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ABSTRACT 

A singular-perturbation expansion· of the electric 

field and the concentrations provides a rigorous justi-

fication for dividing an electrolytic solution into 
' 

the diffuse part of the double layer at an interfac~ 

and a diffusion layer on the solution side of the inter-

face. At the same time this expansion provides a means 

for calculating corrections to the equilibrium electric 

field within the diffuse part of the double layer. 

.• 
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INTRODUCTION 

Electroneutrality prevails in the bulk of an elec-

trolytic solution, but near an interface with an elec-

trode or with an insulator there is a region about 10 to 

100 angstroms thick in which there .is considerable de-
, '. 

parture from electroneutrality. The whole interface is 

referred to as the electric double layer and includes, 

possibly, a charge layer in the me~al phase, if any, a 

.charge layer of "specifically adsorbed11 ions at the inter..:. 

face, and a diffuse part of the double layer which extends 

a short distance into the electrolytic solution. The 

double layer as a whole is electrically neutral, but 

each part of the double layer may have a net charge. 

It is natural to try to tr~at separately processes 

in the electrically neutral solution 11 outside 11 the double 

layer and processes inside the diffuse part of the double 

layer even though both regions are in the electrolytic 

solution and there is no sharp boundary dividing them. 

Thus, for mass transfer studies it is the practice to 

include the effects of the diffuse part of the double 

layer in the boundary conditions describing the behavior 

of the interface. Conversely, it is desirable that the 

behavior of the diffuse part of the double lay'er be 

characterized by the concentration at· the "edge" of .the 

double layer and by the current passing through it, but 

should not depend directly on events far away from the 

interface in the liquid phase. 
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We have achieved here a rigorous justification of 

this separation of the electrolytic solution into two 

regions by means of singular-perburbation expansions 

of the electric field and the concentrations. A singu-

lar perturbation consists of two perturbation expansions 
'· 

valid respectively in the region far from the interface 

and close to the interface. Since these are two expan­

tions of the same function,. they must 11·match11 in an 

intermediate region. (A more precise statement is that 

the outer limit of the inner expansion coincides with 

the inner limit of the outer expan~ion.) 

The reason for constructing two such perturbation 

expansions is that diff~rent approximations are valid 

in the two regions. In the outer region (in the bulk of 

the solution), one can neglect deviations from electro­

neutrality as a first approximation. In the inner 

region .(near the interface) it is permissible to neglect 

convection. Furthermore, the electric field can be 

quite large in the double layer even in the absence of 

current, and the disturbance due to the passage of cur-

· rent can be treated as a perturbation . 

...,. .. 
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STATEMENT OF THE.PROBLEM 

We illustrate these principles for the case of 

a symmetric, binary electrolyte. If dilute-solution 

theory is applicable, then the concentrations and the 

electric field are to be determined from the eql-l:ations 

d~. ( 
:n,F de+) de z- :.:.:=__ c e D+ vy 

+ o, RT + dy + dy = 

:Y (-z 
D F de ) de - e D 0, RT c - -- I v dy = dy .T y 

de F 
dy = "E z ( c + - c _) . 

. . . 

The first two equations express conservation of cations 

and anions respectively, while the last is Poissonrs 

equation. It is assumed that the Nernst-Einstein rela­

tionship: between diffusion coefficients and mobilities 

(1) 

(2) 

(3) 

is valid, that a steady state prevails, and that the con­

centrations and potential vary only in the y-direction. 

These equations are to be solved subject to the 

following four boundary conditions: 

1. ·The. average concentration is c far from the surface. 
co 

2 • . The cation flux N~ is specified at the interface. 

3. The anion flux N° is specified at the interface .. 

4. The total electric charge in the diffuse part of 

the double layer-(and in the diffusion layer)> is a. 

A realistic velocity profile, which we shall use 

for the convective velocity, is 

2 
vy = - Ay ·• (4) 
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This could correspond,. for example~ to a rotating disk 

t .h. h S hm"dt b . h" h A · · by1 ' 2 a ~g · c ~ num ers, ~n w 1c case 1s g~ven 

It will become apparent later that the first several 

terms of the expansions describing the diffuse part of 
• I . 

the double layer will remain valid for other hydro-

dynamic conditions. 

It is convenient to use dimensionless variables. 

Therefore, we define 

a) dimensionless concentrations and charge density 

.. c++c_ 
c = --:::---

2c* 
,. c 

00 coo = ,. 
c* 

p = 
c -c + -
2c* 1 

b) dimensionless electric field and position 

. coordinate 

· ZF 
E = RT A.e ,. 

· c) dimensionless fluxes 

1 ( 5) 

(6) 

a = _L (3D '\l/3( ~ + N_) b = _L (3D)l/3( N+ - N_ ~ (7). 
? c* A ) , D + . D _ ' ·' 2 c* A D + D _/'' 

d) dimensionless parameters 

where 

· D+-D-
r= ~~-D +D 7 

. + -
(-

A)l/;3 5 = 3D 'A,· 

2D+D-
D = is the diffusion coefficient of the 

D++D_ 

. bina'!'y salt . · 

(8) 
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A. =.= J ERT is the De bye length· 
... 2 2F2 z c* 

c* is the concentration just 11 outside the double 

layer":, which will be defined presently. 

In terms of these dimensionless quanti tie.s, the 

differentia~ equations become 

en + 35 3x2c' == 3r5 3x2 p' + (pE) 1
$ 

p
11 

+ 35 3x2p' == 3r53x2c' + (CE)', 
.,.,! p = .c., , 

where primes denote differentiation with respect to x. 

· These are to be solved subject to the following four 

boundary conditions: 

1. C· ->- c as X ->- 00 . 
00 

2. 5a ~ pE - c' at x = 0 •· 

3. 5b = CE - p' at X = o. 

4. E(x=oo) - E(x=O) 

where K is defined by the last boundary condition. 

(9) 

(10) 

. ( 11) 

The perturbation parameter is 5, which represents 

a ratio of the Debye length(characteristic of the dif- · 

fuse, double layer) to a length characteristic of the 

thickness of the diffusion layer. Since 5 is of the 
-5 order of 10 for most aqueous electrolytic solutions, 

the· prospect of a useful perturbation expansion is 

promising. 

Different independent variables are used in the 

inner and. outer expansions. The inner·. variable is 
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X = X = y (A, 

Which serves to stretch the coordinate SO that X is· 

of order unity in the diffuse double layer. The outer 

variable is 

-X= 

'· 

A \1/3 
5x = (3D7 y .. 

SUMMARY OF THE PRINCIPAL RESULTS 

-The electric field and the average concentration 

can be expressed as 

E = E
0

(x) + 5E
0

(x) + 5E1 (x)- 5b +0(52 ). (12) 

c- c
0

(x) + c
0

(X) + 5c1 (x)- (l-5ax) +0(52 ). (13) 

i 't 2 These express ons are uniformly valid up o order 5 over 

the entire domain of x, both inside the diffuse double 

layer and in the region outside the double layer. The terms 

E
0 

·and C
0 

describe the electric field and average concentra­

tion in a diffuse double layer at equilibrium. The terms 
~ --

Eo and C
0 

are the first approximation to the electric 

field and the concentration iri t6e region outside the double 

layer as calculated by the standard techniques of diffusion 

theory. The.- terms E1 and c 1 represent the corrections to 

the equilibrium situation in the. diffuse double layer to 

account for the passage of current. The terms 5b and ( l-5ax) 

·serve to cancel overlapping terms already included twice. 

The various terms are given as follows: 

(14) 

·.1 
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c
0

(x) = 1 + l:_ ~ 
2 0 

. (15) 
x . :3 

c
0

(x) = 1 1 -X - a 
0 

. e dx. . (1?) 

3 1 E: Cx) = [b - ra(e-x - 1) J • . ( 17) 
~ 0 
co 

E1 (x) satisfies the linear_, nonhomogeneous differential 

equation 
E1 

- ( 1 + ~ ·~ ) E = - b - a. xE
0 1 2 0 1 . 

with the boundary conditions 

E1 = (b + ra)jC
00 

atx = 0. 

. E1 ~ b as x .-.,.. oo. 

This gives a clearly.defiried, linear problem for the 

perturbation.of the electric field in the diffuse part 

of the double layer. vJe choose to .leave this problem 

to a more. erudite mathematician and instead adopt the 

approximation 

E
0 

z 4Ke-x << 1, 

so that the solution for E1 is 

(18) . 

(19) 

(20) 

(21) 

E1 :::: e-x(b + ra)jC
00 

+ aK(x + x2 ) e-x+ b(l - e-x). (22) 

Even when E
0 

is not small compared to unity, tl:lis solu­

tion is qualitatively correct in the sense that ~t . 

satisfies the correct boundary condition at x = 0 and 

behaves correctly as x --+ co, 

~he concentration .c* is 

c +! r(ll:.)(3D)l/3c·N+ + N_) 
c* = oo 2 · 3 A . D D 

. '+ -
(23) 
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This concentration just "outside the· double layer" is 

just what would be calculated by diffusion theory when 

the effects of the diffuse double layer are ignored 

and electroneutrality is assumed (compare, for example~=--

3 ) Randles , p.l24 . 

If we d~Tihe the C-potential as that part of the 

potential drop across the diffuse double layer which 

is not accounted for by an extrapolation of the outer 

expansion of the electric field, then the dimensionless 

C-potential is 

(24) 

·where - j·oo· co_= . . (25) 
' 0 

' C1 = ·1 00 
[E (x) - b] 

0 .. 1 
dx 

EXAMPLE 

~ b+ra - b + 3aK. c oo· 

Let us illustrate these results with a specific 

example, dissolution at an anbde under the following 

conditions 

(2 6) 

' . 2 
i=O.l Ajcm . 0 N =0. -5 mole 

C
00

=0.05M=5xl0 3 . 
-5 2 '. 0'=10 couljcm . 

' ' -2 2 V=lO em jsec. 

Z=l. 
-5 2 D+=lO em jsec. 

. qm 
D=900 rpm=94.2 radjsec. 

D_=l.2~lo-5 c~2 jsec. 
relative dielectric cbnstant=80. T=293°K.' :: 

From these, we calculate values for the following 

· pa·rame ters: 

. . · ·-5 2 · . (3AD'\, 1/ 3 
D=l.09xl0 em jsec~ J = 

'Z ' 
-;) 

1.9lxl0 em. 

·J 
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0 . -6 2 -4 . 3 
N+=l.036xl0 molejcm -sec. c-l<_=l.385xl0 molejcm . 

-7 -5 X=0.817xl0 em. 5=4.27xl0 . r= -0.091~ 

a=b=0.7156 K=-0.654. c =0.361. 
00 

It should be noted that the dimensionless fluxes a and b 

are of order unity as assumed and that 5 is quite small . . 
The· magnitude of K is so large that the maximum value 

-~ 
of E

0 
is 21, and consequently values of E1 calculated 

according to equation (22) are only qualitatively correct. 

Figure 1 shows E-E
0 

as a function of position for 

-6 -6 -5 thill value of cr and also for cr=lO , cr=-10 and cr=-10 

couljcm2 . The quantity E~E0 .can be regarded as the cor­

·rection to the equilibrium electric field E
0 

as a result of 

the passage of current. The inner and outer expansions 

are also shown. The composite expansion (12) provides a 

smooth transition between the inner .and outer expansions, 

but in this case 5 is so small that there is an obvious 

region of overlap of the inner and outer expansions. Note 

thatr there is no tendency for the electric field to become 

an oscillating function of position for x > 8.07 (compare 
4 Bass , pp.l659-1660). 

-5 . 2 
Further calculations for cr=lO -couljcm show that 

s0 corresponds to a ~-potential of -79.0 mV while 5~1 
corresponds to a correction of only -0.34 ~V. A desire 

to improve upon such a small correction would not, we 

think, justify solving for: E1 (from equations (19),. (20), 

and (21).) without approximation. 
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expansion 

Outer expansion 

o-=-10-
5

Cjcm 2 

~-- O"=-I0- 6 C/cm 2 

1.0:- 6 C / cm 2 

I0- 5 cjcm2 

-.. --.-. r-·--
lnner expansion 

-··- -·---- ·-- ·--·----------------- ------ .. 

···Electric field in excess of 11 equillbrium'r electric. field.·· 
The diffuse ·part of the· double layer extends . to about x = 10:. 
The ,diffus·ion layer lies between ::x = 102 and x.== .3 x 104. 

····-·-·· ···- --- ·-----.-· ... -----·--·-·--·~- ···"---.. ---"- ----- ........ ·-. ~ ~-- ······. ---- ·-----· -----... --~ .............. ------------------------ .. . 
~ -··· ..... -- . . . - - .. --.. 
'11' • 1 I ·!- 1. gure .1 
t.~,·-·,.-.::. ,. ·- '-!..7--· '-~-! 

'-' 
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THE BOUNDARY CONDITIONS 

The first three boundary conditions (requiring ~peci-

fication of the average concentration far from the sur­

face and the cation and anion fluxes at the interface) 

are straightforward and are easily satisfied in careful 

experimental work. However, it is impossible to determine 

the surface charge in the diffuse part of the double 

layer without resorting to some model of the double layer. 

Possible experimental aids include electrocapillary curves, 

double-layer capacitances, and electrophoretic mobilities. 

Nevertheless, the assignment of charge to the various 

_parts of the double layer is still riot certain. The 

reassignment of this charge in the presence of current 

requires a model of the inner parts of the double layer, 

and this model cannot be separated from the model used to 

describe the kinetics of the electrode process. Thus, it 

is clear from this analysis that the specification of 

this surface charge is necessary in order to describe the 

diffuse double layer and that ractora outside the diffuse 

double layer determire the magni tud.e of the surface charge·~ 

On the other hand, it is also clear that these 

four boundary conditions are sufficient. 4 Bass also 

states the.value of the derivative of the electric field 

E' (0) at the interface as a boundary condition. This is 

not necessary. 
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SUMMARY AND CONCLUSIONS 

We have developed a singlular:o-perturbation solution 

of the problem of the polarized, diffuse double layer. 

This procedure provides a rigorous justification of the 

use of an equil~brium potential distribution in the 

diffuse double layer and of the usual practice in diffu-

.sion theory of assuming electroneutrality and relegating 

the diffuse double layer to a boundary condition. In 

addition~ the method shows how to calculate cor~ections 

to the electric field within the diffuse double layer, 

and, in particular, how to match these corrections to the 

.electric field outside· the diffuse double layer. .In 

other words, the question of boundary conditions at in­

finity is clarified. 

Even if an exact solution, rather than a perburbation 

s·olution, w:ere available, we should prefer the latter 

because it would.be simpler and because it illuminates 

the classical electrochemical liter~ture instead of ob­

sc~ring it. It allows us to estimate the erro~ of the 

classical methods instead of trying to replace them . 

The perturbation solution has an obvious· adv~ntage 

over the solution of Bass4 since it is·not necessary to 

linearize the problem·in order to find E
0

. The problem 

defined by equations (19), (20), and (21) for the perbu~­

bation E1 involves onl~ quantities characteristic of the 

double layer and not of the external hydrodynamic and 

diffusion problem. The separation of the problem of the 

,.! 
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electrically neutral solution n outside" -the double layer 

from the double-layer problem is thus effected. 
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APPENDIX: f!J.ATHEMATICAL DETAILS 
Inner Expansion 

Let the inner expansions' of the electric field, 

the average concentration, and the charge density be 

E = E E 5E1 
2- +0(53). = + + 5 E2 0 

c =·c = co + oc1 + o2c 2 +0 (53). 

5pl 
2- +0(53). p_= p = p + + 5 p2 . 0 

In terms of the inner variables,. the differential equa­

tions are the same as equations(9), (10), and (11). The 

inner expansions of E, C, and p are substituted into 

these equations,.and the coefficients of like powers of 

5 are equated to zero. This then gives a ·series of dif-

ferential equations for the various terms in the perturba-

tion series. 

For the first term the conservation ·equations can 

be integrated to give 
-r 

Eo const 0 co ·- 0 = = ' 'O 

-r 
co Eo const 0 Po ·- = = ' 

where the second and third boundary conditions have been 

used to evaluate the constants of integration. Since 

the inner solution must match the outer solution, p
0 

-?-- 0 

.as x -:;,.... ex1, which implies, from the second flux equation, 

that E
0 

also vanishes. 

Since the integration constants are zer·o in these 

flux equations, the solution for E
0

, C
0

, and p
0 

is no 

different from the class·ical problem of the equilibrium 
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double layer and is given by equations (14) and (15). 

Note that p =E' and that we have required C
0 

to·approach 
. 0 0 

. unity as x --+ oo, thereby specifying the concentration 

c* used to make the problem dimensionless. 

For the higher order terms of the inner expansion, 

the conservati~n equations can be integrated to give. 

E o = fn(x), o1 n 

where the second and third boundary conditions have 

ag~in been ~sed td evaluate the constants of integration. 

The functions f and g can be considered to be known; · n n 

for example, f 1 (x) :::=-a and f 2 (x) = p1E1 . By substi-

tuting Poisson's eq~ation Pn = E~ into the first flux 

equation and integrating we obtain 

where Jn is an integration constant. Substitution into 

the second flux equation gives a second order, line~r 
::.:.· .. 

differential equation for En: 

~- (1 + i ,~)En~ E0 Jn + gn(X) + E
0 
[x fn(x)dx. 

Even though the solution of this equation is not evident) 

we can find how En behaves for large x, without actually 

solving it. If 

gn (x) ->- G
0 

+ G1x + a2J.? + G3x 3 as x ->-· oo, 

then 

En (x) --+ - G
0 
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The solution for the various terms of the inner 

expansion has· be'en outlined above. An explicit solution 

has not been obtained, but it has been shown that the 

several terms of the inner expansion of the electric 

field obey linear differential equations which differ 

only in the non:-homogeneous part. . (An approximate 
~· . 

solution could be obtained by assuming that E
0 

<< 1.) 

The higher terms of the inner expansion still have two 

undetermined integration constants:; Jn and En(O). The 

second will eventually be determined from the fourth 

. boundary condition, and J \!Jill be obtained by matching . .· n 

with the outer expansion. 

Outer Expansion 

Let the outer variable be x = 5x and let the outer 

expansions be 

E = E/5 =, E
0 

+ 5E1 + 52:E2 + Q(5 3). 

c = c 
~. 

p - p 

+ 0(53). 

+0 (53) .. 

In terms of the outer variables the differential ·equations 

become 

C11 +. 3x2 c' = 3rx2p' + (pE) I • 

p11 + 3x2pi = 3rx2 c' + (c:E)'. 
- 2~ p .= .5 .E' .-:.,-. . 

·" . ·The first term of the outer expansion satisfies the 

~quation 
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whose general solution is 

-X 3 
co = Coo + Po 1 e-x dx. 

-, Since then C· 
0 

-3 
= P e-x 

0 1 
the electric field is determined 

from· 
•. 

with the solution 
.... 3 

ff ~ = I + rP e-x 
0 0 0 0 

The higher order terms of the outer·expansion are 

obtained in a straightforvrard manner. The average con-

centration is determined from the equation 

whose general solution satisfying the boundary condition 

at infinity is 

.... p. n ·l'X._ e.-x3dt + l.oox e:-x3 J. ox t3. . . C = _ e F ( t') d t -,dx • 
n n . · 

The function Fn is known; for example, F1 (x) = 0 and 

F2 = 3rx2En + (E 1E ) 1
• 

' 0 0 0 ' 

There is then no proplem in determining the electric.field 

from the equation 

with the solution 

For the outer e~pansion, the charge density can 

always be determined from Poisson 1 s equation. Each term 



- 18 -

of the outer expansion contains two undetermined integra-

tion constants, P n and In, which are: eventually deter­

mined by matching with the inner solution. 

Matching 

The inn~r ~nd outer expansions of the average 

concentration are really t\"JO different expansions of· the 

same function .. For example, we can say 

lim 
5->-0 

C(x) at constant x. 

30 (i) = lim c(i) at constant x = 5~. 
5~ 

~hese are two different limit processes performed on 

. the same function. Consequently, the two expansions are 

related. This matching requirement is that the inner 

limit of the outer expansion should be the same as the 

outer limit of the inner expansion. Thisis best under­

·stood by means of a specific example. 

and 

In the inner limit, as x ->- 0, . .... 

Co == Coo Po f(l~) + Polx 
3 

e-x dx 

= c Po r(l~) + P
0
x +Q(i4) 

00 

similarly 

cl = Prr(l;) + P1x o-4 + (x ), 
... ··· ·' 

c~ = c2 ( o ) + 0 ( x) : 

" 

.Thus the inner limit of the outer expansion for the 

concentration is 
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This has been expressed in terms of the inner variable 

X = xj5 in order to facilitate the COmparison vli th the 

outer limit of the inner expansion. 

On the other hand, in the outer limit as x ~ oo, 

'tie have 

cl ~ Jl- ax 

ld 
c2 ~ J2 + 2- El 

and so the outer limit of the inner expansion is 

- ( -) 2 ( . - 1 2 1 d ( ) ) 0 ( 3) c = 1 + 5 J 1- ax. + 5 J 2+ 2 b - 2 E1 0 + 5 . 

Since this must be the same as the inner limit of the 

outer expansion, the comparison gives 

c. P r(13
1 ) = 1. 

00 0 . 

. 1 
J 1 = - P 1 r ( 13) · 

~ ) 12 ld) 
c2 ( o = J 2 + 2 b - 2 El ( o • 

It is necessary for the two expansions of the elec­

tric field to match in a similar fashion. Comparison 

·of the inner limit of the outer expansion· with the 

outer limit of the inner expansion yields, for example, 

r 1 - ra =b. I 2 = - J l b = 0. 

From the matching one therefore finds that c1 = 0 and 

-· E1 = 0. Other results ·are given in equations (14) through (18). 

The matching requirements, of course, also.apply to 

higher order terms. We have carried this out for terms 

throughQ(54 ) and have found no inconsistencies. The 

_ . ..-· 
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inner expansion satis-fies the boundary conditions at 

x = 0, and the outer expansion satisfies the boundary 

conditions at x = oo. Other integration constants arising 

out of the solution of the differential equations are 

determined by the matching requirement. 

'· 

The· Composite Expansion 

The inner expansion applies near x = 0_, and the 

outer expansion applies near x = oo, but in the inter-

mediate region there may be some uncertainty·as.toc 

·which value to use. To meet this need, the composite ex­

pansion is formed by adding the inner and outer expansions 

-and.subtracting the·terms common to the two expansions. 
, 

Here ncommon terms 11 refer to the outer limit of the inner 

expansion, which is the same as the inner-limit of the 

outer expansion. For this problem the composite expan­

sions· of the electric field and the average concentration 

are· given by equations (12) and (13). It is: easily shovm 

that the composite expansion is a uniformly-valid (for 

-.all x) expansion of the function,- C or E. 

··-
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NOMENCLATURE. 

- diffusion coefficients of cations and anions 
( cm2 jsec). 

- component of the electric field in the y-direction 
( vol tjcm). 

- catior.J. and anion fluxes at the.interface (mole/ 
cm2 ~sec) . 

... component.of the velocity in they-direction 
(~cmjse c) • , 

-distance from the interface (em). 

~ 0.89298. 

-dielectric constant (faradjcm). 

- kinematic viscosity of the fluid ( cm2 jsec). 

total electric charge in the diffuse part of 
the double layer and in the diffusion layer 
(coulomb jcm2). . . .. 

- rotation rate for a rotating d1,sk (radiansjsec). · 

I 
i' 
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