UC San Diego
UC San Diego Previously Published Works

Title
Tailor: Altering Skip Connections for Resource-Efficient Inference.

Permalink
bttps://escholarship.orq/uc/item/74h2q4skl

Authors

Weng, Olivia
Marcano, Gabriel
Loncar, Vladimir

Publication Date
2024-03-01

Copyright Information

This work is made available under the terms of a Creative Commons
Attribution License, available at
@s://creativecommons.orq/licenses/bv/4.0/{

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/74h2q4sk
https://escholarship.org/uc/item/74h2q4sk#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

L))

2 TAILOR: Altering Skip Connections for Resource-Efficient
Inference

OLIVIA WENG and GABRIEL MARCANO, University of California San Diego, USA
VLADIMIR LONCAR, Massachusetts Institute of Technology, USA

ALIREZA KHODAMORADI, AMD, USA

ABARAJITHAN G, NOJAN SHEYBANI, ANDRES MEZA, and

FARINAZ KOUSHANFAR, University of California San Diego, USA

KRISTOF DENOLF, AMD, USA

JAVIER MAURICIO DUARTE and RYAN KASTNER, University of California San Diego, USA

Deep neural networks use skip connections to improve training convergence. However, these skip connec-
tions are costly in hardware, requiring extra buffers and increasing on- and off-chip memory utilization and
bandwidth requirements. In this article, we show that skip connections can be optimized for hardware when
tackled with a hardware-software codesign approach. We argue that while a network’s skip connections are
needed for the network to learn, they can later be removed or shortened to provide a more hardware-efficient
implementation with minimal to no accuracy loss. We introduce TAILOR, a codesign tool whose hardware-
aware training algorithm gradually removes or shortens a fully trained network’s skip connections to lower
the hardware cost. TAILOR improves resource utilization by up to 34% for block random access memories
(BRAMs), 13% for flip-flops (FFs), and 16% for look-up tables (LUTs) for on-chip, dataflow-style architectures.
TAILOR increases performance by 30% and reduces memory bandwidth by 45% for a two-dimensional process-
ing element array architecture.

CCS Concepts: « Hardware — Hardware-software codesign; - Computer systems organization — Neu-
ral networks;

Additional Key Words and Phrases: Hardware-software co-design, neural networks

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under
grant no. DGE-2038238. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation. This work was also partially
supported by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research
under the Real-time Data Reduction Codesign at the Extreme Edge for Science Project (grant no. DE-FOA-0002501). JD was
also supported by the DOE Office of Science, Office of High Energy Physics Early Career Research Program under grant
no. DE-SC0021187 and the National Science Foundation (NSF) under grant no. 2117997 (https://a3d3.ai).

Authors’ addresses: O. Weng, G. Marcano, Abarajithan G, N. Sheybani, A. Meza, F. Koushanfar, J. M. Duarte, and
R. Kastner, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; e-mails: oweng@ucsd.edu,
gmarcano@ucsd.edu, agnaneswaran@ucsd.edu, nsheyban@ucsd.edu, anmeza@ucsd.edu, farinaz@ucsd.edu, jd-
uarte@physics.ucsd.edu, kastner@ucsd.edu; V. Loncar, Massachusetts Institute of Technology, 77 Massachusetts Ave,
Cambridge, MA 02139, USA; e-mail: vladimir.loncar@cern.ch; A. Khodamoradi and K. Denolf, Advanced Micro Devices
Inc., 2485 Augustine Dr, Santa Clara, CA 95054, USA; e-mails: alireza. khodamoradi@amd.com, kristof.denolf@amd.com.

. BY
This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1936-7406/2024/01-ART11
https://doi.org/10.1145/3624990

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

https://orcid.org/0000-0003-1213-421X
https://orcid.org/0000-0002-4804-7305
https://orcid.org/0000-0003-3651-0232
https://orcid.org/0000-0001-8811-2258
https://orcid.org/0000-0001-9768-5349
https://orcid.org/0000-0002-4329-0197
https://orcid.org/0000-0002-4283-0833
https://orcid.org/0000-0003-0798-3794
https://orcid.org/0000-0002-2087-865X
https://orcid.org/0000-0002-5076-7096
https://orcid.org/0000-0001-9062-5570
https://a3d3.ai
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624990
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624990&domain=pdf&date_stamp=2024-01-27

11:2 O. Weng et al.

ACM Reference format:

Olivia Weng, Gabriel Marcano, Vladimir Loncar, Alireza Khodamoradi, Abarajithan G, Nojan Sheybani, An-
dres Meza, Farinaz Koushanfar, Kristof Denolf, Javier Mauricio Duarte, and Ryan Kastner. 2024. TA1LOR: Al-
tering Skip Connections for Resource-Efficient Inference. ACM Trans. Reconfig. Technol. Syst. 17, 1, Article 11
(January 2024), 23 pages.

https://doi.org/lo‘l145/3624990

1 INTRODUCTION

Convolutional neural networks (CNNs) often rely on skip connections—identity functions that
combine the outputs of different layers—to improve training convergence [17, 45]. Skip connec-
tions help mitigate the vanishing gradient problem [4, 15] that occurs when training large CNNs,
which helps increase the network’s accuracy. Skip connections allow NNs to have fewer filter-
s/weights than architectures that lack skip connections [17], such as VGG [43].

However, skip connections are generally detrimental to hardware efficiency. They have an ir-
regular design that is ill-suited for hardware acceleration. This is due to their long lifetimes, which
span several NN layers, increasing memory utilization and bandwidth requirements. This is par-
ticularly true in ResNets [17], which introduced skip connections that spanned across five layers:
two convolutions, two batch normalizations (BNs), and a ReLU activation [16, 34] (Figure 1(a)).
The skip connection involves minimal computation—it is either the identity or a 1 X 1 convolu-
tional layer for scaling—but it extends the necessary lifespan of the input data. Thus, we must
store skip connection data for the duration of time needed to compute the five NN layers. In total,
a model’s skip connection data accounts for ~10% of its memory bandwidth either on or off chip.
Buffering skip connections on chip increases on-chip memory utilization, whereas moving them
off chip not only increases off-chip memory bandwidth but also requires extra control logic for
scheduling [29, 30].

Optimizing skip connections requires careful hardware-software codesign. Skip connections are
crucial for model convergence; naively removing them to reduce hardware resources leads to low
accuracy [32, 50]. Instead, we must codesign how the model is (1) trained and (2) implemented in
hardware to achieve a model that is both accurate and resource efficient.

We develop TAILOR, a codesign method that gradually alters an NN’s skip connections during
training to produce a highly accurate and resource-efficient NN. Our results in Section 4 show that
TAILOR can remove or shorten skip connections to achieve topologically regular NNs (Figure 1(b)
and 1(c)) that substantially reduce hardware resources, reduce memory bandwidth, and increase
performance with minimal to no accuracy loss.

TAILOR takes an existing pre-trained model and reduces the hardware complexity of its skip
connections with minimal to no accuracy loss. Moreover, TAILOR exploits the flexiblity of the field-
programmable gate array (FPGA) architecture to customize the skip connection memories, which
is not possible on a graphics processing unit (GPU) or central processing unit (CPU). TAILOR accom-
plishes this dynamically during retraining in one of two ways: (1) SKIPREMOVER removes the skip
connections altogether (Figure 1(c)) to eliminate all associated hardware complications or (2) Sk1p-
SHORTENER shortens each skip connection by splitting it into multiple shorter ones (Figure 1(b)).

We evaluate TAILOR’s applicability and benefit on ResNets [17, 18] and QuartzNets [23]—two
important classes of NNs that contain skip connections of varying lengths. We also study imple-
menting skip connections with an on-chip, dataflow-style FPGA architecture using hls4ml [2, 12]
and a two-dimensional (2D) array of multiply-accumulate processing elements. TAILOR reduces re-
source utilization of hls4ml architectures by up to 34% for block random access memories (BRAMs),
13% for flip-flops (FFs), and 16% for look-up tables (LUTs). TAILOR increases the performance of
two-dimensional (2D) array architecture by 30% and reduces memory bandwidth by 45%.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

https://doi.org/10.1145/3624990

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:3

—
‘ Conv] ¢
oy v [Conv
BatchNorm
BatcllNorm] RelLU Batcthorm
b4
ReLU D <«—- RelLU
2 I v
QI“’—J Conv] [Conv }
——
[BatchNorm | BatchNorm ¢
v v BatchNorm |
D ReLU v
¥ Y RelLU
RelLU @ <«
v v v
(a) Traditional (b) Shortened (c) None

Fig. 1. Neural networks with traditional skip connections, like ResNet (a), have inefficient hardware imple-
mentations because the skip connection data must be preserved in memory during five layers of computation.
This irregular topology increases memory resources and bandwidth. A more regular topology with reduced
skip connection lifetimes would use fewer resources. TAILOR achieves this by shortening skip connections (b)
or by eliminating them completely (c). Skip connections are in red.

Ta1LoR’s hardware-software codesign approach reduces hardware complexity and resources by
altering skip connections dynamically during retraining. Our contributions are as follows.

e The TArLOR software methodology of removing or shortening skip connections from existing
NNs with minimal to no loss in accuracy

o The TarLoR hardware designs that exploit FPGA-specific architecture optimizations, which
are not possible on a GPU/CPU, to produce less resource-intensive skip connection
implementations

e Experiments demonstrating that SKIPSHORTENER and SKIPREMOVER models are imple-
mented more efficiently with better performance and resource utilization than their tradi-
tional skip connection counterparts

e Public release of the Tailor hardware-software codesign framework [1]

In Section 2, we review related work. In Section 3, we explain how TarLor’s NN alterations op-
timize the hardware architecture. We then describe TAILOR’S two training methods, SKIPREMOVER
and SKIPSHORTENER, that alter skip connections with little to no loss in accuracy. Section 4 pro-
vides training, quantization, and hardware results for SKIPREMOVER and SKIPSHORTENER. Sec-
tion 5 discusses the tradeoffs TAILOR presents between accuracy and hardware resource reductions.
Section 6 concludes the paper.

2 BACKGROUND

2.1 Removing Skip Connections

While skip connection removal has been studied before [8, 25, 32, 50, 51], prior work is lacking
in several ways: (1) preliminary work [32, 50, 51] only studies shallow models (up to 34 layers);
(2) Li et al. [25] do not remove all of the skip connections in the models they evaluate; (3) Ding
et al. [8] and Li et al. [25] both have limited architectural evaluations (e.g., GPU and mobile) that
do not consider the highly customized skip connection memories enabled by FPGAs; and (4) Ding
et al. [8] require starting with an entirely new NN topology whose skip connections are removable.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:4 O. Weng et al.

Monti et al. [32] start with a standard ResNet and introduce a new training method. This method
uses an objective function that penalizes the skip connections and phases them out by the end of
the training. This technique has only been applied to smaller ResNets (18 to 34 layers) with a small
decrease in accuracy between 0.5% and 3%.

Zagoruyko and Komodakis [50] also develop a method for removing skip connections in an NN.
They replace skip connections with Dirac parameterization, creating a new NN called DiracNet.
The Dirac parameterization is shown in Equation (1),

DiracNet [50]: y = o(x + Wx) (1)
ResNet [17]:y = x + c(Wx), (2)

where o(-) is the nonlinear activation function, W is the layer weight matrix, x is the layer in-
put, and y is the layer output. For ease of comparison with ResNets, Equation (2) is simplified
to show only one convolutional layer. In fact, skip connections in ResNets hop over more than
one convolutional layer, whereas in DiracNets, the identity mapping is over one single convolu-
tional layer. Therefore, the weights and the identity mapping of the input can be folded because
x + Wx = (I + W)x. This change requires DiracNets to widen the NN layers in the ResNets that
they started with. The authors showed that their technique could be used to create models with
up to 34 layers. Although it works for shallower models, DiracNets show a decrease in accuracy
between 0.5% and 1.5% compared with ResNets. In contrast, SKIPREMOVER eliminates skip connec-
tions without widening the layers in the NN and does not need to make this accuracy trade-off.

Li et al. [25] develop residual distillation (RD), which is a modified knowledge distillation frame-
work. RD starts with a ResNet as the teacher and a plain CNN without skip connections as the
student. Unlike standard knowledge distillation, RD passes the teacher’s gradients to the student
during training. This differs from TaiLor because RD starts with a student model without skip
connections, whereas TAILOR gradually modifies a model’s skip connections every few epochs
during training without sharing gradients. Moreover, while RD removes all skip connections from
models evaluated on simpler datasets such as CIFAR-10 and CIFAR-100 [24], it fails to remove all
skip connections in its ImageNet evaluation, leaving 18% of them in the network, which is a costly
choice. In our ImageNet evaluation (see Section 4.1), our SKIPREMOVER method removes all skip
connections with minimal accuracy loss.

Ding et al. [8] introduce a new model architecture RepVGG, which trains using 3 X 3 convolu-
tional layers that are each skipped over by both a 1 X 1 convolution and an identity connection.
At inference time, these connections can be re-parameterized into the parameters of the 3 X 3
convolutional layers. While RepVGG is more accurate than our SKIPREMOVER model, it requires
starting from their specialized training model architecture. This is costly to developers who have
already trained a model with skip connections on their dataset. Similarly, transferring a pre-trained
RepVGG model to a new dataset via transfer learning can be time-consuming given the many dif-
ferent methods [36, 47, 52] to evaluate. As such, TAILOR is ideal for these developers because it
modifies the skip connections of an existing pre-trained model to be more resource efficient with
minimal to no accuracy loss. Developers can leverage the training they have already done and
need not start from scratch with a brand new RepVGG architecture.

2.2 Simplifying Skip Connection Hardware

ShuffleNet [28], DiracDeltaNet [48], and DenseNet [20] simplify skip connections by making them
concatenative, i.e., they concatenate, rather than add, the skip connection data to the output of a
layer. Concatenative skip connections take advantage of the fact that spatially consecutive memory
accesses are typically faster than random accesses. This concatenation and off-chip data movement
is possible using a simple controller (e.g., DMA engine).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:5

TAILOR uses two techniques to simplify the skip connection hardware. SKIPREMOVER eliminates
all logic and memory needed for a skip connection, making them less expensive than concate-
native skip connections. Careful retraining allows skip connection removal in smaller networks
with no degradation in accuracy. For larger networks, SKIPSHORTENER shortens the additive skip
connections. By reducing their lifespans, the hardware implementation requires fewer resources.
SKIPSHORTENER is not necessarily simpler than ShuffleNet [28] or DiracDeltaNet [48]. However,
these concatenative skip connections have only been evaluated on image classification and object
detection tasks. In our work, we demonstrate our SKIPREMOVER and SKIPSHORTENER methods on
multifarious NNs and classification tasks, namely, image-classifying ResNets of varying depths,
DNA-basecalling QuartzNet-5 X 5, and automatic-speech-recognizing QuartzNet-10 X 5. With re-
spect to DenseNet [20], SKIPSHORTENER ResNets use much less memory and bandwidth because
DenseNet relies on significantly more skip connections throughout its NN. Given an NN with L
layers, DenseNet needs the memory and bandwidth to execute L(L + 1)/2 concatenative skip con-
nections compared with SKIPSHORTENER ResNets’ mere L skip connections. With so many more
skip connections, DenseNet is more expensive for hardware than SKIPSHORTENER ResNets.

Finally, all these techniques simplify skip connection hardware from the outset, building their
models with modified skip connections and then training them from scratch. TarLor differs be-
cause its hardware-aware training method dynamically alters the skip connections every few
epochs during training, taking advantage of what the NN has learned with skip connections. Thus,
Ta1Lor allows the NN to gradually adapt to shortened skip connections (SKIPSHORTENER) or none
at all (SKIPREMOVER).

3 TAILOR

Skip connections are important for training (to provide good accuracy), yet complicate imple-
mentation (requiring additional hardware resources and reducing performance). TATLOR modifies
skip connections to make their hardware implementation more efficient. TAILOR uses a retraining
method that gradually alters the network, resulting in little to no loss in accuracy.

3.1 Hardware Design

Figure 2 shows three hardware implementations for NNs with traditional, shortened, and no-skip
connections. The implementations correspond to accelerators produced by hls4ml—a tool that
translates Python models into high-level synthesis code [11]. hls4ml creates a separate datapath
for each layer and performs task-level pipelining across the layers. The layers communicate using
first-in first-out buffers (FIFOs; AXI streams). Everything encapsulated by a dashed line resides
in one pipeline stage. The inputs are fed into the architecture using a stream, and the results are
given as an output stream. The weights are all stored on-chip, and all the internal results are
stored on-chip. We evaluate each of these designs on FPGA later in Section 4.2 along with another
style of architecture using a 2D array of processing elements. TAILOR allows us to trade off be-
tween accuracy, performance, and resource usage through co-design of the neural network using
hardware-aware training.

Figure 2(a) shows the hardware needed to implement a single ResNet’s skip connection. Note
that in all of the designs shown in Figure 2, we fuse the batch normalization parameters with the
kernel, as is commonly done [21]. To be low latency and high throughput, the design uses task-
level pipelining (i.e., the HLS dataflow pragma) for each NN layer, or a small grouping of layers,
and streams the data between each dataflow stage using FIFOs. Since FIFOs can only be read from
once, skip connections complicate the design. We must spend a dataflow stage on cloning the
skip connection data from its input FIFO into two other FIFOs so that it can be read twice for
its two datapaths. The first path goes through a collection of convolutional and ReLU layers, and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:6 O. Weng et al.

"7 \= dataflow stage
E = register SKIP FIFO

P - CONV ﬁ CONV

|——>INPUT—>‘MAC |—>INPUT—> MAC‘
FIFO . FIFO s

FIFO

KERNEL-> ‘MAC KERNEL—> MAC‘

CONV e

_r»INPUT—b 1MAC‘
FIFO 5
g

MAC

J—r INPUT! J—>INPUT —
FIFO FIFO [MAC|
.

KERNEL*iMAc‘ KERNEL—> KERNEL >
v
[RELU CONV [ReLy CONV [reLy
(b) No skip connection architecture (c) Shortened skip architecture

Fig. 2. The hls4ml hardware architectures for traditional, shortened, and no-skip connections. hls4ml
pipelines each layer, as is common for latency-critical tasks in resource-constrained environments [2, 12].
The three architectures correspond to a ResNet implemented with a traditional skip connection (a), no skip
connections (b), and shortened connections (c). Note that we combine the batch normalization parameters
with the kernel, as is commonly done [21].

the second stores the data in a FIFO exclusive to skip connections (skip FIFO). Once the data has
gone through the first path, we read from the skip FIFO to perform the addition to complete the
skip connection’s identity function. As such, implementing a skip connection on chip requires
several extra FIFOs for handling the skip connection data. This, in turn, increases on-chip memory
resource utilization.

Ideally, we would eliminate the skip connections. As seen in Figure 2(b), without skip connec-
tions, we cut the number of dataflow stages in half (no more Clone, Add, or ReLU stages) and use
less than half of the requisite FIFOs compared with Figure 2(a). All we need to do is pass the data
through the convolutional and ReLU layers. This reduces resource utilization by up to 16% (see
Section 4.2).

It may not be possible to remove the skip connections because they are essential for training
convergence. In these cases, shortening the skip connections can simplify their hardware imple-
mentation. Figure 2(c) shows a modified network with shortened skip connections such that each
skip connection’s lifespan resides within a single dataflow stage. We do not need additional dataflow
stages to clone skip connection data. The shorter lifespans allow the shortened skip connections
to be stored in shift registers, which can be implemented using the more abundant FFs as opposed
to BRAMs, which are used in the traditional skip connection’s hardware design. In this way, we
exploit the short skip connections’ lifetimes and use simpler, more efficient hardware memories to
implement them (see Section 4.2). As such, we achieve a similar architecture to the version with-
out skip connections (Figure 2(b)), and similarly reduce resources spent on additional dataflow
stages and FIFOs in Figure 2(a). SKIPSHORTENER is thus more resource efficient than the traditional
skip connection design. In fact, SKIPSHORTENER provides a trade-off between the SKIPREMOVER
and traditional designs because it uses more resources than SKIPREMOVER but less than the tradi-
tional one (see Section 4.2). However, as we later show in Section 4.1, SKIPSHORTENER maintains

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:7

(a)

ARM Core (PS) FPGA Fabric (PL)

Weights Rotator
(veighs) ®

AXI DMA
(Pixel input)

PE Array (7x96)
AXI DMA T
(Output)

Fig.3. (a) A Reconfigurable DNN Architecture synthesized on a ZCU102 FPGA development board. The archi-
tecture has a 2D array of processing elements that are iteratively programmed to compute layer operations.
The controller runtime programs the DMA engines to load off-chip inputs and weights and store the inter-
mediate and final results off-chip. (b) The processing elements (PEs) are a multiply-accumulate datapath.

Off chip DDR

(0]
£
S

C

=}
o

=
K]
©
£

c

S
O

Pixel shifter

accuracy in cases in which SKIPREMOVER accuracy drops off. Thus, SKIPSHORTENER allows for
design space exploration to balance accuracy and resource usage.

When used with hls4ml, Ta1LoR reduces resource consumption without changing the perfor-
mance. This is a consequence of hls4ml’s dataflow design; the resources we remove are not on the
critical path—they are operating in parallel to the critical path. A dataflow design uses task-level
pipelining; thus, reducing the resources spent on stages not on the critical path does not help or
hurt overall throughput. Based on our Vivado co-simulation results, the clone stage executes in
microseconds whereas the convolutional layer executes in milliseconds, an order of magnitude
difference. Therefore, removing the clone buffer (Figure 2(b)) or implementing it more efficiently
(Figure 2(c)) will not affect the overall dataflow latency because its latency is an order of magnitude
less than the convolution’s latency. This means that TAILOR’s resource reductions do not increase
or decrease latency or throughput for this architecture style, as later shown in Table 7.

Another prevalent style of FPGA CNN architecture instantiates a 2D processing element (PE)
array and iteratively programs the convolutions and other operations onto that PE array. We call
this style of computation a Reconfigurable DNN Architecture. Figure 3 provides an example archi-
tecture used in our experiments. We build this architecture using DeepSoCFlow.! Following the
taxonomy described in [22], the reconfigurable DNN architecture is a 2D array of processing el-
ements that optimally perform standard convolution and matrix multiplication with high data
reuse. The dataflow is primarily output stationary while prioritizing maximal weight reuse and
also reusing inputs to an extent. The engine performs fixed-point computations, where the input,
weight, and output bit widths are adjustable as synthesis parameters, along with the number of
rows and columns of processing elements. The weights rotator prefetches the weights of the next
iteration into one block of on-chip memory while the other bank delivers weights, rotating them
hundreds of times for maximal data reuse. The Pixel Shifter shifts perform vertical convolution.

Thttps://github.com/abarajithan11/deepsocflow

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

https://github.com/abarajithan11/deepsocflow

11:8 O. Weng et al.

Partial sums are shifted to the PE on the right to compute horizontal convolution. The results
are streamed out through the output direct memory access (DMA) to the off-chip memory. The
runtime controller would perform the residual addition, quantization, and activation on the pro-
cessing system side while the engine computes the next iteration. Our implementation uses the
ARM processor available in the Zynq chip. FPGAs without processors could instantiate a softcore
processor to perform the controller runtime operations.

The TA1LOR optimizations have different effects on the Reconfigurable DNN architecture as com-
pared to hls4ml architecture. The Reconfigurable DNN architecture computes skip connections by
loading input data from off-chip memory and performing the required operations upon it (addition,
convolution). Thus, unlike in hls4ml, removing a skip connection does not change the architecture;
instead, it changes how computations are mapped to that architecture. Skip connection removal
eliminates the need to fetch the skip connection data and perform the associated convolution and
addition operations. This increases the overall performance, as we describe in Section 4.

3.2 Hardware-Aware Training

It is difficult to modify an NN’s skip connections without reducing accuracy. Naively removing
all skip connections before or after training an NN is detrimental to its accuracy. Instead, TAILOR
consists of two training algorithms, SKIPREMOVER and SKIPSHORTENER, that gradually alter an NN’s
skip connections on the fly—removing or shortening them every few epochs—in order to make
them resource efficient. Gradually altering the model during training tempers the performance
drop of removing or shortening the skip connections, yielding minimal to no loss in accuracy as
well as significant advantages in the hardware implementation, as described above.

TAILOR’s iterative learning approach fine-tunes the altered NNs using a compression method
known as knowledge distillation (KD) [19]. KD distills the knowledge of a larger, more complex
NN (the teacher) into a smaller, simpler NN (the student). While the student model is training, it
compares its output with the teacher model’s output and thus learns from the teacher to perform
better. KD provides impressive results for compressing NNs for various applications [31, 41, 44].
In traditional KD, the teacher model is already trained and the student model is trained to match
the teacher’s behavior by replicating its output. The student achieves this by training with a loss
function:

L= (1 - ﬁ)g(& S) + ﬁ?‘((t, S)’ (3)

where G and H are distance functions, s and t are student and teacher output vectors, respectively,
{ is the correct label vector, and f is a tunable parameter [19].

With this idea in mind, both SKIPREMOVER and SKIPSHORTENER start with two identical pre-
trained NNs with traditional skip connections, where one serves as the teacher and the other
serves as the student. During the retraining stage, SKIPREMOVER removes a given skip connection
every few epochs. SKIPSHORTENER takes a similar iterative approach and, every few epochs, splits
a given skip connection into multiple shorter ones. The skip connections are removed or shortened
starting from the first skip connection encountered in the NN (from the input) to the last.

Figure 4 visualizes both SKIPREMOVER’s (Figure 4(a)) and SKIPSHORTENER’s (Figure 4(b)) train-
ing algorithms for a ResNet-style NN. During training, we remove (SKIPREMOVER) or shorten
(SkIPSHORTENER) one of the student’s skip connections every « epochs. If n is divisible by « (as in
Figure 4), then at epoch n, the student has had n/a skip connections altered, and we are viewing
the next two skip connections to be modified in the student model: the (n/«) + 1st and (n/a) + 2nd.
At epoch n + a, the (n/a) + 1st skip connection is altered (removed under SKIPREMOVER or split
into two shorter skip connections under SKIPSHORTENER). The NN then trains for a epochs so that
the student model can improve its weights given the latest model topology. Afterwards, at epoch

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:9

_ﬂﬂl an UM W‘*fﬂl‘” W‘*W‘”
e [(00 -ﬂﬂ;@»w
— (0 O @W@

Epoch: n+a n+2a

?

(b) SKIPSHORTENER

Fig. 4. Three iterations in the SkiPREMOVER and SKIPSHORTENER algorithms as applied to a ResNet. In this
example, skip connections are altered every @ epochs and a|n. Each pill block represents a set of convolutional,
BN, and ReLU layers; the skip connections are in red. L is the KD loss function defined in Equation (3). Only
the student model is used for inference.

n + 2a, the (n/a) + 2nd skip connection is similarly altered. During the entire skip modification
retraining process, the student uses the KD loss function £ defined in Equation (3) to learn from
the teacher and the true labels. The teacher’s model topology and weights remain fixed during
training. Once all skip connections have been altered, the student model continues training under
KD for the remaining number of training epochs as defined by the user. Only the student model is
used for inference.

TAILOR is novel because it dynamically transforms skip connections every few epochs during
training. This is an instance of hardware-aware training because the skip connections are slowly
altered specifically to reduce hardware resources, as previously discussed in Section 3.1. The grad-
ual skip connection alterations allow the NN to take advantage of what it has learned with skip
connections so that it can dynamically adapt to shortened skip connections (SKIPSHORTENER) or
none at all (SKkiPREMOVER). Algorithm 1 describes TAILOR’s hardware-aware training process.

4 RESULTS
We evaluate TAILOR on two popular kinds of NNs that rely on skip connections: ResNets [17] and

QuartzNets [23]. We study the effects of TAILOR on model accuracy, quantization, and hardware
resource utilization.

4.1 Training Results

To evaluate how TArLoR affects an NN’s accuracy, we train ResNets and QuartzNets of varying
depths using our SKIPREMOVER and SKIPSHORTENER algorithms in PyTorch [39]. The ResNets
range from 20 to 110 layers and are trained on the CIFAR-10 [24], CIFAR-100 [24], and SVHN [35]
datasets. We also evaluate ResNet50, which has a different skip connection topology than stan-
dard ResNets, on the ImageNet dataset [7]. The QuartzNets span between 29 and 54 layers. Their

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:10 O. Weng et al.

ALGORITHM 1: HARDWARE-AWARE TRAINING
1 set alter // REMOVE or SHORTEN
2 let @ = how often to modify a skip connection

@

teacher = pre-trained model
4 student = pre-trained model

(5

let current-skip = student’s first skip connection from the input side

o

let current-layers = all layers skipped by current-skip
Function SkipRemover (current-skip):

// see Figure 4(a)

8 remove current-skip

=

9 return student model’s next skip connection from the input side
10 Function SkipShortener (current-skip, current-layers):
// see Figure 4(b)

11 Split current-skip into len(current-layers) skip connections

12 current-skip = student model’s next skip connection from the input side
13 current-layers = student’s next layers skipped by the new current-skip
14 return current-skip, current-layers

15 for i in epochs do
16 if i #0andi mod a = 0 then

17 if alter == REMOVE then

18 | current-skip = SkipRemover (current-skip)

19 else if alter == SHORTEN then

20 ‘ current-skip, current-layers = SkipShortener (current-skip, current-layers)
21 end

22 train student using Equation (3)

23 end

24 save the student model

structure is determined by the number and lifetimes of their skip connections. For instance, a
QuartzNet-10 X 5 has 10 skip connections that each have a lifetime of 5 sets of layers. We train
a QuartzNet-5 X 5 on the Oxford Nanopore Reads dataset [42], a DNA basecalling task. We also
train a QuartzNet-10 X 5 on the LibriSpeech dataset [37], an automatic speech recognition (ASR)
task, which converts speech audio to text. ASR tasks are assessed using word error rate (WER),
which measures the percent of words that the model predicted incorrectly. In all of our ResNet
and QuartzNet-10 X 5 training experiments, we set « = 3 in Algorithm 1 so that skip connections
are removed or shortened every three epochs. For QuartzNet-5 X 5, we set @ = 1 instead because it
trains better this way. For the ResNets, we set G and H in Equation (3) to categorical cross entropy
and mean-squared error, respectively, and set = 0.35. For the QuartzNets, we set Equation (3)’s
parameters similarly, except for G, which we set to connectionist temporal classification loss, which
is used to train difficult tasks involving sequence alignment (like DNA basecalling and ASR). Note
that in our training results, “Baseline” refers to the unmodified NN counterpart with conventional
skip connections.

Figure 5 shows that SKIPREMOVER works well for ResNet-44 and smaller, at times even out-
performing its baseline (traditional skip connection model). However, its accuracy drops as the
number of layers increases. This indicates that shallower NNs do not need skip connections for
these classification tasks, but they become more necessary for deeper networks. SKIPSHORTENER
mostly outperforms the baseline on all three datasets, even on deep models.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference

11:11

94 77.5 P 97.50| —=— Baseline
. __75.01 " Sk!pRemover - o ztﬁp::m:ver
§ 92 o\° --«- SkipShortener § 97.25 ipShortener
- g 72.5 >97.00
% % 70.0 @
5 90 5 5 96.75
8 —e— Baseline 8 67.5 8
< - SkipRemover < <L 96.50 .
88 --=- SkipShortener 65.0 "o 96.25] &
8 20 32 44 56 110 20 32 44 56 110 20 32 44 56 110
ResNet Depth ResNet Depth ResNet Depth
(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Fig. 5. Top-1 accuracy of SKIPREMOVER and SKIPSHORTENER ResNets of increasing depth on various datasets.
“Baseline” refers to an unmodified ResNet with conventional skip connections.

= 80

s

o

© 60

—

5 90

S —e— From scratch] S —e— From scratch

<C 407 e KD only < g9 = KD only
--+-- SkipRemover 88 --+-- SkipShortener
8 20 32 44 56 110 8 20 32 44 56 110

ResNet Depth

ResNet Depth

(a) Skip-less models (b) Shortened-skip models

Fig. 6. Accuracy results for ResNets whose skip connections are all altered before training (apart from
SkIPREMOVER and SkiPSHORTENER) on CIFAR-10. “From scratch” means training with randomly initialized
weights without KD. “KD only” means training without dynamic skip alterations.

4.1.1 Ablation Studies. We also perform ablation studies in which we remove key parts of
TaiLor to understand why they are critical to minimizing accuracy loss. One key part of
SkIPREMOVER/SKIPSHORTENER is the dynamic skip connection removal/shortening that occurs ev-
ery few epochs during training under KD. We thus take away this dynamic model alteration by
first altering the NNs to have either no skip connections or shortened skip connections. These pre-
modified NNs are then trained under KD only. Another key part of SKIPREMOVER and SKIPSHORT-
ENER is KD. We evaluate how skip-less and shortened-skip NNs perform without KD, training from
randomly initialized weights (i.e., from scratch).

For ResNets trained on CIFAR-10, SKIPREMOVER and SKIPSHORTENER usually yield better results
than either normal training or using KD-only on a statically pre-modified network on CIFAR-
10 per Figures 6(a) and 6(b). The difference between all of the approaches in the figures is mini-
mal for smaller models, but it becomes more apparent as NN depth increases. For instance, skip-
less ResNet-110 under regular training yields an accuracy of 26.02% versus SKIPREMOVER, which
achieves an accuracy of 90.68%, a 64.66% difference. SKIPREMOVER marginally outperforms regular
training and KD-only on smaller skip-less models, but performs much better in comparison as the
networks deepen. SKIPSHORTENER also generally performs better than the other two approaches
for shortened skip models. Regular training mostly lags behind both KD and SKIPSHORTENER for
shortened skip models.

For ResNet-50 on ImageNet, we only apply SKIPREMOVER because it uses an irregular skip con-
nection architecture known as a “bottleneck block” to reduce the number of parameters [17]. This
block has a skip connection spanning three layers: a 1 X 1 convolution, then a 3 X 3 convolution,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:12 O. Weng et al.

Table 1. Top-1 Accuracy of ResNet-50 on the
ImageNet Dataset

Model Accuracy (%)
ResNet-50 75.85
No skips (from scratch) 58.36
No skips (KD only) 69.40
Residual distillation (RD)* [25] 76.08
RepVGG-A2 [8] 76.48
SKIPREMOVER 75.36

“RD [25] only removes 82% of the skip connections.

g oo
| 1x1 conv/BN 1x1 conv/BN | 1x1 conv/BN :
y e v e A -
v { 2

RelU | |& ey {5 ---ooooo Yoo e MRS RURIING T qee——csene oo

<

X ! ; e xtlconvB v L_3x3convBN | !
X RelU 2! Re}U 2! e, " v 3x3 conv/BN CoIxa ?’ny/BN
. 118 e v B 1x1 conv/BN RVLU It
| 3x3conviBN | |5 | (M5i3conviBN) 8 3x3convBN | S| c FU > e
e] v g Rerd % 3x3 ; /BN g
1 x X3 conv/
ReLU ReLU = ReLU =1 = : 2
" : - S Y. 2
: 2 % 2 ReLU
| 1x1 conv/BN 1x1 conv/BN | 1x1conv/BN | 2 B
S v ReLU [S
%) T ' N
B Y.
v v v 1x1 conv/BN
ReLU ReLU

% v Y i
[MxtconvBN || [ixtconvBN @ ! ReLU . v
v v : v 3
ReLU REHY : ReCy : e
: : : ReLU
(¢ 3x3 ¢ /BN 3x3 = U : '
| H BN H Rel! - H
3x3 c<lnv/BN) X3 conv : B i S 3x3conv/BN ' |
: v ' Py : ReLU
ReLU ReLU RelU i
v L v ! £ :)
[1x1 conv/BN 1x1 conv/BN ety T covnv/BN i 1x1 conv/BN
‘ v X : B) X
bed G G CEmO G
v
RJ_U ReLU ReLU Ret” iR e
v Lé--- LoV € L eeen Y
a) ResNet-50 block b) TAILOR c) RD [25 d) RepVGG [8
P

Fig. 7. Comparing TAILOR’s ResNet-50 skip removal method with residual distillation (RD) [25] and
RepVGG [8]. The dashed portions are only used during training and are later removed, leaving the final
inference NNs, indicated by bolder lines. Note that TaiLor (b) removes skip connections from a pre-trained
ResNet-50 (a). RD does the same but uses a modified KD method that does not remove the 1 X 1 convolution
addition (c). RepVGG starts training from a different NN topology altogether (d).

then another 1 x 1 convolution (Figure 7(a)). This irregular topology is not optimal for SKIPSHORT-
ENER because it requires the majority of the shortened skip connections to pass through extra
downsampling 1 X 1 convolutions to match the activation tensor shapes, significantly increasing
the number of model parameters. As such, for ResNets with bottleneck blocks, like ResNet-50,
we recommend SKIPREMOVER. As seen in Table 1, SKIPREMOVER incurs a 0.49% accuracy loss com-
pared with the traditional ResNet-50. Compared with prior work, such as RD [25] and RepVGG [8],
SkIPREMOVER has slightly lower accuracy (at most 1.12% accuracy difference).?

Ding et al. [8] introduce RepVGG models of varying depths. We compare against RepVGG-A2 because it is about the same
size as ResNet-50.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:13

Table 2. Top-1 Accuracy of QuartzNet-5 X 5 on the
Oxford Nanopore Reads Dataset

Model Accuracy (%)
QuartzNet-5 X 5 95.107
No skips (from scratch) 94.475
No skips (KD only) 94.863
SKIPREMOVER 95.086
Shortened skips (from scratch) 95.019
Shortened skips (KD only) 95.016
SKIPSHORTENER 94.902

Nevertheless, SKIPREMOVER has two advantages compared with these methods. First,
SkIPREMOVER removes all skip connections from ResNet-50, whereas RD only removes 82% of
them. RD does not remove the 1 X 1 convolution addition used for downsampling (see Figure 7(c)),
which is particularly detrimental. In our experiments on hls4ml architectures, Vivado HLS esti-
mates that ResNet-50’s large 1 X 1 convolution skip connection consumes as many resources as
the layers it skips over, effectively doubling resource consumption for that skip connection block.
Although Vivado HLS has a tendency to overestimate the actual place-and-route (P&R) resource
utilization, these estimates demonstrate that performing the 1 X 1 convolution is a nontrivial task
that significantly affects resource consumption. Second, SKIPREMOVER removes the skip connec-
tions from an existing pre-trained model, whereas RepVGG requires developers to adopt a new
model topology (see Figure 7(d)). If developers do not already have a model on hand, RepVGG is
a better option. However, if developers already have a ResNet trained for their specific dataset, it
is advantageous to use SKIPREMOVER if they can afford a small accuracy loss. This prevents start-
ing from scratch with RepVGG, which could require extensive hyperparameter tuning. Even fine-
tuning a pre-trained RepVGG model to a new dataset using transfer learning is time-consuming, as
it is unclear which of the many methods [36, 47, 52] would work best. Instead, SKIPREMOVER allows
developers to take advantage of their existing work and achieve a more resource-efficient model.

For QuartzNet-5 x 5, the SkIPREMOVER model performs the best—only 0.021% from the baseline
(Table 2). These results all have high accuracy likely because DNA basecalling is an easier sequence
alignment task (only four classes) and the model is more than sufficient. For a harder ASR task such
as LibriSpeech, QuartzNet-10 X 5 fails to converge without skip connections. Since the model must
translate audio samples to text, the audio samples can be noisy, making ASR harder. LibriSpeech, in
fact, divides its test samples into “dev-clean” for clearly spoken samples and “dev-other” for noisy
samples. With such a challenging task, it is not possible to remove the skip connections (like with
DNA basecalling). Nonetheless, QuartzNet-10 X 5 performs well under SKIPSHORTENER, as it is
within 2% of the baseline WER (Table 3). For both QuartzNet-5 X 5 and -10 X 5, the best performing
shortened skip connection model was one whose skip connections were shortened first and then
trained from scratch. While SKIPSHORTENER has minimal accuracy loss for both QuartzNets, we
recommend training a model with shortened skip connections from scratch for this task.

Overall, SKIPREMOVER and SKIPSHORTENER perform better than either training on randomly
initialized weights or training with KD only. For harder tasks such as ASR though, training a
shortened-skip model from scratch is a better choice. Nevertheless, the success of SKIPREMOVER
and SKIPSHORTENER lies in augmenting KD with dynamic skip alterations.

4.2 Hardware Results

We first quantize ResNets ranging from 20 to 56 layers deep to see how TAILOR’s accuracy fares
under reduced precision. We then evaluate TAILOR’s effects on hardware resources and latency by

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:14 O. Weng et al.

Table 3. Word Error Rate (WER) of QuartzNet-10 X 5 on
LibriSpeech Dataset

dev-clean dev-other
Model WER (%) WER (%)
QuartzNet-10 X 5 5.56 16.63
No skips (from scratch) — —
No skips (KD only) — —

SKIPREMOVER — —

Shortened skips (from scratch) 6.40 17.68
Shortened skips (KD only) 7.14 19.95
SKIPSHORTENER 7.86 21.16

This includes clear (“dev-clean”) and noisy (“dev-other”) audio samples.
“—” indicates that the model failed to converge.

<]
o

—e— Traditional 8-bit
—s— SkipRemover 8-bit
—v— SkipShortener 8-bit
--e-- Traditional 4-bit

--s-- SkipRemover 4-bit
--7-- SkipShortener 4-bit

o
o

Accuracy (%)
iy
o

N
o

20 32 44 56
ResNet Depth

Fig. 8. Quantized accuracy results for 8-bit and 4-bit fixed point using Brevitas.

performing a case study on ResNet-20-style skip connections implemented using the hls4ml archi-
tecture, i.e., the designs illustrated in Figure 2. We select this style of skip connection because it is
the fundamental building block of ResNets that range from 20 to 110 layers. In our case study, we
vary the bit precision and number of filters to see how TAILOR scales up. Based on how TAILORs re-
source reductions scale, designers can understand how TAILOR extrapolates to their own hardware
designs. We report latency as well as P&R resource results on the Alveo U200 FPGA accelerator
card (part no. xcu200-fsgd2104-2-e). For end-to-end application results, we evaluate the benefits
of TA1LOR on two different styles of CNN architectures. The first uses the hls4ml tool to generate
architectures. The second is the Reconfigurable DNN Engine—a 2D array of processing elements.
Both styles of architectures are described in Section 3.1.

4.2.1 Quantization. The parameters of a hardware-accelerated NN are typically quantized from
floating-point to fixed-point precision [6, 33, 48].

Quantizing deep NNs with minimal accuracy loss is a largely manual and time-consuming
task [14]. We use Brevitas [38] to quantize our SKIPREMOVER and SKIPSHORTENER ResNets with
depths of 20 to 56 from 32-bit floating-point (float32) to 8-bit and 4-bit fixed-point precision on the
CIFAR-10 dataset. We modified TAILOR’s hardware-aware training algorithm in which the teacher
continues to use floating-point representation whereas the student is quantized. This results in the
student undergoing quantization-aware training. In Figure 8, we find that SKIPSHORTENER ResNets
consistently outperform traditional ResNets under Brevitas quantization-aware training by 0.5%.
SkIPREMOVER ResNets start to suffer from the lack of bits as they get deeper, with accuracy drop-
ping to random classification for ResNet-56. However, Brevitas is only one of dozens of ways to
quantize neural networks [9, 10, 14, 33, 46]; thus, it may be the case that a SKIPREMOVER ResNet-56

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:15

Table 4. Place-and-Route Resource Utilization of a Skip Connection Block as the Number
of Filters Increases for (8, 3) Precision on an Alveo U200

filters LUT FF DSP | BRAM
T R S T R S T/R/S | T/R/S
16 9,984 8,482 9,764 | 8,654 7,841 8916 0 18.5
32 19,566 16,512 18,993 | 16,183 14,506 16,489 0 36.5
64 42,688 36,882 42,121 | 31,124 27,815 31,850 0 82

SkIPREMOVER reduces LUT and FF usage, whereas SKIPSHORTENER trades an increase in FFs for a
decrease in LUTs. T = Traditional, R = SKIPREMOVER, S = SKIPSHORTENER.

requires a different method of quantization to achieve a quantized accuracy similar to its float32
counterpart.

4.2.2 FPGA Evaluation. Our first study looks solely at one ResNet block. The second study
performs an end-to-end implementation of ResNet8 and ResNet50.

For our case study on a ResNet skip connection block (see designs in Figure 2), we evaluate
TAILOR at ap_fixed<8,3> and ap_fixed<16,6> precisions using the hls4ml architecture. Under
both bitwidths, we increase the number of filters for all designs from 16 to 32 to 64. This way, we
can understand how TAILOR scales with the number of filters. We use hls4ml [12] to translate these
hardware designs into Vivado HLS, targeting the Alveo U200 FPGA accelerator card. hls4ml uses
task-level pipelining (i.e., HLS dataflow) for each NN layer or a small group of layers and streams
data between dataflow stages using FIFOs. hls4ml also exposes a knob known as a reuse factor,
which determines how often multipliers are reused in a design. To fairly compare our designs as
the number of filters increases, we fix the reuse factor to 576. We then synthesize our designs to
report P&R resource utilization as well as co-simulation latency results. Lastly, we run the designs
on the U200 to verify correctness.

Under 8-bit precision, we find that both SKIPREMOVER and SKIPSHORTENER reduce resources.
Table 4 summarizes our P&R results. Since our model uses 8-bit precision, we see that all of our
models exhibit low DSP usage and higher LUT and FF utilization. This is because Vivado HLS maps
multiplications on datatypes that are less than 10 bits to LUTs instead of DSPs, as noted by [2, 48].
It is possible to pack two 8-bit weights into a DSP [13], but this is out of scope and orthogonal to
the effects TA1LOR has on hardware. Furthermore, all of the traditional and TAa1LoRr designs use the
same amount of BRAMs with respect to the number of filters because here the BRAMs are used
solely for on-chip weight storage, which does not differ across design. Nonetheless, SKIPREMOVER
decreases LUT usage by up to 16% and FF usage by up to 11% compared with the traditional de-
sign (Figure 10). These resource savings represent the extra hardware needed to implement a skip
connection and subsequently the resources saved. As previously mentioned in Section 3.1, the ex-
tra dataflow stages that carry out a skip connection are no longer necessary. More importantly,
SKIPREMOVER’s savings scale linearly as the number of filters increases from 16 to 64 (Figure 9).
SKIPSHORTENER’s resource reductions present a trade-off, increasing FFs by 2% in exchange for
decreasing LUTs by 3% (Figure 10). SKIPSHORTENER lowers LUT utilization because the lifespan of
each skip connection lasts only one dataflow stage instead of the traditional two. This means we
need not spend extra logic on the dataflow stages needed to copy the skip connections to buffers
that last longer than one stage. However, since the shortened skip connection now fully resides
in a single dataflow stage (previously described in Figure 2(c)), this requires some extra FFs. This
represents the trade-off that SKIPSHORTENER provides at 8-bit precision: some extra FFs for fewer
LUTs. These resource trade-offs also scale linearly as the number of filters scales up, as seen in
Figure 9.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:16 O. Weng et al.

—e— Traditional

~ 31 e SkipRemover / =
& | —— skipShortener R 1.0
£2 z
=)

1. 0.51

20 40 60 20 40 60
Number of filters Number of filters
(a) LUT (b) FF

Fig. 9. Percent resource utilization of an (8, 3) skip connection block at various filter sizes on an Alveo U200.
DSPs and BRAMs remain the same across the three designs; thus, they are not shown. SkiPREMOVER and
SkIPSHORTENER LUT and FF reductions scale linearly, as expected.

1.0
= . . =
€ 0.5{ HEE Traditional & - =
g B SkipRemover g
SkipShortener
0-0-%7% 32 64 0-0-"76 32 64
(a) LUT (b) FF

Fig. 10. Resource utilization normalized to the traditional design of an (8, 3) skip connection block at var-
ious filter sizes. DSPs and BRAMs remain the same across the three designs; thus they are not shown.
SkIPREMOVER and SkiPSHORTENER LUT and FF reductions scale proportionally, as expected.

We find more dramatic resource reductions when we look at our 16-bit designs, as seen in Fig-
ure 12. Table 5 summarizes our P&R results. In contrast with our 8-bit designs, at higher precision,
our designs rely more on DSPs and BRAMs. This time the BRAMs are used not only to store weights
on chip but also to implement the FIFOs that connect the dataflow stages. Therefore, as we tailor the
dataflow stages according to each design (e.g., SKIPREMOVER or SKIPSHORTENER), the BRAMs now
also reflect these changes. At its best, SKIPREMOVER lowers LUTs by 11%, FFs by 13%, and BRAMs
by 13%. Without a skip connection to implement, SKIPREMOVER uses fewer resources than the tra-
ditional design. The DSPs remains unchanged because they are used solely for the convolutional
layers’ multiplications and not the skip connection, which is also the case for SKIPSHORTENER.

Similar to the 8-bit designs, SKIPSHORTENER presents a resource trade-off—this time trading a
small increase in LUTs (at most 1%) for decreases in FFs and BRAMs. In the best case, SKIPSHORT-
ENER reduces LUTs by 1%, FFs by 4%, and BRAMs by 34%. While SKIPSHORTENER uses fewer LUTs
than the traditional case for 32 filters, SKIPSHORTENER pays about a 1% increase in LUTs for 16
and 64 filters in exchange for decreases in FFs and BRAMs. This small disparity is likely an arti-
fact of the heuristics Vivado P&R uses to allocate resources. Again, these resource trade-offs and
savings are possible because the shortened skip connections can be implemented within a single
dataflow stage due to its reduced lifetime. Table 6 shows that the lifetime of each shortened skip
connection is a little less than half the lifetime of the traditional one. With shorter lifetimes, we
find that the SKIPSHORTENER's skip connections’ FIFOs can now be implemented using shift regis-
ters instead of BRAMs, which is what the traditional design still uses (Table 6). Shift registers are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:17

Table 5. Place-and-Route Resource Utilization of a Skip Connection Block as the Number of Filters
Increases for (16, 6) Precision on an Alveo U200

LUT FF DSP BRAM
T R S T R S T/R/S T R S
16 14,733 13,320 14,933 | 17,044 14,935 16,438 12 60.5 525 425
32 28,498 25,330 28,184 | 32,923 28,747 31,764 438 124 108 84,5
64 55,699 50,074 55,720 | 64,564 56,263 62,252 | 192 | 267.5 2355 203.5

SKIPREMOVER reduces resources across the board, whereas SKIPSHORTENER trades an increase in LUTs for a decrease
in FFs and BRAMs. T = Traditional, R = SKIPREMOVER, S = SKIPSHORTENER.

filters

Table 6. FIFO Depths of a Single Skip Connection Hardware Design at
16-bit Precision

Hardware Design FIFO Depth FIFO Implementation
Traditional 69 BRAM
SKIPREMOVER 0 -
SKIPSHORTENER 1st skip 33 Shift Register
SKIPSHORTENER 2nd skip 34 Shift Register

SkIPREMOVER has no skip connections; thus, it has no skip connection FIFOs.

—e— Traditional /
—=— SkipRemover / 10

4
§°, 3l = SkipShortener &\o, 2 &\O,
> = =

5
’ / 1

1
20 40 60 20 40 60 20 40 60
Number of filters Number of filters Number of filters
(a) LUT (b) FF (c) BRAM

Fig. 11. Percent resource utilization of a (16, 6) skip connection block at various filter sizes on an Alveo U200.
SkIPREMOVER and SKIPSHORTENER resource reductions scale linearly, as expected.

much more efficient memories compared with BRAMs. As such, it is advantageous to hardware
designers to consider how SKIPSHORTENER provides the opportunity to implement skip connec-
tions with a more efficient memory architecture such as shift registers. This leads to 30-34% fewer
BRAMs than the traditional design, even as the number of filters scales up. While in this case Sk1p-
SHORTENER uses fewer BRAMs than SKIPREMOVER does, SKIPSHORTENER offsets this difference
by using more FFs than SKIPREMOVER does. For both SKIPREMOVER and SKIPSHORTENER, resource
utilization (and the associated reductions) scale linearly, as seen in Figure 11.

Ta1Lor does not affect latency for hls4ml architectures. As seen in Table 7, for each number
of filters, all designs exhibit the same latency according to co-simulation on an Alveo U200. The
slight decrease in latency as the number of filters scales is due to an increase in DSPs and a higher
degree of parallelism. As discussed in Section 3.1, hls4ml designs pipeline their tasks. The convo-
lutions” multiplication tasks dominate the overall dataflow latency. The tasks that SKIPREMOVER
eliminates and SKIPSHORTENER implements more efficiently — the skip connection cloning and
addition stages — have significantly lower latency than the convolutions and are thus not on the
critical path. Therefore, the throughput remains the same.

By shortening skip connections, we reduce their lifespans, which provides an opportunity
for simplifying their hardware implementation specifically for hls4ml architectures. However,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:18 O. Weng et al.

LUT

1.0 wwmw
T

| - Traditional i
I SkipRemover
SkipShortener

16 32 64 16 32 64 16 32 64
Number of filters

Norm. Util.
o
6]

Fig. 12. Resource utilization normalized to the traditional design of a (16, 6) skip connection block at various
filter sizes. The SkIPREMOVER and SKIPSHORTENER resource savings scale proportionally as the number of
filters scales up.

Table 7. Latency Co-simulation Results of a Skip Connection
Block at (8,3) and (16, 6) Precision

Latency (ms)
filters Traditional/SKIPREMOVER/SKIPSHORTENER
16 23.38
32 23.05
64 22.39

The latencies for the Traditional, SKIPREMOVER, and SKIPSHORTENER
designs are the same for each number of filters because they all rely on
task-level pipelining that reuses multipliers at the same rate (576 X).

Table 8. Normalized Throughput of a ResNet20

Model GPU | CPU | FPGA
Traditional skip connections 1% 1% 1%
SKIPREMOVER 1.11 X | 1.03 X 1Xx
SKIPSHORTENER 0.95 % | 0.98 X 1X

The GPU and CPU both were run with batch size = 64, whereas the
FPGA was run with batch size = 1. Throughput is normalized
column-wise to the top entry. GPU = 1080Ti. CPU = AMD Ryzen 9
5900X. FPGA = Alveo U200. SKIPREMOVER increases GPU and CPU
throughput because it decreases off-chip memory accesses.
SKIPSHORTENER, however, decreases GPU and CPU throughput
because it increases off-chip memory accesses. For a fully on-chip,
dataflowed FPGA architecture, neither SKIPREMOVER nor
SKIPSHORTENER have any effect on throughput.

shortening skip connections is not beneficial for all architectures. As seen in Table 8, shortening
skip connections is worse for both GPUs and CPUs because doing so increases off-chip memory
accesses. These extra accesses lower throughput by 5% on GPUs and 2% on CPUs. On FPGAs with
hls4ml architectures, however, we can modify the architecture to take advantage of shortened skip
connections, reducing resource consumption without negatively affecting throughput (Table 8).

We performed two studies to understand how TAILOR performs for end-to-end implementations
of ResNet models. The first is ResNet8 from MLPerf Tiny, which was designed in hls4ml [3, 5]. The
second is ResNet50, implemented on the Reconfigurable DNN architecture.

The ResNet8 model targets the Alveo U200. It uses 16-bit fixed-point representation with six in-
teger bits. The reuse factor for the layers was hand-tuned to 72, which directly affects the resource
usage and latency of the layers. The reuse factor is one of the more important knobs for design

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference

11:19

Table 9. MLPerf Tiny ResNet8 Model Implemented Using hls4ml with Skip Connection, with Shortened
Skip Connections, and without Skip Connections

With Skip Connections | Shortened Skip Connections | Without Skip Connections
Accuracy (%) 87.39 87.93 87.62
LUTs 158609 165699 144206
FFs 196012 204914 181768
DSP48s 1083 1083 1043
BRAMs 173 158.5 156

Table 10. ResNet50 Performance with and without Skip Connections on the Reconfigurable
DNN Architecture

With Skip Connections | Without Skip Connections
Accuracy (%) 75.85 75.36
Frames per second (FPS) 28.69 37.47
Time per image (s) 0.035 0.027
Latency (s) 0.244 0.187
Memory access per image (Mb) 140.95 92.71

The architecture has 672 processing elements and runs on the ZCU102 development board at 250 MHz.

space exploration in hls4ml and is often hand-tuned to maximize resource usage of the platform
while optimizing the overall network performance.

Table 9 shows the resource usage results for the ResNet8 model with skip connections, with
shortened skip connections, and without skip connections. Removing the skip connections has
clear benefits across all the resources. Shortening the skip connections reduces BRAMs while in-
creasing LUTs and FFs. Both the shortened skip connection and the removed skip connection mod-
els show improved accuracy over traditional skip connections. In all cases, the latency remains the
same, requiring 304,697 cycles running at 100 MHz (approximately 3 ms/inference).

Our second full model case study implemented a Reconfigurable DNN architecture on the
ZCU102 development board, which contains a Zynq UltraScale+ MPSoC. The Reconfigurable DNN
array is configured to have 7 rows X 96 columns for a total of 672 PEs that support 8-bit inputs
and 8-bit weights. Each PE contains a multiplier and an accumulator implemented using DSPs
on FPGA fabric. Input pixels and weights are streamed into the engine as AXI-Stream packets.
Images are processed in batches of 7 to increase the reuse and reduce memory accesses. The Re-
configurable DNN architecture was synthesized, placed and routed at a clock frequency of 250
MHz on a ZCU102. The architecture with 7 X 96 = 672 PEs used 49,057 LUTs (18%), 81,446 flip
flops (15%), 114 BRAMs (13%), and 1344 DSPs (53%) on the FPGA fabric.

We implemented a ResNet50 model with and without skip connections on a 672-element Recon-
figurable DNN architecture running on the ZCU102. Table 10 shows the performance of ResNet50.
Removing the skip connections largely benefits the performance due to the removal of the 1 X 1
convolution blocks. Removing the skip connections also removes those layers, which no longer
need to be scheduled on the PE array. The results are much better performance in terms of all
metrics: approximately 30% increases in frames per second (FPS) and latency and approximately
45% decrease in memory accesses.

5 DISCUSSION

With these results in hand, designers can now consider which accuracy versus resource trade-offs
they are willing to make during the hardware-software codesign process.

SkIPREMOVER provides minimal accuracy loss while reducing resource consumption and increas-
ing performance—a win-win scenario. As seen in Section 4.1, SKIPREMOVER ResNet-50 is only 0.49%

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

11:20 O. Weng et al.

less accurate than the baseline on ImageNet. However, SKIPREMOVER is less effective on deeper
NN (such as QuartzNet-10 X 5 and ResNet-110). In fact, QuartzNet-10 X 5 fails to converge when
trained under SkIPREMOVER. For such deep NN trained on difficult tasks such as ASR, skip connec-
tions are instrumental in training convergence [17]. By removing skip connections, we expect and
see a degradation in accuracy for deeper NNs. This degradation is not as drastic for other tasks. For
instance, ResNet-110 still converges when trained using SKIPREMOVER, but it is 3.72% less accurate
on CIFAR-10 and 9.61% less accurate on CIFAR-100 compared with the original baseline model. We
propose this trade-off between NN size and SKIPREMOVER performance as an additional consider-
ation during design space exploration. In response, SKIPSHORTENER is more suitable for deeper
NNs when SkIPREMOVER is less effective. SKIPSHORTENER maintains accuracy comparable to its
original skip connection models and reduces resource requirements by up to 34% compared with
the traditional skip connection model.

Based on our hls4ml evaluation, designers can extrapolate to their own designs because, as we
have shown in Figure 9 and Figure 11, the resource usage and savings scale linearly as the number
of filters grows. We have also shown that at the higher 16-bit precision, TAILOR provides significant
resource reductions; thus, if designers need more precision, TA1LOR’s savings will follow. If they
need lower 8-bit precision, SKIPREMOVER still manages to lower the 8-bit designs’ LUTs by 16%
and FFs by 11%. Even SKIPSHORTENER decreases LUTs by 3% despite a 2% increase in FFs, though
these smaller resource savings are offset by its overall higher accuracy performance compared
with SKIPREMOVER. As a result, it is up to the designer to consider how to best apply TAILOR’s
codesign methods given their accuracy and resource requirements.

5.1 Theoretical Understanding

Prior work investigated why skip connections are so helpful to ResNets. Veit et al. [45] argue that
ResNets behave like ensembles of smaller subnetworks that vary in depth and allow the NN to
train and converge more easily. Li et al. [26] and Yao et al. [49] show that introducing skip con-
nections makes the NN loss landscape much smoother with less nonconvexity. They show that
naively removing these skip connections causes an explosion of nonconvexity in the loss land-
scape, which makes training significantly more difficult. We confirm these results in our ablation
studies (Section 4.1), as accuracy indeed drops when skip connections are removed naively. With
both KD and SkipRemover, we see an improvement in accuracy. Since the student is trying to
mimic the teacher’s outputs, it is possible that the teacher’s outputs guide the student in such a
way that prevents the loss landscape from becoming less smooth. Theoretical work from Lin and
Jegelka [27] has proven that a ResNet with one-neuron hidden layers is a universal approximator.
This work suggests that adding more neurons to the hidden layers creates an over-parameterized
ResNet. Since stochastic gradient descent performs better in the presence of over-parameterization,
having more neurons per hidden layer increases training efficiency, making it easier to converge.
This work also argues that a ResNet is essentially a sparse version of a fully connected NN because
the identity skip connections create simpler paths within the ResNet, which was similarly posited
by Lin and Jegelka [27]. Given that CNNs and ResNets have both been proven to be universal ap-
proximators [27, 40], this implies that there exists a set of parameters for a CNN that can mimic a
ResNet such that they equal the same function. It is mainly easier to find a well-performing ResNet
because Lin and Jegelka [27] showed that one-neuron hidden layers is sufficient for a ResNet to
be a universal approximator.

5.2 Future Work

In our work, TAILOR has taken removing and shortening skip connections to their extremes: it
either fully removes or fully shortens all the skip connections in an NN. It would be worthwhile

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:21

to understand the accuracy versus resource utilization trade-off under less extreme cases, e.g., re-
moving only half of the skip connections. It would also be interesting to mix SKIPREMOVER and
SKIPSHORTENER to try to recover accuracy in the instances in which SkIPREMOVER fails. These
approaches may help address SKkIPREMOVER’s scalability issues and strike a balance between Sk1p-
SHORTENER's high accuracy and SKIPREMOVER’s resource savings and performance improvements.

6 CONCLUSION

TAILOR introduces two new methods, SKIPREMOVER and SKIPSHORTENER, that alter NNs with skip
connections dynamically during retraining to fit better on hardware, achieving resource-efficient
inference with minimal to no loss in accuracy. With SKIPREMOVER, NNs no longer need to rely
on skip connections for high accuracy during inference. With SKIPSHORTENER, we retrain NNs to
use shorter skip connections with minimal to no loss in accuracy. Shortening skip connections is
beneficial for hardware architectures generated by the hls4ml tool, as it reduces the skip connec-
tion lifetime. We demonstrate FPGA resource consumption reductions of up to 34% for BRAMs,
13% for FFs, and 16% for LUTs. We show that TAI1LOR is also valuable for optimizing 2D PE array
architectures. SKIPREMOVER increases performance by 30% and decreases memory bandwidth by
45%. Designers can decide which accuracy versus resource trade-offs offered by SkIPREMOVER
and SKIPSHORTENER are suitable to their design requirements. As a result, TAILOR is another
tool in the hardware-software codesign toolbox for designers to use when building customized
accelerators.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their valuable comments and helpful suggestions.

REFERENCES

[1] 2023. Tailor. https://github.com/oliviaweng/tailor

[2] Thea Aarrestad et al. 2021. Fast convolutional neural networks on FPGAs with hls4ml. Mach. Learn. Sci. Technol. 2,
4 (2021), 045015. https://doi.org/10.1088/2632-2153/ac0eal. arXiv:2101.05108 [cs.LG].

[3] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David
Kanter, Sebastian Ahmed, Danilo Pau, et al. 2021. MLPerf tiny benchmark. arXiv preprint arXiv:2106.07597 (2021).

[4] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE
Trans. Neural Netw. 5, 2 (March 1994), 157. https://doi.org/10.1109/72.279181

[5] Hendrik Borras et al. 2022. Open-source FPGA-ML codesign for the MLPerf tiny benchmark. In Workshop on Bench-
marking Machine Learning Workloads on Emerging Hardware (MLBench). arXiv:2206.11791 [cs.LG].

[6] Sung-En Chang, Yanyu Li, Mengshu Sun, Runbin Shi, Hayden K-H So, Xuehai Qian, Yanzhi Wang, and Xue Lin.
2021. Mix and match: A novel FPGA-centric deep neural network quantization framework. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 208. https://doi.org/10.1109/HPCA51647.2021.
00027. arXiv:2012.04240

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248. https://doi.org/10.1109/CVPR.2009.
5206848

[8] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. 2021. RepVGG: Making
VGG-style ConvNets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
13733. https://doi.org/10.1109/CVPR46437.2021.01352. arXiv:2101.03697

[9] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. 2020. HAWQ-

V2: Hessian aware trace-weighted quantization of neural networks. 33 (2020), 18518. arXiv:1911.03852. https://

proceedings.neurips.cc/paper/2020/file/d77c¢703536718b95308130ff2e5cf9ee-Paper.pdf

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. 2019. HAWQ: Hessian aware quanti-

zation of neural networks with mixed-precision. In Proceedings of the IEEE/CVF International Conference on Computer

Vision. 293. arXiv:1905.03696

Javier Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for particle physics. 7. Instrum. 13,07 (2018),

P07027. arXiv:1804.06913

[10

[t}

[11

—

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

https://github.com/oliviaweng/tailor
https://doi.org/10.1088/2632-2153/ac0ea1
http://arxiv.org/abs/2101.05108
https://doi.org/10.1109/72.279181
http://arxiv.org/abs/2206.11791
https://doi.org/10.1109/HPCA51647.2021.00027
http://arxiv.org/abs/2012.04240
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR46437.2021.01352
http://arxiv.org/abs/2101.03697
http://arxiv.org/abs/1911.03852
https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
http://arxiv.org/abs/1905.03696
http://arxiv.org/abs/1804.06913

11:22 O. Weng et al.

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]

Farah Fahim et al. 2021. hls4ml: An open-source codesign workflow to empower scientific low-power machine learn-
ing devices. In 1st TinyML Research Symposium. arXiv:2103.05579 [cs.LG].

Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and Ralph Wittig. 2017. Deep Learning with INT8
Optimization on Xilinx Devices. White Paper WP486. https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8
Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. 2021. A survey of
quantization methods for efficient neural network inference. (2021). arXiv:2103.13630

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Yee Whye Teh and Mike
Titterington (Eds.), Vol. 9. 249. https://proceedings.mlr.press/v9/glorot10a.html

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the
14th International Conference on Artificial Intelligence and Statistics, Geoffrey Gordon, David Dunson, and Miroslav
Dudik (Eds.), Vol. 15. 315. http://proceedings.mlr.press/v15/glorot11a.html

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770. https://doi.org/10.1109/CVPR.2016.90.
arXiv:1512.03385

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings in deep residual networks. In ECCV
2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). 630. https://doi.org/10.1007/978-3-319-46493-0_38.
arXiv:1603.05027

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. (2015).
arXiv:1503.02531

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. 2017. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700. https://doi.org/10.
1109/CVPR.2017.243. arXiv:1608.06993

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and
Dmitry Kalenichenko. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only infer-
ence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2704. https://doi.org/10.1109/
CVPR.2018.00286

Leonardo Rezende Juracy, Rafael Garibotti, Fernando Gehm Moraes, et al. 2023. From CNN to DNN hardware accel-
erators: A survey on design, exploration, simulation, and frameworks. Foundations and Trends® in Electronic Design
Automation 13, 4 (2023), 270-344.

Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary,
Jason Li, and Yang Zhang. 2020. QuartzNet: Deep automatic speech recognition with 1D time-channel separable
convolutions. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 6124. https:
//doi.org/10.1109/ICASSP40776.2020.9053889

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Tech Report (2009).

Guilin Li, Junlei Zhang, Yunhe Wang, Chuanjian Liu, Matthias Tan, Yunfeng Lin, Wei Zhang, Jiashi Feng,
and Tong Zhang. 2020. Residual distillation: Towards portable deep neural networks without shortcuts. Ad-
vances in Neural Information Processing Systems 33 (2020), 8935. https://proceedings.neurips.cc/paper/2020/file/
657b96£0592803e25a4f07166fFf289a-Paper.pdf

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018. Visualizing the loss landscape of neural
nets. Advances in Neural Information Processing Systems 31 (2018).

Hongzhou Lin and Stefanie Jegelka. 2018. ResNet with one-neuron hidden layers is a universal approximator. Advances
in Neural Information Processing Systems 31 (2018).

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet v2: Practical guidelines for efficient
CNN architecture design. In Proceedings of the European Conference on Computer Vision (ECCV). 116. https://doi.org/
10.1109/ASPCON49795.2020.9276669. arXiv:1807.11164

Y. Ma, Y. Cao, S. Vrudhula, and J. Seo. 2018. Optimizing the convolution operation to accelerate deep neural networks
on FPGA. IEEE Trans Very Large Scale Integr. VLSI Syst. 26, 7 (2018), 1354. https://doi.org/10.1109/TVLSI.2018.2815603
Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J. Seo. 2017. End-to-end scalable FPGA accelerator for deep residual networks.
In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 1. https://doi.org/10.1109/ISCAS.2017.8050344
Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh. 2020. Im-
proved knowledge distillation via teacher assistant. In AAAIL Vol. 34. 5191. https://doi.org/10.1609/aaai.v34i04.5963.
arXiv:1902.03393

Ricardo Pio Monti, Sina Tootoonian, and Robin Cao. 2018. Avoiding degradation in deep feed-forward networks by
phasing out skip-connections. Artificial Neural Networks and Machine Learning (ICANN) 11141 (2018). https://doi.org/
10.1007/978-3-030-01424-7_44

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

http://arxiv.org/abs/2103.05579
https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8
http://arxiv.org/abs/2103.13630
https://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1503.02531
https://doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1608.06993
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/ICASSP40776.2020.9053889
https://proceedings.neurips.cc/paper/2020/file/657b96f0592803e25a4f07166fff289a-Paper.pdf
https://doi.org/10.1109/ASPCON49795.2020.9276669
http://arxiv.org/abs/1807.11164
https://doi.org/10.1109/TVLSI.2018.2815603
https://doi.org/10.1109/ISCAS.2017.8050344
https://doi.org/10.1609/aaai.v34i04.5963
http://arxiv.org/abs/1902.03393
https://doi.org/10.1007/978-3-030-01424-7_44

TaiLor: Altering Skip Connections for Resource-Efficient Inference 11:23

[33] Bert Moons, Koen Goetschalckx, Nick Van Berckelaer, and Marian Verhelst. 2017. Minimum energy quantized neural
networks. In 2017 51st Asilomar Conference on Signals, Systems, and Computers. 1921. https://doi.org/10.1109/ACSSC.
2017.8335699. arXiv:1711.00215 [cs.NE].

[34] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning. 807. https://icml.cc/Conferences/2010/papers/432.pdf

[35] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. 2011. Reading digits in natural
images with unsupervised feature learning. NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011).

[36] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (2009), 1345.
https://doi.org/10.1109/TKDE.2009.191

[37] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. LibriSpeech: An ASR corpus based on
public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
5206. https://doi.org/10.1109/ICASSP.2015.7178964

[38] Alessandro Pappalardo. 2022. Xilinx/brevitas. https://doi.org/10.5281/zenodo.3333552

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:

An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems,

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. 8024. arXiv:1912.01703.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Philipp Petersen and Felix Voigtlaender. 2020. Equivalence of approximation by convolutional neural networks and

fully-connected networks. Proc. Amer. Math. Soc. 148, 4 (2020), 1567-1581.

[41] Bharat Bhusan Sau and Vineeth N. Balasubramanian. 2016. Deep model compression: Distilling knowledge from noisy
teachers. (2016). arXiv:1610.09650

[42] Jordi Silvestre-Ryan and Ian Holmes. 2021. Pair consensus decoding improves accuracy of neural network basecallers
for nanopore sequencing. Genome Biol. 22 (2021), 38. https://doi.org/10.1186/s13059-020-02255-1

[43] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

[44] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models: Weight-averaged consistency targets

improve semi-supervised deep learning results. In Advances in Neural Information Processing Systems, 1. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. 1195. arXiv:1703.01780.

https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150ct7-Paper.pdf

Andreas Veit, Michael J. Wilber, and Serge Belongie. 2016. Residual networks behave like ensembles of relatively

shallow networks. Advances in Neural Information Processing Systems 29 (2016). arXiv:1605.06431. https://proceedings.

neurips.cc/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf

[46] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-aware automated quantization with
mixed precision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8612. https:
//doi.org/10.1109/CVPR.2019.00881 arXiv:1811.08886

[47] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. . Big Data 3, 1 (2016),

1. https://doi.org/10.1186/s40537-016-0043-6

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela Blott, Luciano

Lavagno, Kees Vissers, John Wawrzynek, et al. 2019. Synetgy: Algorithm-hardware co-design for ConvNet accel-

erators on embedded FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. 23. https://doi.org/10.1145/3289602.3293902

[49] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. 2020. PyHessian: Neural networks through the
lens of the Hessian. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 581-590.

[50] Sergey Zagoruyko and Nikos Komodakis. 2017. DiracNets: Training very deep neural networks without skip-
connections. (2017). arXiv:1706.00388

[51] Sergey Zagoruyko and Nikos Komodakis. 2018. DiracNets: Training very deep neural networks without skip-
connections. (2018). arXiv:1706.00388

[52] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. 2020. A
comprehensive survey on transfer learning. Proc. IEEE 109, 1 (2020), 43. https://doi.org/10.1109/JPROC.2020.3004555

[40

—

[45

-

[48

[t

Received 28 February 2023; revised 16 August 2023; accepted 1 September 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 17, No. 1, Article 11. Pub. date: January 2024.

https://doi.org/10.1109/ACSSC.2017.8335699
http://arxiv.org/abs/1711.00215
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.5281/zenodo.3333552
http://arxiv.org/abs/1912.01703
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1610.09650
https://doi.org/10.1186/s13059-020-02255-1
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1703.01780
https://proceedings.neurips.cc/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
http://arxiv.org/abs/1605.06431
https://proceedings.neurips.cc/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://doi.org/10.1109/CVPR.2019.00881
http://arxiv.org/abs/1811.08886
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1145/3289602.3293902
http://arxiv.org/abs/1706.00388
http://arxiv.org/abs/1706.00388
https://doi.org/10.1109/JPROC.2020.3004555

