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and gut bacterial communities in bumble bees

Evan C. Palmer-Young ,1*† Lyna Ngor,1

Rodrigo Burciaga Nevarez,1 Jason A. Rothman,1

Thomas R. Raffel2 and Quinn S. McFrederick 1

1Department of Entomology, University of California
Riverside, Riverside, CA, USA.
2Department of Biology, Oakland University, Rochester,
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Summary

High temperatures (e.g., fever) and gut microbiota can
both influence host resistance to infection. However,
effects of temperature-driven changes in gutmicrobiota
on resistance to parasites remain unexplored. We
examined the temperature dependence of infection and
gut bacterial communities in bumble bees infected with
the trypanosomatid parasite Crithidia bombi. Infection
intensity decreased by over 80% between 21 and 37�C.
Temperatures of peak infection were lower than
predicted based on parasite growth in vitro, consistent
with mismatches in thermal performance curves of
hosts, parasites and gut symbionts. Gut bacterial com-
munity size and composition exhibited slight but signifi-
cant, non-linear, and taxon-specific responses to
temperature. Abundance of total gut bacteria and of
Orbaceae, both negatively correlated with infection in
previous studies, were positively correlated with infec-
tion here. Prevalence of the bee pathogen-containing
family Enterobacteriaceae declined with temperature,
suggesting that high temperaturemay confer protection
against diverse gut pathogens. Our results indicate that
resistance to infection reflects not only the temperature
dependence of host and parasite performance, but also
temperature-dependent activity of gut bacteria. The ther-
mal ecology of gut parasite-symbiont interactions may
be broadly relevant to infectious disease, both in ecto-
thermic organisms that inhabit changing climates, and
in endotherms that exhibit fever-based immunity.

Introduction

Temperature has strong effects on the growth and metabo-
lism of individual species, with subsequent consequences
for ecological communities (Gillooly et al., 2001). The effects
of temperature on growth, metabolism and performance are
described by the metabolic theory of ecology (Brown et al.,
2004), which considers organismal metabolism as the com-
bined output of numerous metabolic enzymes. Conse-
quently, metabolic theory models predict the temperature
dependence of organismal performance using equations
based on enzyme kinetics (Molnár et al., 2017). The
temperature-related changes in performance of any given
species are described by its thermal performance curve,
with performance generally increasing up to an optimal tem-
perature, then declining sharply at supraoptimal tempera-
tures (Molnár et al., 2017). Because species differ in their
responses to temperature and thermal ranges of peak per-
formance – a difference referred to as a ‘mismatch’ between
two species’ thermal performance curves (Cohen et al.,
2017) – temperature can also influence the outcome of spe-
cies interactions including predation, parasitism and compe-
tition (Dell et al., 2014; Bestion et al., 2018).

One context in which the effect of temperature on species
interactions has been repeatedly demonstrated to reflect
the predictions of metabolic theory is that of host–parasite
interactions (Raffel et al., 2013; Kirk et al., 2018; Cohen
et al., 2019). Metabolic theory predicts that the success of
parasites at any given temperature reflects the relative per-
formance of hosts and parasites at that temperature, rather
than the absolute performance of either in isolation (Cohen
et al., 2017). As a result, the temperature dependence of
parasite growth may differ for parasites grown in cell cul-
tures versus in live hosts (James, 2005; Cohen et al., 2017;
Kirk et al., 2018).

Increases in body temperature – also known as fever –
have been shown to ameliorate infection in plants, fish,
mammals, amphibians and insects (Kluger et al., 1998;
Thomas and Blanford, 2003; Boltaña et al., 2013; Heinrich,
2013; Stahlschmidt and Adamo, 2013). Both endo- and
ectothermic animals may use metabolic and behavioural
strategies to raise their body temperatures when infected
(Starks et al., 2000; Campbell et al., 2010; Stahlschmidt and
Adamo, 2013). These febrile behaviours can allow hosts to
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achieve body temperatures in which the host immune sys-
tem has a relative advantage over parasites (Casadevall,
2016). Consequently, fever can improve the health of indi-
vidual hosts, with consequences that may be reflected at
the landscape scale (Daskin et al., 2011; Cohen et al.,
2019). In bees, particularly social bees that thermoregulate
their nests, relatively high temperatures have been shown
to ameliorate infections with microsporidia, other fungi, and
viruses in both adults and larvae (Martín-Hernández et al.,
2009; Di Prisco et al., 2011; Xu and James, 2012; Dalmon
et al., 2019; Li et al., 2019).

Besides temperature, host microbiota – particularly gut
symbionts – play an increasingly appreciated role in
resistance to infection. Microbial symbionts can compete
with parasites for space and resources, stimulate host
immunity and produce allelopathic chemicals that inhibit
parasite growth (Maslowski and Mackay, 2010; Spor
et al., 2011). In insects, including bees, in vitro culturing
studies, sterile rearing experiments and manipulations of
the microbiota with faecal transplants have repeatedly
demonstrated the ability of bacterial symbionts to sup-
press the growth and effects of infectious organisms
within and outside of hosts (Sabaté et al., 2009; Koch
and Schmid-Hempel, 2012; Onchuru et al., 2018; Praet
et al., 2018).

Despite the recognized importance of temperature and
microbial symbionts in resistance to infection, few studies
have explored the effects of temperature on themicrobiome,
and the consequences of these effects for disease resis-
tance have seldom been considered at all. Landscape sur-
veys and experimental manipulations have shown that
temperature can be an important driver of microbial commu-
nity composition and function in soils and aquatic environ-
ments (Steinauer et al., 2015; Chiriac et al., 2017; Rubin
et al., 2018). Exposure of rhizosphere communities to high
temperatures can lead to loss of taxa and alterations in the
ability of soils to support plant growth and suppress disease
(van der Voort et al., 2016; Rubin et al., 2018). In insects,
experimental temperature elevations reduced populations
of endo- and ectosymbionts (Parkinson et al., 2014; Kikuchi
et al., 2016), suggesting that fever and high temperature
could be costly for host–symbiont mutualisms and their role
in resistance to infection. On the other hand, in cultures of
amphibian skin symbionts, high temperatures can elevate
production of compounds that inhibit parasite growth
(Daskin et al., 2014). In bees,many core gut symbionts have
relatively high (34–37�C) preferred growth temperatures
in vitro (Engel et al., 2013), suggesting that high tempera-
tures could favour core gut symbionts over parasites, and
thereby reinforce host–bacterial mutualisms.

The bumble bee (Bombus spp.)/Crithidia host-
trypanosomatid parasite study system is well suited for
investigating how temperature affects infection resistance

and microbiota. First, bumble bees are facultative endo-
therms, capable of producing large amounts of metabolic
heat to optimize nest and body temperature during foraging
and incubation (Heinrich, 1972). As a result, their ranges of
body temperatures and thermal strategies overlap those of
both poikilo- and homeothermic animals (Heinrich, 1972),
suggesting that bumble bees could be a model for study of
infection–microbiota interactions in both types of host. Sec-
ond, trypanosomatid infection is widespread, common, and
costly in Bombus (Schmid-Hempel, 2001; Brown et al.,
2003; Schmid-Hempel and Tognazzo, 2010). As a result,
responses of trypanosomatid infection to environmental vari-
ables is relevant for bee conservation, and may also be rele-
vant for the insect-vectored stage of trypanosomatids that
afflict crops, livestock and humans (Maslov et al., 2013).
Third, the well-characterized host microbiota of Bombus
have a demonstrated role in resistance to infection (Koch
and Schmid-Hempel, 2011; 2012) and higher temperatures
of peak performance in vitro than trypanosomatid parasites
(Engel et al., 2013; Palmer-Young et al., 2018b). In vitro
experiments have suggested that the effects of core bacterial
symbionts – namely, their ability to acidify the gut lumen to
levels that inhibit parasite growth – are temperature-
dependent (Palmer-Young et al., 2018b; 2019). These prior
findings suggest that high temperatures could lead to
symbiont-mediated increase in resistance to infection. How-
ever, no study has evaluated the effects of environmental
temperature on bumble bee gut microbiota or trypanoso-
matid infection, nor the effects of temperature on microbiota-
mediated protection against disease.

To determine the effects of environmental temperature on
bumble bee gut microbiota and resistance to infection with
trypanosomatid parasites, we measured gut bacterial com-
munity size and composition and infection intensity in bum-
ble bees (Bombus impatiens) inoculated with the parasite
Crithidia bombi, then incubated for 7 days at temperatures
between 21 and 37�C. Because bumble and honey bee
muscle performance (Gilmour and Ellington, 1993; Harrison
and Fewell, 2002), bumble bee respiration rate (Kammer
and Heinrich, 1974) and bacterial gut symbiont performance
all have higher temperatures of peak performance than
does the parasite C. bombi (Palmer-Young et al., 2018b),
we predicted that infection would decrease across the tem-
perature range previously recorded in wild bees (Heinrich,
1972). Based on metabolic theory and the concept of ther-
mal mismatches (Cohen et al., 2019) – which predict that
high temperatures improve performance of the host immune
system and antiparasitic bacterial symbionts relative to per-
formance of parasites – we also predicted that the tempera-
ture of peak infection in bees would be lower than the
temperature of peak growth rate for parasite cell cultures.
Finally, we predicted that higher temperatures would lead to
lower absolute quantities of gut bacteria, due to elevation of
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per capita metabolic rates and consequent reduction of the
gut ecosystem’s carrying capacity at higher temperatures
(Bernhardt et al., 2018; Lemoine, 2019).

Results

Overview of experiments

We tested the effects of experimental inoculation with para-
sites and rearing temperature on C. bombi infection inten-
sity, gut bacteria, sugar water consumption and mortality in
the common Eastern bumble bee, B. impatiens. Bumble
bee workers were inoculated with 104 C. bombi parasite
cells or a sham inoculum without parasite cells. Each inocu-
lated bee was then reared individually for 7 days at one of
five temperatures (21, 25, 29, 33 or 37�C), chosen to cap-
ture the range of body temperatures previously recorded in
bumble bees (Heinrich, 1972), and to include temperatures
above and below the temperature of peak parasite growth
rate (Palmer-Young et al., 2018b). Seven days after inocula-
tion, bees were frozen for dissection and analysis of micro-
biota and infection intensity by amplicon sequencing and
qPCR. The experiment was conducted in four temporal
blocks of inoculations, with three colonies used per block,
and incubator temperatures reassigned after the first two
blocks to avoid confounding the effects of incubator with
those of temperature. Data were analysed by generalized
linear mixed models to examine the effects of temperature
and infection treatment on C. bombi infection intensity, gut
bacterial composition and abundance, sugar water con-
sumption and mortality. We also tested for correlations
between C. bombi infection and abundances of specific
families of gut bacteria.

Crithidia bombi infection

Experimental inoculation resulted in detectable C. bombi
infection after 7 days in 67% of the 239 experimental bees;
prevalence ranged from 42% at 37�C to 84% at 21�C. Infec-
tion intensity declined quadratically with temperature, as
shown by the significance ofmodels terms for both tempera-
ture and temperature2, that is, the square of the mean-
centred temperature (temperature: β = −0.10 � 0.017 SE,
χ21 = 36.02, p < 0.001; temperature2: β = −0.0075� 0.0034
SE, χ21 = 4.89, p = 0.027). After exponentiation from the log
scale, intensity declined by 81% over the range of incuba-
tion temperatures, from 7.34 × 105 cells bee−1 at 21�C to
1.40 × 105 cells bee−1 at 37�C (Fig. 1). Infection intensity
varied significantly among bees from different colonies
(χ24 = 47.84, p < 0.001) and was positively correlated with
ln(bacterial abundance) (β = 0.22 � 0.094 SE, χ21 = 5.31,
p = 0.021, Fig. 3).

Bacterial community composition

Processing of 16S rRNA gene amplicon sequences resulted
in a data set of 7,044,293 total sequences comprising
128 Exact Sequence Variants (ESVs). Samples were rare-
fied to a depth of 10,233 reads per sample (see rarefaction
curves in Supporting Information Fig. S1). Temperature had
slight but significant, bacterial family-specific effects on gut
communities. Permutational MANOVA of proportional com-
position (based on weighted UniFrac distances between
samples) indicated that temperature explained more than
twice as much variation than any other experimental factor
(F4, 411 = 12.46,R2 = 0.10,p < 0.001). Therewere also signif-
icant but smaller effects of colony (F4, 411 = 4.32, R2 = 0.036,
p < 0.001) and infection treatment (F1, 411 = 3.59,R2 = 0.007,
p = 0.027), although the latter explained less than 1% of vari-
ation across samples. There was no significant interaction
between infection and temperature (F4, 411 = 1.08, p = 0.38).

Total and family wise bacterial abundance

Total bacterial abundance (normalized 16S copy number)
varied quadratically with temperature (temperature2:
β = 0.0098� 0.0022 SE, χ21 = 20.49, p < 0.001, Fig. 2). The
lowest total abundance occurred at intermediate tempera-
tures (Fig. 2). Averaged across colonies for a bee of average
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Fig. 1. Effects on temperature on C. bombi infection intensity. Infection
decreased with increasing temperature. Line and shaded band show
fitted means and standard errors from generalized linear mixed model of
normalized infection intensity after inverse log transformation from the
scale of the linear predictor. Predictions are averaged over infection treat-
ments and colonies and calculated for a bee of average gut bacterial
abundance. Shaded bands indicate uncertainty from the fixed effects por-
tion of the model only. Large points show the five tested incubation tem-
peratures; small points show raw data, ln(x + 1)-transformed and
randomly jittered by a standard deviation of�1�C to reduce overplotting.
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size, model-predicted abundance declined by 46% from
6.16 × 107 copies per bee at 21�C to 3.30 × 107 copies per
bee at 29�C, then rose to 6.22 × 107 copies per bee at 37�C
(Fig. 2). Bacterial abundance (normalized to quantities of
host DNA) also differed significantly among bees from
different colonies (χ24 = 15.37, p = 0.0040), and was nega-
tively correlated with bee size (marginal cell length,
β = −0.99 � 0.18 SE, χ21 = 28.75, p < 0.001). The simplest
explanation for the negative relationship between bee size
and normalized bacterial abundance is that larger guts have
a lower ratio of luminal volume (i.e., space available to bac-
teria) to surface area (i.e., host cells). Bacterial abundance
was not significantly affected by infection treatment
(χ21 = 1.69, p = 0.19, Supporting Information Table S2).

Because we used the same primer set for qPCR and
amplicon sequencing, we combined the total absolute abun-
dance values from the 16S rRNA gene qPCR with the pro-
portional abundance values from the amplicon sequencing
to estimate absolute abundances of each bacterial family.
The gut bacterial community was dominated by bacteria
from four families – Orbaceae, (32.7%), Neisseriaceae
(31.6%), Lactobacillaceae (17.4%) and Bifidobacteriaceae
(16.3%). Only one additional family, Enterobacteriaceae,
accounted for >1% of reads (1.67%). Collectively, these five
families accounted for 99.7% of detected bacteria.

Like total bacterial abundance, abundances of the main
symbiont families were generally weakly but significantly
affected by temperature, with changes of less than twofold
across the range of experimental temperatures. However,
the effect of temperature was statistically significant for all
except Orbaceae (Fig. 2). Abundances of Orbaceae and
Neisseriaceae, which were found in almost exactly equal
copy numbers, both tended to decline with temperature
(Orbaceae: β = −0.014 � 0.0077 SE, χ21 = 3.43, p = 0.064;
Neisseriaceae: β = −0.018 � 0.0078 SE, χ21 = 5.41,
p = 0.02). This effect was only significant for Neisseriaceae
and of small magnitude, with fitted models predicting just a
26% drop in copy numbers from 21 to 37�C (Fig. 2).

Abundances of Lactobacillaceae and Bifidobacteriaceae
varied quadratically with temperature (Fig. 2). The strongest
effects were seen for Lactobacillaceae, where model-fitted
abundances roughly doubled (99% increase after exponenti-
ation from the log scale) across the temperature range (tem-
perature: β = 0.042 � 0.0084 SE, χ21 = 25.15, p < 0.001;
temperature2: β = 0.0039 � 0.0018 SE, χ21 = 4.84,
p = 0.028, Fig. 2). Abundances of Bifidobacteriaceae most
closely mirrored the patterns of total bacterial abundance,
with an initial 34% decrease in abundance as temperatures
approached 33�C, followed by a 12% rise at the highest tem-
perature (temperature: β = −0.019 � 0.0074 SE, χ21 = 6.25,
p = 0.012; temperature2: β = 0.0039 � 0.0016 SE,
χ21 = 6.19, p = 0.013, Fig. 2). Together, the slight decreases
in abundances of Orbaceae, Neisseriaceae and Bifidoba-
cteriaceae account for the initial fall in total bacterial

abundance from 21�C through 29�C, whereas the relatively
strong increase in abundance of Lactobacillaceae accounts
for the rebound in total abundance above 29�C.
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Fig. 2. Effects of temperature on abundances of the four most abundant
families of bumble bee gut bacteria. Top panel depicts total bacteria
abundance, asmeasured by qPCR of the 16S rRNA gene. Lower panels
depict abundances of individual families, estimated for each sample by
multiplying total abundance by the proportion of amplicon sequence
reads associated with each family. Lines and shaded bands show fitted
means and standard errors from negative binomial linear mixed model,
averaged across colonies and plotted at the mean values for tempera-
ture and wing size. Annotations indicate significance of temperature and,
where significant, temperature2 terms in models of abundance, as
assessed by Wald χ2 tests (‘.’: p < 0.10, ‘*’: p < 0.05, ‘**’: p < 0.01, ‘***’:
p < 0.001). Effects of temperature and/or temperature2 were statistically
significant for all families except Orbaceae (χ21 = 3.42, p = 0.064). See
Supporting Information TableS2 for full model summaries.
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In contrast to the significant effects of temperature,
abundances of the four most abundant bacterial families
were not significantly affected by infection treatment
(Supporting Information Table S2). Abundances of each
family were negatively correlated with wing size, which
was a significant predictor in every model, and varied
across colonies for all families except Neisseriaceae
(Supporting Information Table S2).

Correlations between bacterial abundance and C. bombi
infection intensity

After accounting for effects of temperature and colony, infec-
tion intensity was positively correlated with total bacterial
abundance (β = 0.22 � 0.094 SE, χ21 = 5.31, p = 0.021,
Fig. 3; also noted in Results: Crithidia bombi infection) and
with abundance of Orbaceae (β = 0.28 � 0.11 SE,
χ21 = 7.17, p = 0.0074, Fig. 3), but not with abundance of
Neisseriaceae, Lactobacillaceae or Bifidobacteriaceae
(Fig. 3; see Supporting Information Table S3 for full model
summaries).
Occurrence of the next most abundant family,

Enterobacteriaceae (1.7% of overall abundance), was also
influenced by temperature. However, unlike abundance of
the major symbiont families, Enterobacteriaceae was also
affected by infection treatment. Prevalence declined by over
50% with increasing temperature (β = −0.052 � 0.024 SE,
χ21 = 4.74, p = 0.029), from an average of 27% at 21�C to
13.1% at 37�C (Fig. 4). Presence of this family was overall
less than half as likely for bees in the infection treatment
(13.1 vs. 28.4% prevalence, Fig. 4), an effect that was highly
significant (β = 0.97� 0.27SE, χ21 = 13.24,p < 0.001).
Temperature had a quadratic effect on bacterial alpha

diversity, measured as the number of observed ESV’s per
sample (Fig. 4). Both temperature (β = 0.030 � 0.0027 SE,
χ21 = 124.0, p < 0.001) and temperature2 (β = 0.0036 �
0.00058 SE, χ21 = 38.28, p < 0.001) terms were highly sig-
nificant predictors of richness. Model-fitted ESV richness
declined slightly between 21 and 25�C, then increased by
70% at the highest temperature (Fig. 4). ESV richness was
slightly (9.3%) lower in parasite-inoculated bees (infection
treatment: β = 0.098 � 0.032 SE, χ21 = 9.61, p = 0.002,
Fig. 4). Richness also varied significantly among bees from
different colonies (χ24 = 25.41,p < 0.001).

Sugar water consumption

Rates of sugar water consumption declined strongly and
significantly with temperature (β = −0.021 � 0.0019 SE,
χ21 = 171.52, p < 0.001, Fig. 5). Covariate-adjusted model
predictions, averaged across colonies and infection treat-
ments, showed an 82% decrease in rate of sugar water con-
sumption over the range of incubation temperatures, from
0.256 g bee−1 days−1 at 21�C to 0.046 bee−1 days−1 at

37�C (Fig. 5). Although infected bees tended to have higher
consumption rates at low temperatures but lower consump-
tion rates at high temperatures, the effects of infection
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Fig. 3. Relationship of C. bombi infection intensity to total and family
wise gut bacterial abundance. Abundance of Orbaceae, but not other
main families of gut bacteria, was positively correlated with C. bombi
infection intensity. Panels depict relationship between infection inten-
sity and total gut bacteria (top panel) or family wise abundance
(lower panels). Lines and shaded bands show fitted means and stan-
dard errors from negative binomial linear mixed model, averaged
across colonies and plotted at the mean value for temperature and,
where significant, bee size. X-axes span the interquartile ranges of
abundances of total bacteria and of each family. Shaded bands indi-
cate uncertainty from the fixed effects portion of the model only.
Annotations indicate significance of ln(abundance) term in negative
binomial mixed model (‘*’: p < 0.05, ‘**’: p < 0.01); degrees of free-
dom for χ2 statistic equals 1 for all panels. See Supporting Informa-
tion Table S3 for full model summaries.
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(χ21 = 0.05, p = 0.82) and the temperature × infection inter-
action were non-significant (χ21 = 3.60, p = 0.058), as was
the overall effect of infection treatment (χ21 = 0.050,
p = 0.82). Consumption was positively correlated with bee
size (marginal cell length, β = 0.11� 0.025 SE, χ21 = 20.07,

p < 0.001) and varied significantly among bees of different
colonies (χ24 = 16.34,p = 0.0026).

Mortality

The probability of premature death ranged from 7.5%
(three deaths) in sham-infected bees at 29�C to 26% in
sham-infected bees at 33�C (10 deaths). However, sur-
vival analysis showed no effect of temperature treatment
(χ24 = 5.93, p = 0.20), infection treatment (χ21 = 0.90,
p = 0.34), or their interaction (χ24 = 1.61, p = 0.81) on
rates of mortality, although rates differed significantly
among colonies (χ24 = 21.96, p < 0.001).

Discussion

High temperatures reduced infection intensity

In agreement with predictions from in vitro experiments
and temperature-dependent changes in performance of
parasites, bees, and bacterial symbionts, we found
reductions in trypanosomatid infection intensity as tem-
perature increased over the typical range of bee body
temperatures (Heinrich, 1972). Parasites in cell culture
had optimal growth temperatures of 27–32�C (Palmer-
Young et al., 2018b). Hence, reductions in infection
above 32�C could be due to direct inhibition of growth,
but reductions between 21 and 32�C likely reflect relative,
rather than absolute, disadvantage of parasites in
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consumption. Consumption declined with temperature (χ21 = 171.52,
p < 0.001), with no significant effect of infection treatment
(χ21 = 0.050, p = 0.82) or the infection × temperature interaction
(χ21 = 3.60, p = 0.058). Lines and shaded bands show fitted means
and standard errors from general linear mixed model on square root-
transformed consumption, back-transformed to the original scale of
the measurement. Circles and solid line: parasite infection treatment;
triangles and dotted line: sham infection treatment. Predictions are
averaged over colonies and calculated for a bee of average size.
Shaded bands indicate uncertainty from the fixed effects portion of
the model only. Points show the five tested incubation temperatures.
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comparison to the bee immune system and gut bacterial
symbionts. Bee muscle and whole-body metabolism have
temperatures of peak performances >37�C (Kammer and
Heinrich, 1974; Gilmour and Ellington, 1993; Harrison
and Fewell, 2002). If the immune system has a similar
temperature of peak performance, then metabolic theory
would predict improvement in host immune function
across the 21–37�C temperature range examined here.
The core bee gut bacterial symbionts also have relatively
high temperatures of peak performance (35–37�C (Engel
et al., 2013)). In the case of L. bombicola, growth and
production of C. bombi-inhibiting acids increased expo-
nentially across the 21–37�C range (Palmer-Young et al.,
2018bb). Thus, reductions in infection with increasing
temperature could reflect increases in metabolic rates of
acid-producing, parasite-inhibiting bacteria. With the
exception of Neisseriaceae, all major bee gut symbionts
ferment carbohydrates to short-chain fatty acids
(Kešnerová et al., 2017), and can acidify the gut to levels
that inhibit growth of trypanosomatids (Zheng et al.,
2017; Palmer-Young et al., 2019). However, the tempera-
ture dependence of gut pH remains unexplored.
Experiments that compare the temperature depen-

dence of infection between bees raised under normal ver-
sus germ-free conditions could help to clarify the
importance of microbiota in temperature-mediated resis-
tance to parasites. If microbiota drive the temperature
dependence of infection, then the relationship between
temperature and infection should more closely resemble
the thermal performance curve of isolated parasites in
germ-free than in symbiont-colonized bees. Alternatively,
if infection primarily reflects performance of the host
immune system relative to growth of parasites, similar
temperature dependence of infection would be predicted
in symbiont-colonized and germ-free bees.

Temperature had smaller but significant effects on
bacterial symbiont communities

In comparison to C. bombi, the size and general compo-
sition of the gut bacterial community was relatively robust
to changes in temperature, as well as to infection treat-
ment, but some changes were nevertheless statistically
significant. In contrast to C. bombi infection levels, which
declined with temperature, total bacterial abundance was
lowest at intermediate temperature (29�C). This repre-
sents the centre of the range of body temperatures
recorded in workers (Heinrich, 1972), is close to the set
point at which bumble bees incubate developing brood
(30�C (Vogt, 1986)), and matches the 28–30�C tempera-
ture recommended for bumble bee rearing (Velthuis and
van Doorn, 2006). We hypothesize that the bumble bee
immune system has optimal control over the bacterial
community in this temperature range, and is able to

curtail overgrowth that might otherwise deplete host
resources or facilitate establishment of opportunistic
infections. Research with honey bees and heat shock
proteins (McKinstry et al., 2017) has suggested a tradeoff
between temperature tolerance and immune function.
Direct measurements of bee immune function could clar-
ify the effects of temperature on hosts, while experimen-
tal augmentation or suppression of the immune response
could clarify the importance of the host immune system
relative to interbacterial community dynamics in the
observed patterns of gut bacterial abundance. Another
approach to clarify the relative importance of host- and
microbiota-mediated immunity could be to compare the
effects of temperature elevation on injected or systemic
versus enteric pathogens; the latter would be expected to
be more directly affected by gut microbes, although gut
symbiont-mediated alteration of systemic immunity shows
that microbiota may mediate resistance to systemic as
well as gut infection (Dillon and Dillon, 2004; Kwong
et al., 2017).

Although temperature explained more variation in bacte-
rial composition than did any other experimental factor,
average abundance of total bacteria and of specific core
symbiont families did not vary by more than twofold across
the experimental temperature range. Abundances of
Neisseriaceae and Orbaceae were exceptionally stable,
with abundances not varying by more than 30% (Fig. 2).
Populations of Lactobacillaceae were the most responsive
to temperature, with mean abundances increasing twofold
between the lowest and highest temperatures. Experiments
in vitro with the widespread symbiont L. bombicola – the
most abundant member of this family among our samples –
indicate that growth rate of this species increases through-
out the experimental temperature range (Palmer-Young
et al., 2018bb).Whether the Lactobacillaceae aremore ther-
mophilic than other major symbionts, or their maximum pop-
ulation size is simply less constrained by host surface area
than those of the biofilm-forming Neisseriaceae and
Orbaceae (Martinson et al., 2012), remains to be deter-
mined. Regardless of the exact mechanism, the Lac-
tobacillaceae appear to have greater abundance in the gut
as temperature increases.

Despite the relative stability of the core bacterial symbiont
community, the twofold changes in abundance of total and
specific gut bacteria across temperatures may still be bio-
logically meaningful. These changes are equivalent to the
perturbations caused by treatment of honey bees with the
herbicide glyphosate and the antibiotic tetracycline, which
resulted in spontaneous proliferation of non-core Serratia
(Enterobacteriaceae) species and doubling of mortality
among workers in the colony and those challenged with
Serratia pathogen inoculation (Raymann et al., 2017; Motta
et al., 2018). Moreover, in the case of glyphosate, treatment
hadmore profound effects onmicrobiotawhen administered
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to newly emerged bees than to bees that had prior exposure
to the colony (Motta et al., 2018), as was the case in our
study. It is therefore possible that temperature variation
early in adult life has even stronger effects on infection and
microbiota than those observed here.

Bacterial abundance was positively correlated with
infection

Although the reduction in C. bombi infection at high tem-
perature corresponded with higher populations of Lac-
tobacillaceae (Fig. 2), which produced parasite-inhibiting
organic acids in vitro (Palmer-Young et al., 2018b), our
findings indicate that an abundance of acid-producing
bacteria does not necessarily confer resistance to para-
sites. In models controlling for temperature, there was no
significant correlation between Lactobacillaceae abun-
dance and C. bombi infection (Fig. 3), whereas the effect
of temperature itself remained significant (Supporting
Information Table S3). Moreover, abundances of total
bacteria, and specifically of Orbaceae – the most abun-
dant family among our samples (32.7% of total 16S rRNA
gene copy numbers) – were positively correlated with
infection intensity in our study (Fig. 3).

We hypothesize that proliferation of both bacteria and par-
asites may be driven by a common factor, possibly related
to suboptimal host immune function. For example, in honey
bees, the same Snodgrassella alvi pre-treatment that
resulted in high gut bacterial abundance and proliferation of
Gilliamella apicola (Orbaceae) also led to higher levels of
infection with the trypanosomatid L. passim (Schwarz et al.,
2016). Although previous studies with bumble bees have
implicated Gilliamella-rich microbiota in resistance to
C. bombi infection (Koch and Schmid-Hempel, 2012;
Mockler et al., 2018), the Orbaceae clade is phenotypically
diverse, varying in traits such as carbohydrate metabolism
and resistance to antimicrobial peptides despite conserved
16S rRNA gene sequences (Engel et al., 2014; Kwong
et al., 2017), and may harbour strains associated with both
health and disease. For example, a cross-colony survey cor-
related high levels of Gilliamella (‘Gamma-1’) with honey
bee colony collapse (Cox-Foster et al., 2007), intensity of
infection with the honey bee-infective microsporidian
Nosema ceranae (Rubanov et al., 2019), and general
‘dysbiosis’ associated with low adult bee mass, high mortal-
ity, the scab-forming bacterium Frischella perrara, and
Nosema infection (Maes et al., 2016).

High temperature and trypanosomatid exposure
conferred protection against potentially pathogenic
bacteria

Although the focus of this study was to determine how tem-
perature affects resistance to C. bombi, we also found that

high temperatures conferred resistance to colonization with
presumably pathogenic members of the family Entero-
bacteriaceae. This family includes opportunistic pathogens
of bees, such as Serratia marcescens (Raymann et al.,
2018), as well as clinically and agriculturally important patho-
gens such Salmonella, Klebsiella, Yersinia, E. coli and
Erwinia spp. Previous studies with indoor-reared bumble
bees showed that when colonies were moved to outdoor
environments, core symbionts were displaced by members
of Enterobacteriaceae of presumed environmental origin
(Parmentier et al., 2016). Another study suggested the pres-
ence of two ‘enterotypes’ among wild bumble bees, one
characterized by dominance of core symbionts and the other
by Serratia and other Enterobacteriaceae (Li et al., 2015),
again suggesting that presence of these taxa is suboptimal
for bee health. Proliferation of enteric Enterobacteriaceae
has also been linked to inflammatory bowel diseases in
humans (Nagalingam and Lynch, 2012). Endothermic main-
tenance of high body temperatures has been proposed as a
factor that limits the establishment of most environmental
bacteria in mammals, both by direct inhibition of parasite
growth and by augmentation of the host immune response
(Casadevall, 2016). We propose that high nest and body
temperatures, like those found among social bees, also pro-
vide a comparative advantage to thermophilic core gut sym-
bionts, reinforcing mutualistic relationships with bacteria
while limiting establishment of potential pathogens.

Whereas abundances of core symbiont families were
unaffected by infection treatment, we found that inoculation
with C. bombi resulted in lower prevalence of Enterobact-
eriaceae and lower gut bacterial alpha diversity. Both results
suggest that the infection treatment provoked an immune
response that enhanced resistance to colonization by non-
core symbionts. Previous research in bumble bees has
documented effects of the microbiota on trypanosomatids
(Koch and Schmid-Hempel, 2011; Mockler et al., 2018), but
not of exposure to C. bombi on either beneficial or patho-
genic bacteria. However, C. bombi inoculation can cause
an immune response that resembles the reaction to injection
with heat-killed bacteria, characterized by production of anti-
microbial peptides, other antibacterial effector proteins and
reactive oxygen species (Barribeau and Schmid-Hempel,
2013; Brunner et al., 2013). In mosquitoes, exposure to
Plasmodium (malarial) parasites likewise upregulated
antibacterial immune pathways (Dong et al., 2006). Impor-
tantly for our study, where one-third of bees cleared the
experimental infection, induction of antibacterial defences
did not require successful replication of parasites
(Dong et al., 2006). Hence, mere transient exposure to
trypanosomatids could act like a vaccination that elevates
immunity to Enterobacteriaceae and other non-essential gut
bacteria. However, detection of these effects at the land-
scape scale may be difficult, as different parasite strains can
vary substantially in the extent to which they elicit immune
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responses, and responses to the same strain can vary
across colonies (Barribeau and Schmid-Hempel, 2013;
Barribeau et al., 2014).

Resource availability could alter thermoregulation in
wild bees

Maintenance of high temperatures may be optimal for resis-
tance to parasites, but thermoregulation in wild bees might
be constrained by the availability of floral resources. Like the
immune response itself, endothermic elevation of nest or
body temperature incurs a substantial metabolic cost, partic-
ularly at low ambient temperatures and in colonies of small
size. Even under the solitary conditions of our experiments,
where bees did not need to fly or incubate brood, rates of
sugar water consumption were greatly (~5-fold) elevated at
low temperature (Fig. 5), as previously demonstrated in bee
colonies (Esch, 1960; Heinrich, 1972). Each spring, solitary
queen bumble bees face thermoregulatory challenges as
they emerge from hibernation to establish new colonies.
This is also the stage of the life cycle at which C. bombi can
be most virulent (Brown et al., 2003; Fauser et al., 2017).
The availability of adequate early season floral resources
may be a key determinant of the ability of queens tomaintain
body temperatures necessary for foraging, brood incubation
and parasite inhibition. However, in some regions, changing
climates have resulted in higher frequency of spring frosts
that damage early blooming flowers, compromising key
sources of nectar and pollen (Inouye, 2008). Honey bees
and bumble bees, like other animals, rapidly become torpid
when sugar reserves are depleted (Esch, 1960; Heinrich,
1972; Angilletta et al., 2010). In bats, torpor exacerbates
susceptibility to fungal infections, but infection is generally
cleared when animals are fed sufficiently to allow mainte-
nance of high body temperatures (Meteyer et al., 2011). The
consequences of periods of low body temperature for the
gut microbiota of facultative endotherms remain unknown,
but could affect resistance to infection.

Conclusions

The effects of high body temperatures (fever) on resistance
to infection have previously been considered to reflect
changes in parasite performance relative to host immune
function (Casadevall, 2016; Cohen et al., 2017). However,
non-pathogenic gut microbiota can augment resistance to
infection in many ecto- and endothermic organisms (Dillon
and Dillon, 2004; Spor et al., 2011). As a result, the effects
of temperature on infection might not be fully understood
without considering how temperature affects the structure
and function of the gut symbiont community. Our findings
show that in bumble bees, high temperature can ameliorate
infection with parasites without apparent harm to the major
symbiont families. On the other hand, temperature elevation

did harm key symbionts of other insects (Parkinson et al.,
2014; Kikuchi et al., 2016), suggesting that temperature ele-
vation may be costly for microbiome-mediated benefits in
some systems. In comparison to social bumble and honey
bees, where the colony provides both gut microbial inocu-
lum and thermoregulation, solitary insects experience a
wide range of temperatures and gut microbiota (Corby-
Harris et al., 2007; McFrederick et al., 2012; Moran et al.,
2012). As a result, the effects of environmental temperature
on microbiota may be considerably stronger in these purely
ectothermic hosts, such as Plasmodium-vectoring mosqui-
toes, where microbiota also mediate resistance to infection
(Cirimotich et al., 2011). As a topic with relevance to both
endothermic animals that use fever as an immune strategy
and ectothermic taxa that face novel infections in changing
climates, interactions between temperature, infection and
gut symbionts warrant further investigation, and could be a
key factor in diseases of clinical and conservation concern.

Experimental procedures

Bumble bees

Five colonies of B. impatiens were obtained from a com-
mercial rearing facility (Koppert Biological Supply, Howell,
MI). Colonies were reared at 27�C in constant darkness,
with red light illumination during periods of handling. Col-
onies were fed weekly with 50% (w/w) sugar water and
every 2–3 days with pollen (Brushy Mountain Biological
Supply, Moravian Falls, NC).

To facilitate collection of age-controlled bees, existing
workers in each colony were marked on the thorax with
white correction fluid (Wite-Out, BIC, Clichy France) 3 days
prior to the beginning of the experiment. Thereafter, newly
emerged workers (identified by their absence of thoracic
marking) were collected twice weekly for experimental inoc-
ulations. Adult worker beeswere isolated from the colony on
the day prior to inoculation. Hence, they ranged in age from
1 to 5 days post-pupal eclosion at the time of inoculation,
and 8–12 days old at the 7 days post-inoculation sampling.
This protocol allowed us to pick bees that were old enough
to have had time to acquire normal microbiota from the col-
ony, which occurs within <1 days (Anderson et al., 2016;
Billiet et al., 2017), but were young enough to still have
microbiota in the formative period (4–6 days post-eclosion
(Meeus et al., 2013; Powell et al., 2014)). Binning bees of
mixed ages into a limited number of inoculation blocks
allowed us to minimize variation in infection intensity due to
differences in inoculum vigour across blocks, and also to
obtain a more general picture of how temperature affects
resistance to infection and microbiota across bees that
began treatment at different ages.

Three strains of C. bombi were obtained from infected
wild B. impatiens and B. terrestris by single cell sorting:
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Strains ‘12.6’ (from B. impatiens in Lufkin, TX in 2014 by
Hauke Koch, ‘IL13.2’ (from B. impatiens in Normal, IL in
2013 by Ben Sadd), and ‘C1.1’ (from B. terrestris in Cor-
sica in 2012 by Ben Sadd) (Palmer-Young et al., 2016).
Parasites were grown at 27�C in vented culture flasks
with modified Mattei growth medium as previously
described (Salathé et al., 2012).

Inoculation, rearing and consumption measures

Experimental bees were removed from their colonies on
the day prior to inoculation and housed overnight with
access to 1:1 sugar water in 500 ml plastic cups con-
taining 20–30 newly emerged workers each. Prior to inoc-
ulation, bees were transferred to individual 30 ml plastic
vials and deprived of food for ~5 h.

Infection success of individual parasite strains can vary
widely across colonies (Sadd and Barribeau, 2013). To
improve the chances of successful infection in bees from a
variety of colonies, the inoculum consisted of a ‘cocktail’ that
included equal cell number of each of the three parasite
strains (total 104 cells in 10 μl (Näpflin and Schmid-Hempel,
2018)). The inoculum consisted of a 1:1 mixture of 16 mM
sucralose (as 1 g Splenda (Heartland Food Products, UK) in
8 ml water +16 μl red #40 food dye) and parasite cells in
growth medium. Sucralose (rather than sugar water) was
used to reduce osmotic shock to parasites during inocula-
tion, and thereby improve probability of successful infection.
High concentrations of sugar are lethal to C. bombi
(Cisarovsky and Schmid-Hempel, 2014), and we observed
that cells rapidly became deformed and immotile in sugar
water. To control for effects of the inoculation procedure,
bees in the sham infection treatment were inoculated with
the same 1:1 mixture of 16 mM sucralose with dye and
growthmedium, but withoutC. bombi cells.

In all, 525 bees were used (N = 90–129 per colony,
N = 63–67 per temperature in the C. bombi infection treat-
ment and 39–43 per temperature in the sham infection treat-
ment, Supporting Information Table S1). Final sample sizes
are unequal for the parasite and sham-infection treatments
because of uncertainty in rates of compliance during the
inoculation. We conservatively expected only ~50% compli-
ance during the inoculation among the bees fed the parasite
inoculum. Consequently, we attempted to inoculate two
bees with parasites for every one bee in the sham-infection
treatment. Because rates of compliance generally
exceeded 50%, final sample sizes are higher in the
parasite-infection treatment.

After inoculation, bees were transferred to individual,
inverted 60 ml translucent polystyrene deli cups, lined with a
disk of filter paper to absorb excess moisture. Each bee was
provided with a ~50 mg ball of autoclaved pollen paste, and
provisioned ad libitum with 50% sugar water from a 1.7 ml
microcentrifuge tube. Sugar water tubes were checked daily

and replaced with fresh sugar water as needed. Mortality
was recorded daily at time of feeding (ca. 1200 local time).
Bees that escaped during the experiment were scored as
not having died; they were given an end time corresponding
to the first date at which theywere observedmissing (N = 6).

Sugar water consumption was recorded during at least
two 24 h intervals, normally 3–4 days and 4–5 days post-
inoculation, for one bee per unique combination of infec-
tion treatment, temperature treatment, colony and inocu-
lation block. Consumption was calculated as the change
in mass of the feeder tube from the beginning to the end
of the trial. Net consumption, corrected for mass loss due
to evaporation and handling, was determined by sub-
tracting the mass loss of tubes in identical rearing setups,
but without bees, at the corresponding temperature. At
7 days post-inoculation, bees were frozen in 2 ml micro-
centrifuge tubes on dry ice, then stored at −80�C until
dissection.

Dissection and DNA extraction

Bees were dissected to remove the mid- and hindgut using
standard methods described in the BeeBook (Engel et al.,
2013). The body was thawed on ice and surface-sterilized
by rinsing for 3 min in 1% household bleach (0.05% sodium
hypochlorite (NaOCl)) and 3 × 1 min in doubly deionized
water. The gut was removed by pulling on the distal seg-
ment of the abdomen with sterile forceps. The mid- and
hindgut of the alimentary tract were drawn out onto a UV-
sterilized piece of aluminium foil, then transferred to a
96-well plate for DNA extraction. Length of the marginal cell
on the right forewing (in mm) was measured as an index of
bee size (Wilfert et al., 2007).

DNA was extracted using the Qiagen DNEasy blood and
tissue kit (Qiagen, Hilden, Germany). Samples were treated
with 180 μl lysis buffer (Qiagen buffer ‘ATL’) and 20 μl pro-
teinase K solution, then homogenized for 6 min at 30 Hz in a
TissueLyser (Qiagen) with a 3.2 mm diameter steel ball and
50 μl of 0.1 mm glass beads. Homogenized samples were
incubated overnight at 56�C in a convection oven. Subse-
quent DNA extraction was performed according to the man-
ufacturer’s instructions, including two reagent blanks per
plate. Extracted DNA was stored at−80�C until use in PCR-
based assays.

Quantification of infection intensity and bacterial
abundance by qPCR

Bees in both infection treatments (parasite and sham control)
were first screened for presence or absence of C. bombi by
PCR using the primers CB-SSUrRNA-F2 (CTTTTGACGA
ACAACTGCCCTATC) and CB-SSUrRNA-B4 (AACCGAAC
GCACTAAACCCC) (Schmid-Hempel and Tognazzo, 2010).
The product was visualized on a 1.5%agarose gel. This initial
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screen confirmed the absence of infection among bees in the
sham infection treatment, and strongly suggests that our
experimental inoculations with C. bombi cell cultures were
the sole source of trypanosomatid infections among
experimental bees.

Infection intensity. For bees in the parasite infection treat-
ment, infection intensity was quantified by qPCR of
C. bombiDNA;C. bombi quantities were then normalized to
quantities of bumble bee actin in the corresponding sample
to correct for extraction efficiency (Palmer-Young et al.,
2018a). Quantification ofC. bombiwasmade for each sam-
ple in triplicate with primers for theC. bombi 18s rRNA gene
(‘CriRTF2’ (GGCCACCCACGGGAATAT) and ‘CriRTR2’
(CAAAGCTTTCGCGTGAAGAAA) (Ulrich et al., 2011). The
assay used 20 μl reaction volume consisting of 2 μl DNA
extract and 300 nMof each primer in 1x Power SYBRGreen
Mastermix (Applied Biosystems, Foster City, CA). Thermo-
cycle conditions included 10 min initial denaturation at 95�C
followed by 40 cycles of denaturation (15 s at 95�C) and
annealing-extension (60 s at 60�C). Absolute quantifica-
tions (number of parasite cell equivalents) were made rela-
tive to a standard curve consisting of eight dilutions of
C. bombi DNA (equivalent of 3.9 × 103 to 2.5 × 105 cells)
extracted from cell cultures of known concentration. The
standards were run in triplicate on each assay plate, along
with three no-template controls. Analysis of standard curves
showed typical amplification efficiency of 90%–100% with
R2 > 0.98.

Bacterial abundance. Quantification of gut bacteria was
made using universal primers for the bacterial 16S rRNA
gene (forward: 799F-mod3 (CMGGATTAGATACCCKGG)
(Hanshew et al., 2013), reverse: 1115R (AGGGTTGCG
CTCGTTG) (Kembel et al., 2014)), chosen to minimize
amplification of DNA from plastids in pollen (McFrederick
and Rehan, 2016; Rothman et al., 2018). The assay used
15 μl reaction volume with 1.5 μl of 10x diluted DNA extract.
(An initial round of qPCR with undiluted extracts resulted in
failure of amplification in >60% of samples.) Thermocycle
conditions consisted of 3 min denaturation at 95�C, followed
by 40 amplification cycles of 10 s denaturation at 95�C and
30 s simultaneous annealing and extension at 59�C.
Absolute quantifications of bacteria (16S copies bee−1)

were made relative to an 8-concentration standard curve
(102 to 108 copies μl−1), run in triplicate on each plate, along
with three no-template controls. Analysis of standard curves
showed typical amplification efficiency of 90%–100% with
R2 > 0.99. The standards were generated by cloning an
amplicon of the 799–1115 V5-V6 region of the 16S rRNA
gene from a stock culture of Lactobacillus micheneri (cour-
tesy Hoang Vuong, (McFrederick et al., 2018)). The
amplicon was cloned into E. coli using the TOPOTA cloning
kit (Invitrogen, Carlsbad, CA); the reactionwas confirmed by

sequencing the insert of plasmids that were purified from
transformed cultures (Purelink Plasmid Purification Kit, Invi-
trogen). The plasmid was linearized with the Pst1 restriction
enzyme (New England Biolabs, Ipswich, MA). Concentra-
tion of 16S gene copies in the stock solution of linearized
plasmid were estimated by fluorescence-based quantifica-
tion of DNA concentration using aQubit (Invitrogen).

Normalization. For normalization, the amount of host
DNA was determined by a separate qPCR assay, also
run in triplicate, for the B. impatiens actin 5C gene
(primers Forward: CAAACGCTCGCTCAAACG, Reverse:
GTGTACGTGAATGGTCTTGCAC (Palmer-Young et al.,
2018aa)). The assay used 20 μl reaction volume con-
sisting of 2 μl DNA extract and 300 nM of each primer in
1x Power SYBR Green Mastermix. Thermocycle condi-
tions consisted of 10 min denaturation at 95�C, followed
by 40 amplification cycles of 15 s denaturation at 95�C
and 31 s simultaneous annealing and extension at 60�C.
Specificity was confirmed by melt-curve analysis. Quanti-
fications were made in units of proportion of host DNA
relative to a pooled DNA extract from 10 randomly
selected experimental bees (Palmer-Young et al.,
2018a). A standard curve, consisting of eight dilutions of
the pooled DNA extract, was run in triplicate on each
plate, along with three no-template controls.

Characterization of gut bacterial communities

Library preparation. Gut bacterial community composition
was determined for all bees by amplicon sequencing of
the V5-V6 region of the 16S rRNA gene (McFrederick
and Rehan, 2016; Rothman et al., 2018) on an Illumina
(San Diego, CA) MiSeq using standard methods (Engel
et al., 2013). Libraries were prepared using the same
bacterial 16S rRNA primers (799F-mod3 and 1115R)
used for bacterial qPCR. Use of the same primers for
qPCR and amplicon sequencing enabled us to estimate
absolute, as well as relative, abundances of individual
taxa from sequence data. Libraries were prepared using
two rounds of PCR as previously described (McFrederick
and Rehan, 2016; Rothman et al., 2018). The first round
of PCR amplified the target region and barcoded each
sample’s amplicons with unique 8-nucleotide sequences
appended to the forward and reverse primers; the second
round added the forward or reverse Illumina sequencing
primer.

The first round of PCR (20 μl reaction volume) used 2 μl of
10x diluted DNA extract, 1 μl each of 10 μM barcoded for-
ward (799F-mod3) and reverse (1115R) primers (final con-
centration: 500 nM), 10 μl of 2x Pfusion High-Fidelity DNA
polymerase master mix (New England Biolabs, Ipswich,
MA), and 6 μl ultrapure water. PCR was performed in a
C1000 Touch thermal cycler (BioRad, Hercules, CA) (3 min
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denaturation at 94�C; 24 cycles of 45 s at 94�C, 60 s at
52�C, 90 s at 72�C; 10 min at 72�C). To remove residual
primers and dNTPs, each sample’s product was treatedwith
10 μl of a solution containing 0.05 units μl−1 exonuclease I
(New England Biolabs) and 0.025 units μl−1 alkaline phos-
phatase (Sigma-Aldrich, St. Louis,MO). Sampleswere incu-
bated for 30 min at 37�C, followed by 5 min at 95�C to
inactivate the enzymes. The second round of PCR used 1 μl
of the treated PCR product as template, 1 μl each of 10 uM
forward and reverse primers (PCR2F: CAAGCAGAAGACG
GCATACGAGATCGGTCTCGGCATTCCTGC)andPCR2R:
AATGATACGGCGACCACCGAGATCTACACTCTTTCC-
CTACACGACG) to generate the forward and reverse
Illumina adapter sequences; 10 μl of 2x Phusion
MasterMix, and 13 μl ultrapure water. Thermocycle condi-
tions consisted of 3 min at 95�C; 14 cycles of 45 s at 95�C,
60 s at 58�C, 90 s at 72�C; and 100 at 72�C.

To equalize concentrations of DNA from each sample in
the final pooled amplicon library, 18 μl of the product from
the second round of qPCRwas bound to, then eluted from a
SequalPrep (Thermo Fisher, Waltham, MA) normalization
plate according to the manufacturer’s instructions. The nor-
malized products were pooled (5 μl sample−1), then purified
with the Purelink PCR product purification kit (Invitrogen).
Amplicon size and abundance were checked on a 2100 Bio-
analyzer (Agilent, Santa Clara, CA). Libraries were
sequenced at the UC Riverside Genomics Core Facility on
an Illumina MiSeq Sequencer (Illumina, San Diego, CA)
using a MiSeq V3 Reagent Kit. The sequencing run con-
sisted of 2 × 300 PCR cycles. Raw sequence data are avail-
able on the NCBI Sequence Read Archive (SRA) under
Accession number PRJNA532469.

Bioinformatics. Sequences of 16S rRNA amplicons were
processed in macQIIME and QIIME2 (Caporaso et al.,
2010; Bolyen et al., 2018). Reads were trimmed to removed
low-quality regions, then binned to exact sequence variants
(‘ESV’s’, i.e., bacteria with identical 16S amplicon
sequences) with DADA2 (Callahan et al., 2016). Taxonomic
classification of each ESV was inferred using the SILVA
database (Quast et al., 2013). Proportional composition and
ESV richness were estimated for each sample after removal
of ESV’s found in only one sample or in blanks (i.e., reagent
controls) and rarefaction to a read depth of 10 233 reads. A
phylogeny of the observed ESV’s was built using maximum
likelihood in FastTree2 (Price et al., 2010) and used to esti-
mate unifrac distances between samples (Lozupone and
Knight, 2005).

Statistical analyses

Statistical analyses were conducted in R v3.5 for Windows
(R Core Team, 2014). Models were fitted with packages
lme4 (for general linear models) (Bates et al., 2015) and

glmmTMB (for negative binomial models) (Magnusson
et al., 2017). Significance of individual predictor terms was
tested withWald χ2 tests, implemented with the Anova func-
tion in package car (Fox and Weisberg, 2011). Predictions
from models of each response variable were estimated with
package emmeans (Lenth, 2019). Plots were created with
packages ggplot2 and cowplot (Wickham, 2009; Wilke,
2016). Temperature was centred at the mean value (29�C)
to permit estimation of a quadratic term for the effect of tem-
perature (i.e., temperature2).

Infection intensity. For bees in the parasite-infection treat-
ment, effects of temperature on infection intensity were
tested with a negative binomial family linear mixed-effects
model in R package glmmTMB (Magnusson et al., 2017).
The negative binomial model is suited to overdispersed,
non-negative count data (Bliss and Fisher, 1953), while the
zero inflation term allows us to simultaneously account for
two separate processes that might generate zeroes – in this
case, whether or not the infection established (a binomial
process), and the resulting infection intensity in bees when
the infection did establish (Martin et al., 2005).

Infection intensity was normalized to amount of host actin
to control for gut size andDNA extraction efficiency. Normal-
ized infection intensity was computed for each sample as
the qPCR estimate of number ofC. bombi parasite cells per
gut divided by the same sample’s quantity of bumble bee
actin. Actin quantities were expressed as the proportion of
actin found in a reference extraction. The reference extrac-
tion consisted of a pooled DNA extract from 10 randomly
selected experimental bees (see Methods: Quantification of
infection intensity and (Palmer-Young et al., 2018a).
Samples with less than 10% of the actin found in the refer-
ence extraction were excluded a priori. The model used
normalized infection intensity as the response variable; tem-
perature (centred at themean temperature, 29�C), tempera-
ture2, and bee colony as fixed predictor variables.We chose
to use bee colony as a fixed effect because we had fewer
than 7 levels of this factor (Bolker et al., 2009). Models also
used ln(normalized bacterial abundance) as a covariate that
was previously correlated with C. bombi infection (Mockler
et al., 2018) and inoculation block as a random effect. Size
of the forewing marginal cell (an index of bee size (Wilfert
et al., 2007)) was initially included a covariate, but excluded
from the final model because it did not explain significant
variation in infection (χ21 = 2.57, p = 0.11).

Microbiome composition. Predictors of microbiome com-
munity structure were assessed with permutational MAN-
OVA (Oksanen et al., 2017). The weightedUniFrac distance
matrix of between-sample dissimilarity was used as themul-
tivariate response variable. Infection treatment, temperature
treatment (coded as a factor in this analysis only), their inter-
action, and bee colony were tested as predictor variables.
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Significance of individual terms was assessed with F tests.
Proportion of variation explained by each term (R2) was
determined as the ratio of the sum of squared variation
associated with the predictor relative to that of that of the full
model.

Total bacterial abundance. Effects of temperature and
infection treatments on gut bacterial abundance were
tested with a negative binomial family linear mixed-effects
model in R package glmmTMB (Magnusson et al., 2017).
Normalized 16S copy number (raw copy number divided
by proportion of bumble bee actin in a reference extrac-
tion, as in the analysis of infection intensity) was the
response variable. As in the model for infection, samples
with less than 10% of the actin found in the reference
extraction were excluded a priori; samples with no mea-
surable bacteria in the qPCR assay were also excluded.
Infection treatment, temperature (centred at the mean
temperature treatment, 29�C) and temperature2, and bee
colony were used as fixed predictor variables; size of the
forewing marginal cell was used as a covariate, and inoc-
ulation block was included as a random effect. The infec-
tion × temperature interaction was included in the initial
model, but excluded from the final model because it did
not explain significant variation in bacterial abundance
(χ21 = 0.36, p = 0.55).

Family wise bacterial abundance. Responses of family
wise abundances to temperature and infection treatments
was assessed for each of the four bacterial families
(Orbaceae, Neisseriaceae, Lactobacillaceae and
Bifidobacteriaceae, all found in >98% of samples) that
accounted for >10% of the total number of reads in the
16S amplicon sequencing. To calculate absolute abun-
dances of each family in each sample, we multiplied total
normalized abundance by the proportion of reads
corresponding to each family. Changes in abundances
were assessed with negative binomial family generalized
linear mixed models of the same structure used to evalu-
ate temperature-dependent changes in total bacterial
abundance. Infection treatment; temperature and, where
significant, temperature2; and bee colony were used as
fixed predictor variables. Size of the forewing marginal
cell was used as a covariate, and inoculation block was
included as a random effect. The infection × temperature
interaction term was not a significant predictor in any of
the models (p > 0.20 for all) and was excluded from the
final analyses.
The fifth most abundant family, Enterobacteriaceae, was

present in only 20% of samples. Its abundance was
analysed with a standard binomial model, rather than the
negative binomial used for the four more abundant families.
Terms for the infection × temperature interaction (χ21 = 0.57,
p = 0.45), temperature2 (χ21 = 2.11, p = 0.15), bee colony

(χ24 = 5.93, p = 0.20) and wing size (χ21 = 0.45, p = 0.50)
were excluded from the final model because they did not
explain significant variation in prevalence.

Correlations between family wise abundance and
C. bombi infection intensity. Correlations between abun-
dances of each of the four most abundant bacterial fami-
lies and C. bombi infection were assessed with negative
binomial family generalized linear mixed models of the
same structure used to evaluate temperature-dependent
changes in infection intensity, except that ln(abundance
+1) of the individual family was substituted for ln(total
bacterial abundance) covariate. Temperature, tempera-
ture2 and bee colony were used as fixed predictor vari-
ables. Inoculation block was included as a random effect.
Size of the forewing marginal cell was included as a
covariate in the model with Neisseriaceae abundance,
but was removed from the other models because it did
not explain significant variation in infection (p > 0.05 for
Wald chi-squared tests).

Alpha diversity (ESV richness). Number of unique ESV’s
per sample was analysed with a Poisson family linear
mixed model that used infection treatment, temperature
and temperature2, and bee colony as fixed predictor vari-
ables. Inoculation block was included as a random effect.
The infection × temperature interaction (χ21 = 0.81,
p = 0.37) and wing marginal cell size (χ21 = 0.05,
p = 0.82) were excluded from the final model because
they did not explain significant variation in ESV richness.

Sugar water consumption. Effects of temperature and
infection treatments on sugar water consumption (g bee−1

day−1) were tested with a linear mixed-effects model in R
package lme4 (Pinheiro andBates). Net consumption values
that were less than 0 after correction for evaporation were
assigned a trivial positive mass of 1 mg. Square root-
transformed net mass of sugar water consumed was the
response variable; infection treatment, temperature treat-
ment, their interaction and bee colonywere used as predictor
variables. Size of the forewing marginal cell was used as a
covariate. Inoculation blockwas included as a random effect,
as was individual bee identity to account for non-indepen-
dence of repeated measures on the same individual. A tem-
perature2 term was initially included in the model, but
excluded from the final model because it did not explain sig-
nificant variation in consumption (χ21 = 0.79, p = 0.37).

Mortality. Effects of temperature and infection treatment
on mortality were tested with a Cox proportional hazards
mixed-effects model (Therneau, 2015). Death hazard rate
was the response variable; infection treatment, tempera-
ture treatment, their interaction and bee colony were
used as predictor variables; and inoculation block was
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included as a random effect. Exploratory plots and
models showed no linear trends of mortality by tempera-
ture (χ21 = 0.20, p = 0.65), and models that included a
temperature2 term failed to converge; therefore, this anal-
ysis treated temperature as a factor rather than as a con-
tinuous variable. Marginal cell size was initially included
in the model, but excluded from the final model because
it did not explain significant variation in the response
(χ21 = 1.26, p = 0.26).
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