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Abstract

The paper presents a scheme for computing lower and upper bounds on the posterior
marginals in Bayesian networks with discrete variables. Its power lies in its ability to use
any available scheme that bounds the probability of evidence or posterior marginals and
enhance its performance in an anytime manner. The scheme uses the cutset conditioning
principle to tighten existing bounding schemes and to facilitate anytime behavior, utilizing
a fixed number of cutset tuples. The accuracy of the bounds improves as the number of
used cutset tuples increases and so does the computation time. We demonstrate empirically
the value of our scheme for bounding posterior marginals and probability of evidence using
a variant of the bound propagation algorithm as a plug-in scheme.

1. Introduction

This paper addresses the problem of bounding the probability of evidence and posterior
marginals in Bayesian networks with discrete variables. Deriving bounds on posteriors with
a given accuracy is clearly an NP-hard problem (Abdelbar & Hedetniemi, 1998; Dagum
& Luby, 1993; Roth, 1996) and indeed, most available approximation algorithms provide
little or no guarantee on the quality of their approximations. Still, a few approaches were
presented in the past few years for bounding posterior marginals (Horvitz, Suermondt, &
Cooper, 1989; Poole, 1996, 1998; Mannino & Mookerjee, 2002; Mooij & Kappen, 2008) and
for bounding the probability of evidence (Dechter & Rish, 2003; Larkin, 2003; Leisink &
Kappen, 2003).

In this paper we develop a framework that can accept any bounding scheme and improve
its bounds in an anytime manner using the cutset-conditioning principle (Pearl, 1988). To
facilitate our scheme we develop an expression that converts bounds on the probability of
evidence into bounds on posterior marginals.

Given a Bayesian network defined over a set of variables X , a variable X ∈ X , and a
domain value x ∈ D(X), a posterior marginal P (x|e) (where e is a subset of assignments
to the variables, called evidence) can be computed directly from two joint probabilities,
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P (x, e) and P (e):

P (x|e) =
P (x, e)

P (e)
(1)

Given a set C={C1, ..., Cp} ⊂ X of cutset variables (e.g., a loop-cutset), we can compute the
probability of evidence by enumerating over all the cutset tuples ci ∈ D(C) =

∏p
i=1D(Ci)

using the formula:

P (e) =
M
∑

i=1

P (ci, e) (2)

where M = |D(C)|. We can also compute the posterior marginals using the expression:

P (x|e) =
M
∑

i=1

P (x|ci, e)P (ci|e) (3)

The computation of P (ci, e) for any assignment c = ci is linear in the network size if C
is a loop-cutset and it is exponential in w if C is a w-cutset (see definition in Section 2).
The limitation of the cutset-conditioning method, as defined in Eq. (2) and (3), is that the
number of cutset tuples M grows exponentially with the cutset size.

There are two basic approaches for handling the combinatorial explosion in the cutset-
conditioning scheme. One is to sample over the cutset space and subsequently approximate
the distribution P (C|e) from the samples, as shown by Bidyuk and Dechter (2007). The
second approach, which we use here, is to enumerate h out of M tuples and bound the
rest. We shall refer to the selected tuples as “active” tuples. A lower bound on P (e) can
be obtained by computing exactly the quantities P (ci, e) for 1 ≤ i ≤ h resulting in a partial
sum in Eq. (2). This approach is likely to perform well if the selected h tuples contain
most of the probability mass of P (e). However, this approach cannot be applied directly
to obtain the bounds on the posterior marginals in Eq. (3). Even a partial sum in Eq. (3)
requires computing P (ci|e) which in turn requires a normalization constant P (e). We can
obtain naive bounds on posterior marginals from Eq. (1) using PL(e) and PU (e) to denote
available lower and upper bounds over joint probabilities:

PL(x, e)

PU (e)
≤ P (x|e) ≤

PU (x, e)

PL(e)

However, those bounds usually perform very poorly and often yield an upper bound > 1.
Horvitz et. al (1989) were the first to propose a scheme for bounding posterior marginals

based on a subset of cutset tuples. They proposed to select h highest probability tuples from
P (c) and derived lower and upper bounds on the sum in Eq. (3) from the joint probabilities
P (ci, e) and priors P (ci) for 1 ≤ i ≤ h. Their resulting bounded conditioning algorithm
was shown to compute good bounds on the posterior marginals of some variables in an
Alarm network (with M = 108). However, the intervals between lower and upper bound
values increase as the probability of evidence becomes smaller because the prior distribution
becomes a bad predictor of the high probability tuples in P (C|e) and P (c) becomes a bad
upper bound for P (c, e).

The expression we derive in this paper yields a significantly improved formulation which
results in our Active Tuples Bounds (ATB) framework. The generated bounds facilitate
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anytime performance and are provably tighter than the bounds computed by bounded
conditioning. In addition, our expression accommodates the use of any off-the-shelf scheme
which bounds the probability of evidence. Namely, ATB accepts any algorithm for bounding
P (e) and generates an algorithm that bounds the posterior marginals. Moreover, it can also
tighten the input bounds on P (e).

The time complexity of ATB is linear in the number of active (explored) cutset tuples
h. If the complexity of bounding P (e) is O(T ), then bounding the probability mass of the
unexplored tuples is O(T ·h · (d− 1) · |C|) where |C| is the number of variables in the cutset
and d is the maximum domain size.

We evaluate our framework experimentally, using a variant of bound propagation (BdP )
(Leisink & Kappen, 2003) as the plug-in bounding scheme. BdP computes bounds by
iteratively solving a linear optimization problem for each variable where the minimum and
maximum of the objective function correspond to lower and upper bounds on the posterior
marginals. The performance of BdP was demonstrated on the Alarm network, the Ising
grid network, and on regular bipartite graphs. Since bound propagation is exponential
in the Markov boundary size, and since it requires solving linear programming problems
many times, its overhead as a plug-in scheme was too high and not cost-effective. We
therefore utilize a variant of bound propagation called ABdP+, introduced by Bidyuk and
Dechter (2006b), that trades accuracy for speed.

We use Gibbs cutset sampling (Bidyuk & Dechter, 2003a, 2003b) for finding high-
probability cutset tuples. Other schemes, such as stochastic local search (Kask & Dechter,
1999) can also be used. The investigation into generating high-probability cutset tuples is
outside the primary scope of the paper.

We show empirically that ATB using bound propagation is often superior to bound
propagation alone when both are given comparable time resources. More importantly,
ATB’s accuracy improves with time. We also demonstrate the power of ATB for improving
the bounds on probability of evidence. While the latter is not the main focus of our paper,
lower and upper bounds on the probability of evidence are contained in the expression for
bounding posterior marginals.

The paper is organized as follows. Section 2 provides background on the previously pro-
posed method of bounded conditioning. Section 3 presents and analyzes our ATB frame-
work. Section 4 describes the implementation details of using bound propagation as an
ATB plug-in and presents our empirical evaluation. Section 5 discusses related work, and
Section 6 concludes.

2. Background

For background, we define key concepts and describe the bounded conditioning algorithm
which inspired our work.

2.1 Preliminaries

In this section, we define essential terminology and provide background information on
Bayesian networks.
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Definition 2.1 (graph concepts) A directed graph is a pair G=< V , E >, where V =
{X1, ..., Xn} is a set of nodes and E = {(Xi, Xj)|Xi, Xj ∈ V} is the set of edges. Given
(Xi, Xj) ∈ E, Xi is called a parent of Xj, and Xj is called a child of Xi. The set of
Xi’s parents is denoted pa(Xi), or pai, while the set of Xi’s children is denoted ch(Xi), or
chi. The family of Xi includes Xi and its parents. The moral graph of a directed graph
G is the undirected graph obtained by connecting the parents of each of the nodes in G and
removing the arrows. A cycle-cutset of an undirected graph is a subset of nodes that,
when removed, yields a graph without cycles. A loop in a directed graph G is a subgraph
of G whose underlying graph is a cycle (undirected). A directed graph is acyclic if it has
no directed loops. A directed graph is singly-connected (also called a poly-tree), if its
underlying undirected graph has no cycles. Otherwise, it is called multiply-connected.

Definition 2.2 (loop-cutset) A vertex v is a sink with respect to a loop L if the two
edges adjacent to v in L are directed into v. A vertex that is not a sink with respect to a
loop L is called an allowed vertex with respect to L. A loop-cutset of a directed graph G
is a set of vertices that contains at least one allowed vertex with respect to each loop in G.

Definition 2.3 (Bayesian network) Let X = {X1, ..., Xn} be a set of random variables
over multi-valued domains D(X1), ...,D(Xn). A Bayesian network B (Pearl, 1988) is
a pair <G,P> where G is a directed acyclic graph whose nodes are the variables X and
P = {P (Xi|pai) | i = 1, ..., n} is the set of conditional probability tables (CPTs) associated
with each Xi. B represents a joint probability distribution having the product form:

P (x1, ...., xn) =
n
∏

i=1

P (xi|pa(Xi))

An evidence e is an instantiated subset of variables E ⊂ X .

Definition 2.4 (Markov blanket and Markov boundary) A Markov blanket of Xi

is a subset of variables Y ⊂ X such that Xi is conditionally independent of all other variables
given Y . A Markov boundary of Xi is its minimal Markov blanket (Pearl, 1988).

In our following discussion we will identify Markov boundaryXi with the Markov blanket
consisting of Xi’s parents, children, and parents of its children.

Definition 2.5 (Relevant Subnetwork) Given evidence e, relevant subnetwork of
Xi relativde to e is a subnetwork of B obtained by removing all descendants of Xi that are
not observed and do not have observed descendants.

If the observations change, the Markov boundary of Xi will stay the same while its
relevant subnetwork may change. As most inference tasks are defined relative to a specific
set of observations e, it is often convenient to restrict attention to the Markov boundary of
Xi in the relevant subnetwork of Xi.

The most common query over Bayesian networks is belief updating which is the task
of computing the posterior distribution P (Xi|e) given evidence e and a query variable
Xi ∈ X . Another query is to compute probability of evidence P (e). Both tasks are NP-
hard (Cooper, 1990). Finding approximate posterior marginals with a fixed accuracy is also
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NP-hard (Dagum & Luby, 1993; Abdelbar & Hedetniemi, 1998). When the network is a
poly-tree, belief updating and other inference tasks can be accomplished in time linear in
the size of the network. In general, exact inference is exponential in the induced width of
the network’s moral graph.

Definition 2.6 (induced width) The width of a node in an ordered undirected graph is
the number of the node’s neighbors that precede it in the ordering. The width of an ordering
o, denoted w(o), is the width over all nodes. The induced width of an ordered graph, w∗(o),
is the width of the ordered graph obtained by processing the nodes from last to first.

Definition 2.7 (w-cutset) A w-cutset of a Bayesian network B is a subset of variables
C such that, when removed from the moral graph of the network, its induced width is ≤ w.

Throughout the paper, we will consider a Bayesian network over a set of variables X ,
evidence variables E ⊂ X and evidence E = e, and a cutset C = {C1, ..., Cp} ⊂ X\E.
Lower-case c = {c1, ..., cp} will denote an arbitrary instantiation of cutset C, and M =
|D(C)| =

∏

Ci∈C
|D(Ci)| will denote the number of different cutset tuples.

2.2 Bounded Conditioning

Bounded conditioning (BC) is an anytime scheme for computing posterior bounds in Bayesian
networks proposed by Horvitz et. al (1989). It is derived from the loop-cutset conditioning
method (see Eq. 3). Given a node X ∈ X and a domain value x ∈ D(X), they derive
bounds from the following formula:

P (x|e) =
M
∑

i=1

P (x|ci, e)P (ci|e) =
h
∑

i=1

P (x|ci, e)P (ci|e) +
M
∑

i=h+1

P (x|ci, e)P (ci|e) (4)

The hard-to-compute P (ci|e) is replaced for i ≤ h with a normalization formula:

P (x|e) =

∑h
i=1 P (x|ci, e)P (ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci, e)

+

M
∑

i=h+1

P (x|ci, e)P (ci|e) (5)

BC computes exactly P (ci, e) and P (x|ci, e) for the h cutset tuples and bounds the rest.
The lower bound is obtained from Eq. (5) by replacing

∑M
i=h+1 P (ci, e) in the denomi-

nator with the sum of priors
∑M

i=h+1 P (ci) and simply dropping the sum on the right:

PL
BC(x|e) ,

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

(6)

The upper bound is obtained from Eq. (5) by replacing
∑M

i=h+1 P (ci, e) in the denomi-
nator with a zero, and replacing P (x|ci, e) and P (ci|e) for i > h with the upper bounds of
1 and a derived upper bound (not provided here) respectively:

PU
BC(x|e) ,

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e)

+

∑M
i=h+1 P (ci)

∑h
i=1 P

L(ci|e) + 1−
∑h

i=1 P
U (ci|e)
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Applying definitions for PL(ci|e) = P (ci,e)
∑h

i=1
P (ci,e)+

∑M
i=h+1

P (ci)
and PU (ci|e) = P (ci,e)

∑h
i=1

P (ci,e)
from

Horvitz et al. (1989), we get:

PU
BC(x|e) ,

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e)

+
(
∑M

i=h+1 P (ci))(
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci))
∑h

i=1 P (ci, e)
(7)

The bounds expressed in Eq. (6) and (7) converge to the exact posterior marginals as
h→M . However, we can show that,

Theorem 2.1 (bounded conditioning bounds interval) The interval between lower and
upper bounds computed by bounded conditioning is lower bounded by the probability mass of
prior distribution P (C) of the unexplored cutset tuples:

∀h, PU
BC(x|e)− PL

BC(x|e) ≥
M
∑

i=h+1

P (ci)

Proof. See Appendix A. �

3. Architecture for Active Tuples Bounds

In this section, we describe our Active Tuples Bounds (ATB) framework. It builds on the
same principles as bounded conditioning. Namely, given a cutset C and some method for
generating h cutset tuples, the probabilities P (c, e) of the h tuples are evaluated exactly and
the rest are upper and lower bounded. The worst bounds on P (c, e) are the lower bound of
0 and the upper bound of P (c). ATB bounds can be improved by using a plug-in algorithm
that computes tighter bounds on the participating joint probabilities. It always computes
tighter bounds than bounded conditioning, even when using 0 and P (c) to bound P (c, e).

For the rest of the section, c1:q = {c1, ..., cq} with q < |C| denotes a generic partial
instantiation of the first q variables in C, while ci1:q indicates a particular partial assignment.

Given h cutset tuples, 0 ≤ h ≤ M , that we assume without loss of generality to be the
first h tuples according to some enumeration order, a variable X ∈ X\E and x ∈ D(X), we
can rewrite Eq. (3) as:

P (x|e) =

∑M
i=1 P (x, ci, e)

∑M
i=1 P (ci, e)

=

∑h
i=1 P (x, ci, e) +

∑M
i=h+1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci, e)

(8)

The probabilities P (x, ci, e) and P (ci, e), 1 ≤ i ≤ h, can be computed in polynomial time if
C is a loop-cutset and in time and space exponential in w if C is a w-cutset. The question
is how to compute or bound

∑M
i=h+1 P (x, ci, e) and

∑M
i=h+1 P (ci, e) in an efficient manner.

Our approach first replaces the sums over the tuples ch+1,...,cM with a sum over a
polynomial number (in h) of partially-instantiated tuples. From that, we develop new
expressions for lower and upper bounds on the posterior marginals as a function of the
lower and upper bounds on the joint probabilities P (x, c1:q, e) and P (c1:q, e). We assume in
our derivation that there is an algorithm A that can compute those bounds, and refer to
them as PL

A(x, c1:q, e) (resp. P
L
A(c1:q, e)) and PU

A (x, c1:q, e) (resp. P
U
A (c1:q, e)) respectively.
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0 1

C1

1

C2

0 1

C3

0 1

C4

0 2

0 1

C3

0 1

C4

Figure 1: A search tree for cutset C = {C1, ..., C4}.

3.1 Bounding the Number of Processed Tuples

We will now formally define partially-insantiated tuples and replace the sum over the ex-
ponential number of uninstantiated tuples (h+ 1 through M) with a sum over polynomial
number of partially-instantiated tuples (h+ 1 through M ′) in Eq. 8.

Consider a fully-expanded search tree of depth |C| over the cutset search space expanded
in the order C1,...,Cp. A path from the root to the leaf at depth |C| corresponds to a full
cutset tuple. We will call such a path an active path and the corresponding tuple an active
tuple. We can obtain the truncated search tree by trimming all branches that are not on
the active paths:

Definition 3.1 (truncated search tree) Given a search tree T covering the search space
H over variables Y = {Y1, . . . , Ym} ⊆ X , a truncated search tree relative to a subset
S = {y1, ..., yt} ⊂ D(Y1)× ...×D(Ym) of full assignments, is obtained by marking the edges
on all the paths appearing in S and removing all unmarked edges and nodes except those
emanating from marked nodes.

Let S = {c1, . . . , ch}. Clearly, the leaves at depth q < |C| in the truncated search
tree relative to S correspond to the partially instantiated cutset tuples c1:q which are not
extended to full cutset assignments.

Example 3.1 Consider a Bayesian network B with cutset variables C={C1, ..., C4}, do-
main values D(C1)=D(C3)=D(C4)={0, 1}, D(C2)={0, 1, 2}, and four fully-instantiated tu-
ples {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 1, 0}, {0, 2, 1, 1}. Figure 1 shows its truncated search tree,
where the remaining partially instantiated tuples are {0, 0}, {0, 1, 1}, {0, 2, 0}, and {1}.

Proposition 3.1 Let C be a cutset, d be the maximum domain size, and h be the number
of generated cutset tuples. Then the number of partially-instantiated cutset tuples in the
truncated search tree is bounded by O(h · (d− 1) · |C|).
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Proof. Since every node in the path from the root C1 to a leaf Cp can not have more than
(d− 1) emanating leaves, the theorem clearly holds. �

Let M ′ be the number of truncated tuples. We can enumerate the partially instantiated
tuples, denoting the j-th tuple as cj1:qj , 1 ≤ j ≤M ′, where qj is the tuple’s length. Clearly,

the probability mass over the cutset tuples ch+1, ..., cM can be captured by a sum over the
truncated tuples. Namely:

Proposition 3.2

M
∑

i=h+1

P (ci, e) =
M ′

∑

j=1

P (cj1:qj , e) (9)

M
∑

i=h+1

P (x, ci, e) =
M ′

∑

j=1

P (x, cj1:qj , e) (10)

�

Therefore, we can bound the sums over the tuples h+1 through M in Eq. (8) by bounding
a polynomial (in h) number of partially-instantiated tuples as follows,

P (x|e) =

∑h
i=1 P (x, ci, e) +

∑M ′

j=1 P (x, cj1:qj , e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj1:qj , e)
(11)

3.2 Bounding the Probability over the Truncated Tuples

In the following, we develop lower and upper bound expressions used by ATB.

3.2.1 Lower Bounds

First, we decompose P (cj1:qj , e), 0 ≤ j ≤ M ′, as follows. Given a variable X ∈ X and a

distinguished value x ∈ D(X):

P (cj1:qj , e) =
∑

x′∈D(X)

P (x′, cj1:qj , e) = P (x, cj1:qj , e) +
∑

x′ 6=x

P (x′, cj1:qj , e) (12)

Replacing P (cj1:qj , e) in Eq. (11) with the right-hand side of Eq. (12), we get:

P (x|e) =

∑h
i=1 P (x, ci, e) +

∑M ′

j=1 P (x, cj1:qj , e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (x, cj1:qj , e) +
∑M ′

j=1

∑

x′ 6=x P (x′, cj1:qj , e)
(13)

We will use the following two lemmas:

Lemma 3.1 Given positive numbers a > 0, b > 0, δ ≥ 0, if a < b, then: a
b
≤ a+δ

b+δ
. �
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Lemma 3.2 Given positive numbers a, b, δ, δL, δU , if a < b and δL ≤ δ ≤ δU , then:

a+ δL

b+ δL
≤

a+ δ

b+ δ
≤

a+ δU

b+ δU

�

The proof of both lemmas is straight forward.

Lemma 3.2 says that if the sums in the numerator and denominator have some compo-
nent δ in common, then replacing δ with a larger value δU in both the numerator and the
denominator yields a larger fraction. Replacing δ with a smaller value δL in both places
yields a smaller fraction.

Observe now that in Eq. (13) the sums in both the numerator and the denominator
contain P (x, cj1:qj , e). Hence, we can apply Lemma 3.2. We will obtain a lower bound by

replacing P (x, cj1:qj , e), 1 ≤ j ≤ M ′, in Eq. (13) with corresponding lower bounds in both
numerator and denominator, yielding:

P (x|e) ≥

h
∑

i=1

P (x, ci, e) +

M ′

∑

j=1

PL
A(x, c

j
1:qj

, e)

h
∑

i=1

P (ci, e) +
M ′

∑

j=1

PL
A(x, c

j
1:qj

, e) +
M ′

∑

j=1

∑

x′ 6=x

P (x′, cj1:qj , e)

(14)

Subsequently, grouping PL
A(x, c

j
1:qj

, e) and
∑

x′ 6=x P (x′, cj1:qj , e) under one sum and replacing

PL
A(x, c

j
1:qj

, e)+
∑

x′ 6=x P (x′, cj1:qj , e) with its corresponding upper bound (increasing denom-

inator), we obtain:

P (x|e) ≥

h
∑

i=1

P (x, ci, e) +
M ′

∑

j=1

PL
A(x, c

j
1:qj

, e)

h
∑

i=1

P (ci, e) +
M ′

∑

j=1

UB[PL
A(x, c

j
1:qj

, e) +
∑

x′ 6=x

P (x′, cj1:qj , e)]

, PL
A(x|e) (15)

where upper bound UB can be obtained as follows:

UB[PL
A(x, c

j
1:qj

, e) +
∑

x′ 6=x

P (x′, cj1:qj , e)] , min

{

PL
A(x, c

j
1:qj

, e) +
∑

x′ 6=x P
U
A (x′, cj1:qj , e)

PU
A (cj1:qj , e)

(16)

The value
∑

x′ 6=x P
U
A (x′, cj1:qj , e) is, obviously, an upper bound of

∑

x′ 6=x P (x′, cj1:qj , e). The

value PU
A (cj1:qj , e) is also an upper bound since PL

A(x, c
j
1:qj

, e)+
∑

x′ 6=x P (x′, cj1:qj , e) ≤ P (cj1:qj , e)

≤ PU
A (cj1:qj , e). Neither bound expression in Eq. (16) dominates the other. Thus, we com-

pute the minimum of the two values.
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Please note that the numerator in Eq. (15) above also provides an anytime lower bound
on the joint probability P (x, e) and can be used to compute a lower bound on the probability
of evidence. In general, a lower bound denoted PL

A(e) is obtained by:

P (e) ≥
h
∑

i=1

P (ci, e) +
M ′

∑

j=1

PL
A(c

j
1:qj

, e) , PL
A(e) (17)

3.2.2 Upper Bound

The upper bound expression can be obtained in a similar manner. Since both numerator
and denominator in Eq. (13) contain addends P (x, cj1:qj , e), using Lemma 3.2 we replace

each P (x, cj1:qj , e) with an upper bound PU
A (x, cj1:qj , e) yielding:

P (x|e) ≤

h
∑

i=1

P (x, ci, e) +

M ′

∑

j=1

PU
A (x, cj1:qj , e)

h
∑

i=1

P (ci, e) +
M ′

∑

j=1

PU
A (x, cj1:qj , e) +

M ′

∑

j=1

∑

x′ 6=x

P (x′, cj1:qj , e)

(18)

Subsequently, replacing each P (x′, cj1:qj , e), x
′ 6= x, with a lower bound (reducing denomi-

nator), we obtain a new upper bound expression on P (x|e):

P (x|e) ≤

h
∑

i=1

P (x, ci, e) +
M ′

∑

j=1

PU
A (x, cj1:qj , e)

h
∑

i=1

P (ci, e) +
M ′

∑

j=1

PU
A (x, cj1:qj , e) +

M ′

∑

j=1

∑

x′ 6=x

PL
A(x

′, c
j
1:qj

, e)

, PU
A (x|e) (19)

Similar to the lower bound, the numerator in the upper bound expression PU
A (x|e) pro-

vides an anytime upper bound on the joint probability P (x, ci, e) which can be generalized
to upper bound the probability of evidence:

P (e) ≤
h
∑

i=1

P (ci, e) +
M ′

∑

j=1

PU
A (cj1:qj , e) , PU

A (e) (20)

The derived bounds PL
A(x|e) and PU

A (x|e) are never worse than those obtained by bounded
conditioning, as we will show in Section 3.4.

3.3 Algorithmic Description

Figure 2 summarizes the active tuples-based bounding scheme ATB. In steps 1 and 2, we
generate h fully-instantiated cutset tuples and compute exactly the probabilities P (ci, e) and
P (X, ci, e) for i ≤ h, ∀X ∈ X\(C∪E), using, for example, the bucket-elimination algorithm
(Dechter, 1999). In step 3, we compute bounds on the partially instantiated tuples using
algorithm A. In step 4, we compute the lower and upper bounds on the posterior marginals
using expressions (15) and (19), respectively.
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Active Tuples-based Bounds Architecture
Input: A Bayesian network (B), variables X , evidence E ⊂ X , cutset C ⊂ X\E, constant
h, algorithm A for computing lower and upper bounds on joint probabilities.
Output: lower bounds PL, upper bounds PU .
1. Generate h cutset tuples.
2. Compute:

S ←
∑h

i=1 P (ci, e)

Sx ←
∑h

i=1 P (x, ci, e), ∀x ∈ D(X), ∀X ∈ X\(C ∪ E)
3. Traverse partially-instantiated tuples:

3.1 Generate the truncated tree associated with the h tuples and let c11:q1 , ..., c
M ′

1:qM′

be the M ′ partial assignments.
3.2 ∀x ∈ D(X), ∀X ∈ X\(C ∪ E), compute:

LBA(x)←
∑M ′

j=1 P
L
A(x, cj1:qj , e)

UBA(x)←
∑M ′

j=1 P
U
A (x, cj1:qj , e)

UB′
A(x)←

∑M ′

j=1 UB[P (x, cj1:qj , e) +
∑

x′ 6=x PA(x
′, c

j
1:qj

, e)]

4. Compute bounds:

PL
A(x|e) = Sx+LBA(x)

S+UB′
A
(x)

PU
A (x|e) = Sx+UBA(x)

S+UBA(x)+LBA(x)

5. Output {PL
A(x|e)} and {Pu

A(x|e)}.

Figure 2: Active Tuples Bounds Architecture

Example 3.2 Consider again the Bayesian network B described in Example 3.1. Recall
that B has a cutset C = {C1, ..., C4} with domains D(C1) = D(C3) = D(C4) = {0, 1} and
D(C2) = {0, 1, 2}. The total number of cutset tuples is M = 24. Let X 6∈ C be a variable in
B with domain D(X) = {x, x′}. We will compute bounds on P (x|e). Assume we generated
the same four cutset tuples (h = 4) as before:

c1 = {C1 = 0, C2 = 1, C3 = 0, C4 = 0} = {0, 1, 0, 0}

c2 = {C1 = 0, C2 = 1, C3 = 0, C4 = 1} = {0, 1, 0, 1}

c3 = {C1 = 0, C2 = 2, C3 = 1, C4 = 0} = {0, 2, 1, 0}

c4 = {C1 = 0, C2 = 2, C3 = 1, C4 = 1} = {0, 2, 1, 1}

The corresponding truncated search tree is shown in Figure 1. For the tuple {0, 1, 0, 0},
we compute exactly the probabilities P (x,C1=0, C2=1, C3=0, C4=0, e) and P (C1=0, C2=1,
C3 = 0, C4 = 0). Similarly, we obtain exact probabilities P (x,C1 = 0, C2 = 1, C3 = 0,
C4 = 1) and P (C1 = 0, C2 = 1, C3 = 0, C4 = 1) for the second cutset instance {0, 1, 0, 1}.
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Since h = 4,
∑h

i=1 P (x′, ci, e) and
∑h

i=1 P (ci, e) are:

4
∑

i=1

P (x, ci, e) = P (x, c1, e) + P (x, c2, e) + P (x, c3, e) + P (x, c4, e)

4
∑

i=1

P (ci, e) = P (c1, e) + P (c2, e) + P (c3, e) + P (c4, e)

The remaining partial tuples are: c11:2 = {0, 0}, c21:3 = {0, 1, 1}, c31:3 = {0, 2, 0}, and c41:1 =
{1}. Since these 4 tuples are not full cutsets, we compute bounds on their joint probabilities.
Using the same notation as in Figure 2, the sums over the partially instantiated tuples will
have the form:

UBA(x) , PU
A (x, c11:2, e) + PU

A (x, c21:3, e) + PU
A (x, c31:3, e) + PU

A (x, c41:1, e)

LBA(x) , PL
A(x, c

1
1:2, e) + PL

A(x, c
2
1:3, e) + PL

A(x, c
3
1:3, e) + PL

A(x, c
4
1:1, e)

From Eq. (19) we get:

PU
A (x|e) =

∑4
i=1 P (x, ci, e) + UBA(x)

∑4
i=1 P (ci, e) + UBA(x) + LBA(x′)

From Eq. (15) and (16) we get:

PL
A(x|e) =

∑4
i=1 P (x, ci, e) + LBA(x)

∑4
i=1 P (ci, e) + LBA(x) + UBA(x′)

The total number of tuples processed is M ′ = 4 + 4 = 8 < 24.

3.4 ATB Properties

In this section we analyze the time complexity of the ATB framework, evaluate its worst-
case lower and upper bounds, and analyze the monotonicity properties of its bounds interval
(as a function of h).

Theorem 3.1 (complexity) Given an algorithm A that computes lower and upper bounds
on joint probabilities P (c1:qi , e) and P (x, c1:qi , e) in time O(T ), and a loop-cutset C, PL

A(x|e)
and PU

A (x|e) are computed in time O(h ·N + T · h · (d − 1) · |C|) where d is the maximum
domain size and N is the problem input size.

Proof. Since C is a loop-cutset, the exact probabilities P (ci, e) and P (x, ci, e) can be
computed in time O(N). From Proposition 3.1, there are O(h · (d − 1) · |C|) partially-
instantiated tuples. Since algorithm A computes upper and lower bounds on P (cj1:qj , e) and

P (x, cj1:qj , e) in time O(T ), the bounds on partially-instantiated tuples can be computed in

time O(T · h · (d− 1) · |C|)). �
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Let the plug-in algorithm A be a brute-force algorithm, denoted BF , that trivially
instantiates PL

BF (x, c
j
1:qj

, e) = 0, PU
BF (x, c

j
1:qj

, e) = P (cj1:qj ), and UB[P (cj1:qj , e)] = P (cj1:qj ).

Then, from Eq. (15):

PL
BF (x|e) ,

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P (cj1:qj )
=

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

(21)

while from Eq. (19):

PU
BF (x|e) ,

∑h
i=1 P (x, ci, e) +

∑M ′

j=1 P (cj1:qj )
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj1:qj )
=

∑h
i=1 P (x, ci, e) +

∑M
j=h+1 P (cj)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

(22)

Assuming that algorithm A computes bounds at least as good as those computed by
BF , PL

BF (x|e) and PU
BF (x|e) are the worst-case bounds computed by ATB.

Now, we are ready to compute an upper bound on the ATB bounds interval:

Theorem 3.2 (ATB bounds interval upper bound) ATB length of the interval be-
tween its lower and upper bounds is upper bounded by a monotonic non-increasing function
of h:

PU
A (x|e)− PL

A(x|e) ≤

∑M
j=h+1 P (cj)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

, Ih

Proof. See Appendix C. �

Next we show that ATB lower and upper bounds are as good or better than the bounds
computed by BC.

Theorem 3.3 (tighter lower bound) PL
A(x|e) ≥ PL

BC(x|e).

Proof. PL
BF (x|e) is the worst-case lower bound computed by ATB. Since PL

BF (x|e) =
PL
BC(x|e), and PL

A(x|e) ≥ PL
BF (x|e), then PL

A(x|e) ≥ PL
BC(x|e). �

Theorem 3.4 (tighter upper bound) PU
A (x|e) ≤ PU

BC(x|e).

Proof. PU
BF (x|e) is the worst-case upper bound computed by ATB. Since PU

BF (x|e) ≤
PU
BC(x|e) due to lemma 3.1, it follows that PU

A (x|e) ≤ PU
BC(x|e). �

4. Experimental Evaluation

The purpose of the experiments is to evaluate the performance of our ATB framework on
the two probabilistic tasks of single-variable posterior marginals and probability of evidence.
The experiments on the first task were conducted on 1.8Ghz CPU with 512 MB RAM, while
the experiments on the second task were conducted on 2.66GHz CPU with 2GB RAM.
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Recall that ATB has a control parameter h that fixes the number of cutset tuples for
which the algorithm computes its exact joint probability. Given a fixed h, the quality of
the bounds will presumably depend on the ability to select h high probability cutset tuples.
In our implementation, we use an optimized version of Gibbs sampling, that during the
sampling process maintains a list of the h tuples having the highest joint probability. As
noted, other schemes should be considered for this subtask as part of the future work. We
obtain the loop-cutset using mga algorithm (Becker & Geiger, 1996).

Before we report the results, we describe bound propagation and its variants, which we
use as a plug-in algorithm A and also as a stand-alone bounding scheme.

4.1 Bound Propagation

Bound propagation (BdP ) (Leisink & Kappen, 2003) is an iterative algorithm that bounds
the posterior marginals of a variable. The bounds are initialized to 0 and 1 and are iteratively
improved by solving a linear optimization problem for each variable X ∈ X such that the
minimum and maximum of the objective function correspond to the lower and upper bound
on the posterior marginal P (x|e), x ∈ D(X).

We cannot directly plug BdP into ATB to bound P (c1:q, e) because it only bounds
conditional probabilities. Thus, we factorize P (c1:q, e) as follows:

P (c1:q, e) =
∏

ej∈E

P (ej |e1, . . . , ej−1, c1:q)P (c1:q)

Each factor P (ej |e1, . . . , ej−1, c1:q) can be bounded by BdP , while P (c1:q) can be computed
exactly since the relevant subnetwork over c1:q (see Def. 2.5) is singly connected. Let PL

BdP

and PU
BdP denote the lower and upper bounds computed by BdP on some marginal. The

bounds BdP computes on the joint probability are:

∏

ej∈E

PL
BdP (ej |e1, . . . , ej−1, c1:q)P (c1:q) ≤ P (c1:q, e) ≤

∏

ej∈E

PU
BdP (ej |e1, . . . , ej−1, c1:q)P (c1:q)

Note that BdP has to bound a large number of tuples when plugged into ATB, and there-
fore, solve a large number of linear optimization problems. The number of variables in each
problem is exponential in the size of the Markov blanket of X.

As a baseline for comparison with ATB, we use in our experiments a variant of bound
propagation called BdP+ (Bidyuk & Dechter, 2006b) that exploits the structure of the
network to restrict the computation of P (x|e) to the relevant subnetwork of X (see Def. 2.5).
The Markov boundary of X (see Def. 2.4) within relevant subnetwork of X does not include
the children of X that are not observed and have no observed descedants; therefore, it is
a subnetwork of the Markov boundary in the original network. Sometimes, the Markov
boundary of X is still too big to compute under limited memory resouces. BdP+ uses
a parameter k to specify the maximum size of the Markov boundary domain space. The
algorithm skips the variables whose Markov boundary domain size exceeds k, and so their
lower and upper bound values remain 0 and 1, respectively. When some variables are
skipped, the bounds computed by BdP+ for the remaining variables may be less accurate.
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network N w∗ |LC| |D(LC)| |E| Time(BE) Time(LC)

Alarm 37 4 5 108 1-4 0.01 sec 0.05 sec
Barley 48 7 12 > 227 4-8 50 sec >22 hrs1

cpcs54 54 15 15 32768 2-8 1 sec 22 sec
cpcs179 179 8 8 49152 12-24 2 sec 37 sec
cpcs360b 360 21 26 26 11-23 20 min > 8 hrs1

cpcs422b 422 22 47 27 4-10 50 min > 2× 109 hrs1

Munin3 1044 7 30 > 230 257 8 sec > 1700 hrs1

Munin4 1041 8 49 > 249 235 70 sec > 1× 108 hrs1

Table 1: Complexity characteristics of the benchmarks from the UAI repository: N -number
of nodes, w∗-induced width, |LC|-number of nodes in a loop-cutset, |D(LC)|-
loop-cutset state space size, Time(BE) is the exact computation time via bucket
elimination, Time(LC) is the exact computation time via loop-cutset conditioning.
The results are averaged over a set of network instances with different evidence.
Evidence nodes and their values are selected at random.

Our preliminary tests showed that plugging BdP+ into ATB is timewise infeasible
(even for small k). Instead, we developed and used a different version of bound propagation
called ABdP+ (Bidyuk & Dechter, 2006b) as a plug-in algorithm A, which was more cost-
effective in terms of accuracy and time overhead. ABdP+ includes the same enhancements
as BdP+, but solves the linear optimization problem for each variable using an approxi-
mation algorithm. This implies that we obtain bounds faster but they are not as accurate.
Roughly, the relaxed linear optimization problem can be described as a fractional pack-
ing and covering with multiple knapsacks and solved by a fast greedy algorithm (Bidyuk
& Dechter, 2006b). ABdP+ is also parameterized by k to control the maximum size of
the linear optimization problem. Thus, ATB using ABdP+ as a plug-in has two control
parameters: h and k.

4.2 Bounding Single-Variable Marginals

We compare the performance of the following three algorithms: ATB (with ABdP+ as
a plug-in), BdP+, as described in the previous section, and BBdP+ (Bidyuk & Dechter,
2006a). The latter is a combination of ATB and BdP+. First, we run algorithm ATB

with ABdP+ plug-in. Then, we use the bounds computed by ATB to initialize bounds
in BdP+ (instead of 0 and 1) and run BdP+. Note that, given fixed values of h and k,
BBdP+ will always compute tighter bounds than either ATB and BdP+. Our goal is
to analyze its trade-off between the increase of the bounds’ accuracy and the computation
time overhead. We also compare with approximate decomposition (AD) (Larkin, 2003)
whenever it is feasible and relevant. We did not include the results for the stand-alone
ABdP+ since our objective was to compare ATB bounds with the most accurate bounds
obtained by bound propagation. Bidyuk (2006) provides additional comparison with various
refinements of BdP (Bidyuk & Dechter, 2006b) mentioned earlier.

1. Times are extrapolated.
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4.2.1 Benchmarks

We tested our framework on four different benchmarks: Alarm, Barley, CPCS, and Munin.
Alarm network is a model for monitoring patients undergoing surgery in an operating room
(Beinlich, Suermondt, Chavez, & Cooper, 1989). Barley network is a part of the decision-
support system for growing malting barley (Kristensen & Rasmussen, 2002). CPCS net-
works are derived from the Computer-Based Patient Care Simulation system and based
on INTERNIST-1 and Quick Medical Reference Expert systems (Pradhan, Provan, Mid-
dleton, & Henrion, 1994). We experiment with cpcs54, cpcs179, cpcs360b, and cpcs422b
networks. Munin networks are a part of the expert system for computer-aided electromyo-
graphy (Andreassen, Jensen, Andersen, Falck, Kjaerulff, Woldbye, Srensen, Rosenfalck, &
Jensen, 1990). We experiment with Munin3 and Munin4 networks. For each network, we
generated 20 different sets of evidence variables picked at random. For Barley network, we
select evidence variables as defined by Kristensen and Rasmussen (2002).

Table 1 summarizes the characteristic of each network. For each one, the table specifies
the number of variables N , the induced width w∗, the size of loop cutset |LC|, the number of
loop-cutset tuples |D(LC)|, and the time needed to compute the exact posterior marginals
by bucket-tree elimination (exponential in the induced width w∗) and by cutset conditioning
(exponential in the size of loop-cutset).

Computing the posterior marginals exactly is easy in Alarm network, cpcs54, and
cpcs179 using either bucket elimination or cutset conditioning since they have small in-
duced width and a small loop-cutset. We include those benchmarks as a proof of concept
only. Several other networks, Barley, Munin3, and Munin4, also have small induced width
and, hence, their exact posterior marginals can be obtained by bucket elimination. How-
ever, since ATB is linear in space, it should be compared against linear-space schemes such
as cutset-conditioning. From this perspective, Barley, Munin3, and Munin4 are hard. For
example, Barley network has only 48 variables, its induced width is w∗ = 7, and exact infer-
ence by bucket elimination takes only 30 seconds. Its loop-cutset contains only 12 variables,
but the number of loop-cutset tuples exceeds 2 million because some variables have large
domain sizes (up to 67 values). Enumerating and computing all cutset tuples, at a rate of
about 1000 tuples per second, would take over 22 hours. Similar considerations apply in
case of Munin3 and Munin4 networks.

4.2.2 Measures of Performance

We measure the quality of the bounds via the average length of the interval between lower
and upper bound:

I =

∑

X∈X

∑

x∈D(X)(P
U (x|e)− PL(x|e))

∑

X∈X |D(X)|

We approximate posterior marginal as the midpoint between lower and upper bound in
order to show whether the bounds are well-centered around the posterior marginal P (x|e).
Namely:

P̂ (x|e) =
PU
A (x|e) + PL

A(x|e)

2
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and then measure the average absolute error ∆ with respect to that approximation:

∆ =

∑

X∈X

∑

x∈D(X) |P (x|e)− P̂ (x|e)|
∑

X∈X |D(X)|

Finally, we report %P (e) =
∑h

i=1
P (x,ci,e)
P (e) × 100% that was covered by the explored cutset

tuples. Notably, in some benchmarks, a few thousand cutset tuples is enough to cover
> 90% of P (e).

4.2.3 Results

We summarize the results for each benchmark in a tabular format and charts. We highlight
in bold face the first ATB data point where the average bounds interval is as good or better
than BdP+. The charts show the convergence of the bounds interval length as a function
of h and time.

For ATB and BBdP+ the maximumMarkov boundary domain size was fixed at k = 210.
For BdP+, we vary parameter k from 214 to 219. Note that BdP+ only depends on k, not
on h. In the tables, we report the best result obtained by BdP+ and its computation time
so that it appears as constant with respect to h. However, when we plot accuracy against
time, we include BdP+ bounds obtained using smaller values of parameter k. In the case
of Alarm network, varying k did not make any difference since the full Markov boundary
domain size equals 210 < 214. The computation time of BBdP+ includes the ATB plus
the BdP+ time.

Alarm network. Figure 3 reports the results. Since the maximum Markov boundary in
Alarm network is small, BdP+ runs without limitations and computes an average bounds
interval of 0.61 in 4.3 seconds. Note that the enumeration of less than the 25% of the total
number of cutset tuples covers 99% of the P (e). This fact suggests that schemes based on
cutset conditioning should be very suitable for this benchmark. Indeed, ATB outperforms
BdP+, computing more accurate bounds starting with the first data point of h = 25 where
the mean interval IATB = 0.41 while the computation time is 0.038 seconds, an order of
magnitude less than BdP+. The extreme efficiency of ATB in terms of time is clearly seen
in the right chart. The x-axis scale is logarithmic to fit all the results. As expected, the
average bounds interval generated by ATB and BBdP+ decrease as the number of cutset
tuples h increases, demonstrating the anytime property of ATB with respect to h. Given a
fixed h, BBdP+ has a very significant overhead in time with respect to ATB (two orders
of magnitude for values of h smaller than 54) and only a minor improvement in accuracy.

Barley network. Figure 4 reports the results. ATB and BBdP+ improve as h increases.
However, the improvement is quite moderate while very time consuming due to more uni-
form shape of the distribution P (C|e) as reflected by the very small % of P (e) covered by
explored tuples (only 1% for 562 tuples and only 52% for 12478 tuples). For example, the
average ATB (resp. BBdP+) bounds interval decreases from 0.279 (resp. 0.167), obtained
in 9 (resp. 10) seconds, to 0.219 (resp. 0.142) obtained in 139 (resp. 141) seconds. Given a
fixed h, BBdP+ substantially improves ATB bounds with little time overhead (2 seconds
in general). Namely, in this benchmark, BBdP+ computation time is dominated by ATB
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Alarm, N=37, w∗=5, |LC|=8, |DLC |=108, |E|=1-4
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
25 86 0.61 0.21 4.3 0.41 0.12 0.038 0.35 0.10 3.4
34 93 0.61 0.21 4.3 0.31 0.09 0.039 0.27 0.08 2.3
40 96 0.61 0.21 4.3 0.25 0.07 0.044 0.22 0.06 2.1
48 97 0.61 0.21 4.3 0.24 0.05 0.051 0.15 0.04 1.5
50 98 0.61 0.21 4.3 0.16 0.04 0.052 0.12 0.03 1.2
54 99 0.61 0.21 4.3 0.13 0.03 0.059 0.09 0.02 0.86

Alarm, N=37, w*=5, |LC|=8, |E|=1-4
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Figure 3: Results for Alarm network. The table reports the average bounds interval I,
average error ∆, computation time (in seconds), and percent of probability of
evidence P (e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first ATB data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of h and time. BdP+ uses full size Markov
boundary since its domain size is small (< 214), resulting in only one data point
on the chart on the right.

computation time. Note that the computation time of the stand-alone BdP+ algorithm
is less than 2 seconds. Within that time, BdP+ yields an average interval length of 0.23,
while ATB and BBdP+ spend 86 and 10 seconds, respectively, to obtain the same quality
bounds. However, the anytime behavior of the latter algorithms allows them to improve
with time, a very desirable characteristic when computing bounds. Moreover, note that its
overhead in time with respect to ATB is completely negligible.

CPCS networks. Figures 5 to 8 show the results for cpcs54, cpcs179, cpcs360b and
cpcs422b, respectively. The behavior of the algorithms in all networks is very similar. As in
the previous benchmarks, ATB andBBdP+ bounds interval decreases as h increases. Given
a fixed h, BBdP+ computes slightly better bounds intervals than ATB in all networks but
cpcs179. For all networks, BBdP+ has overhead in time with respect to ATB. This
overhead is constant for all values of h and for all networks except for cpcs54, for which the
overhead decreases as h increases. ATB and BBdP+ outperform BdP+. Both algorithms
compute the same bound interval length as BdP+, improving the computation time in one
order of magnitude. Consider for example cpcs422b, a challenging instance for any inference
scheme as it has relatively large induced width and loop-cutset size. ATB outperforms
BdP+ after 50 seconds starting with h = 1181, and BBdP+ outperforms BdP+ in 37
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Barley, N=48, w∗=7, |LC|=12, |DLC | > 2× 106, |E|=4-8
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
562 1 0.23 0.07 1.7 0.279 0.097 9 0.167 0.047 10
1394 3 0.23 0.07 1.7 0.263 0.090 23 0.162 0.045 25
2722 6 0.23 0.07 1.7 0.247 0.084 43 0.154 0.042 45
4429 14 0.23 0.07 1.7 0.235 0.079 65 0.147 0.040 67
6016 22 0.23 0.07 1.7 0.230 0.078 86 0.145 0.040 88
7950 33 0.23 0.07 1.7 0.228 0.077 99 0.145 0.040 101
9297 40 0.23 0.07 1.7 0.224 0.075 111 0.143 0.039 113
12478 52 0.23 0.07 1.7 0.219 0.073 139 0.142 0.038 141
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Figure 4: Results for Barley network. The table reports the average bounds interval I,
average error ∆, computation time (in seconds), and percent of probability of
evidence P (e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first ATB data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of h and time.

seconds starting with h = 253 (BdP+ convergence is shown in the plot, but only the best
result is reported in the table).

Larkin (2003) reported bounds on cpcs360b and cpcs422b using AD algorithm. For the
first network, AD achieved bounds interval length of 0.03 in 10 seconds. Within the same
time, ATB computes an average bounds interval of ≈ 0.005. For cpcs422b, AD achieved
bounds interval of 0.15, obtained in 30 seconds. Within the same time, ATB and BBdP+
obtain comparable results computing average bounds interval of 0.24 and 0.15, respectively.
It is important to note that the comparison is not on the same instances since the evidence
nodes are not the same. Larkin’s code was not available for further experiments.

Munin networks. Figure 9 reports the results for both Munin networks. Let us first
consider Munin3 network. Given a fixed h, ATB and BBdP+ compute almost identical
bound intervals with BBdP+ having a noticeable time overhead. Note that the two curves
in the chart showing convergence as a function of h are very close and hard to distinguish,
while the points of BBdP+ in the chart showing convergence as a function of time are
shifted to the right with respect to the ones of ATB. ATB is clearly superior to BdP+
both in accuracy and time. BdP+ computes bounds interval of 0.24 within 12 seconds,
while ATB computes bounds interval of 0.050 in 8 seconds. In Munin4, given a fixed
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cpcs54, N=54, |LC|=15, w∗=15, |DLC |=32678, |E|=2-8
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
513 10 0.35 0.02 24 0.51 0.027 0.9 0.34 0.011 3.1
1114 19 0.35 0.02 24 0.45 0.023 1.5 0.32 0.010 3.1
1581 29 0.35 0.02 24 0.42 0.021 1.9 0.31 0.009 3.4
1933 34 0.35 0.02 24 0.40 0.020 2.2 0.30 0.009 3.6
2290 40 0.35 0.02 24 0.38 0.019 2.4 0.30 0.008 3.9
2609 46 0.35 0.02 24 0.37 0.018 2.7 0.29 0.007 4.0
3219 53 0.35 0.02 24 0.34 0.016 3.2 0.27 0.007 4.5
3926 59 0.35 0.02 24 0.31 0.014 3.8 0.25 0.006 5.2
6199 63 0.35 0.02 24 0.23 0.010 5.9 0.20 0.006 6.6
7274 68 0.35 0.02 24 0.20 0.008 6.9 0.17 0.006 7.3

cpcs54, N=54, |LC|=15, w*=15, |E|=2-8
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Figure 5: Results for cpcs54 network. The table reports the average bounds interval I,
average error ∆, computation time (in seconds), and percent of probability of
evidence P (e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first ATB data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of h and time.

h, BBdP+ computes tighter bounds than ATB with some time overhead. However, the
improvement decreases as h increases as shown by the convergence of both curves either
as a function of h and time. Since the loop-cutset size is large, the convergence of ATB
is relatively slow. BdP+ computes bounds interval of 0.23 within 15 seconds, while ATB

and BBdP+ compute bounds of the same quality within 54 and 21 seconds, respectively.

4.3 Bounding the Probability of Evidence

We compare the performance of the following three algorithms: ATB, mini-bucket elimi-
nation (MBE) (Dechter & Rish, 2003), and variable elimination and conditioning (V EC).
For ATB, we test different configurations of the control parameters (h, k). Note that when
h = 0, ATB is equivalent to its plug-in algorithm A, which in our case is ABdP+.

4.3.1 Algorithms and Benchmarks

MBE is a general bounding algorithm for graphical model problems. In particular, given a
Bayesian network, MBE computes lower and upper bound on the probability of evidence.
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cpcs179, N=179, w∗=8, |LC|=8, |DLC |=49152, |E|=12-24
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
242 70 0.15 0.05 20 0.22 0.067 4 0.092 0.029 11
334 75 0.15 0.05 20 0.12 0.033 6 0.054 0.016 13
406 78 0.15 0.05 20 0.09 0.024 7 0.037 0.010 13
574 82 0.15 0.05 20 0.07 0.018 9 0.029 0.008 15
801 85 0.15 0.05 20 0.05 0.014 10 0.022 0.006 17
996 87 0.15 0.05 20 0.04 0.010 12 0.017 0.005 18
1285 88 0.15 0.05 20 0.03 0.006 13 0.012 0.003 20
1669 90 0.15 0.05 20 0.02 0.003 16 0.007 0.002 22

cpcs179, N=179, |LC|=8, w*=8, |E|=12-24
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Figure 6: Results for cpcs179 network. The table reports the average bounds interval I,
average error ∆, computation time (in seconds), and percent of probability of
evidence P (e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first ATB data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of h and time.

MBE has a control parameter z, that allows trading time and space for accuracy. As the
value of the control parameter z increases, the algorithm computes tighter bounds using
more time and space, which is exponential in z.

V EC is an algorithm that combines conditioning and variable elimination. It is based
on the w-cutset conditioning scheme. Namely, the algorithm conditions or instantiates
enough variables so that the remaining problem conditioned on the instantiated variables
can be solved exactly using bucket elimination (Dechter, 1999). The exact probability of ev-
idence can be computed by summing over the exact solution output by bucket elimination
for all possible instantiations of the w-cutset. When V EC is terminated before comple-
tion, it outputs a partial sum yielding a lower bound on the probability of evidence. The
implementation of V EC is publicly available1.

We tested ATB for bounding P (e) on three different benchmarks: Two-layer Noisy-Or,
grids and coding networks. All instances are included in the UAI08 evaluation2.

In two-layer noisy-or networks, variables are organized in two layers where the ones in
the second layer have 10 parents. Each probability table represents a noisy OR-function.

1. http://graphmod.ics.uci.edu/group/Software
2. http://graphmod.ics.uci.edu/uai08/Evaluation/Report
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cpcs360b, N=360, w∗ = 21, |LC| = 26, |DLC |=226, |E|=11-23
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
121 83 0.027 0.009 55 0.0486 1.6E-2 5 0.0274 1.0E-2 7
282 92 0.027 0.009 55 0.0046 9.0E-4 10 0.0032 8.5E-4 12
501 96 0.027 0.009 55 0.0020 3.6E-4 15 0.0014 3.5E-4 17
722 97 0.027 0.009 55 0.0012 2.4E-4 19 0.0009 2.3E-4 21
938 98 0.027 0.009 55 0.0006 8.4E-5 25 0.0004 7.8E-5 27
1168 98 0.027 0.009 55 0.0005 7.5E-5 29 0.0004 6.9E-5 31
1388 99 0.027 0.009 55 0.0004 5.9E-5 35 0.0003 5.4E-5 37
1582 99 0.027 0.009 55 0.0003 5.3E-5 39 0.0002 4.8E-5 41
1757 99 0.027 0.009 55 0.0003 4.7E-5 43 0.0002 4.4E-5 46
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Figure 7: Results for cpcs360b. The table reports the average bounds interval I, average
error ∆, computation time (in seconds), and percent of probability of evidence
P (e) covered by the fully-instantiated cutset tuples as a function of h. We high-
light in bold face the first ATB data point where the average bounds interval is
as good or better than BdP+. The charts show the convergence of the bounds
interval length as a function of h and time.

Each parent variable yj has a value Pj ∈ [0..Pnoise]. The CPT for each variable in the
second layer is then defined as P (x = 0|y1, . . . , yP ) =

∏

yj=1 Pj and P (x = 1|y1, . . . , yP ) =

1 − P (x = 0|y1, . . . , yP ). We experiment with a class of problems called bn2o instances in
the UAI08.

In grid networks, variables are organized as an M × M grid. We experiment with
grids2 instances, as they were called in UAI08, which are characterized by two parameters
(M,D), where D is the percentage of determinism (i.e., the percentage of values in all CPTs
assigned to either 0 or 1). For each parameter configuration, 10 samples were generated by
randomly assigning value 1 to one leaf node. In UAI08 competition, these instances were
named D-M -I, where I is the instance number.

Coding networks can be represented as a four layer Bayesian network having M nodes in
each layer. The second and third layer correspond to input information bits and parity check
bits respectively. Each parity check bit represents an XOR function of input bits. Input
and parity check nodes are binary while the output nodes are real-valued. We consider the
BN 126 to BN 134 instances in the UAI08 evaluation. Each one has M = 128, 4 parents
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cpcs422b, N=422, w∗ = 22, |LC| = 47, |DLC |=247, |E|=4-10
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
64 1.7 0.19 0.06 120 0.28 0.100 21 0.19 0.056 23
256 2.0 0.19 0.06 120 0.24 0.090 26 0.15 0.050 35
379 2.6 0.19 0.06 120 0.22 0.078 32 0.14 0.049 41
561 2.9 0.19 0.06 120 0.20 0.073 36 0.13 0.046 46
861 3.4 0.19 0.06 120 0.19 0.068 43 0.12 0.044 54
1181 4.5 0.19 0.06 120 0.18 0.064 50 0.12 0.041 60
1501 5.4 0.19 0.06 120 0.17 0.062 56 0.12 0.041 65
2427 8.0 0.19 0.06 120 0.16 0.058 73 0.12 0.039 82
3062 9.5 0.19 0.06 120 0.16 0.057 83 0.12 0.038 92
4598 12.2 0.19 0.06 120 0.16 0.053 110 0.11 0.036 120
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Figure 8: Results for cpcs422b. The table reports the average bounds interval I, average
error ∆, computation time (in seconds), and percent of probability of evidence
P (e) covered by the fully-instantiated cutset tuples as a function of h. We high-
light in bold face the first ATB data point where the average bounds interval is
as good or better than BdP+. The charts show the convergence of the bounds
interval length as a function of h and time.

for each node and channel noise variance (σ = 0.40). These networks are very hard and
exact results are not available.

Table 2 summarizes the characteristics of each network. For each one, the table specifies
the number of variables N , the induced width w∗, the size of loop cutset |LC|, the number of
loop-cutset tuples |D(LC)|, and the time needed to compute the exact posterior marginals
by bucket-tree elimination (exponential in the induced width w∗) and by cutset conditioning
(exponential in the size of loop-cutset). An ‘out’ indicates that bucket-tree elimination is
unfeasible in terms of memory demands. Note that the characteristics of grid networks only
depend on their sizes but not on the percentage of determinism; the characteristics of all
coding networks are the same.

For our purposes, we consider V EC as another exact algorithm to compute the exact
P (e) in the first and second benchmarks and as a lower bounding technique for the third
benchmark. We fix the control parameter z of MBE and the w-cutset of V EC so that the
algorithms require less than 1.5GB of space.
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MUNIN3

Munin3, N=1044, w∗=7, |LC|=30, |E|=257
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time(sec) I ∆ time(sec)
196 64 0.24 0.1 12 0.050 0.020 8 0.048 0.020 16
441 72 0.24 0.1 12 0.030 0.011 12 0.029 0.012 20
882 78 0.24 0.1 12 0.025 0.009 18 0.025 0.009 26
1813 79 0.24 0.1 12 0.020 0.007 32 0.019 0.007 40
2695 80 0.24 0.1 12 0.018 0.006 46 0.017 0.007 54
2891 81 0.24 0.1 12 0.017 0.006 49 0.016 0.006 57
3185 82 0.24 0.1 12 0.014 0.005 54 0.014 0.005 62
3577 82 0.24 0.1 12 0.013 0.004 68 0.012 0.004 76
4312 83 0.24 0.1 12 0.011 0.004 80 0.010 0.004 88

Munin3, N=1044, |LC|=30, w*=7, |E|=257
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MUNIN4

Munin4, N=1041, w∗=8, |LC|=49, |E|=235
BdP+ ATB BBdP+

h %P(e) I ∆ time(sec) I ∆ time I ∆ time(sec)
245 1 0.23 0.1 15 0.39 0.16 14 0.24 0.102 21
441 7 0.23 0.1 15 0.32 0.13 17 0.22 0.095 24
1029 11 0.23 0.1 15 0.28 0.12 34 0.21 0.089 44
2058 17 0.23 0.1 15 0.25 0.11 54 0.19 0.082 65
3087 20 0.23 0.1 15 0.22 0.11 83 0.18 0.077 91
5194 24 0.23 0.1 15 0.21 0.09 134 0.17 0.072 145

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.1

0.2

0.3

0.4

0 5000 10000 15000 20000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB

BdP+

BBdP+

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200 250

time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB

BdP+

BBdP+

Figure 9: Results for munin3 and munin4. The tables report the average bounds interval
I, average error ∆, computation time (in seconds), and percent of probability of
evidence P (e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first ATB data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of h and time.
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network N w∗ |LC| |D(LC)| |E| Time(BE) Time(LC)

bn2o-15-30-15 45 22 24 224 15 14.51 17.4 hrs
bn2o-15-30-20 50 25 26 226 20 174.28 93.2 hrs
bn2o-15-30-25 55 24 25 225 25 66.23 75.76 hrs
Grids 16 × 16 22 116 2116 1 27.59 > 293 hrs1

Grids 20 × 20 29 185 2185 1 out > 266 hrs1

Grids 26 × 26 40 325 2325 1 out > 2306 hrs1

Grids 42 × 42 70 863 2863 1 out > 2844 hrs1

coding 512 54-61 59-64 259-264 256 out > 242 hrs1

Table 2: Complexity characteristics of the benchmarks from the UAI repository: N -number
of nodes, w∗-induced width, |LC|-number of nodes in a loop-cutset, |D(LC)|-
loop-cutset state space size, Time(BE) is the exact computation time via bucket
elimination, Time(LC) is the exact computation time via loop-cutset conditioning.
The results are averaged over the set of network instances of each benchmark.

4.3.2 Results

We summarize the results for each benchmark in a tabular format. The tables report the
bounds and computation time (in seconds) for each compared algorithm. For ATB, we
report results by varying the values of the control parameters (h, k). In particular, we con-
sider values of h in the range 4 to 200, and values of k in the set {210, 212, 214}. By doing
so, we analyze the impact of each control parameter on the performance of the algorithm.
Grey areas in the tables correspond to (h, k) configurations that cannot be compared due
to computation time.

Two-layer noisy-or networks. Table 3 shows the results. As expected, the quality
of the bounds produced by ATB improves when the values of the control parameters (h, k)
increase. We observe that the best bounds are obtained when fixing h to the highest value
(i.e., 200) and k to the smallest value (i.e., 210). However, the increase in the value of
h leads to higher computation times than when increasing the value of k. When taking
time into account, comparing configurations with similar time (see (h = 50, k = 210) and
(h = 4, k = 214), and (h = 200, k = 210) and (h = 50, k = 212), respectively), we observe
that the configuration with the highest value of h and the smallest value of k outperforms
the other ones.

When compared with MBE, there is no clear superior approach. The accuracy of the
algorithms depends on whether we look at upper or lower bounds. When considering up-
per bounds, ATB outperforms MBE for all instances 1b, 2b and 3b. Note that for those
instances, MBE computes worse upper bounds than the trivial one (i.e., greater than 1).
However, for instances 1a, 2a and 3a, MBE computes tighter upper bounds than ATB.
For lower bounds, in general ATB outperforms MBE for instances with 20 and 25 evidence
variables, while MBE is more accurate for instances having 15 evidence variables. Regard-
ing computation time, ATB is definitely slower than MBE.

1. Times are extrapolated.
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Inst. P(e) h %P(e) ATB(h, k = 210) ATB(h, k = 212) ATB(h, k = 214) MBE(z=18)
LB/UB Time LB/UB Time LB/UB Time LB/UB Time

bn2o-30-15-150, |E| = 15

4 0.0004 5.7E-10/5.3E-01 2 5.9E-10/4.8E-01 8 6.0E-10/4.4E-01 38
1a 5.9E-05 50 0.100 1.2E-07/1.1E-01 32 1.2E-07/9.4E-02 129 9.1E-06/4.8E-04 2

200 0.250 3.5E-07/5.7E-02 103
4 0.007 3.1E-04/9.3E-01 2 4.3E-04/9.3E-01 8 5.0E-04/9.3E-01 38

1b 0.56565 50 0.120 4.1E-03/8.6E-01 31 4.8E-03/8.6E-01 124 0.17277/1.42 2
200 0.460 1.5E-02/8.5E-01 102

4 0.003 2.0E-11/1.3E-01 2 2.0E-11/1.1E-01 8 2.1E-11/8.5E-02 38
2a 4.0E-07 50 0.020 1.5E-10/1.0E-02 29 1.5E-10/8.9E-03 115 8.4E-10/2.1E-05 2

200 0.320 1.7E-09/4.0E-03 89
4 0.008 6.9E-03/7.9E-01 2 8.6E-03/8.0E-01 8 9.2E-03/8.0E-01 38

2b 0.54111 50 0.210 5.5E-02/7.8E-01 29 6.1E-02/7.7E-01 115 0.02647/1.8 2
200 1.110 1.1E-01/7.5E-01 90

4 0.216 2.9E-07/1.7E-01 2 2.9E-07/1.5E-01 8 2.9E-07/1.4E-01 38
3a 1.2E-04 50 1.040 1.7E-06/4.6E-02 26 1.7E-06/4.2E-02 103 4.4E-07/1.5E-03 2

200 3.580 5.3E-06/2.7E-02 74
4 0.076 1.1E-03/7.7E-01 2 1.1E-03/7.7E-01 8 1.2E-03/7.7E-01 38

3b 0.18869 50 0.470 6.8E-03/6.3E-01 25 7.1E-03/6.3E-01 95 0.03089/0.81 2
200 1.440 2.1E-02/5.4E-01 69

bn2o-30-20-200, |E| = 20

4 0.004 5.4E-12/1.6E-02 3 5.4E-12/1.5E-02 16 5.4E-12/1.4E-02 67
1a 1.4E-07 50 0.050 9.1E-11/1.8E-03 62 9.1E-11/1.6E-03 264 2.4E-15/3.3E-04 3

200 1.880 2.8E-09/5.7E-04 195
4 0.012 1.0E-04/7.3E-01 3 1.1E-04/7.3E-01 16 1.1E-04/7.3E-01 68

1b 0.15654 50 0.140 3.3E-03/6.7E-01 64 3.6E-03/6.7E-01 279 9.8E-04/1.9 3
200 0.430 1.1E-02/5.9E-01 218

4 0.013 3.8E-11/1.6E-02 3 3.8E-11/1.6E-02 16 3.8E-11/1.5E-02 70
2a 2.2E-07 50 0.410 1.4E-09/3.3E-03 52 1.3E-09/3.1E-03 211 4.4E-15/8.0E-05 3

200 1.410 4.5E-09/2.4E-03 169
4 0.020 6.4E-03/8.3E-01 3 7.3E-03/8.3E-01 16 8.0E-03/8.3E-01 68

2b 0.27695 50 0.430 3.0E-02/7.7E-01 51 3.3E-02/7.7E-01 197 2.3E-05/2.9 3
200 1.620 5.9E-02/6.9E-01 145

4 0.002 8.3E-14/1.8E-03 3 8.3E-14/1.8E-03 16 8.3E-14/1.8E-03 68
3a 2.4E-09 50 0.060 2.2E-12/1.1E-04 58 2.2E-12/1.1E-04 236 5.2E-13/1.7E-06 3

200 0.090 3.6E-12/3.3E-05 198
4 0.0002 4.5E-05/9.7E-01 3 5.1E-05/9.7E-01 16 6.2E-05/9.7E-01 68

3b 0.48039 50 0.110 5.4E-02/9.3E-01 64 5.9E-02/9.3E-01 277 5.3E-03/1.9 3
200 0.660 1.1E-01/8.8E-01 194

bn2o-30-25-250, |E| = 25

4 0.0004 1.3E-14/6.6E-02 6 1.3E-14/6.5E-02 22 1.3E-14/4.8E-02 99
1a 2.9E-09 50 0.01 3.7E-13/3.3E-03 119 3.7E-13/2.8E-03 429 1.7E-16/3.1E-06 4

200 0.06 2.0E-12/1.1E-03 396
4 0.016 4.3E-04/8.1E-01 6 5.7E-04/8.1E-01 22 6.2E-04/8.1E-01 99

1b 0.15183 50 0.22 4.6E-03/7.2E-01 120 6.7E-03/7.2E-01 437 1.4E-03/1.4 4
200 1.07 1.3E-02/6.5E-01 381

4 0.0004 1.8E-12/1.9E-01 6 1.8E-12/1.9E-01 22 1.8E-12/1.7E-01 99
2a 2.4E-07 50 0.0012 5.7E-12/4.5E-02 112 5.7E-12/3.9E-02 398 1.8E-12/1.2E-05 4

200 0.07 1.8E-10/2.2E-02 402
4 0.018 5.3E-04/7.6E-01 6 5.9E-04/7.6E-01 22 6.3E-04/7.6E-01 99

2b 0.30895 50 0.19 5.4E-03/7.4E-01 107 6.1E-03/7.4E-01 374 7.2E-03/1.7 4
200 0.65 1.4E-02/7.1E-01 367

4 0.0001 1.7E-16/1.1E-01 6 1.7E-16/1.1E-01 22 1.7E-16/8.1E-02 99
3a 2.7E-10 50 0.01 4.3E-14/1.9E-02 119 4.3E-14/1.6E-02 427 1.3E-15/4.9E-07 4

200 0.20 5.5E-13/7.1E-03 409
4 0.0065 1.0E-03/7.9E-01 6 1.2E-03/7.9E-01 22 1.3E-03/7.9E-01 98

3b 0.46801 50 0.45 4.2E-02/7.7E-01 106 4.8E-02/7.7E-01 352 3.5E-03/2.7 4
200 1.52 8.5E-02/7.5E-01 337

Table 3: Results for bn2o networks. The table shows the LB and UB computed by ATB

varying the number of cutset tuples h and the maximum domain k of the Markov
boundary.
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Grids2, |E| = 1
(M,D) P(e) h %P(e) ATB(k = 210,h) ATB(k = 212,h) ATB(k = 214,h) MBE

LB/UB Time LB/UB Time LB/UB Time LB / UB Time
4 1.57E-14 0.3127/0.8286 1 0.3127/0.8286 1 0.3127/0.8286 1

(16, 50) 0.6172 100 3.50E-11 0.3127/0.8286 57 0.3127/0.8286 57 0/5.13 16
200 4.22E-11 0.3127/0.8286 111

4 1.07E-24 0.1765/0.4939 5 0.1765/0.4939 5 0.1765/0.4939 5
(20, 50) 0.4441 100 1.57E-21 0.1765/0.4939 208 0.1765/0.4939 203 0/12411 39

200 1.13E-20 0.1765/0.4939 412
4 1.25E-09 0.2106/0.7454 3 0.2106/0.7454 3 0.2106/0.7454 3

(20, 75) 0.4843 100 2.40E-09 0.2106/0.7454 81 0.2106/0.7454 80 0/1E+05 39
200 2.89E-09 0.2106/0.7454 156

4 3.88E-19 0.0506/0.9338 6 0.0506/0.9338 6 0.0506/0.9338 6
(26, 75) 0.6579 100 7.32E-19 0.0506/0.9338 268 0.0506/0.9338 270 0/1E+10 84

200 1.55E-18 0.0506/0.9338 534
4 3.47E-08 0.1858/0.8943 2 0.1858/0.8943 2 0.1858/0.8943 2

(26, 90) 0.8206 100 3.41E-06 0.1858/0.8943 85 0.1858/0.8943 84 0/1E+10 87
200 8.38E-06 0.1858/0.8943 164

4 8.65E-29 0.0048/0.9175 10 0.0048/0.9175 10 0.0048/0.9175 10
(42, 90) 0.4933 100 2.32E-25 0.0048/0.9175 436 0.0048/0.9175 439 0/1E+10 110

200 3.48E-25 0.0048/0.9175 866

Table 4: Results on grid networks. The table shows the LB and UB computed by ATB

varying the number of cutset tuples h and the maximum length k of the conditional
probability tables over the Markov boundary.

Grid networks. Table 4 reports the results. The first thing to observe is that MBE

computes completely uninformative bounds. In this case, the anytime behavior of ATB is
not effective either. The increase of the value of its control parameters (h, k) does not affect
its accuracy. Since the Markov boundary in grid networks is relatively small, the smallest
tested value of k is higher than its Markov boundary size which explains the independence
on k. Another reason for its ineffectiveness may be the high percentage of determinism
in these networks. It is known that sampling methods are inefficient in the presence of
determinism. As a consequence, the percentage of probability mass accumulated in the
h sampled tuples is not significant, which cancels the benefits of computing exact proba-
bility of evidence for that subset of tuples. Therefore, in such cases a more sophisticated
sampling scheme should be used, for example (Gogate & Dechter, 2007). Consequently, for
these deterministic grids, ATB’s performance is controlled totally by its bound propagation
plugged-in algorithm.

Coding networks. Table 5 shows the results. We do not report the percentage of P (e)
covered by the fully-instantiated cutset tuples because the exact P (e) is not available. We
set the time limit of V EC to 1900 seconds (i.e., the maximum computation time required
by running ATB in these instances). We only report the results for k = 210 and k = 214

because the increase in the value of k was not effective and did not result in increased
accuracy. In this case, the accuracy of ATB increases as the value of h increases. In com-
paring ATB with the other algorithms we have to distinguish between lower and upper
bounds. Regarding lower bounds, ATB clearly outperforms MBE and V EC in all in-
stances. Indeed, the lower bound computed by MBE and V EC is very loose. Regarding
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coding, |E| = 256
Inst. h ATB(k = 210,h) ATB(k = 214,h) MBE(z=22) VEC

LB/UB Time LB/UB Time LB/UB Time LB Time
4 1.9E-76/1.5E-41 50 1.9E-76/1.52E-41 3494

BN 126 50 1.9E-69/2.5E-42 632 1.4E-139/1.5E-044 143 9.2E-102 1900
150 1.9E-58/1.3E-42 1442

4 5.3E-60/2.3E-43 55 5.3E-60/2.3E-43 399
BN 127 50 1.3E-58/2.3E-44 426 1.6E-134/1.0E-045 164 5.3E-115 1900

150 1.6E-58/1.9E-44 946
4 7.2E-54/1.6E-42 85 7.2E-54/1.6E-42 582

BN 128 50 4.9E-48/7.2E-43 637 1.2E-144/5.1E-043 124 1.9E-112 1900
150 4.9E-48/1.4E-43 1225

4 1.4E-72/8.2E-45 50 1.5E-72/8.2E-45 362
BN 129 50 1.5E-64/2.1E-45 585 2.8E-139/4.8E-043 144 1.5E-115 1900

150 8.5E-64/5.4E-46 1400
4 4.7E-65/2.9E-44 47 4.7E-65/2.9E-44 324

BN 130 50 6.3E-63/2.9E-45 619 1.1E-132/1.9E-045 112 1.3E-96 1900
150 3.7E-58/2.3E-45 1299

4 1.9E-60/1.3E-44 52 1.9E-60/1.3E-44 367
BN 131 50 2.3E-54/3.7E-45 484 2.3E-141/3.2E-045 119 3.2E-102 1900

150 2.3E-54/1.1E-45 1276
4 2.3E-79/6.3E-44 50 2.3E-79/6.3E-44 363

BN 132 50 3.6E-67/1.0E-44 689 2.8E-134/2.3E-048 109 8.9E-111 1900
150 1.5E-66/8.1E-45 1627

4 1.6E-56/2.7E-42 53 1.6E-56/2.7E-42 398
BN 133 50 1.1E-54/2.4E-43 671 1.8E-136/4.1E-045 147 1.9E-109 1900

150 2.3E-54/9.5E-44 1846
4 8.9E-63/1.8E-43 47 8.9E-63/1.8E-43 355

BN 134 50 1.2E-62/8.6E-45 606 1.9E-148/3.9E-045 163 4.2E-111 1900
150 6.1E-57/4.8E-45 1412

Table 5: Results on coding networks. The table shows the LB and UB computed by ATB

varying the number of cutset tuples h and the maximum length k of the conditional
probability tables over the Markov boundary.

upper bounds, ATB(h = 150, k = 210) outperforms MBE in three instances (i.e., BN 128,
BN 129 and BN 131). When taking time into account ATB only outperforms MBE in
instance BN 129.

Summary of empirical evaluation. We demonstrated that ATB’s bounds converge as
h, the number of cutset tuples computed exactly, increases. The speed of convergence varied
among benchmarks. The convergence was faster when the active cutset tuples accounted
for a large percentage of the probability mass of P (C|e), as shown for the case of cpcs54,
cpcs179, and cpcs360 networks. Comparing with a variant of bound propagation called
BdP+, ATB was more accurate if given sufficient time and even when given the same time
bound, it computed more accurate bounds on many benchmarks.

We showed that ATB’s bounds on the posterior marginals can be further improved
when used as initial bounds in BdP+. We call this hybrid of ATB followed by BdP+
the BBdP+ algorithm. Our experiments demonstrated the added power of BBdP+ in
exploiting the time-accuracy trade-off.

We also compared the power of ATB to bound the probability of evidence against the
mini-bucket elimination (MBE). We showed that neither algorithm was dominating on all
benchmarks. Given the same amount of time, ATB computed more accurate bounds than
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MBE on some instances of bn2o and coding networks. ATB outperformed MBE on all
instances of the grid networks on which MBE only computed bounds of 0 and 1. On this
benchmark, however, ATB converged very slowly. We believe in part this is due to the
grid’s large loop-cutset sizes.

We compared ATB’s ability to compute the lower bound on P (e) to V EC on coding
networks. V EC obtains the bound by computing a partial sum in the cutset-conditioning
formula (see Eq. 2). By comparing the lower bounds generated by ATB and V EC, we can
gain insight into the trade-off between enumerating more cutset tuples and bounding the
uninstantiated tuples. Since ATB’s lower bound was consistently tighter, we conclude that
bounding the uninstantiated tuples is cost-effective.

5. Related Work

There are three early approaches which use the same principle as ATB: Poole’s algorithm
(1996), bounded conditioning (BC) (Horvitz et al., 1989) which we have already described,
and bounded recursive decomposition (Monti & Cooper, 1996). In all these cases the com-
putation of the bounds is composed of an exact inference over a subset of the tuples and a
bounding scheme over the total probabilities over the rest of the tuples.

Similar to ATB, Poole’s scheme is based on a partial exploration of a search tree.
However, his search tree corresponds to the state space over all the variables of the whole
network and hence, it is exponential in the total number of variables. In contrast, the tree
structure used by our approach corresponds to the state space of the loop-cutset variables;
therefore, it is exponential in the loop-cutset size only. In addition, Poole updates the
bounding function when a tuple with probability 0 (i.e., a conflict) is discovered.

As discussed in Section 2.2, BC is also based on the cutset conditioning principle, but
there are two main differences relative to ATB: (i) the probability mass of the missing
tuples is bounded via prior probabilities, and consequently (ii) as we proved, the upper
bound expression is looser.

Bounded recursive decomposition uses Stochastic simulation (Pearl, 1988) to generate
highly probable instantiations of the variables, which is similar to ATB, and bounds the
missing elements with 0 and prior values. Therefore this approach resembles Poole’s algo-
rithm and bounded conditioning. Unlike ATB, bounded recursive decomposition requires
instantiation of all the variables in the network and relies on priors to guide the simula-
tion. In contrast, our algorithm uses Gibbs sampling on a cutset only which is likely to
be more accurate at selecting high probability tuples in presence of evidence. ATB sub-
sumes all three algorithms offering a unifying approach to bounding posteriors with anytime
properties, able to improve its bounds by investing more time and exploring more cutset
tuples.

There are a number of alternative approaches for computing bounds on the marginals.
Poole (1998) proposed context-specific bounds obtained from simplifying the conditional
probability tables. The method performs a variant of bucket elimination where intermedi-
ate tables are collapsed by grouping some probability values together. However, since the
method was validated only on a small car diagnosis network with 10 variables, it is hard
to draw any conclusions. Larkin (2003) also obtains bounds by simplifying intermediate
probability tables in the variable elimination order. He solves an optimization problem to
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find a table decomposition that minimizes the error. Kearns and Saul (1999, 1998) pro-
posed a specialized large deviation bounds approach for layered networks, while Mannino
and Mookerjee (2002) suggested an elaborate bounding scheme with nonlinear objective
functions. Jaakkola and Jordan (1999) proposed a variational method for computing lower
and upper bounds on posterior marginals in Noisy-Or networks and evaluated its perfor-
mance in the case of diagnostic QMR-DT network. More recent approaches (Tatikonda,
2003; Taga & Mase, 2006; Ihler, 2007; Mooij & Kappen, 2008) aim to bound the error of
belief propagation marginals. The first two approaches are exponential in the size of the
Markov boundary. The third approach is linear in the size of the network, but is formulated
for pairwise interactions only. Finally, the fourth algorithm is exponential in the number of
domain values. Recently, Mooij and Kappen (2008) proposed the box propagation algorithm
that propagates local bounds (convex sets of probability distributions) over a subtree of the
factor graph representing the problem, rooted in the variable of interest.

It is important to note that our approach offers an anytime framework for computing
bounds where any of the above bounding algorithms can be used as a subroutine to bound
joint probabilities for partially-instantiated tuples within ATB and therefore may improve
the performance of any bounding scheme.

Regarding algorithms that bound the probability of evidence, we already mentioned the
mini-bucket schemes and compared against it in Section 4.3. Another recent approach is
the tree-reweighted belief propagation (TRW -BP ) (Wainwright, Jaakkola, & Willsky, 2005).
TRW -BP is a class of message-passing algorithms that compute an upper bound of P (e)
as a convex combination of tree-structured distributions. In a recent paper, Rollon and
Dechter (2010) compare TRW -BP , box propagation (adapted for computing the probabil-
ity of evidence using the chain rule), MBE and ATB-ABdP+. Their empirical evaluation
shows the relative strength of each scheme on the different benchmarks (Rollon & Dechter,
2010). In another recent work Wexler and Meek (2008) have proposed MAS, a bounding
algorithm for computing the probability of evidence. Shekhar (2009) describes the adjust-
ments required to produce bounds using MAS for Bayesian networks, where the potentials
are less than 1. In a forthcoming paper, Wexler and Meek (2010) improve their MAS scheme
to obtain tighter bounds and describe how to obtain bounds for Bayesian networks for P (e)
as well as for other inferential problems such as the maximal a posteriori and most probable
explanation problems. The comparison with this approach is left as future work.

6. Summary and Conclusions

The paper explores a general theme of approximation and bounding algorithms for likeli-
hood computation, a task that is known to be hard. While a few methods based on one
or two principles emerge, it is clear that pooling together a variety of ideas into a single
framework can yield a significant improvement. The current paper provides such a frame-
work. It utilizes the principle of cutset conditioning harnessing the varied strengths of
different methods. The framework is inherently anytime, an important characteristic for
approximation schemes.

Cutset conditioning is a universal principle. It allows decomposing a problem into a
collection of more tractable ones. Some of these subproblems can be solved exactly while
others can be approximated. The scheme can be controlled by several parameters. In w-
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cutset we condition on a subset of variables until their treewidth is bounded by w. Each
subproblem can then be solved exactly in time and space exponential in w. If the number
of subproblems is too large, we can use another parameter, h, to control the number of
subproblems solved exactly. The rest of the subproblems are solved using an off-the-shelf
bounding scheme.

We developed an expression that incorporates all these aspects using the parameters:
w - the induced-width of the cutset, h - the number of cutset conditioning subproblems to
be solved exactly (e.g., by bucket elimination), and A - the approximation algorithm that
bounds each of the bounded subproblems. We showed that the number of subproblems that
are approximated is polynomial in h.

In our empirical evaluation of the general framework, called ATB, we used the loop-
cutset scheme (w = 1) and chose as a bounding algorithm a variant of bound propagation
(Leisink & Kappen, 2003), yielding the integrated scheme which we call ABdP+. We exper-
imented with several benchmarks for the computing posterior marginals and the probability
of evidence, and compared against relevant state of the art algorithms.

Our results demonstrate the value of our ATB framework across all the benchmarks
we have tried. As expected, its anytime aspect is visible showing improved accuracy as
a function of time. More significantly, even when provided with equal time and space
resources, ATB showed remarkable superiority when compared with our variant of bound
propagation and with the mini-bucket elimination algorithm (MBE) (Dechter & Rish,
2003). The latter was recently investigated further by Rollon and Dechter (2010).

Overall, we can conclude that ATB is a competitive algorithm for both bounding poste-
rior marginals and probability of evidence. Generally, we can expect ATB to perform well
in networks whose cutset C is small relative to the total number of variables and whose
distribution P (C|e) has a small number of high probability tuples.

The possibilities for future work are many. We can explore additional trade offs such as
increasing w and therefore decreasing h and improving the selection of the h tuples. We have
looked at only one possible instantiation of the plug-in algorithm A. Other approximation
algorithms can be tried which may offer different time/accuracy trade-offs. In particular,
we plan to investigate the effectiveness of ATB using MBE as plug-in algorithm.
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Appendix A. Analysis of Bounded Conditioning

Theorem 2.1 The interval between lower and upper bounds computed by bounded
conditioning is lower bounded by the probability mass of prior distribution P (C) of the
unexplored cutset tuples: ∀h, PU

BC(x|e)− PL
BC(x|e) ≥

∑M
i=h+1 P (ci).
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Proof.

PU
BC(x|e)− PL

BC(x|e) =

∑M
i=h+1 P (ci)(

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci))

∑h
i=1 P (ci, e)

+

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e)

−

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

≥

∑M
i=h+1 P (ci)(

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci))

∑h
i=1 P (ci, e)

=
M
∑

i=h+1

P (ci) +
(
∑M

i=h+1 P (ci))2
∑h

i=1 P (ci, e)
≥

M
∑

i=h+1

P (ci)

�

Appendix B. Bounding Posteriors of Cutset Nodes

So far, we only considered computation of posterior marginals for variable X ∈ X\(C ∪
E). Now we focus on computing bounds for a cutset node Ck ∈ C. Let c′k ∈ D(C) be some
value in domain of Ck. Then, we can compute exact posterior marginal P (ck|e) using Bayes
formula:

P (c′k|e) =
P (c′k, e)

P (e)
=

∑M
i=1 δ(c

′
k, c

i)P (ci, e)
∑M

i=1 P (ci, e)
(23)

where δ(c′k, c
i) is a Dirac delta-function so that δ(c′k, c

i) = 1 iff cik = c′k and δ(c′k, c
i) = 0

otherwise. To simplify notation, let Z = C\Z. Let Mk denote the number of tuples in
state-space of Z. Then we can re-write the numerator as:

M
∑

i=1

δ(c′k, c
i)P (ci, e) =

Mk
∑

i=1

P (c′k, z
i, e)

and the denominator can be decomposed as:

M
∑

i=1

P (ci, e) =
∑

ck∈D(Ck)

Mk
∑

i=1

P (c′k, z
i, e)

Then, we can re-write the expression for P (c′k|e) as follows:

P (c′k|e) =

∑Mk

i=1 P (c′k, z
i, e)

∑

ck∈D(Ck)

∑Mk

i=1 P (ck, zi, e)
(24)

Let hck be the number of full cutset tuples where cik = ck. Then, we can decompose the
numerator in Eq. (24) as follows:

Mk
∑

i=1

P (c′k, z
i, e) =

hc′
k

∑

i=1

P (c′k, z
i, e) +

Mk
∑

i=hc′
k
+1

P (c′k, z
i, e)
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Similarly, we can decompose the sums in the denominator:

∑

ck∈D(Ck)

Mk
∑

i=1

P (ck, z
i, e) =

∑

ck∈D(Ck)

hck
∑

i=1

P (ck, z
i, e) +

∑

ck∈D(Ck)

Mk
∑

i=hck
+1

P (ck, z
i, e)

After decomposition, the Eq. (24) takes on the form:

P (c′k|e) =

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑Mk

i=hc′
k
+1 P (c′k, z

i, e)

∑

ck∈D(Ck)

∑hck

i=1 P (ck, zi, e) +
∑

ck∈D(Ck)

∑Mk

i=hck
+1 P (ck, zi, e)

(25)

Now, for conciseness, we can group together all fully instantiated tuples in the denominator:

∑

ck∈D(Ck)

hck
∑

i=1

P (ck, z
i, e) =

h
∑

i=1

P (ci, e)

Then, Eq. (25) transforms into:

P (c′k|e) =

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑Mk

i=hc′
k
+1 P (c′k, z

i, e)

∑h
i=1 P (ci, e) +

∑Mk

i=hck
+1

∑

ck∈D(Ck)
P (ck, zi, e)

(26)

Now, we can replace each sum
∑Mk

i=hc′
k
+1 over unexplored cutset tuples with a sum over

the partially-instantiated cutset tuples. Denoting as M ′
ck

= Mk − hck + 1 the number of
partially instantiated cutset tuples for Ck = ck, we obtain:

P (c′k|e) =

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑M ′

ck

j=1

∑

ck∈D(Ck)
P (ck, z

j
1:qj

, e)
(27)

In order to obtain lower and upper bounds formulation, we will separate the sum of joint
probabilities P (c′k, z

j
1:qj

, e) where Ck = c′k from the rest:

P (c′k|e) =

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑

M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e) +
∑M ′

ck

j=1

∑

ck 6=c′
k
P (ck, z

j
1:qj

, e)

(28)

In the expression above, probabilities P (ck, z
i, e) and P (ci, e) are computed exactly since

they correspond to full cutset instantiations. Probabilities P (ck, z
i
1:qi

, e), however, will
be bounded since only partial cutset is observed. Observing that both the numerator
and denominator have component P (c′k, z

i
1:qi

, e) and replacing it with an upper bound

PU (c′k, z
i
1:qi

, e) in both the numerator and denominator, we will obtain an upper bound
on P (c′k|e) due to Lemma 3.2:

P (c′k|e) ≤

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′

c′
k

j=1 PU
A (c′k, z

j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑

M ′

c′
k

j=1 PU
A (c′k, z

j
1:qj

, e) +
∑M ′

ck

j=1

∑

ck 6=c′
k
P (ck, z

j
1:qj

, e)

(29)
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Finally, replacing P (ck, z
j
1:qj

, e), ck 6= c′k, with a lower bound (also increasing fraction value),
we obtain:

P (c′k|e) ≤

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑M ′

ck

j=1 PU
A (c′k, z

j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑M ′

ck

j=1 PU
A (c′k, z

j
1:qj

, e) +
∑M ′

ck

j=1

∑

ck 6=c′
k
PL
A(ck, z

j
1:qj

, e)
= PU

c

(30)
The lower bound derivation is similar. We start with Eq. (28) and replace P (c′k, z

i
1:qi

, e)
in the numerator and denominator with a lower bound. Lemma 3.2 guarantees that the
resulting fraction will be a lower bound on P (c′k|e):

P (c′k|e) ≥

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′

c′
k

j=1 PL
A(c

′
k, z

j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑

M ′

c′
k

j=1 PL
A(c

′
k, z

j
1:qj

, e) +
∑M ′

ck

j=1

∑

ck 6=c′
k
P (ck, z

j
1:qj

, e)

(31)

Finally, grouping PL
A(c

′
k, z

j
1:qj

, e) and
∑

ck 6=c′
k
P (ck, z

j
1:qj

, e) under one sum and replacing

PL
A(c

′
k, z

j
1:qj

, e)+
∑

ck 6=c′
k
P (ck, z

j
1:qj

, e) with an upper bound, we obtain the lower bound PL
c :

P (c′k|e) ≥

∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′

c′
k

j=1 PL
A(c

′
k, z

j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑

M ′

c′
k

j=1 UB[PL
A(c

′
k, z

j
1:qj

, e) +
∑

ck 6=c′
k
P (ck, z

j
1:qj

, e)]

= PL
c (32)

where

UB[PL
A(c

′
k, z

j
1:qj

, e) +
∑

ck 6=c′
k

P (ck, z
j
1:qj

, e)] = min

{

PL
A(c

′
k, z

j
1:qj

, e) +
∑

ck 6=c′
k
PU
A (ck, z

j
1:qj

, e)

PU
A (zj1:qj , e)

The lower bound PL
c is a cutset equivalent of the lower bound PL obtained in Eq. (15).

With respect to computing bounds on P (c′k, z1:q, e) in Eq. (30) and (32) in practice, we
distinguish two cases. We demonstrate them on the example of upper bound.

In the first case, each partially instantiated tuple c1:q that includes node Ck, namely
k ≤ q, can be decomposed as c1:q = z1:q

⋃

c′k so that:

PU (c′k, z1:q, e) = PU (c1:q, e)

The second case concerns the partially instantiated tuples c1:q that do not include node
Ck, namely k > q. In that case, we compute upper bound by decomposing:

PU (c′k, z1:q, e) = PU (ck|c1:q)P
U (c1:q, e)

Appendix C. ATB Properties

Theorem 3.2 ATB bounds interval length is upper bounded by a monotonic non-
increasing function of h:

PU
A (x|e)− PL

A(x|e) ≤

∑M
j=h+1 P (cj)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

, Ih
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Proof. The upper bound on the bounds interval follows from the fact that, PU
A (x|e)−

PL
A(x|e) ≤ PU

BF (x|e) − PL
BF (x|e) and from the definitions of brute force lower and up-

per bounds given by Eq. (21) and (22). We only need to prove that the upper bound is
monotonously non-increasing as a function of h.

Ih−1 =

∑M
j=h P (cj)

∑h−1
i=1 P (ci, e) +

∑M
j=h P (cj)

=
P (ch) +

∑M
j=h+1 P (cj)

∑h−1
i=1 P (ci, e) + P (ch) +

∑M
j=h+1 P (cj)

Since P (ch) ≥ P (ch, e), then replacing P (ch) with P (ch, e) and applying Lemma 3.1, yields:

Ih−1 ≥
P (ch, e) +

∑M
j=h+1 P (cj)

∑h−1
i=1 P (ci, e) + P (ch, e) +

∑M
j=h+1 P (cj)

=
P (ch, e) +

∑M
j=h+1 P (cj)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

≥

∑M
j=h+1 P (cj)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (cj)

= Ih

Thus, Ih−1 ≥ Ih. �
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