CUDA-GHR

(b) Head Redirected images

Figure 4.3: Qualitative results for GazeCapture→MPIIGaze on the MPIIGaze

dataset. 4.3a and 4.3b shows the gaze and head redirected images, respectively.

our method is consistently better than other baselines on all evaluation metrics,

showing the generalizability of our framework on different domains and, thus, can

be adapted to new datasets without the requirement of any labels.
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Gaze Source Input Image FAZE[3] ST-ED[4] CUDA-GHR

(a) Gaze Redirected images

Head Source Input Image FAZE[3] ST-ED[4] CUDA-GHR

(b) Head Redirected images

Figure 4.4: Qualitative results for GazeCapture→Columbia on the Columbia

dataset. 4.4a and 4.4b shows the gaze and head redirected images, respectively.

Qualitative Evaluation. We also report the qualitative comparison of generated

images in Figure 4.3 and 4.4 using a model trained with GazeCapture→MPIIGaze

and GazeCapture→Columbia, respectively. The results are shown respectively on
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MPIIGaze and Columbia dataset images, which are the target domain datasets in

these settings. As can be seen, our method produces better quality images while

preserving the appearance information (e.g., skin color, eye shape) and faithfully

manipulating the gaze and head pose directions when compared with FAZE [3]

and ST-ED [4]. It is also worth noting that our method generates higher-quality

images for people with glasses, e.g., row 3 in Figure 4.3a and row 2 in Figure

4.3b. These results are consistent with our findings in quantitative evaluation,

thus showing that our method is more faithful in reproducing the desired gaze and

head pose directions.

4.5.1 Ablation Study

We provide the following ablation study to understand the role of individual

components of the objective function. In Table 4.7, we compare against the

ablations of individual loss terms. The ablation on the perceptual loss is shown

in the first row (λP = 0). The second row (λC = 0) represents when consistency

loss is set to zero, while the third row (λF = 0) shows results when feature domain

adversarial loss is not enforced during training. The fourth and fifth row shows an

ablation on reconstruction (λR = 0) and GAN (λG = 0) loss, respectively. As can

be seen, all of these loss terms are critical for the improvements in the performance.

We see a substantial improvement by adding Lconsistency. The ablation study is
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Ablation term LPIPS ↓ Gaze Head g → h ↓ h→ g ↓

Redir. ↓ Redir. ↓

λP = 0 0.307 6.450 0.922 0.655 1.334

λC = 0 0.326 15.183 3.412 0.106 11.616

λF = 0 0.281 4.791 0.787 0.636 0.826

λR = 0 0.304 4.958 0.911 0.463 0.876

λG = 0 0.309 11.130 0.942 0.355 0.868

Ours 0.278 1.905 0.979 0.761 1.236

Table 4.7: Ablation Study: An ablation study on different loss terms for

GazeCapture → MPIIGaze on MPIIGaze ‘Seen’ subset. All errors are in degrees

(◦) except LPIPS, and lower is better.

performed for GazeCapture → MPIIGaze on the ‘Seen’ subset of MPIIGaze.

4.5.2 Controllability

Figure 4.5 shows the effectiveness of our method in controlling the gaze and

head pose directions. We vary pitch and yaw angles from −30◦ to +30◦ for gaze

and head redirections. We can see that our method faithfully renders the desired

gaze direction (or head pose orientation) while retaining the head pose (or gaze

direction), therefore exhibiting the efficacy of disentanglement. Furthermore, note

that the range of yaw and pitch angles [−30◦, 30◦] is the out-of-label distribution

of the source dataset (GazeCapture), showing the extrapolation capability of

CUDA-GHR in the generation process.
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(a) Gaze redirected images with (pitch, yaw) ∈ [−30◦, 30◦]

(b) Head redirected images with (pitch, yaw) ∈ [−30◦, 30◦]

Figure 4.5: Controllable Generation: Illustration of controllable gaze and head

redirection showing the effectiveness of disentanglement of various explicit factors.

4.5.3 Evaluation of Downstream Tasks

We also demonstrate the utility of generated images from our framework in

improving the performance of the downstream gaze and head pose estimation task.

For this, we conduct experiments for cross-subject estimation on both MPIIGaze

and Columbia datasets. The primary objective of this experiment is to demonstrate

that the generated “free” labeled data from our framework can effectively serve as

a valuable resource for obtaining a well-performing pre-trained model, which can

then be fine-tuned for the cross-subject estimation task. We compare it against

three different initializations: random initialization, ImageNet initialization [170],

and a pre-trained model obtained using ST-ED [4] generated images.
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We generate around 10K samples per user from MPIIGaze dataset using

GazeCapture→MPIIGaze trained generator and train a network similar to T as

shown in Table 4.5. The initial learning rate is 0.0001 decayed by a factor of 0.5

after every 1500 iteration, and the pre-training is done for 10 epochs with a batch

size of 64. Afterward, we fine-tune this network for 5 epochs with a batch size of 32

on the MPIIGaze dataset using leave-one-subject-out cross-validation for both gaze

and head pose estimation, and we report the mean angular error. A similar method

is followed for ST-ED generated images. We compare the errors obtained from four

initialization methods: random, ImageNet, ST-ED, and CUDA-GHR. Analogously,

we train gaze and head pose estimation models on generated images for Columbia

data subjects (∼1.6K samples each) using GazeCapture→Columbia model and

fine-tune the Columbia dataset using 4-fold cross-validation. The comparison of

different initialization methods on two datasets is shown in Table 4.8.

It can be seen that the model trained with CUDA-GHR gives around 7% and

4% relative improvements over ST-ED initialization on Columbia and MPIIGaze,

respectively, for the head pose estimation task. We also show results for the gaze

estimation task in Table 4.8 giving a relative improvement of around 5.5% on the

Columbia dataset while performing similarly to the ST-ED baseline on MPIIGaze.

We hypothesize that this is because the gaze and head pose label distribution of

GazeCapture is closer to MPIIGaze distribution than Columbia [29] and, thus,
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Initialization Head Pose Gaze

Method Estimation Errors↓ Estimation Errors↓
Columbia MPIIGaze Columbia MPIIGaze

Random 6.8 ± 1.2 6.7 ± 0.7 6.7 ± 0.7 6.7 ± 1.3

ImageNet 5.9 ± 1.3 5.7 ± 2.8 5.5 ± 0.1 5.7 ± 1.4

ST-ED 5.7 ± 1.1 5.1 ± 2.4 5.4 ± 0.4 5.5 ± 1.3

CUDA-GHR 5.3 ± 1.1 4.9 ± 2.5 5.1 ± 0.4 5.5 ± 1.4

Table 4.8: Downstream Task Evaluation: Comparison of mean angular errors

(mean ± std in degrees) for various initialization methods on gaze and head pose

estimation task. Lower is better.

performs closely for both ST-ED and CUDA-GHR. This indicates that domain

adaptation is more advantageous for the Columbia dataset. Hence, it shows the

effectiveness of our method over baselines when performing domain adaptation

across datasets with significant distribution shifts.

4.6 Summary

This chapter presents an unsupervised domain adaptation framework trained

using cross-domain datasets for gaze and head redirection tasks. The proposed

method takes advantage of both the supervised source domain and the unsupervised

target domain to learn the disentangled factors of variations. Experimental results

demonstrate the effectiveness of our model in generating photo-realistic images in

multiple domains while truly adapting the desired gaze direction and head pose
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orientation. Because of removing the requirement of annotations in the target

domain, the applicability of our work increases for new datasets where manual

annotations are hard to collect. Our framework is relevant to various applications

such as video conferencing, photo correction, and movie editing for redirecting

gaze to establish eye contact with the viewer. It can also be extended to improve

performances on the downstream task of gaze and head pose estimation.
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Chapter 5

Self-supervised representation

learning for gaze estimation

5.1 Introduction

In recent years, deep learning has shown promising results for gaze estima-

tion [75, 78, 79]. This success is largely due to the availability of extensive annotated

datasets. Consequently, to be effective, these datasets need to encompass a diverse

array of gaze directions, appearances, and head poses, a process that is both labor-

intensive and time-consuming. Moreover, obtaining accurate gaze annotations is

a challenging task [174]. This difficulty adds to the challenge of creating large,

representative datasets in the field. Consequently, methods that enable effective

training with a limited number of gaze annotations are extremely valuable.

Self-supervised learning (SSL) has gained tremendous success over the past

few years and emerged as a powerful tool for reducing over-reliance on human

annotations [175, 176, 177]. Following a generally accepted paradigm, we consider
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a pre-training stage that requires no labels, followed by a fine-tuning stage using

a relatively small number of labeled samples. SSL is an effective approach for

pre-training, where semantically meaningful representations are learned that can

be seamlessly adapted during fine-tuning stage [178, 179, 180]. Specifically, a good

pre-training would ensure that the embeddings for images associated with the same

gaze direction are neighbors in the feature space, regardless of other non-relevant

factors such as appearance. Arguably, this could accelerate the job of fine-tuning,

possibly reducing the number of required labeled samples.

In this chapter, for SSL pre-training, we focus on contrastive representation

learning (CRL), which aims to map “positive” pair samples to embeddings that

are close to each other while mapping “negative” pairs apart from each other [181].

A popular approach is to generate pairs by applying two different transformations

(or augmentations) to an input image forming a positive pair, and different images

forming negative pairs. This method encourages invariance in representations

w.r.t. similar types of transformations, where these transformations are assumed

to model “nuisance” effects.

However, obtaining the necessary and sufficient set of positive and negative

pairs remains a non-trivial and unanswered challenge for a given task. This chapter

attempts to answer this question for gaze estimation. Recent CRL-based methods

encourage the representations to be invariant to any image transformation, many
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of which are not suitable for gaze estimation. For example, geometry-based image

transformations (such as rotation) will change the gaze direction. In contrast, it is

beneficial to have invariance to appearance, a person’s identity, background, etc.

We propose Gaze Contrastive Learning (or GazeCLR) framework – a simple

CRL-based unsupervised pre-training approach for gaze estimation, i.e., a pre-

training method requiring no gaze label data. In detail, our approach relies on

invariance to image transforms (e.g., color jitter) that do not alter gaze direction

and equivariance to camera viewpoint, which requires additional information of

multi-view geometry, i.e., images of the same person should be obtained at the

same time by two or more cameras from different locations.

For learning equivariance, we leverage the fact that in a common reference

system, two or more synchronous images of the same person from different camera

viewpoints are associated with the same gaze direction. The knowledge of the

relative pose of each camera to the common reference system provides the relation

of gaze directions defined in the respective camera space. In other words, gaze

direction has an equivariant relationship to camera viewpoints, as shown in next

paragraph. We claim that the requirement of using multiple cameras may be less

onerous than obtaining gaze annotations for each image.

Given a specific timestamp, let two samples from different camera viewpoints

with gaze directions be gv1 and gv2 in their original respective camera reference
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frame, then the relation between these two gaze directions through their relative

camera pose (i.e., RC2
C1

), can be given as follows:

gv2 = RC2
C1
gv1

gv2 = RC2
S RS

C1
gv1

(RC2
S )−1gv2 = (RC2

S )−1RC2
S RS

C1
gv1

RS
C2
gv2 = RS

C1
gv1

ḡv1 = ḡv2

where RCi
S is relative pose between camera view i and common reference frame

S. Therefore, the equation RS
C2
gv2 = RS

C1
gv1 shows the equivariance relation-

ship between gaze directions in multi-view geometry, which is replicated for the

corresponding embeddings, a key idea for GazeCLR.

We use an existing multi-view gaze dataset EVE [89], which provides video

sequences captured from four calibrated and synchronized cameras and contains

gaze annotations, which are obtained using a gaze tracking device [182]. We

neglect labels during pre-training and use them only for fine-tuning and evaluation.

Observe that the relative camera pose information available with the EVE dataset

is used only during the pre-training stage. Figure 5.1 presents an overview of the

proposed idea.

To evaluate the GazeCLR, we perform self-supervised pre-training using the

EVE dataset and transfer the learned representations for the gaze estimation task in
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I. Gaze Contrastive Learning Framework

II. Learning For Gaze Estimation

Supervision 

Equivariance

Invariance

(a) Two-stages of our framework

Vi
ew

Time

(b) Formation of positive pairs

Figure 5.1: Overall idea. (a) The proposed two-stage learning framework for gaze

estimation. Stage I shows the Gaze Contrastive Learning (GazeCLR) framework

trained using only unlabeled data and learns both invariance and equivariance

properties. In Stage II, the pre-trained encoder is employed for gaze estimation

tasks with small labeled data. (b) Two images (shown in red and green) captured

at the same time with different camera views are used to create both invariant

and equivariant positive pairs.

various evaluation settings. We demonstrate the effectiveness of representations by

showing that the proposed method achieves superior performance on both within-

dataset and cross-dataset (such as MPIIGaze [78] and Columbia [86]) evaluations

by using only a small number of labeled samples for fine-tuning.

The major contributions of this chapter are summarized as follows:

1. We propose a simple contrastive learning method for gaze estimation that

relies on the observation that gaze direction is invariant under selected

appearance transformations and equivariant to any two camera viewpoints.
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2. We also argue to learn equivariant representations by taking advantage of

the multi-view data that can be seamlessly collected using multiple cameras.

3. Our empirical evaluations show that GazeCLR yields improvements for vari-

ous settings of gaze estimation and is competitive with existing supervised [3]

and unsupervised state-of-the-art gaze representation learning methods [7, 8].

5.2 Related Work

We refer the reader to Section 2.2.2.3 for an in-depth review of appearance-

based gaze estimation, Section 2.3.3 for literature on representation learning for

gaze estimation, and Section 2.3.5 which addresses person-specific gaze estimation

using few labeled samples. In this section, we will provide a brief overview of

related work on self-supervised learning, focusing on aspects that are relevant to

the discussions in this chapter.

The goal of self-supervised representation learning is to learn good visual

representations from a large collection of unlabeled images. Earlier works in

SSL [183, 184, 185, 186] used pretext tasks to learn generalizable semantic rep-

resentations. Some of the recent works [175, 176, 177, 187, 188, 189, 190] have

shown great success on several vision tasks, e.g., image classification [178, 191],

object detection [179], semantic segmentation [180], and pose estimation [192]. The

work by Spurr et al. [193] extends SSL to hand pose estimation through geometric
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equivariance representations. Tian et al. [194] propose to use more than two views

to learn invariant representations through contrastive learning.

5.3 Proposed Method

5.3.1 Gaze Contrastive Learning (GazeCLR) Framework

GazeCLR is a framework to train an encoder that learns embeddings to induce

the desired set of invariance and equivariance for the gaze estimation task. As

stated earlier, the key intuition of GazeCLR is to enforce invariance using selected

appearance transformations (e.g., color jitter) and equivariance using synchronous

images of the same person captured from multiple camera viewpoints. Similar

to previous SSL approaches [176, 193], we rely on the normalized temperature-

scaled cross-entropy loss (NT-Xent)[176] to encourage invariance or equivariance

by maximizing the agreement between positive pairs and disagreement between

the negative pairs. In particular, we devise two variants of NT-Xent loss, namely,

LI for invariance and LE for equivariance, discussed in further paragraphs.

The GazeCLR framework has three sub-modules: a CNN-based encoder and

two projection heads based on MLP layers, as illustrated in Figure 6.2. The output

of the encoder branches out into different projection head depending on the type

of input positive pair. To abide by the invariance for gaze direction, we consider
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Encoder Encoder Encoder Encoder Encoder Encoder 

Projector Projector Projector Projector Projector Projector 

Single-View Learning Multi-View Learning

= augmentation

= rotation 

Figure 5.2: Method schematic. For synchronous view frames {Ivi}4i=1, the above

figure illustrates invariant and equivariant positive pairs anchored only for view v1.

The left branch shows single-view learning (LI), and the right branch illustrates

multi-view learning using four views (LE). All images (after augmentation, a ∈ A)

are passed through a shared CNN encoder network, followed by MLP projectors

(either p1 or p2) depending on the type of input positive pair. The embeddings for

multi-view learning are further multiplied by an appropriate rotation matrix.

augmentations based on only appearance transformations denoted as A.

Let {Ivi,t}
|V |
i=1 be the synchronous frames for timestamp t coming from different

camera views (i.e., {vi}|V |
i=1), then we create the following positive pairs:

1. Single-view positive pairs: We apply two randomly sampled augmentations
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from A to create a single-view positive pair. Specifically, for any image Ivi,t,

at a given timestamp t and view vi, we sample two augmentations a and a′

from A and then (a(Ivi,t), a
′(Ivi,t)) forms a positive pair to learn invariance.

The left branch of Figure 6.2 shows one such positive pair for view v1.

2. Multi-view positive pairs: We consider all unique pairs of camera viewpoints

from the same timestamp t and apply random augmentations from A, i.e.,

{(ai(Ivi,t), aj(Ivj ,t)) | i, j ∈ {1, . . . , |V |} | i ̸= j}. The corresponding outputs

from the encoder are passed through projection head p2 and multiplied by

an appropriate rotation matrix to learn equivariance.

Next, to construct negative pairs, we do not sample them explicitly but use all

other samples in the mini-batch as negative examples, similar to Chen et al. [176].

The exact formulation of both loss functions LI and LE is described below. For

brevity, we omit t from Ivi,t and augmentation a in the following subsections.

5.3.1.1 Single-View Learning

The goal of single-view learning is to induce invariance amongst representations

under various appearance transformations. Let vi ∈ V be any view and b ∈

[1, . . . , B] be the batch index. Given a batch size of B, we apply two augmentations

to each sample in the batch, yielding 2B augmented images, and for each sample,

we have one positive pair and (2B − 1) negative pairs stemming from remaining
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samples in the batch. Our encoder E extracts representations for all 2B augmented

images, which are further mapped by projection head p1(·) yielding embeddings

{(zbvi , z
′b
vi
)}Bb=1. With above notations, for any view vi, the proposed invariance loss

function LI associated with a positive pair (zbvi , z
′b
vi
) can be given as follows:

LI(zbvi , z
′b
vi
) = − log

sim(zbvi , z
′b
vi
)∑B

l=1 1[l ̸=b] sim(zbvi , z
l
vi
) +

∑B
l=1 sim(z

b
vi
, z′lvi)

(5.1)

where, zbvi = p1(E(I
b
vi
)), z′bvi = p1(E(I

′b
vi
)), sim(r, s) = exp

(
1

τ

rT s

||r|| · ||s||

)
, 1[l ̸=b]

is an indicator function and τ is the temperature coefficient parameter. It is

worth noting that to minimize the loss in Eq. 5.1, it must hold that zbvi and z′bvi

needs to be closer, which aligns with our goal of learning invariance to appearance

transformations. One challenge, however, is the risk of collapse (e.g., the network

could simply learn each person’s identity). To avoid this, we create mini-batches

such that all samples in a batch are taken from a single participant.

5.3.1.2 Multi-View Learning

We encourage equivariance in the gaze representations to different camera

viewpoints through multi-view learning. To do so, we transform embeddings to

a common reference system, chosen as the screen reference system used during

the EVE data collection. Let {RS
Cvi

} be the rotation matrix relating the camera

viewpoint vi with the screen reference system.

For each sample Ibvi in a batch of size B, the positive pair is given as (Ibvi , I
b
vj
)
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for two distinct camera viewpoints (vi, vj)i ̸=j. All images for viewpoints vi and vj

are first augmented then passed through encoder E and the projector head p2(·)

which gives embeddings ẑbvi , ẑ
b
vj
∈ R3×d′ . These embeddings are further multiplied

by corresponding rotation matrices RS
Cvi

to project embeddings in the common

(screen) reference system. We denote embeddings after rotation as {(z̄bvi , z̄
b
vj
)}Bb=1

such that z̄bvi = RS
Cvi
ẑbvi . Therefore, for a batch of size B, our equivariant loss LE

associated with the positive pair (z̄bvi , z̄
b
vj
) is as follows:

LE(z̄bvi , z̄
b
vj
) = − log

sim(z̄bvi , z̄
b
vj
)∑B

l=1 1[l ̸=b] sim(z̄bvi , z̄
l
vi
) +

∑B
l=1 sim(z̄

b
vi
, z̄lvj)

(5.2)

Overall loss function. Given |V | camera viewpoints, we apply both LI and

LE loss functions to each view. Thus, our overall objective function for a batch

size of B becomes

LO =
1

2B

|V |∑
i=1

B∑
b=1

(
LI(zbvi , z

′b
vi
) + LI(z′bvi , z

b
vi
) +

|V |∑
j=1,j ̸=i

LE(z̄bvi , z̄
b
vj
)

)
(5.3)

5.3.2 Learning For Gaze Estimation

After pre-training, the encoder learned by the GazeCLR framework is used

for the task of gaze estimation and fine-tuned on a small labeled dataset. To this

end, we remove both projection heads p1 and p2, and replace them with MLP

regressor layers to predict 3D gaze direction. For training MLP regressor, we use
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the supervised loss function given as

Lang =
180

π
arccos

(
ggg · ĝ̂ĝg

||ggg|| · ||ĝ̂ĝg||

)
(5.4)

where ggg and ĝ̂ĝg are the ground-truth and predicted gaze directions, respectively.

5.4 Experiments

5.4.1 Setup

We train our GazeCLR framework on the EVE [89] dataset, which has videos

collected in a constrained indoor setting with four different synchronized and

calibrated camera views. It has approximately 12 million frames collected from 54

participants with natural eye movements. Following the splits considered by Park

et al. [89], there are 40 subjects in training and 6 subjects in the validation set.

We discard the data of test subjects due to the non-availability of labels. We use

training subjects for the pre-training stage, without using any gaze annotations.

For the gaze estimation stage, we evaluate on the data of validation subjects to

report the performance. We use all four camera views (i.e., |V | = 4) as well as

the information about the relative pose between camera and screen (RS
C) provided

with the EVE dataset. Note that our framework can be extended to more number

of camera views (|V | > 4) using ETH-XGaze [87] dataset.
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Data pre-processing. We use face images available in the EVE dataset, obtained

after applying a data-normalization procedure [124, 127]. The normalization

pipeline transforms the gaze annotation to a normalized camera space through a

rotation matrix M . Note that we post-multiply RS
C with M−1 as RS

C is defined

w.r.t. the original camera reference frame, i.e., z̄v = RS
Cv
(M)−1ẑv.

Training details. GazeCLR is trained using SGD optimizer with initial learning

rate = 0.03, momentum = 0.9, and cosine annealing [195] for the learning rate

decay. We use a single 1080 GeForce GTX GPU for training, with a batch size of

128, and train for 50K iterations. Our mini-batch is made up of samples from a

single participant. The temperature coefficient τ is set to 0.1. For the augmentation

transformations A, we apply random spatial cropping and resizing, gaussian blur,

color perturbation (p = 0.8) on brightness, contrast, saturation and hue, grayscale

conversion (p = 0.2), and auto-contrast (p = 0.5).

All experiments use ResNet-18 [168] as the encoder network and take the

output from the average pooling layer. The encoder is trained from scratch.

Following Chen et al. [176], both projection heads p1(·) and p2(·) are two-layer

MLP networks with ReLU non-linearity. The output dimensions for the first and

second layers are 512 and 180, respectively. The input image size is 128× 128.

We train the GazeCLR framework in two different settings: (i) GazeCLR

(Equiv): where we only consider equivariance through the loss function LE and
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(ii) GazeCLR (Inv+Equiv): where we consider both invariance and equivariance

with equal weights using the overall objective LO. We present the performance

of both training setups in all the considered experimental settings. Observe that,

GazeCLR (Inv) trained with only LI loss function is equivalent to SimCLR [176]

baseline method.

5.4.2 Baselines

We compare our approach with six following baselines: (i) w/o Pre-training,

i.e., an encoder is initialized using random weights, (ii) the vanilla Autoencoder,

which has an encoder network that consists of the same encoder layers as GazeCLR

and five DenseNet [164] deconvolution blocks as decoder, and is trained with L2

loss, (iii) Novel View Synthesis [192] framework is trained on our dataset using

the same architecture as the auto-encoder, (iv) BYOL [177], (v) SimCLR [176]

and (vi) Fully-Supervised is a ResNet-18 model trained on the whole EVE training

data and represents possibly an upper bound for the performance of GazeCLR. For

SimCLR and BYOL, we use the same augmentation set as in our proposed method.

The following paragraphs discuss the implementation details of Autoencoder and

Novel View Synthesis baseline approaches.

Autoencoder. We use the same encoder layers as the GazeCLR framework for a

fair comparison. The decoder is implemented using DenseNet [164] architecture by
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replacing convolutional layers with deconvolutional layers of stride 1. The average

pooling layer of transition layers is replaced by 3× 3 deconvolutions (with stride

2). The decoder consists of 5 dense blocks, where each block has 4 composite

layers with a growth rate of 32. The compression factor is set to 1.0. All layers

are implemented using instance normalization [165] and leaky ReLU activation

functions (with α = 0.01). We use SGD optimizer with momentum 0.9, weight

decay 5× 10−4, and initial learning rate is 0.003 (which is decayed using cosine

annealing scheduler [195]). The batch size is 24, and the model is trained for 200K

iterations. For inference, we remove decoder layers and use the encoder only for

gaze estimation tasks.

Novel View Synthesis [192]. This approach was originally proposed for a

3D human pose estimation task and aimed to learn novel view synthesis, where

separate representations for the body’s 3D geometry (L3D), appearance (Lapp), and

background (B) are trained. For a fair comparison, we train a novel view synthesis

framework on our dataset using the same encoder architecture as in the GazeCLR

framework. The decoder layers are the same as that of the autoencoder baseline.

The dimension of appearance-based code (Lapp) is 32 and of 3D geometry code

(L3D) is 480. We ignore the background factor (B) in our implementation, as the

EVE dataset has the same background across all images. The whole framework is

trained using SGD optimizer with learning rate = 0.03, momentum = 0.9, weight
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decay = 5× 10−4, and cosine annealing for learning rate decay. The training is

done for 200K iterations, with a batch size of 16. At each iteration, we randomly

sample two views from the EVE dataset and generate one view image from other

view images similar to Rhodin et al. [192]. The trained encoder is then adapted

for the gaze estimation, similar to other baselines.

5.5 Results

5.5.1 Within-dataset Evaluation

For within-dataset evaluation, we perform pre-training on the training split of

the EVE dataset without using labels. Then, we adapt the pre-trained encoder for

gaze estimation on a small subset of labeled data. Precisely, we took five training

subjects out of 40 (which form around 10% samples out of the whole EVE dataset)

for the supervised gaze estimation stage and called it “MiniEVE”. We validate on

fixed subject data chosen from training subjects and report the final performance

for validation subjects.

Table 5.1 shows the mean angular errors (in degrees) obtained for different

pre-training baselines and the proposed GazeCLR method. To this end, we freeze

the pre-trained encoder and simply train an MLP regressor using the “MiniEVE”

dataset. Note that, for two baselines, Autoencoder and BYOL, we fine-tune the

104



Method Pre-Train Task Frozen MAE ↓

Data Data (degrees)

w/o Pre-training EVE MiniEVE ✗ 8.47

Autoencoder EVE MiniEVE ✗ 6.91

Novel View Synthesis [192] EVE MiniEVE ✓ 6.79

BYOL [177] EVE MiniEVE ✗ 8.35

SIMCLR [176] EVE MiniEVE ✓ 6.57

GazeCLR (Equiv) EVE MiniEVE ✓ 4.83

GazeCLR (Inv+Equiv) EVE MiniEVE ✓ 4.92

Fully-Supervised - EVE ✗ 4.15

Table 5.1: Within-dataset Evaluation. We report the mean angular errors

(MAE) in degrees for within-dataset evaluation for gaze estimation. The “EVE”

shows the whole EVE data while “MiniEVE” indicates a small subset of data. The

Frozen column is ✓ if the pre-trained encoder is frozen, otherwise fine-tuned ✗.

The best performing method is shown in bold and second best is underlined.

whole end-to-end framework along with the encoder as otherwise, they fail to

converge when only their representations are used. We indicate this behavior in

Table 5.1, using the Frozen column as ✓ if encoder is frozen otherwise as ✗.

We observe that our method GazeCLR outperforms other pre-training baseline

methods by only training an MLP regressor on the small amount of labeled data

(“MiniEVE” is ∼ 10% of whole data). Specifically, it can be seen that the perfor-

mance achieved from GazeCLR helps in closing the gap with the fully supervised

baseline. Our method GazeCLR (Inv+Equiv) shows a relative improvement of
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25.1% compared to the popular contrastive learning method SimCLR. Additionally,

GazeCLR (Equiv) shows a boost of 26.4% relative improvement over the SimCLR

approach, suggesting that equivariant representations are very effective for the

gaze estimation task. We hypothesize that since we utilize similar augmentation

strategies for creating both single-view and multi-view positive pairs, GazeCLR

(Equiv) performs almost comparable to GazeCLR (Inv+Equiv).

5.5.2 Transfer Learning/Cross-dataset Evaluation

We perform a cross-dataset evaluation using a few-shot personalized gaze

estimation to further demonstrate the cross-data generalization capabilities of

the learned representations. For this, we use Linear Layer Training (LLT) and

Finetuning (FT) protocols, as discussed below. We evaluate GazeCLR representa-

tions on two domain datasets different from pre-training data: MPIIGaze [75] and

Columbia [86]. MPIIGaze is a challenging dataset that has higher inter-subject

variations. We use the standard evaluation subset MPIIFaceGaze [78], containing

around 37667 images captured from 15 subjects. The Columbia dataset consists of

5880 images collected from 56 subjects and has large head pose variations.

Linear Layer Training (LLT). In the LLT protocol, we freeze the trained

encoder and learn a linear regressor on the target dataset. For this experiment, we

investigate under a few-shot setting where we sample a few calibration samples
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Figure 5.3: Transfer Learning Evaluation (LLT). Performance evaluation

using Linear Layer Training protocol for both MPIIGaze and Columbia dataset

under different few-shot settings. Each bar is computed by averaging over 10 runs.

from the test subject for adaptation and evaluate the remaining samples of the

same test subject.

Figure 5.3 shows the mean angular errors for LLT protocol on 20-shot, 50-shot,

and 64-shot gaze estimation. We first extract the gaze representations of a few

calibration samples for each subject and learn a linear model on top of these

representations. We evaluate the trained model on the remaining samples of the

subject. We repeat above 10 times for each subject on both datasets and report

mean angular errors for the same in Figure 5.3.

Observe that both proposed GazeCLR variants outperform all other baselines in

all few-shot settings for both datasets. Moreover, GazeCLR(Equiv) gives a relative

improvement of around 17.2% over SimCLR with only 20 calibration samples for

Columbia. We hypothesize that this behavior is due to high head-pose variations

107



within Columbia, and it suggests that: a) learning equivariance over multi-views is

beneficial for the GazeCLR framework in improving performance, and b) GazeCLR

representations are relatively more generalizable for cross-domain datasets than

other baselines.

Finetuning (FT). Next, we evaluate the transferable capability of learned

representations obtained from GazeCLR framework using Finetuning (FT) protocol.

Here, we fine-tune the entire network (including the encoder) in an end-to-end

manner on the target dataset using a few calibration samples from the test subject

and evaluate the remaining samples.

In Table 5.2, we present the results for FT on MPIIGaze and Columbia,

where we fine-tune the whole end-to-end network. For this experiment, we adopt

architecture from Chen and Shi [5], where a subject-dependent bias term is learned

along with an end-to-end network. 4-fold and leave-one-out (15-fold) evaluation

protocols are used for Columbia and MPIIGaze, respectively.

Unlike Chen and Shi [5], our input is a full-face image, and the backbone is a

pre-trained encoder. We take a few calibration samples for each subject during

inference and estimate the subject-dependent bias term. We evaluate performance

on the remaining samples and repeat this calibration for 10 runs for each subject.

Table 5.2 provides the mean and standard deviation of angular errors over 10

runs. We compare the performance of our method with other baselines for various
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MPIIGaze

Method 1 3 5 9 15 50 64

w/o Pre-training [5] 5.57±1.60 4.65±0.71 4.40±0.40 4.22±0.27 4.13±0.17 4.00±0.04 4.00±0.04

Autoencoder 5.65±1.60 4.69±0.76 4.42±0.45 4.16±0.21 4.10±0.16 3.97±0.05 3.96±0.04

Novel View Synthesis [192] 5.53±1.32 4.75±0.63 4.46±0.40 4.27±0.25 4.17±0.15 4.06±0.04 4.06±0.04

BYOL [177] 5.71±1.63 4.71±0.66 4.35±0.31 4.22±0.21 4.11±0.15 4.01±0.05 4.00±0.04

SIMCLR [176] 4.87±1.51 3.93±0.54 3.74±0.35 3.57±0.24 3.47±0.12 3.39±0.04 3.38±0.03

GazeCLR (Equiv) 4.70±1.49 3.77±0.51 3.51±0.32 3.39±0.18 3.33±0.11 3.25±0.03 3.24±0.02

GazeCLR (Inv+Equiv) 4.72±1.33 3.93±0.54 3.68±0.34 3.54±0.19 3.44±0.11 3.37±0.03 3.35±0.03

Columbia

w/o Pre-training [5] 6.96±0.55 5.73±0.20 5.38±0.14 5.23±0.09 5.13±0.05 5.04±0.08 5.00±0.09

Autoencoder 7.00±0.57 5.79±0.18 5.49±0.15 5.24±0.07 5.15±0.04 5.03±0.08 5.03±0.07

Novel View Synthesis [192] 7.38±0.60 6.05±0.22 5.78±0.14 5.51±0.05 5.43±0.06 5.33±0.06 5.27±0.08

BYOL [177] 6.09±0.41 4.97±0.22 4.70±0.13 4.55±0.09 4.43±0.04 4.35±0.05 4.34±0.06

SIMCLR [176] 4.36±0.20 3.67±0.13 3.44±0.07 3.34±0.05 3.27±0.04 3.21±0.04 3.19±0.05

GazeCLR (Equiv) 4.34±0.25 3.60±0.12 3.42±0.09 3.30±0.04 3.26±0.02 3.17±0.04 3.17±0.02

GazeCLR (Inv+Equiv) 4.54±0.24 3.75±0.12 3.59±0.08 3.45±0.05 3.39±0.03 3.31±0.04 3.31±0.04

Table 5.2: Transfer Learning Evaluation (Finetuning). Comparison of various

baselines for the Finetuning experimental protocol on multiple few-shot settings

for both MPIIGaze and Columbia. We fine-tune the whole end-to-end network

and utilize a few calibration samples during test time. The errors are computed

from 10 runs and reported as (mean±std).

few-shot settings. Results demonstrate that our method consistently outperforms

all other pre-training baselines, including Chen and Shi [5] (w/o Pre-training) for

all few-shot settings. This indicates the improved generalization capability of our

learned representations, particularly on the MPIIGaze dataset. Also, our method

is either superior or competitive with other baselines on the Columbia dataset.
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5.5.3 Comparison with state-of-the-art methods

We further compare GazeCLR with existing state-of-the-art unsupervised [7, 8]

and supervised [3] gaze representation learning methods. For a fair comparison,

we adopt the same evaluation protocols as used by these baseline methods and

compare the GazeCLR performance against their performance.

GazeCLR vs. Unsupervised Pre-training [7, 8]. We follow the same

evaluation protocol as [7]. 5-fold and leave-one-out (15-fold) evaluations are

used for the Columbia and MPIIGaze datasets, respectively. In each fold, we

freeze the GazeCLR encoder and extract representations for randomly selected

50 samples with annotations and learn a simple MLP-based gaze estimator using

these representations. We repeat the performance evaluation 10 times and report

mean angular errors in Table 5.3. Note that previous methods [7, 8] exploit left

and right eye patches to get SSL signal, whereas our approach relies on face patches

obtained from multiple camera viewpoints.

In Table 5.3, we compare against the best-performing models of Yu and Odobez

[7] and Sun et al. [8], for the 50-shot gaze estimation. Notice that our method

outperforms baselines with absolute improvements of 2◦ and 0.9◦ on MPIIGaze and

Columbia, respectively. It is worth emphasizing that our method is pre-trained on a

different dataset than both evaluation datasets, unlike baseline approaches. Again,

it illustrates the strength of our approach in learning semantically meaningful
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Method Pre-Train Data MPIIGaze Columbia

Yu and Odobez [7]† Columbia - 8.9

Sun et al. [8] MPIIGaze 8.5 -

Sun et al. [8] Columbia - 7.0

GazeCLR (Equiv) EVE 7.0 6.1

GazeCLR (Inv+Equiv) EVE 6.5 6.6

Table 5.3: Comparison of GazeCLR with other unsupervised gaze representation

learning methods [7, 8] for 50-shot gaze estimation. † denotes the method that

uses additional head pose information. The metric reported is mean angular errors

averaged over 10 runs (in degrees).

Figure 5.4: GazeCLR vs FAZE [3]. Comparison of GazeCLR with supervised

pre-training baseline (FAZE) for various few-shot settings on the Columbia dataset.

The plot shows mean angular error (MAE, in degrees) and standard error bars

versus number of few-shot samples, reported after 10 runs.

representations for generalizable to other domains. Moreover, note that Yu and

Odobez [7] use additional head-pose information, unlike our method.
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GazeCLR vs. Supervised Pre-training [3]. We evaluate the effectiveness of

GazeCLR representations using the MAML framework [110], similar to FAZE [3].

For both GazeCLR and FAZE, we train a MAML-based gaze estimator on the

representations for subjects from the GazeCapture [79] dataset. Then, we adapt

the gaze estimator model to each test subject of Columbia with k calibration

samples and test on the remaining samples. Figure 5.4 depicts the performance

comparison of GazeCLR with FAZE [3] for four different values of k. It can be

seen that our method consistently outperforms supervised pre-training baseline

FAZE for all values of k. Notably, our framework uses zero labeled information

to obtain gaze representations, unlike FAZE, which is pre-trained using ∼ 2M

labeled samples from the GazeCapture dataset.

5.5.4 Ablation Studies

Increasing number of views improves pre-training. In Table 5.4, we

demonstrate the effect of increasing the number of views used in the pre-training

stage of GazeCLR. For this ablation study, we conducted an experiment for cross-

dataset under LLT (similar to Figure 5.3) and within-dataset (similar to Table 5.1)

settings, shown in Table 5.4(a) and Table 5.4(b) respectively. For 2 views, we

considered the center and right cameras, and for 3 views, the left camera is included.

For the LLT setting, the difference in GazeCLR performance for 2/3 views and
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Dataset # of views k = 20 k = 50 k = 64

MPIIGaze 2 8.94 7.59 7.25

Columbia 2 7.63 4.58 4.02

MPIIGaze 3 8.38 7.09 6.78

Columbia 3 7.20 4.45 3.88

MPIIGaze 4 8.16 7.15 6.85

Columbia 4 6.80 4.46 3.90

(a) LLT Cross-dataset evaluation

# of views MAE (degrees)

2 7.72

3 7.06

4 4.83

(b) Within-dataset evaluation

Table 5.4: Ablation on the increasing number of views. Within-dataset and

cross-dataset (LLT) evaluation with the increasing number of views used for the

pre-training stage of GazeCLR on both MPIIGaze and Columbia. The ablation

study is performed for GazeCLR(Equiv) method, and the evaluation metric is a

mean angular error (MAE) in degrees, averaged over 10 runs.

all 4 views is relatively higher, especially with a smaller number of shots. This

shows that for smaller k, more views are helpful for GazeCLR. Similarly, for

within-dataset, GazeCLR performance deteriorates with 2/3 views compared to 4.

More data, better pre-training. In Table 5.5(a), we study the impact of the

amount of unlabeled data used for the pre-training stage of GazeCLR framework.

We observe that the representations learned by GazeCLR benefit from more

training data and help in generalizing across different domain datasets.

Larger batch size is useful. Next, we vary the batch size to analyze its effect on

pre-training, for which results are shown in Table 5.5(b). We notice that the larger

batch size considerably impacts the quality of representations and improves the
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Pre-Train Data MPIIGaze Columbia

MiniEVE 11.25 9.63

EVE 8.16 6.80

(a) Varying amount of pre-training data

Batch size MPIIGaze Columbia

32 12.21 12.83

128 8.16 6.80

(b) Varying batch-size for pre-training

Table 5.5: Ablation Study. 20-shot linear layer training for the cross-data

gaze estimation on MPIIGaze and Columbia for two different ablation settings.

Ablations are performed for the GazeCLR(Equiv) method, and the evaluation

metric is a mean angular error (MAE) in degrees.

performance significantly. This observation is consistent with previously observed

findings in the self-supervised learning literature [175, 176].

Task Data Batch Type MAE (degrees)

MiniEVE Single 4.83

MiniEVE Multiple 23.58

Table 5.6: Ablation Study for mini-batch containing single vs. multiple

participants. Within-dataset evaluation under two different types of batches

created for the GazeCLR(Equiv) method and evaluation metric is mean angular

error (MAE) in degrees.

Mini-batch of single vs. multiple participants. In Table 5.6, we experiment

with creating batches from single and multiple subject samples and compare them

under within-dataset evaluation. We observe that the performance on the gaze

estimation task with multiple subject samples was close to the performance of
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random weights. We hypothesize that this is because, in batches with different

subjects, negative pairs are easy to classify, given the subject’s identity. Therefore,

the network has no incentive to focus on gaze information over subject identity.

Varying amount of data for fine-tuning. Here, we investigate how perfor-

mance varies with respect to the amount of data available for finetuning. We

evaluate for the within-dataset gaze estimation using LLT protocol, starting from

10% of EVE training dataset and gradually increasing to 100%. We compare

GazeCLR(Equiv) and GazeCLR(Inv+Equiv) against “w/o Pre-training” baseline

with random initialization, as shown in the Figure 5.5. GazeCLR outperforms the

baseline in all training set sizes. It is worth noting that the GazeCLR approach only

requires 20% of training data to match the performance of the “w/o Pre-training”

baseline with 100%. Furthermore, notice that the gap between the performance of

GazeCLR and baseline decreases as the training dataset size increases, showing

that GazeCLR is effective for training with a few samples.

5.5.5 Visualization of Gaze Representations

To further investigate the quality of learned representations, we project the

gaze representations into 2-dimensions using t-SNE [196] algorithm as shown in

Figure 5.6. In Fig 5.6(a), we compute 2D visualization of equivariant representa-

tions obtained after applying rotation matrices, i.e., z̄. Projections in Fig 5.6(a)
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Figure 5.5: Comparison of the gaze estimation performance for within-dataset

using LLT protocol, versus different % of the labeled training data.

clearly demonstrate that gaze direction is invariant to the viewpoint, as images

at the same timestamp from different views are mapped closer (shown with the

same color border). In Fig 5.6(b), we apply the t-SNE algorithm on gaze represen-

tations obtained at the output of the encoder network, i.e., z = E(·), for images

from single camera viewpoint. Projections corresponding to roughly similar gaze

directions are naturally clustered and highlighted with different background colors.

Also, we observe clear patterns in the learned feature space where images within

close vicinity are invariant to the subject’s identity, showing invariance towards

appearances.

We further qualitatively analyze the relationship between learned gaze repre-

sentations and the ground-truth 2D Point-of-Gaze (PoG). For this, we project

gaze representations to 2-D space using t-SNE [196] algorithm and normalize them
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(a) Representations after applying

rotation matrices, z̄

(b) Representation obtained from

the output of encoder, z = E(·)

Figure 5.6: t-SNE visualization. Qualitative visualization of gaze representations

in 2-dimensional space using the t-SNE algorithm. (a) shows the visualization

of projection embeddings for multi-view images obtained after applying rotation

matrices, i.e., z̄ . The images with the same timestamp for all four views are

highlighted using the same border color. (b) depicts representations for the output

of the encoder network, i.e., z = E(·) obtained for images from a single camera

viewpoint. Best viewed in color and after zooming.

between 0 and 1. Next, we plot Euclidean distance between 2D t-SNE projections

and the normalized 2D PoG (dividing by the width and height of the screen), as

shown in Figure 5.7. The black line is for the y = x equation. Notice that data is

scattered symmetrically around y = x, exhibiting a strong correlation (correlation

coefficient = 0.623) between gaze representations and ground-truth PoG.
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Figure 5.7: Scatter plot between Euclidean distance of normalized 2D PoG and

2D t-SNE projections of gaze representations. The black line is for y = x.

5.6 Summary

In this chapter, we presented GazeCLR, a contrastive learning framework for

gaze representations using multi-view camera images. Our framework induces

invariance and equivariance properties simultaneously in the learned representations

and is effective for gaze estimation tasks in various settings. Furthermore, we

showed that GazeCLR representations have the potential to be effective across

different domain datasets using only a few calibration samples. GazeCLR is a

general framework for equivariant representation learning and thus can be explored

in the future for other geometry-based applications such as head pose estimation.
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Chapter 6

Spatial-temporal attention and

Gaussian processes personalization

for video gaze estimation

6.1 Introduction

The human gaze is an essential cue for conveying people’s intent, making it

promising for real-world applications such as human-robot interaction [197, 198],

AR/VR [199, 200], and saliency detection [201, 202]. Despite the primary research

emphasis on gaze estimation from images, the potential benefits of understanding

the temporal dynamics of eye movements for video gaze estimation have been

relatively overlooked. Constructing an accurate video-based gaze estimation model

requires addressing the unique challenges inherent to videos. These include the

evolution of eye movements throughout the video, correlations between gaze

directions in successive frames, the predominance of a static background in most

pixels, and variations due to individual-specific traits [3, 109, 203]. This chapter
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responds to these challenges by aiming to develop an accurate gaze estimation

technique for videos using deep networks.

Realizing the potential of spatial and motion cues in videos, prior research has

utilized residual frames and optical flows for several other vision tasks [204, 205,

206]. Specifically, these methods integrate RGB and residual frames as different

input streams, requiring larger models with higher inference time and memory

requirements [207, 208, 209]. Similarly, 3D convolutional neural networks (CNNs)

can also capture spatiotemporal information from videos, but they require many

model parameters [210, 211, 212, 213, 214, 215]. In addition, it is non-trivial to

transfer knowledge from pre-trained 3D CNNs to new video tasks, as most pre-

trained models rely on large 2D image datasets such as the ImageNet dataset [170].

Despite the critical role of detecting spatial and motion cues in videos, there is a

strong need to design efficient attention-based approaches for video-related tasks,

including video gaze estimation.

In this chapter, we draw inspiration from the change captioning task to develop

an approach for video gaze estimation. The change captioning task requires

describing the changes between a pair of before and after images, expressed through

a natural language sentence [216, 217, 218]. Both change captioning and gaze

estimation tasks require differentiating irrelevant distractors, such as background

movement and facial expression changes, from the relevant ones. Specifically, change
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(a) (b) (c) (d)

Figure 6.1: The figure illustrates a range of irrelevant factors for video gaze es-

timation, also referred to as distractors: (a) and (b) depict alterations in facial

expression, (c) highlight background movement, and (d) represent a scenario

without any distractors. These examples show the importance of accurately distin-

guishing between spatial changes due to eye movements and irrelevant distractors

for the video gaze estimation task.

captioning focuses on recognizing object movements, whereas gaze estimation

concentrates on detecting eye movements. Similar to prior works [216, 217],

our approach utilizes a spatial attention mechanism to focus on gaze-relevant

information while minimizing the impact of distractors. For example, Figure 6.1

illustrates various distractors that may obfuscate gaze information in videos.

We introduce Spatio-Temporal Attention for Gaze Estimation (STAGE), a

deep learning model for video gaze estimation. STAGE utilizes spatial changes

in consecutive frames to integrate motion cues via a Spatial Attention Module

(SAM) and captures global dynamics with a Temporal Sequence Model (TSM).

The SAM module focuses on gaze-relevant information by applying local spatial

attention between consecutive frames and effectively suppresses irrelevant dis-

tractors. Meanwhile, the TSM considers global dynamic movements across the
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temporal dimension, enabling enhanced prediction of gaze direction sequences.

STAGE adeptly encodes motion information through the attention modules with

fewer parameters than existing approaches like 3D CNNs [210] or two-branch

networks [207], thus offering a more feasible solution for real-world applications.

To enhance the accuracy of gaze estimation models, previous studies have

suggested personalization to address significant variability in individual-specific

traits, such as eye geometry and appearance [3, 109, 219]. Concretely, this is done

by training a person-agnostic gaze model on a large labeled dataset and then

fine-tuning it for individual users with a small set of labeled data. Consistent

with this approach, we integrate Gaussian processes (GPs) [220], known for their

effectiveness in low-data scenarios, to personalize the STAGE for individual users.

We use GPs to learn an additive bias correction and personalize the gaze

estimate of the general STAGE model with just a few labeled samples. GPs

enable the estimation of personalized 3D gaze directions and provide uncertainty

measurements in interval form. These intervals represent a range of possible

gaze directions instead of a single vector, making our approach more suitable

for practical applications, such as monitoring attention on screens [221, 222]. To

evaluate the efficacy of the proposed STAGE model and personalization using GPs,

we use three publicly available video gaze datasets: EYEDIAP [2], Gaze360 [88]

and EVE [89].
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To summarize, the key contributions of this chapter are outlined as follows:

• We introduce STAGE, a novel model for video gaze estimation. STAGE

leverages an attention mechanism that is sensitive to spatial changes in

sequential frames, effectively extracting gaze-relevant details from videos.

This facilitates gaze prediction along the temporal axis for videos.

• We propose a sample-efficient approach to personalize the STAGE model,

aiming to learn a bias correction model for gaze prediction using pre-trained

Gaussian processes [223].

• Our approach either surpasses or matches to the state-of-the-art performance

on three publicly available datasets for video gaze estimation. In particular,

we obtain state-of-the-art results on the Gaze360 dataset in both cross-data

and within-data experimental settings.

6.2 Proposed Method

The main goal of video gaze estimation is to learn a deep network f defined as

f : V 7→ G that maps a sequence of video frames V ∈ Rn×h0×w0×3 to a sequence

of gaze directions G ∈ Rn×2, where n is the number of frames and h0 and w0

are height and width of each frame, respectively. The output gaze sequence G

possesses pitch and yaw angles, which correspond to each frame in V .

123



The proposed STAGE model employs three modules for setting up the deep

network f . Firstly, a ResNet-based CNN model receives the input video and

extracts feature maps for all the frames. Then, in the following module of the

STAGE model, we process feature maps using a Spatial Attention Module (SAM)

to focus on the spatial motion information between consecutive frames followed by

a Temporal Sequence Model (TSM) to learn temporal dynamics using past frame

embeddings. Next, the gaze prediction layer (GPL) maps the features from the

output of the TSM block to a sequence of gaze directions defined in terms of yaw

and pitch angles. Figure 6.2 shows the schematic of the STAGE and its modules.

6.2.1 Spatial Attention Module (SAM)

Recall that SAM is aimed to distinguish gaze-relevant motion by analyzing

differences between consecutive frames, focusing on crucial cues like eye or head

movements for gaze estimation while filtering out irrelevant distractions like facial

expressions or background movements. It aims to prioritize relevant video changes,

particularly eye movements, and disregard non-essential ones.

First, we convert each frame in the video sequence V to features X =

[X1, X2, . . . , Xn] ∈ Rn×h×w×k, using the ResNet-based CNN model, where w,

h, and k are the width, height, and the number of channels of the feature maps ex-

tracted by ResNet. The next step is to pass each consecutive feature pair (Xt−1, Xt)
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Figure 6.2: A schematic overview of the proposed (person-agnostic) STAGE model.

The proposed model has three modules: spatial attention module (SAM), temporal

sequence model (TSM), and gaze prediction layer (GPL). The SAM is designed to

extract information relevant to the gaze by concentrating on the spatial differences

between consecutive frames. In the figure, Xi represents features from ResNet,

zi denotes the motion-informed output of the SAM, and gi corresponds to the

predicted gaze direction.

through a shared SAM. Concretely, the SAM module aggregates information from

RGB features of Xt−1 and Xt, and the feature differences (Xt − Xt−1) through

a fusion strategy. Figure 6.3 provides an overview of all three SAM variants

considered in this work. All SAM variants are optimized during model training

and outputs zt, a feature representation with spatial motion information for the

tth frame of the video.
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Figure 6.3: Block diagram of SAM variants. For each variant, the input is

a pair of the consecutive frame features Xt−1 and Xt, and the output is a 1D

feature vector encoding both RGB and motion information. P2d are 2D positional

embeddings with height and width same as the input feature map. The cross-

attention block in Cross-SAM and Hybrid-SAM is a standard transformer operation.

The sum-pooling block applies feature pooling by summing them over height and

width dimensions. In Hybrid-SAM, the keys and values for the cross-attention

block are residual features, i.e., the difference in features at t and t− 1.

Dual-SAM. Dual-SAM predicts separate spatial attention maps for both current

Xt and past Xt−1 frame. It compares the spatial attention maps of the current and

past frames and identifies the region that is most relevant to the observed motion

changes. If the spatial attention maps are very similar, SAM infers that there

is no substantial change between consecutive frames and encodes these minimal
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differences in the output vector zt ∈ R3k. Conversely, if there is a difference, SAM

incorporates this change into the output vector zt. This SAM variant is inspired

by Park et al. [216] in the change captioning task and is shown in Figure-6.3a. The

Dual-SAM algorithm is provided in Algorithm 1. σ denotes the sigmoid function,

and ⊙ is an element-wise dot product.

Algorithm 1 Dual-Spatial Attention Module (Dual-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·k

1: X ′
t−1 = [Xt−1;Xt −Xt−1]

X ′
t = [Xt;Xt −Xt−1] ∈ Rh×w×2·k

2: At−1 = σ(conv(ReLU(conv(X ′
t−1))))

At = σ(conv(ReLU(conv(X ′
t)))) ∈ Rh×w×1

3: vt−1 =
∑

h,w At−1 ⊙Xt−1

vt =
∑

h,w At ⊙Xt ∈ Rk

4: zt = [vt−1;vt − vt−1;vt] ∈ R3·k

5: return zt

Cross-SAM. Unlike Dual-SAM, this variant utilizes cross-attention from trans-

former models [224] to encapsulate dense correlation between each pair of image

patches in the past and current frames. This allows Cross-SAM to identify multiple

changes between two frames, as opposed to Dual-SAM, which can only capture a

single change. Practically, detecting multiple changes and subsequently filtering

out irrelevant distractors is more useful for video gaze estimation tasks. Similar to

the Dual-SAM, this variant utilizes both RGB and transformed motion signals at
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the output. Qiu et al. [217] motivates the design of Cross-SAM and is shown in

the Figure-6.3b. Algorithm 2 describes the Cross-SAM module.

Algorithm 2 Cross-Spatial Attention Module (Cross-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·d

1: Xt−1 = flat(conv(Xt−1) + 1h,w ⊙ P2d)

Xt = flat(conv(Xt) + 1h,w ⊙ P2d) ∈ Rh·w×d

2: Xt−1 = crossatten(Xt−1, Xt, Xt)

Xt = crossatten(Xt, Xt−1, Xt−1) ∈ Rh·w×d

3: vt−1 =
∑

h,w unflat(Xt−1, h× w)

vt =
∑

h,w unflat(Xt, h× w) ∈ Rd

4: zt = [vt−1;vt − vt−1;vt] ∈ R3·d

5: return zt

Hybrid-SAM. The Hybrid-SAM combines the strengths of both Dual-SAM

and Cross-SAM variants. Dual-SAM focuses on one local change, while Cross-

SAM focuses on global context and captures multiple changes. Similar to Cross-

SAM, Hybrid-SAM encapsulates multiple changes by applying a cross-attention

mechanism using global context through position embeddings. However, unlike

the Cross-SAM variant, it uses the difference between current and past frames as a

key and value, emphasizing regions with the most significant motion differences.
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Algorithm 3 Hybrid-Spatial Attention Module (Hybrid-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·d

1: Xt−1 = flat(conv(Xt−1) + 1h,w ⊙ P2d)

Xt = flat(conv(Xt) + 1h,w ⊙ P2d) ∈ Rh·w×d

2: Xdiff = Xt −Xt−1

3: Xt−1 = crossatten(Xt−1, Xdiff, Xdiff)

Xt = crossatten(Xt, Xdiff, Xdiff) ∈ Rh·w×d

4: Xt−1 = unflat(Xt−1, h× w)

Xt = unflat(Xt, h× w) ∈ Rh×w×d

5: X ′
t−1 = [Xt−1;Xt −Xt−1]

X ′
t = [Xt;Xt −Xt−1] ∈ Rh×w×2·d

6: At−1 = σ(conv(ReLU(conv(X ′
t−1))))

At = σ(conv(ReLU(conv(X ′
t)))) ∈ Rh×w×1

7: vt−1 =
∑

h,w At−1 ⊙Xt−1

vt =
∑

h,w At ⊙Xt ∈ Rd

8: zt = [vt−1;vt − vt−1;vt] ∈ R3·d

9: return zt

The Dual-SAM is utilized as a pooling operator to selectively focus on the most

relevant changes, like eye or head movements, which are crucial for the task of gaze

estimation. The Hybrid-SAM is given in the Algorithm 3. The input is features of

the past frame Xt−1 the and current frame Xt, respectively. Both input features are

projected to the higher-dimensional feature maps using the convolution operation,

and 2-D position embeddings P2d ∈ Rh×w are added (Line 1). Line 2 computes

difference features Xdiff for the video’s tth frame, and cross-attention is applied in
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Line 3. Lines 5-8 correspond to the same operations as in Dual-SAM. 1h,w is a

one-hot vector spanning the spatial dimensions.

6.2.2 Temporal Sequence Model (TSM)

The temporal sequence model subsumes spatially enhanced representations zt

produced by the SAM module and is intended to capture the temporal dynamics

of the eye movements in the video. In particular, we consider two variants for

TSM: recurrent neural networks (RNN) [225], and transformer network [224]. The

RNN consists of unidirectional LSTM layers [226], and the transformer variant is

a causal transformer decoder, which is prevalent in generative language modeling,

such as the GPT-2 model [227].

We incorporate learned temporal position embeddings to enable the transformer

model to discern temporal relationships within the input feature sequence. These

embeddings are uniquely associated with each position, providing the model with

explicit information about the relative ordering of elements within the sequence.

The embedded features are then passed through multiple layers, each consisting

of masked multi-head attention, LayerNorm (LN), and a Multi-Layer Perceptron

(MLP) as shown in Figure 6.4. Masked multi-head attention allows the transformer

model to attend to only past frame features. The output of the TSM is a feature

sequence passed through an LN layer, similar to the GPT-2 model [227].
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LayerNorm

Add

Add

MLP
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Figure 6.4: Block diagram of single transformer layer used in the temporal sequence

model of the STAGE method. MLP is a Multi-Perceptron layer, and we use L

blocks stacked together in the TSM.

6.2.3 Gaze Prediction Layer and Training Objective

The gaze prediction layer is shared across all timestamps and uses an MLP

to predict the gaze direction from the frame embeddings generated by the TSM

module. For ith sample and tth frame, let {gi
t} and {ĝi

t} denote the sequences of

true and predicted gaze directions, respectively. Similarly, {pi
t} and {p̂i

t} represent

the sequences of true and predicted 2D Point-of-Gaze (PoG). We use the following

objective function for training STAGE parameters (similar to Park et al. [89]):

Lfinal =
1

b · n

b∑
i=1

n−1∑
t=0

180

π
arccos

(
gi
t
T
ĝi
t

|gi
t| · |ĝi

t|

)
+ λ · ||pi

t − p̂i
t|| (6.1)
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Here, λ is the weight parameter that controls the trade-off between 3D gaze angular

error and 2D PoG mean absolute error. The second term is applied exclusively to

datasets that have available ground-truth PoG.

6.2.4 Personalizing STAGE using Gaussian Processes

As previously mentioned, we propose person-specific Gaussian processes for

modeling bias correction terms for each user, which operates on top of the

proposed (person-agnostic) STAGE model. Specifically, if f : V 7→ G is the

STAGE model, then the final prediction for person p is f̂p(V ) = f(V ) + rp(V ),

where rp is GP-based bias correction model for the person p, i.e., it pre-

dicts the residual in addition to the model-agnostic prediction. rp models

the components of gaze direction (i.e., yaw and pitch) independently at the

frame level, using two one-dimensional independent GPs. Concretely, rp(V ) =

[(rp,θ(V1), rp,ϕ(V1)), (rp,θ(V2), rp,ϕ(V2)), · · · , (rp,θ(Vn), rp,ϕ(Vn))], where rp,θ and rp,ϕ

are the one-dimensional GP predictions for pitch and yaw components, respectively.

For GP hyper-parameter tuning and inference, we collect a set of training

frames D = {hi, yi}ℓi=1 that are available for person p, where hi ∈ Rd are the

flattened ResNet output features from the STAGE model, and yi is either pitch or

yaw of residual gaze angle, i.e., gi− ĝi, where, gi and ĝi are true gaze direction and

STAGE’s predicted direction, respectively. To represent the dataset D in matrix
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format, we let y ∈ Rℓ be the vector of residual angles, where the ith entry equal to

yi, and H ∈ Rℓ×d have its ith row equal to the ResNet features hi. For brevity, we

omit the person index p from henceforth discussion on GPs.

A Gaussian process associated with kernel (covariance) function k(h,h′) :

Rd ×Rd → R is a distribution over functions that maps features to residual angles

such that, for any h1, . . . ,hℓ ∈ Rd:

r = [r(h1), ..., r(hℓ)] ∼ N (µ0, KH), (6.2)

where KH = [k(hi,hj)]
ℓ
i,j=1 ∈ Rℓ×ℓ is the kernel (covariance) matrix on the data

points H, and r has a constant mean function with its value set to µ0. The observed

residual angle yi is modeled as the i.i.d. Gaussian noise, i.e., yi ∼ N (r(hi), σ
2I).

In particular, we use the (squared-exponential) automatic-relevance-determination

(ARD) kernel, given as k(h,h′) = τ · e−
∑d

s=1

(
h(s)−h

′
(s)

)2

θ(s)2 , where τ and θ ∈ Rd are

kernel hyper-parameters. The ARD kernel’s per-dimension scaling, being more

expressive than the RBF kernel’s use of a single length-scale, often leads to superior

practical performance [228]. Intuitively, this flexibility allows the model to adapt to

varying feature relevance and noise levels, potentially leading to improved accuracy

and generalization [229]. Upon conditioning the GP model on the collected training
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dataset, the predictive posterior mean and covariance functions are as follows:

mean: µr|D(h) = kT
h(KH + σ2I)−1y

variance: σr|D(h) = k(h,h)− kT
h(KH + σ2I)−1kh

where the vector kh ∈ Rℓ has ith entry k(h,hi), i.e., kernel value between any

feature vector h and ith data point. The posterior mean function predicts the

residual gaze angles and is utilized for correction. The posterior covariance function

determines the uncertainty in this prediction, as illustrated in Figure 6.8.

Optimizing GP hyper-parameters using very few samples. GPs are

non-parametric models and thus do not require tuning many parameters [220].

However, they still necessitate optimizing hyperparameters, which in our case are

µ0, σ, τ , and θ, totaling d+ 3 hyperparameters as |θ| = d. The ARD kernel adds

flexibility to the GP model but also increases the number of hyperparameters

to be tuned. Specifically, since d = 16384 when using features from the ResNet

model, directly tuning hyperparameters using the log-likelihood of data D is prone

to overfitting, particularly when as few as three samples are present in D. To

overcome this challenge, we propose the application of pre-trained GPs, similar

to the concurrent work by Wang et al. [223]. Pre-trained GPs entail the initial

optimization of hyperparameters on data used for training the STAGE model,

coupled with early stopping during optimization to maximize the log-likelihood of
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dataset D for each individual. This approach provides GPs with flexibility through

the use of an expressive ARD kernel and ensures a strong initial position, thanks

to pre-training.

6.3 Experiments

6.3.1 Setup

Datasets. EVE [89] is a large-scale video-based gaze dataset comprising over 12

million frames collected from 54 participants in a controlled indoor setting with

four synchronized and calibrated camera views. Following the splits used by Park

et al. [89], there are 40 subjects in training and 6 subjects in the validation set.

We discard the data from test subjects due to the unavailability of labels and

evaluate our models on the validation set. Gaze360 [88] is a large-scale, physically

unconstrained gaze dataset collected from 238 subjects with a wide range of head

poses. It has 129K training images, 17K validation images, and 26K test images.

We evaluate our models on all three subsets of the dataset: the full Gaze360

dataset, the front 180◦ subset, and the front 20◦ subset, as done by Kellnhofer

et al. [88]. EyeDiap [2] consists of 94 videos totaling 237 minutes, collected from

16 subjects in a laboratory environment. The EyeDiap dataset includes videos for

both screen and floating targets and we select VGA videos of screen targets.
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Implementation Details. The input video sequence V consists of 30 frames

containing a full-face image of 128× 128 pixels. We use ResNet-18 [230] initialized

with GazeCLR [231] weights shared between all timestamps to extract visual

features from the image sequence. The third convolutional layer block of ResNet-

18 outputs features with a dimension of 256×8×8. We pass these features through

the SAM module, followed by TSM and gaze prediction layers. We train STAGE

end-to-end for 50K iterations using the SGD optimizer with an initial learning

rate of 0.016 and momentum of 0.9. The learning rate is decayed using cosine

annealing [195], and the batch size is set to 16.

The Dual-SAM consists of two convolutional layers with kernel size 1 and

output feature maps of 64 and 1, respectively. The first convolutional layer has

a group normalization layer [232] applied to the output features, followed by a

dropout layer with p = 0.5. In Cross-SAM and Hybrid-SAM, we project the

incoming features to higher channels through a convolution layer with d = 512 and

a kernel size 1. After adding 2D positional embeddings to the projected feature

maps, they go through the cross-attention encoder, which consists of four heads

and two layers with an embedding size of 64.

The TSM model has two variants: an LSTM variant and a transformer variant.

The LSTM variant consists of one unidirectional LSTM layer with a hidden

dimension of 128. The transformer variant is based on GPT-2 [227] network with
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6-heads and 6-layers, operating on a dimension of d = 128, and initialized randomly.

The gaze prediction layer consists of two fully connected (FC) layers. The first FC

layer has a SeLU activation function and a hidden dimension of the same size as

the input dimension. The second FC layer outputs the 2D gaze direction angles,

pitch, and yaw.

Our STAGE model is implemented in PyTorch [233]. We set λ = 0.001

for cross-data and λ = 0 for within-data evaluations. For GP hyper-parameter

optimization, we use Adam optimizer with a learning rate of 0.001, implemented

using GPytorch [234].

6.4 Results

In Section 6.4.1, we provide visual examples of attention maps superimposed on

video frames, illustrating the qualitative impact of the SAM block in improving the

overall performance of the STAGE. In addition to qualitative assessment, we provide

quantitative evaluation of the SAM and TSM variants in two experimental settings:

within-dataset (in Section 6.4.2) and cross-dataset (in Section 6.4.3). The primary

objective of these experiments is to evaluate the effectiveness of incorporating

a SAM block prior to the temporal sequence model in enhancing video gaze

estimation accuracy. In Section 6.4.4, we also benchmark our proposed method

against current leading methods in video gaze estimation for a within-dataset
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setting. Both qualitative and quantitative evaluation of GP-based personalization

on EyeDiap participants is provided in Section 6.4.5. We discuss an ablation study

on the number of SAM blocks in Section 6.4.6.

Baselines. We benchmarked our framework against EyeNet [89], which consists

of ResNet-18 and RNN layers and uses both eye image patches as input. We

adopted EyeNet to our setting and trained it on full-face images using Lfinal with

λ = 0.001. We also train another variant of EyeNet by replacing the RNN module

with a TSM similar to that used in our framework. For a fair comparison, we also

implement EyeNet with our version of ResNet-18 initialized with GazeCLR [231]

weights and call it EyeNet (GazeCLR). Further, we adapt the work of Chang

et al. [235] for gaze estimation, which introduces motion-aware-unit (MAU) for

the video-prediction task. We also compare with a simple baseline by removing

the SAM modules and concatenating Xt and Xdiff = (Xt −Xt−1) before passing

through TSM, termed Concat-Residual. Finally, we compare the three variants of

SAM modules combined with two variants of TSM for cross-dataset and within-

dataset experiments. For the sake of completion, we also evaluate the Hybrid-SAM

method without the Dual-SAM module at the output, named as Hybrid-SAM†.
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(a) Background person running (b) Face movement (c) Expression change (d) Expression change

Figure 6.5: Illustration of attention maps At−1 and At, generated by the Hybrid-

SAM, superimposed on sequential video frames Vt−1 and Vt. The SAM module

proficiently highlights the ocular area, key for analyzing eye movements, while

simultaneously diminishing irrelevant distractions such as background motion (a),

tongue movement (b), and changes in emotional expressions (c and d).

6.4.1 Qualitative Evaluation

We conducted a qualitative analysis primarily centered on assessing the Hybrid-

SAM ability to distinguish between gaze-irrelevant distractors and gaze-relevant eye

movements, which is crucial for video gaze estimation, as stated earlier. Specifically,

we examined attention maps At−1 and At, strategically overlaid on sequential

video frames Vt−1 and Vt, as depicted in Figure 6.5. We analyzed several frames

showcasing scenarios from background activities to facial movements, all concurrent

with dominant eye movements.

In Figure 6.5(a), the network adeptly focuses on eye movements in frame Vt (red

pixels) and prior frame changes (blue pixels) despite significant background pixel

shifts from a walking person. This underscores the effectiveness of spatial attention

in filtering out irrelevant distractors to accurately identify subtle eye movements

and gaze direction. As a result, it eases the process of temporal modeling in video
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gaze estimation. Additionally, as illustrated in Figure 6.5(b), although tongue

movement presents a potential distraction, it is efficiently disregarded. Moreover,

changes in facial expressions, depicted in Figure 6.5(c, d), are effectively overlooked

by the Hybrid-SAM. These qualitative findings affirm that the spatio-temporal

attention strategy adeptly minimizes significant distractions, particularly in the

eye region, which is essential for accurately tracking gaze and eye movements in

video gaze estimation tasks.

6.4.2 Within-dataset Evaluation

In the within-dataset experiments, we train and evaluate our model on the same

domain dataset. Table 6.1 shows results for the within-dataset evaluation. We train

our framework on the training subset of Gaze360 with λ = 0 and evaluate it over

three test subsets as done in Kellnhofer et al. [88]. Our model demonstrates superior

performance compared to the baseline models, including ‘Concat-Residual’, across

all three subsets. Specifically, it achieves absolute improvements of 2.5◦, 2.2◦ and

2.5◦ on full Gaze360, front 180◦ and front 20◦ subsets, respectively. Furthermore,

it is noteworthy that Hybrid-SAM performs better in comparison to Hybrid-SAM†,

illustrating the advantage of incorporating Dual-SAM as the pooling operator.
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Method Full 180◦ Front 20◦

EyeNet [89](GazeCLR) 12.53 12.08 9.45

EyeNet + Tx 13.00 12.55 9.73

Concat-Residual + LSTM 10.35 10.16 7.45

Concat-Residual + Tx 12.22 11.78 9.09

Dual-SAM + LSTM 10.12 9.92 7.08

Dual-SAM + Tx 10.13 9.93 7.23

Cross-SAM + LSTM 12.00 11.59 9.51

Cross-SAM + Tx 10.12 9.91 7.34

Hybrid-SAM† + LSTM 12.69 12.26 9.66

Hybrid-SAM† + Tx 12.33 11.90 9.53

Hybrid-SAM + LSTM 10.05 9.84 6.92

Hybrid-SAM + Tx 10.10 9.90 7.33

Table 6.1: Within-dataset Evaluation. Comparison of mean angular errors (in

degrees) between the proposed STAGE model, SAM and TSM variants, and other

baseline approaches. Full, 180◦ and 20◦ are subsets of the Gaze360 dataset. Tx is

the transformer TSM model. The first and second best results are bold-ed and

underlined, respectively.

6.4.3 Cross-dataset Evaluation

We performed a cross-dataset evaluation, where the model was trained on

the EVE dataset and evaluated on two different domain datasets, EyeDiap and

Gaze360. Table 6.2 shows the comparison of mean angular errors (MAE) for the

baselines and our proposed method. We observed a significant improvement in both
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Method EyeDiap Full 180◦

MAU 21.30 34.18 33.57

EyeNet [89] 16.07 31.37 30.77

EyeNet (GazeCLR) 7.74 26.57 25.95

EyeNet + Tx 8.40 26.25 25.64

Concat-Residual+ LSTM 7.12 24.12 23.52

Concat-Residual+ Tx 7.27 24.26 23.64

Dual-SAM + LSTM 7.04 24.18 23.58

Dual-SAM + Tx 6.77 23.99 23.38

Cross-SAM + LSTM 8.42 23.19 22.61

Cross-SAM + Tx 8.75 22.57 22.01

Hybrid-SAM† + LSTM 8.48 23.31 22.72

Hybrid-SAM† + Tx 7.79 22.66 22.09

Hybrid-SAM + LSTM 6.70 23.73 23.13

Hybrid-SAM + Tx 6.54 23.77 23.17

Table 6.2: Cross-dataset Evaluation. Comparison of mean angular error (in

degrees) between the proposed STAGE model, SAM and TSM variants, and other

baseline approaches. Full and 180◦ are subsets of the Gaze360 dataset. Tx is the

transformer TSM model. For each column, the first best result is bold-ed, and

second best result is underlined.

datasets even with a simple concatenation of Xt and Xdiff, i.e., Concat-Residual

approach outperforms EyeNet variants and MAU approach, which demonstrates

that residual frames are an effective cue for video-gaze estimation.
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The Dual-SAM and Cross-SAM variants show improvements over the Concat-

Residual approach, indicating that the adapted methods are more accurate than

naively using residual frames. Notably, the Hybrid-SAM approach improves over

baselines by 1.2◦ in absolute and 14.28% in relative, on the EyeDiap dataset.

It also outperformed the other Dual-SAM and Cross-SAM variants on all three

evaluation sets. The last two columns of Table 6.2 show results on the full and

front 180◦ Gaze360 subsets, which are similar to the subsets used in Kellnhofer

et al. [88]. The Hybrid-SAM approach improved up to 3.6◦ on both subsets, further

emphasizing the effectiveness of the SAM module. It is also worth noting that

the performance improvements for the SAM variants hold for both LSTM and

transformer-based TSM in both Tables 6.1 and 6.2. This shows that the SAM is

helpful irrespective of the choice of the TSM model.

6.4.4 Comparison with State-of-the-art Methods

Table 6.3 compares the proposed STAGE method with state-of-the-art ap-

proaches for a within-dataset setting. Video-based gaze estimation methods such

as the original work of Gaze360 [88] and MSA+Seq [236] employ the LSTM model

and learn through the Pinball loss function. We also compare our proposed gaze

estimation approach with image-based methods such as L2CS-Net [238], both

variants of GazeTR [239], and self-supervised learning-based method SwAT [237].
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Method Full 180◦ Front 20◦

Gaze360 [88] 13.50 11.40 11.10

MSA+Seq [236] 12.50 10.70 -

SwAT [237] 11.60 - -

L2CS-Net [238] - 10.41 9.02

GazeTR-Pure [239] - 13.58 -

GazeTR-Hybrid [239] - 10.62 -

Hybrid-SAM + LSTM 10.05 9.84 6.92

Hybrid-SAM + Tx 10.10 9.90 7.33

Table 6.3: STAGE vs. State-of-the-art. Comparison with state-of-the-art meth-

ods on Gaze360 data subsets under the within-dataset setting (Tx = transformer-

based TSM). The metric is the mean angular error (in degrees). The first and

second best results are bold-ed and underlined, respectively.

We report the performance of these methods from the original work and show a

comparison with our method. Our best results outperform these methods by 1.5◦,

0.5◦ and 2.1◦ on full Gaze360, front 180◦ and front 20◦, respectively. The superior

performance of our method demonstrates the effectiveness of SAM and our choice

for other components of the overall STAGE model.

6.4.5 Evaluating STAGE with GP Personalization

As stated earlier, we first optimize the hyper-parameters of the GP model rp

for residual gaze direction prediction using the training subset of the EVE dataset.
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(a) Comparison of Dual-SAM + Tx (b) Comparison of Hybrid-SAM + Tx

Figure 6.6: The figure shows the comparison of ℓ-shot GP personalization on the

STAGE model with Chen and Shi [5] for the EyeDiap dataset. The bars indicate

the mean angular error (in degrees) and standard error over 10 iterations. The

Proposed GPs consistently outperform the baseline for both SAM variants and

achieve the best results when used in conjunction with Chen and Shi [5].

Then, we adapt rp for personalization on the EyeDiap participants. We randomly

sample ℓ video frames for each participant 10 times and report the performance in

Figure 6.6. We perform GP personalization on two SAM variants: Dual-SAM and

Hybrid-SAM, using a transformer TSM model. The baseline method proposed

by Chen and Shi [5], involves learning a single person-specific bias during training

and utilizing a few labeled samples to predict bias during inference.

We obtain an absolute improvement of around 0.8◦ with the Hybrid-SAM over

the baseline with as few as 3 samples. Applying GPs with the baseline objective,

i.e., “Chen et al . + GPs”, we see consistent improvements over both GPs and the

method proposed by Chen and Shi [5]. These results demonstrate that GPs’ are a
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Figure 6.7: Comparison of Mean Angular Error (in degrees) of gaze components

(yaw or pitch) with increasing fraction of test samples sorted with respect to the

uncertainty of GP predictions. Plots exhibit that GPs are more accurate when the

prediction is relatively more confident (with less variance).

valuable tool and provide complementary strengths to Chen and Shi [5]. Unlike

Chen and Shi [5], GPs do not require altering the objective for training the deep

network. They can be utilized for adaptation with any pre-trained existing model,

such as STAGE.

For assessing the effectiveness of the GP model’s uncertainty, we provide both

qualitative and quantitative analysis of gaze predictions, as illustrated in Figures

6.7 and 6.8. Our evaluation begins with an analysis of the GP’s posterior variance

diagonal. We arrange this in ascending order and then apply different uncertainty

thresholds to it. For each selected threshold, we compute the MAE on test samples
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that exhibit uncertainty levels below the threshold. This procedure is repeated

across a range of different thresholds to evaluate performance. Figure 6.7 presents

a comparison of the MAE for yaw and pitch against increasing fractions of test

data samples. These samples are sorted according to the uncertainty in the GP

prediction. This analysis demonstrates that GPs tend to deliver more accurate

results when their variance is lower, signifying greater confidence in the predictions.

Therefore, the uncertainty measure in the GP model can act as an effective indicator

to avoid making inaccurate predictions.

We then examine the qualitative results depicted in Figure 6.8, which showcase

the differences between confident and uncertain gaze predictions after personaliza-

tion using the EyeDiap dataset. Notably, the uncertainty region typically includes

the ground truth, as illustrated by the pink arrows within the green area. It

is crucial to note that gaze predictions with higher uncertainty often align with

situations that are challenging for human interpretation like extreme head poses

or closed eyes.

6.4.6 Ablation Study

In the ablation study, we study the impact of adding multiple SAM blocks in

the STAGE model, where the output of one SAM goes as input to the next. The

ablation study on the number of Dual- and Hybrid-SAM blocks (four blocks vs.
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(a) Examples of certain predictions

(b) Examples of uncertain predictions

Figure 6.8: The figure depicts a few (a) certain and (b) uncertain predictions for

gaze directions after GP’s personalization on the EyeDiap dataset. The blue and

pink arrows show ground truth and predicted gaze directions, respectively. The

green-colored region offers uncertainty of the predictions in the pink arrows.

one block) for within-data and cross-data settings are shown in Tables 6.4(a) and

(b), respectively. We observe no significant improvements over a single block of

SAM, indicating that one SAM block is enough to provide spatial motion cues

between consecutive frame features and improve performance.
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Method Full 180◦ 20◦

Dual-SAM(1-block)+Tx 10.13 9.93 7.23

Hybrid-SAM(1-block)+Tx 10.10 9.90 7.33

Dual-SAM(4-blocks)+Tx 12.13 11.68 9.33

Hybrid-SAM(4-blocks)+Tx 10.25 10.08 7.27

(a) Within-dataset evaluation

Method EyeDiap Full 180◦

Dual-SAM(1-blocks)+Tx 6.77 23.99 23.38

Hybrid-SAM(1-blocks)+Tx 6.54 23.77 23.17

Dual-SAM(4-blocks)+Tx 7.27 23.34 22.74

Hybrid-SAM(4-blocks)+Tx 7.55 23.52 22.91

(b) Cross-dataset evaluation

Table 6.4: Ablation Study: Comparison of different numbers of SAM blocks

employed in our STAGE method. Tx is transformer-based TSM, and training is

performed for within-data and cross-data settings in (a) and (b), respectively. The

metric reported is mean angular errors (in degrees).

6.5 Summary

This chapter presents a novel video gaze estimation method called STAGE that

uses a deep learning network to encode spatial motion and temporal dynamics. The

method uses a spatial attention module to implicitly focus on the frame difference

between consecutive frames and highlight relevant changes. We show that the

performance of the proposed STAGE model can be further improved using a few

labeled samples with Gaussian processes. In the future, extending the receptive

field of attention modules and fusing the long-term spatial and temporal dynamics

would be interesting.
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Chapter 7

Conclusion and future directions

Gaze has intriguing properties and plays a key role in revealing user’s intentions

and areas of interest, thus enabling the advancement of intelligent interactive

systems. Traditional model-based and feature-based approaches [37] are capable

of delivering high precision; however, they require specialized hardware, such as

high-resolution cameras and external infrared light sources, to detect eye features.

In contrast, appearance-based gaze estimation methods learn to map directly from

raw pixel images to gaze direction, enabling them to function with low-resolution

images taken by webcams [30, 240]. Numerous learning-based approaches employ

deep learning techniques and, therefore, require a large amount of labeled training

data to achieve good performance in gaze direction estimation. For these reasons,

significant progress has been made in cross-domain and few-shot gaze estimation.

In this thesis, we focused on bridging the gap between the need for labeled

data and the performance of gaze estimation across both image and video inputs

captured via webcams. Our initial contribution involves introducing methods for

efficiently acquiring annotated gaze datasets for appearance-based approaches.
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We proposed utilizing commercial trackers and calibrating them with webcams

to gather annotations in the camera’s reference frame, which is required to train

neural networks. Furthermore, we developed a generative network to create an

augmented gaze-labeled dataset by manipulating the gaze direction in the generated

images. This augmented dataset was then employed to boost gaze estimation

performance. In our second contribution, we focused on improving representation

learning to enhance gaze estimation performance. We introduced a self-supervised

framework, referred to as GazeCLR, designed to learn gaze representations from

unlabeled multi-view images. These representations are subsequently utilized to

enhance the accuracy of cross-domain, few-shot, personalized gaze estimation.

Furthermore, we developed a spatio-temporal model, named STAGE, designed

to learn representations for video inputs. This model employs attention modules

to detect local spatial variations and understand global temporal dynamics. We

personalize this model by learning an additive bias model through Gaussian

processes.

In this chapter, we further discuss the contributions of this thesis (Section 7.1)

and provide a brief overview of the promising future research directions for gaze

estimation related to work presented in the thesis (Section 7.2).
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7.1 Thesis Contributions

The contributions of this thesis are outlined on a chapter-by-chapter basis in

the subsequent paragraphs.

In Chapter 3, we introduced a simpler and faster approach to calibrating

commercial infrared-based gaze trackers with cameras embedded in laptops. While

commercial trackers supply the necessary and precise annotations, such as gaze

origin crucial for gaze estimation tasks, these annotations are typically defined in

the tracker’s reference frame. Consequently, previous data collection methods [89]

overlook these labels due to the absence of tracker-camera calibration and instead

depend on 3D face models to determine the gaze origin’s location. Our proposed

calibration algorithm facilitates the expression of all quantities in the camera’s

reference frame, accelerating the collection of gaze-labeled data to enhance the

performance of appearance-based gaze estimation methods. In our approach,

we instruct users to look directly at the camera across various head poses and

distances, ensuring they remain within the tracker’s permissible range. We then

apply a pupil detection algorithm to the images, creating pairs of 3D gaze origin

(in the tracker frame) and 2D pupil center (in the image plane). These paired data

points are processed through a Perspective-n-Point (PnP) algorithm to determine

the rotation and translation between the camera and the tracker. Our empirical

analysis shows that our method yields more accurate ground-truth gaze directions
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compared to those derived from 3D face models.

In Chapter 4, we introduced an unsupervised domain adaptation framework,

named CUDA-GHR, designed for controlling gaze and head pose in generated

images without altering the person’s appearance. This framework effectively dis-

entangles factors like gaze, appearance, and head pose, learning to individually

manipulate these elements in the output image. The framework is trained with

supervision from the source domain and then adapted to an unlabeled target

domain. Our experimental findings indicate that our framework produces more

photo-realistic images while accurately redirecting gaze and head pose. We also

demonstrate how the dataset generated by this framework contributes to improv-

ing the accuracy of gaze and head pose estimation performance. However, like

any method that enables photo-realistic image generation, there is a possibility

of malicious use, including the creation of deepfakes. It is important to note

that our method has limitations when it comes to extreme gaze and head pose

directions. These limitations are primarily due to the constraints posed by the

label distributions in publicly available gaze datasets, and addressing this issue

remains an open challenge.

In Chapter 5, we explore self-supervised learning to achieve improved represen-

tations for gaze estimation tasks. By using contrastive learning, we form positive

and negative pairs from unlabeled multi-view camera images. We then leverage
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the geometric consistency across these camera views to instill equivariance and

invariance within the learned gaze representations. Before being put into the CNN

encoder, the images underwent various augmentations. Subsequently, two-branch

MLP networks were employed: one to induce invariance and the other to promote

equivariance. These representations were then empirically evaluated across differ-

ent domain datasets for the task of person-specific few-shot gaze estimation. Our

method demonstrated enhanced performance in nearly all the proposed settings

across various datasets and achieved better results compared to the state-of-the-art

methods.

In Chapter 6, we introduced STAGE, a model designed to learn spatio-temporal

attention for the task of video gaze estimation. STAGE incorporates two distinct

attention modules: spatial and temporal attention. The spatial attention module,

inspired by the change captioning task, is designed to detect local pixel changes

between consecutive frames. Meanwhile, the temporal attention module aims to

grasp the global dynamics of eye movements by analyzing past frames to predict

the gaze direction of the current frame. We enhanced STAGE by personalizing it

with Gaussian processes, learning an additive model to predict biases for the yaw

and pitch angles of each frame. Additionally, it provides an uncertainty estimate

for each frame’s prediction, enabling the development of error-aware applications

and the avoidance of frames with erroneous predictions.
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7.2 Future Directions

In this section, we outline potential future directions to expand the work

discussed in this thesis.

Truly self-supervised gaze estimation. Chapter 5 introduced a contrastive

learning strategy for acquiring gaze representations via self-supervision. This

approach is predicated on the assumption that the multi-view geometry is prede-

termined and the camera poses for all cameras are readily accessible. Consequently,

while this method delivers satisfactory performance in both within-data and cross-

data scenarios, the gaze representations it learns could be sensitive to variations in

camera poses. An interesting future direction is to explore the special orthogonal

group of dimension 3, SO(3), to learn the rotation matrices between cameras. In

a static camera setup, the relative rotations between cameras remain constant,

and therefore, these rotations could be learned as part of the contrastive learn-

ing process such that R ∈ SO(3). The properties of rotation matrices, such as

RRT = I and det(R) = 1, could be incorporated into the overall training objective.

Incorporating these constraints within the self-supervised learning model could

significantly broaden the scope and yield a more robust gaze representation that is

not affected by a particular multi-view camera setup.
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Infusing self-supervision in videos. Self-supervised learning has shown re-

markable performance using large-scale image datasets. The representations learned

through this approach have surpassed those obtained via supervised learning in

downstream tasks like gaze estimation [237]. Our exploration of contrastive learn-

ing for developing image-based gaze representations using multi-view image data

has yielded promising results. Consequently, this self-supervised approach emerges

as a viable solution for video datasets, effectively capturing eye movement dynamics

without relying heavily on annotated gaze data. The field of video representation

learning, through self-supervision, has been extensively explored across various

video computer vision tasks [241]. Investigating self-supervision in conjunction

with minimal supervision from video labeled gaze data can significantly improve

the incorporation of eye movement knowledge into the learned representations.

Sparse video gaze estimation. Chapter 6 introduced a video gaze estimation

technique that utilizes spatial attention to detect pixel changes between the current

and past frames. These variations are quantified as ‘change features,’ indicating

the level of change between two frames. These features act as a basis for identifying

frames without significant changes from their preceding ones, thereby enabling the

replication of the previous frame’s gaze prediction for the current frame, rather

than computing a new prediction. This approach can significantly boost the speed

and reduce the computational load for real-time gaze estimation tasks.
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