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REPORT
◥

PROTEIN STRUCTURE

Protein structure determination
using metagenome sequence data
Sergey Ovchinnikov,1,2,3 Hahnbeom Park,1,2 Neha Varghese,4 Po-Ssu Huang,1,2

Georgios A. Pavlopoulos,4 David E. Kim,1,5 Hetunandan Kamisetty,6

Nikos C. Kyrpides,4,7 David Baker1,2,5*

Despite decades of work by structural biologists, there are still ~5200 protein families with
unknown structure outside the range of comparative modeling. We show that Rosetta
structure prediction guided by residue-residue contacts inferred from evolutionary
information can accurately model proteins that belong to large families and that
metagenome sequence data more than triple the number of protein families with sufficient
sequences for accurate modeling. We then integrate metagenome data, contact-based
structure matching, and Rosetta structure calculations to generate models for 614 protein
families with currently unknown structures; 206 are membrane proteins and 137 have folds
not represented in the Protein Data Bank. This approach provides the representative
models for large protein families originally envisioned as the goal of the Protein Structure
Initiative at a fraction of the cost.

T
here are 14,849 protein families in the Pfam
(1) database with 50 or more residues, of
which 4752 have at least one member with
experimentally determined x-ray crystal or
nuclear magnetic resonance (NMR) struc-

ture, and an additional 3984, for which reliable
comparative models can be built on the basis of
homologs of known structure detected using the
powerful HHsearch fold-recognition program
(2). There are an additional 902 for which less-
confident comparative models can be built, but
no structural information available for 5211 of
the remaining 6113 families (HHsearchE-value≥ 1).
Until recently, computational methods could not
generate accurate models for these 5211 families,
as they lack homologs of known structure for com-
parativemodeling, and the very large number of
conformations accessible to a polypeptide chain
made the sampling problem in de novo protein
structure prediction intractable for all but the
smallest proteins. The original goal of the Protein
Structure Initiative was to determine structures
for at least one representative of such families,
but this proved to be extremely challenging, and
the focus of the initiative shifted to targets of im-
mediate biological interest (3).
The increase in the number of known amino

acid sequences has enabled the accurate predic-
tion of residue-residue contacts by using evolu-

tionary data (4–10)—substitutions at positions
close in space in the three-dimensional structure
covary. Such contact predictions have been used
for awide range of proteinmodeling efforts (11–22).
Accurate contact prediction requires large num-
bers of aligned sequences so that residue-residue
covariance is clearly distinguished from lineage
effects.Althoughcoevolution-basedstructuremodel-
ing has been used to generate models for individual
proteinswith fold-level accuracy [templatemodeling
(TM) score (23) is >0.5 (5, 7,8, 10, 11, 14–18, 21, 22)],
it has not been clear whether such data, combined
with structure-prediction methodology, can gen-
erate accurate models on a larger scale.
Rosettadenovo structure-predictioncalculations

guided by evolutionary informationwere recently
used to generate models for 58 large protein fam-
ilies (21). The structures of proteins in six of these
families have since been published, which provides
an opportunity to assess this medium-scale pre-
diction effort. Recently solved structures of the li-
poprotein signal peptidase II (24), prolipoprotein
diacylglyceryl transferase (25), fluoride ion trans-
porter (26), cytochrome bd oxidase (27), DMT
superfamily transporter YddG (28), and fuma-
rate hydratase (29) are all very close to compu-
tational models published and publicly released
well before the structures were solved (Fig. 1). In
the caseof the three-subunit cytochromebdoxidase,
the computational model of the 788-residue com-
plex generated using both inter- and intra-subunit
contact information was used together with exper-
imental phase informationobtained from the three
heme irons and a single methionine to solve the
structure. Because thephase informationwasweak,
it was only possible to place the transmembrane
helices and a subset of the side chains on the
basis of the density, but the loops, connectivity,
location of the CydX subunit, and registration of

the amino acid sequence onmany of the helices
were unclear. Our Escherichia coli protein model
closely overlapped with the traced helices, and
Phenix-Rosetta refinement (30) of a model built
for the Geobacillus thermodenitrificans protein
resolved the above ambiguities, enabling rapid
completion of structure determination. The final
deposited structure is very similar to our prev-
iously published model of the E. coli protein
(Fig. 1A) [TM-align score (23) of 0.8]. The power
of Rosetta structure-prediction calculations cou-
pled with coevolution data for soluble proteins is
illustrated by an extremely accurate blind de novo
prediction for a complex protein structure in
the CASP11 structure-prediction experiment (31)
(Fig. 1E). In all of the cases shown in Fig. 1, stan-
dard threading or fold-recognition methods fail
to identify the correct fold. Taken together, these
data show that Rosetta modeling guided by co-
evolutionary constraints generates accuratemod-
els (in all six cases, the TM-align score is >0.7;
themodels also illustrate someof the limitations
of the approach, including the lack of explicit
modeling of ligands, cofactors, and lipids) (see
supplementary text).
Structure models with the accuracy of those

in Fig. 1 would have broad utility for framing
biological hypotheses about function and inter-
preting mutational data, as well as for guiding
experimental structure determination. To deter-
mine the number of aligned sequences required
for contact prediction accuracy sufficient to guide
generation of accurate 3D models, we carried out
Rosetta structure-prediction calculations for a
benchmark set of 27 large protein families (table
S1) with known structure. We used both the full
sequence alignments and alignments of subsets
of the sequences for contact prediction. We also
performed structure-prediction calculations using
Rosetta to hybridize and refine (32) partial struc-
tural matches identified by matching predicted
contacts with the contact patterns of known pro-
tein structures. To do this, we developed an al-
gorithm (map_align) [see the supplementary
materials (SM)] that uses iterative double-dynamic
programming (33). The two approaches are com-
plementary: De novo structure prediction (using
only sequence information) (34) can succeed
where there are no related structures in the
Protein Data Bank (PDB), whereas making use
of matches to known structures can help for
large complex proteins that otherwise present a
convergence challenge for de novo structure pre-
diction (structural matches can occur in the ab-
sence of detectable sequence similarity because
structural similarity is retained over larger evo-
lutionary distances). For large sequence families,
combining de novo structure-prediction models
and map_align structure matches using the
Rosetta iterative hybridization protocol improved
accuracy in 14 cases and decreased accuracy in
only one (solid line in Fig. 2A) (fig. S1; see SM).
Contact prediction accuracy, and hence predicted
structure accuracy, depends on the number of
sequences in the family, the diversity of these
sequences, and the length of the protein. A mea-
sure that incorporates all three factors [Nf, the
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 Fluoride ion transporter dimer (5a43) 

Prolipoprotein diacylglyceryl transferase (5azb) 

 Lipoprotein signal peptidase II (5dir)  

A 

C 

B 

D 

CASP11 target T0806 - YAAA (5caj) 

F 

E 
DMT superfamily transporter YddG (5i20) 

Cytochrome bd oxidase (5ir6)

Fumarate hydratase (5f92)

G 

Fig. 1. Comparison of
Rosetta models (left) to
subsequently published
crystal structures (right).
The models accurately reca-
pitulate the structural details
of the named proteins. The
scores are as follows: (A) the
cytochrome bd oxidase
(TM-align score 0.88),
(B) the lipoprotein signal
peptidase II (TM-align score
0.70), (C) the DMT super-
family transporter YddG
(TM-align score 0.70), (D) the
fluoride ion transporter dimer
(TM-align score 0.69), (E) the
CASP11 target T0806,
(F) prolipoprotein diacylglyc-
eryl transferase (TM-align
score 0.69), and (G) fumarate
hydratase [TM-align score
0.80 for monomer (top) and
0.76 for dimer (bottom)].
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Fig. 2. Metagenome
data greatly increased frac-
tion of structures that
can be accurately modeled.
(A) Dependence of coevolution
guided Rosetta structure-
prediction accuracy on the effec-
tive number of sequences
Nf (a function of both sequence
number and diversity;
see methods definition) in
the protein family. For each
of 27 proteins of known struc-
ture, the multiple sequence
alignment was subsampled,
and residue-residue contacts
were predicted by using GREMLIN. Rosetta structure-prediction calculations
were then used to generate ~20,000models, and a single model was selected
on the basis of the Rosetta energy and the fit to the coevolution constraints;
the average TM score of these selected models over all 27 cases is shown on
the y axis (dashed line). Hybridization-based refinement of the top 20
models together with the top 10 map_align-based models for each case
increases the average accuracy (solid line); models with fold-level accuracy
(TM score of >0.5) are obtained for Nf ≥ 16, and models with accuracy typical

of comparative modeling, for Nf of 64. (B) Fraction of protein families of
unknown structure with at least 64 Nf. Dashed line: including only sequences
in UniRef100 database; solid line: including sequences in UniRef100 database
together with metagenome sequence data from the Joint Genome Ins-
titute (37). (C) Distribution of Nf values for 5211 Pfam families with cur-
rently unknown structure, after the addition of metagenomic sequences;
25% of the protein families have Nf > 64, 34% have Nf > 32, and 45% have
Nf > 16.
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number of sequence clusters at an 80% sequence
identity–clustering threshold divided by the square
root of the protein length (21)] correlates well
with contact prediction accuracy (21) and model
accuracy (Fig. 2A and fig. S1) over a broad range
of families.
How many protein families with currently

unknown structure have Nf values in the range
where accurate models can be built? The mod-
els in Fig. 1 were all generated for families with

Nf > 64; accuracy falls off for lower values of Nf

(Fig. 2A). As shown in Fig. 2B, fewer than 8% of
families have Nf values of 64 or better. Modeling
the remaining 92% of families of unknown struc-
ture at reasonable accuracy is not currently pos-
sible by using the sequence information in the
UniRef100 database (35).
This limitation in structure modeling can be

largely overcome by taking advantage of progress
in a completely different research area. Meta-

genome sequencing projects, in which complex
biological samples are shotgun sequenced, have
provided insights into biological communities
and provide a treasure trove of new sequence
data (36, 37). The number of protein sequences
determined in metagenome sequence projects is
growing considerably faster than the UniRef100
database (solid versus dashed line in Fig. 2B).
With the inclusion of metagenome sequence data,
the number of sequences increases by as much
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Integral membrane 
protein TerC family 

MerC mercury 
resistance protein

MASE1 
Metalloendopeptidase

Immunity protein 
17

Glycosyl transferase 
WecBTagACpsF family

DNA-K related 
protein

Phage small 
terminase subunit

DUF3786
(NEW FOLD)

Beta protein

DUF4494
(NEW FOLD)

WbqC-like 
protein family

RNA-binding
protein 

DUF2911 
(NEW FOLD)

Chordin

Curli assembly 
protein CsgE

Sporulation 
protein YunB

Gas vesicle 
synthesis protein

Prokaryotic E2 
family E

Spore coat assembly 
protein SafA
(NEW FOLD)

CobS Cobalamin-5-
phosphate synthase

Ferrous iron transport protein B

DUF3418 - (C-term of ATP-
dependent RNA helicase HrpA)

Fig. 3. Representative structure models for selected Pfam families. Membrane proteins are on the top row; new folds on the bottom right. The
multidomain models of the iron transporter and RNA helicase and the dimeric model of CobS, an enzyme in vitamin B synthesis, are guided by both intra-
and inter-chain coevolution restraints.
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as 100-fold for some families (table S2), and the
fraction of families with unknown structure that
can be accurately modeled using coevolution-
guided structure-prediction methods increases
dramatically. At Nf ≥ 64, the fraction increases
from 0.08 to 0.25, and at Nf ≥ 32 [where fold
level accuracy can be achieved (Fig. 2A)], the
fraction increases from 0.16 to 0.33. To assess
structure-prediction and model evaluation ac-
curacy using metagenome data, we carried out
a second set of benchmark calculations on 81
Pfam domains with recently solved structures
and Nf ≥ 64 (fig. S1, E and F, and table S5).
Structure-prediction accuracy was correlated
with the extent of convergence of the lowest
energy models and the fraction of predicted
contacts present in these models (figs. S1F and
S2). For 42 families, the predictions converged
with most of the predicted contacts satisfied
(see SM for convergence criteria) and of these,
25 had a TM score >0.7 and 13 a TM score >0.6
[in three of the four remaining cases, NMR struc-
tures of small transmembrane proteins, our mod-
els fit the predicted contacts much better, and
in the last case, an intertwined dimer, our mono-
mer model contained all the correct contacts
(fig. S13)].
We generated coevolution based contact pre-

dictions using GREMLIN (4, 12) for the 1297
protein families with Nf ≥ 64 and built models
for the 921 protein families (1024 domains) with
many contacts between positions separated by
more than five residues along the linear sequence
(number of long range contacts > half the number
of residues in protein). The structure-prediction
calculations converged on models with pre-
dicted TM scores (based on the benchmark cal-
culations) greater than 0.65 for 614 of the 1024
domains. A list of the Pfam families covered
by these models is in table S3; the models are
available at http://gremlin.bakerlab.org/meta/,
along with an interactive 3D interface powered
by 3Dmol.js (38) and D3.js (39) for visualiza-
tion of coevolution contacts on the models.
These structures provide close templates for
comparative modeling of 487,306 UniRef100
and 3,868,268 Integrated Microbial Genomes
metagenomic unique (less than 80% pairwise
identity) sequences.
The converged models for the 614 Pfam fam-

ilies (table S3) provide a view of the hitherto un-
seen protein universe. To determine whether the
models belong to knownprotein folds, we carried
out structure-structure comparisons against the
Structural Classification of Proteins (SCOP) (40)
domain database. For 477 of the families, the
models matched a protein of known structure
over nearly the entire length and, hence, can be
assigned to SCOP folds (52 distinct all alpha,
29 alpha/beta, 51 alpha+beta, and 28 all-beta
folds). In a number of cases, the SCOP classi-

fications are consistent with previous functional
information; for example, the restriction endo-
nuclease Xho I is assigned to the restriction en-
zyme fold, and a family of prokaryotic putative
ubiquitin-like proteins is assigned the beta-grasp
fold (to which ubiquitin belongs). For 137 of the
domains, there were no significant structure
matches of the models to the PDB (TM-align
score < 0.5), and hence, these have new folds.
Space limitations preclude showing here even a
small number of the 614 models; instead, we
show a small selection of the 3D structures in
Fig. 3. They include the key developmental
regulator Chordin; a key enzyme in cobalbumin
synthesis; a metalloendopeptidase; and mercury
and iron transporters. Six are transmembrane
proteins, four have new folds, and several have
complex topologies. These and the remaining
590 structure models not shown in Fig. 3 should
provide a basis for understandingmolecular func-
tion and mechanisms and should guide experi-
mental structure determination (such efforts should
be informed of the limitations of the modeling
approach described in the supplementary text).
While this manuscript was in preparation, crystal
structures of members of 5 of the 614 families
were published and are similar to the corre-
sponding models (TM-align score ≥ 0.7) (see
fig. S3 and table S4).
The models presented in this paper fill in

about 12% of the structural information missing
for known protein families. That this could be
accomplished using computational modeling
methods was not at all apparent 5 years ago.
This progress required integration of advances
in disparate research areas: metagenome sequenc-
ing, coevolutionary analysis, and de novo protein
structure-prediction methodology. This combined
approach has a bright future: Extrapolating from
the data in Fig. 2B suggests that in several years
the majority of families will have sufficient num-
ber of sequences for accurate structure model-
ing. A current limitation is that most sequence
data are for prokaryotes, but as fungal and other
simple eukaryote genome structure prediction
sequencing projects ramp up, the approach should
become applicable to eukaryote specific protein
families.

REFERENCES AND NOTES

1. R. D. Finn et al., Nucleic Acids Res. 44 (D1), D279–D285
(2016).

2. J. Söding, Bioinformatics 21, 951–960 (2005).
3. G. T. Montelione, F1000 Biol. Rep. 4, 7 (2012).
4. H. Kamisetty, S. Ovchinnikov, D. Baker, Proc. Natl. Acad.

Sci. U.S.A. 110, 15674–15679 (2013).
5. D. S. Marks et al., PLOS ONE 6, e28766 (2011).
6. F. Morcos et al., Proc. Natl. Acad. Sci. U.S.A. 108, E1293–E1301

(2011).
7. T. A. Hopf et al., Cell 149, 1607–1621 (2012).
8. T. Nugent, D. T. Jones, Proc. Natl. Acad. Sci. U.S.A. 109,

E1540–E1547 (2012).
9. D. T. Jones, D. W. Buchan, D. Cozzetto, M. Pontil,

Bioinformatics 28, 184–190 (2012).

10. D. S. Marks, T. A. Hopf, C. Sander, Nat. Biotechnol. 30,
1072–1080 (2012).

11. J. I. Sułkowska, F. Morcos, M. Weigt, T. Hwa, J. N. Onuchic,
Proc. Natl. Acad. Sci. U.S.A. 109, 10340–10345 (2012).

12. S. Balakrishnan, H. Kamisetty, J. G. Carbonell, S. I. Lee,
C. J. Langmead, Proteins 79, 1061–1078 (2011).

13. M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, E. Aurell, Phys. Rev. E
Stat. Nonlin. Soft Matter Phys. 87, 012707 (2013).

14. S. Wickles et al., eLife 3, e03035 (2014).
15. P. Tian et al., J. Am. Chem. Soc. 137, 22–25 (2015).
16. S. Hayat, C. Sander, D. S. Marks, A. Elofsson, Proc. Natl. Acad.

Sci. U.S.A. 112, 5413–5418 (2015).
17. T. A. Hopf et al., Nat. Commun. 6, 6077 (2015).
18. L. A. Abriata, Biorxiv 10.1101/013581 (2015).
19. S. Ovchinnikov, H. Kamisetty, D. Baker, eLife 3, e02030

(2014).
20. T. A. Hopf et al., eLife 3, (2014).
21. S. Ovchinnikov et al., eLife 4, e09248 (2015).
22. S. Antala, S. Ovchinnikov, H. Kamisetty, D. Baker, R. E. Dempski,

J. Biol. Chem. 290, 17796–17805 (2015).
23. Y. Zhang, J. Skolnick, Proteins 57, 702–710 (2004).
24. L. Vogeley et al., Science 351, 876–880 (2016).
25. G. Mao et al., Nat. Commun. 7, 10198 (2016).
26. R. B. Stockbridge et al., Nature 525, 548–551 (2015).
27. S. Safarian et al., Science 352, 583–586 (2016).
28. H. Tsuchiya et al., Nature 534, 417–420 (2016).
29. P. R. Feliciano, C. L. Drennan, M. C. Nonato, Proc. Natl. Acad.

Sci. U.S.A. 113, 9804–9809 (2016).
30. F. DiMaio et al., Nat. Methods 10, 1102–1104 (2013).
31. S. Ovchinnikov et al., Proteins 84 (suppl. 1), 67–75

(2016).
32. Y. Song et al., Structure 21, 1735–1742 (2013).
33. W. R. Taylor, Protein Sci. 8, 654–665 (1999).
34. K. T. Simons et al., Proteins 34, 82–95 (1999).
35. B. E. Suzek et al., Bioinformatics 31, 926–932 (2015).
36. V. Kunin, A. Copeland, A. Lapidus, K. Mavromatis,

P. Hugenholtz, Microbiol. Mol. Biol. Rev. 72, 557–578
(2008).

37. V. M. Markowitz et al., Nucleic Acids Res. 42 (D1), D568–D573
(2014).

38. N. Rego, D. Koes, Bioinformatics 31, 1322–1324
(2015).

39. M. Bostock, V. Ogievetsky, J. Heer, IEEE Trans. Vis. Comput.
Graph. 17, 2301–2309 (2011).

40. A. Andreeva et al., Nucleic Acids Res. 36 (Database),
D419–D425 (2008).

ACKNOWLEDGMENTS

We thank P. Di Lena, N. Malod-Dognin, and R. Andonov for
providing the source code for their software (Al-eigen and a_purva)
and for their discussion and advice on contact map alignment.
The 3D structures of 614 Pfam domains modeled in the study are
available at http://gremlin.bakerlab.org/meta/. Other data are
archived at the Dryad Digital Repository (doi:10.5061/dryad.
27p4s). We also thank Rosetta@home and Charity engine
participants for donating their computer time. The work performed
by N.V., G.A.P., and N.C.K. was supported by the U.S. Department
of Energy (DOE) Joint Genome Institute, a DOE Office of Science
User Facility, under contract no. DE-AC02-05CH11231. Research
reported here was supported by National Institute of General
Medical Sciences, NIH, under award number R01GM092802. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/355/6322/294/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S13
Tables S1 to S5
References (41–57)

22 June 2016; accepted 22 November 2016
10.1126/science.aah4043

Ovchinnikov et al., Science 355, 294-298 (2017) 20 January 2017 4 of 4

RESEARCH | REPORT

 o
n 

A
pr

il 
12

, 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


 (6322), 294-298. [doi: 10.1126/science.aah4043]355Science 
Kamisetty, Nikos C. Kyrpides and David Baker (January 19, 2017) 
Huang, Georgios A. Pavlopoulos, David E. Kim, Hetunandan 
Sergey Ovchinnikov, Hahnbeom Park, Neha Varghese, Po-Ssu
data
Protein structure determination using metagenome sequence

 
Editor's Summary

 
 
 

, this issue p. 294; see also p. 248Science
of which about 140 represent newly discovered protein folds.

families,contacts to known structures. Their method predicted quality structural models for 614 protein 
developed criteria for model quality, and, where possible, improved modeling by matching predicted
Perspective by Söding). They determined the number of sequences required to allow modeling, 

 augmented such sequence alignments with metagenome sequence data (see theet al.Ovchinnikov 
successful in modeling unknown structures, but it requires large numbers of aligned sequences. 
information. Protein modeling using residue-residue contacts inferred from evolutionary data has been
experimentally determined structure. This leaves more than 5000 protein families with no structural 

Fewer than a third of the 14,849 known protein families have at least one member with an
Filling in the protein fold picture

This copy is for your personal, non-commercial use only. 

Article Tools

http://science.sciencemag.org/content/355/6322/294
article tools: 
Visit the online version of this article to access the personalization and

Permissions
http://www.sciencemag.org/about/permissions.dtl
Obtain information about reproducing this article: 

 is a registered trademark of AAAS. ScienceAdvancement of Science; all rights reserved. The title 
Avenue NW, Washington, DC 20005. Copyright 2016 by the American Association for the
in December, by the American Association for the Advancement of Science, 1200 New York 

(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last weekScience 

 o
n 

A
pr

il 
12

, 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/content/355/6322/294
http://www.sciencemag.org/about/permissions.dtl
http://science.sciencemag.org/



