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ABSTRACT: Despite recent interest in deep generative models
for scaffold elaboration, their applicability to fragment-to-lead
campaigns has so far been limited. This is primarily due to their
inability to account for local protein structure or a user’s design
hypothesis. We propose a novel method for fragment elaboration,
STRIFE, that overcomes these issues. STRIFE takes as input
fragment hotspot maps (FHMs) extracted from a protein target
and processes them to provide meaningful and interpretable
structural information to its generative model, which in turn is able
to rapidly generate elaborations with complementary pharmaco-
phores to the protein. In a large-scale evaluation, STRIFE
outperforms existing, structure-unaware, fragment elaboration
methods in proposing highly ligand-efficient elaborations. In addition to automatically extracting pharmacophoric information
from a protein target’s FHM, STRIFE optionally allows the user to specify their own design hypotheses.

■ INTRODUCTION
Fragment-based drug discovery (FBDD) approaches are
increasingly being used for the rational design of novel
compounds.1,2 FBDD campaigns aim to identify smaller-than-
druglike molecules which bind weakly to the target and use
them as a basis for developing a high-affinity binder. Compared
to traditional design methodologies, FBDD methods have a
number of advantages. First, starting from small fragments with
low molecular weight allows a greater degree of control over
the physical properties of the resulting molecule than using a
druglike small molecule as a starting point.3 They also facilitate
a more efficient exploration of chemical space, with a 2005
study4 reporting that hit rates for fragment libraries were 10−
1000 times higher than standard high-throughput screening
assays. Fragment-based approaches therefore offer a higher
chance of identifying a starting point and enhanced control
over the subsequent optimization process.
Following the identification of a set of fragment hits against

a target from a fragment screen, there are three main strategies
for developing a lead molecule with high binding affinity:5 The
first, elaboration (or growing), involves selecting a single
fragment and adding functional groups to form further
favorable interactions with the protein. The second, fragment
linking, takes two fragments bound concurrently in the same
region of the protein and designs a molecular bridge between
them such that the resulting molecule contains both fragments
as substructures. Finally, fragment merging requires two or
more fragments to bind in overlapping regions and involves the
design of molecules which incorporate motifs from each
fragment.

In each case, designs are currently proposed on an ad hoc
basis by human experts who draw on standard computational
techniques and their deep understanding of chemistry to
generate promising ideas. However, human experts may be
hindered by implicit biases from past successes and failures,
and when working with a large number of hits from a large
fragment screen, it will not be feasible for a human expert to
objectively assess all possible elaboration opportunities for
suitability.
Recent years have seen significant interest in developing

machine learning models to rapidly generate and screen large
numbers of molecules as potential drug candidates. Different
authors have employed a range of different molecular
representations, including SMILES,6 graphs,7 SELFIES,8 and
atomic density grids,9 and a number of different deep learning
architectures, such as generative adversarial networks,10

variational autoencoders11 and recurrent neural networks.12

With the aim of generating molecules with an optimal set of
properties, several approaches have been proposed for
multiobjective optimization, including gradient descent,13

reinforcement learning,12 Bayesian optimization11 and particle
swarm optimization.14
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While early generative models typically generated a molecule
“from scratch”, several authors have recently proposed deep
learning-based methods to help improve the efficiency of
fragment-to-lead campaigns. Graph-based approaches for
scaffold elaboration were proposed by Lim et al.15 and Li et
al.,16 which provide a model with a fragment and generate a set
of molecules which contain the original fragment as a
substructure, while Aruś-Pous et al.17 proposed a SMILES-
based18 model, Scaffold-Decorator, which gave the user the
ability to decide which atoms in the fragment should be used
as an exit vector, allowing greater control over the types of
elaborations generated. However, none of the above
approaches allow for the specification of a preferred
elaboration size, which, combined with their inability to
account for protein structure when generating elaborations,
means they cannot ensure that elaborations made by the model
would be of an appropriate size to fit within the binding
pocket. More recently, we proposed DEVELOP,19 a fragment-
based generative model for linking and growing which built on
our DeLinker20 model. DEVELOP allows the specification of
pharmacophoric constraints and linker/elaboration length,
providing a greater degree of control over the resulting
molecules. In concurrent work to DEVELOP, Fialkova ́ et al.21
proposed LibINVENT, an extension to Scaffold-Decorator,17

which can be used to design core-sharing chemical libraries
using only specific chemical reactions. LibINVENT also allows
users to generate molecules with high 3D similarity to an
existing active molecule via reinforcement learning. However,
both DEVELOP and LibINVENT are reliant on either a pre-
existing active or human specification of pharmacophoric
constraints to generate targeted sets of molecules, making
them more suitable tools for R-group optimization than for
designing compounds against a novel target.
Orthogonal to the generative approaches described above,

several recent papers have proposed database-based ap-
proaches to compound design. A recent method, CReM,22 is
based on the idea that a fragment within the context of a larger
molecule can be interchanged with another fragment that has
been observed to have the same local context in another
molecule. CReM identifies potential elaborations by searching
a database of molecules for fragments which have the same
local context as the specified exit vector. Other recent
database-based approaches incorporate protein-specific in-
formation. FragRep23 takes a protein and ligand as input and
enumerates modifications to the ligand by cutting the ligand
into fragments and replaces a fragment with similar fragments
from a database which would preserve the same protein−
ligand interactions, while DeepFrag24 uses a structure-aware
convolutional neural network to select the most appropriate
elaborations from a database of possible elaborations.
For the task of generating molecules “from scratch”, a

number of authors have proposed generative models which
extract information directly from the protein. Skalic et al.25

used a GAN26 to generate ligand shapes complementary to the
binding pocket which were then used to generate potential
molecules by employing a shape-captioning network. Masuda
et al.27 encoded atomic density grids into separate latent
representations for ligands and proteins and trained a model to
generate 3D ligand densities conditional on the protein
structure, which were then translated into discrete molecular
structures. While both papers demonstrated that the ligands
generated by their respective models were dependent on the
learned structural representations, the models do not facilitate

the specification of a design hypothesis provided by a human
expert. Kim et al.28 used water pharmacophore models to learn
the location of key protein pharmacophores which were then
used to construct a training set of molecules with
complementary pharmacophores. While this approach would
more readily integrate into standard drug-discovery efforts, it
requires the training of a separate deep learning model for
every target, as each target requires a training set of
compounds which match the water pharmacophores.
In this work, we propose STRIFE (Structure Informed

Fragment Elaboration), a generative model for fragment
elaboration which extracts interpretable and meaningful
structural information from the protein and uses it to make
elaborations. This is different to all existing fragment-based
generative approaches which either extract information
implicitly from known ligands or do not make use of any
protein-specific information when generating molecules. To
allow straightforward integration into fragment-to-lead cam-
paigns, STRIFE is readily customizable; in addition to the
design hypotheses extracted directly from the protein, we
provide a simple-to-use functionality which allows users to
specify their own design hypotheses and generate elaborations
with the aim of satisfying a desired pharmacophore. In a large-
scale evaluation derived from the CASF-2016 set,29 we show
that STRIFE offers substantial improvements over existing
fragment-based models.17,22 We further demonstrate the
applicability of STRIFE to real-world FBDD campaigns
through two fragment elaboration tasks derived from the
literature. In the first, we make elaborations to a fragment
bound to N-myristoyltransferase, a key component in
rhinovirus assembly and infectivity, and show that STRIFE is
able to generate several elaborations that are strikingly similar
to a highly potent inhibitor.30 To demonstrate how user-
specified design hypotheses can be incorporated into STRIFE,
we consider the fragment-inspired small molecule inhibitor of
tumor necrosis factor reported by O’Connell et al.31 In this
example, the elaboration proposed by O’Connell et al.31

induces a substantial movement in a Tyrosine side chain. We
manually specified a design hypothesis to explore side-chain
flexibility and successfully recovered the elaboration proposed
by O’Connell et al.,31 as well as a range of other elaborations
which were predicted to induce a similar movement in the
Tyrosine side chain.

■ METHODS
We present our deep generative model for fragment
elaboration, STRIFE, which requires the user to specify a
target protein, a bound fragment, and the fragment exit vector.
In our previous work,19 we demonstrated how the imposition
of pharmacophoric constraints allowed a substantial degree of
control over the types of functional groups added to a
fragment. STRIFE builds on the approach proposed in Imrie et
al.,19 where the pharmacophoric constraints were extracted
from existing active molecules by extracting pharmacophoric
constraints directly from the protein, thereby extending its
applicability to a much broader range of targets. Pharmaco-
phoric information is extracted by calculating a fragment
hotspot map32 (FHM), which describes regions of the binding
pocket that are likely to make a positive contribution to
binding affinity. STRIFE then identifies pharmacophoric
constraints which are likely to place a pharmacophore within
a matching hotspot region and uses the pharmacophoric
constraints to generate elaborations.
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Fragment Hotspot Maps. We calculate FHMs using the
Hotspots API33 which implements the algorithm described by
Radoux et al.;32 in this work, all FHMs were calculated using
the default parameters given by Curran et al.33 An FHM is
calculated as follows: Atomic propensity maps are calculated
using SuperStar,34 which defines a grid covering the protein
with equally spaced points 0.5 Å apart, and uses data from the
Cambridge Structural Database (CSD)35 to assign a propensity
for a given probe type at each grid point. If an interaction
between two groups at a certain distance and angle is
particularly favorable, then it will occur more frequently in
structures stored in the CSD and be assigned a higher
propensity score. Once an atomic propensity map has been
calculated, an FHM is derived by first weighting the scores
assigned to each grid point in proportion to how buried in the
protein the grid point is.
The FHM scores are then calculated by using small chemical

probes which take the form of an aromatic ring with different
atoms in the substituent position; for the apolar hotspot maps,
the substituent is a methyl group, while for the acceptor and
donor hotspot maps the substituent is a carbonyl and amine,
respectively. The probes are translated to all grid points with
weighted propensity scores above 15 and randomly rotated
3000 times about the center of the substituted atom. For each

pose, each atom receives a score read from the weighted
propensity map, and the probe scores are calculated as the
geometric mean of the atom scores. As an atom receives a
score of zero if it clashes with the protein, the geometric mean
gives a score of 0 to any pose which clashes.
FHMs have a number of attractive properties. As only grid

points with an above-threshold weighted propensity score are
sampled, and the propensity scores are weighted by how
buried in the protein they are, regions of the protein which are
overly exposed are unlikely to be identified as hotspot regions.
Additionally, because probe poses which clash with the protein
attain a score of zero, any region identified as a fragment
hotspot must be able to accommodate a molecule of
reasonable size, meaning that the risk of attempting to satisfy
a pharmacophore identified by the FHM which cannot be
accessed by an elaboration is reduced.

FHM Processing. For a protein target, STRIFE uses FHMs
to guide the generative model in the placement of functional
groups which can interact with the target. As the different
hotspot maps are used for different purposes, they are
processed slightly differently (Figure 1): the acceptor and
donor hotspots are used to identify desirable pharmacophoric
constraints, while the apolar maps are used to verify that the
fragment is located in an appropriate binding site. For the

Figure 1. Processing fragment hotspot maps: (a) acceptor hotspot map, (b) donor hotspot map, and (c) apolar hotspot Map. A matching
pharmacophore placed within a hotspot has a chance of making a disproportionate contribution to binding affinity. (d) An unprocessed donor
hotspot map in the vicinity of the fragment of interest. (e) Each sphere represents a voxel in the hotspot map. Voxels which are too far away from
the fragment exit vector are discarded. (f) Voxels which are closer to another fragment atom than the exit vector are removed. (g) Voxels are
clustered based on their position. STRIFE attempts to generate elaborations such that a matching ligand pharmacophore is in close proximity to a
cluster centroid.
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apolar maps, we identify all grid points which have a value
greater than 1 and discard all other points. Similarly, for the
acceptor and donor maps, we retain all grid points which have
a value greater than 10. While Radoux et al.32 reported that
values greater than 17 were generally predictive of fragment
binding, we selected 10 as a threshold to obtain wider
coverage; this parameter is simple to change to restrict the
search to higher quality hotspots.
To process the acceptor and donor maps, all points which

are less than 1.5 Å or greater than 5 Å from the fragment exit
vector are discarded to allow for elaborations of appropriate
length. These distance thresholds were chosen to reflect the
iterative nature of a fragment-to-lead campaign, where
practitioners typically make a succession of small elaborations,
but they can be altered by the user to admit longer or shorter
elaborations.
A greedy clustering algorithm is employed to identify

contiguous hotspot regions as follows: A cluster is initialized as
a single point and all unclustered points which are within 1 Å
of the grid point are added to the cluster. For each point in the
cluster, the distance to all remaining unclustered points is
calculated, and any points which are within 1 Å are added to
the cluster until no unclustered points can be added. Once a
cluster has terminated, a new cluster is defined by selecting a
single unclustered point until all points have been assigned to a
cluster. For each hotspot cluster, centroids are defined by
computing the mean position of the points in the cluster. To
reduce redundancy, if two cluster centroids are closer than 1.5
Å apart, the cluster centroid corresponding to the smaller
cluster is deleted. In addition, if a cluster is smaller than eight
points, it is removed, unless no clusters of eight or more points
exist, in which case smaller clusters are retained.
We use the apolar maps to conduct a final filtering step,

adopting the heuristic that a molecule which is entirely
contained within an apolar hotspot region has a better chance
of binding to the protein. Therefore, if an acceptor or donor
cluster centroid is not contained within a hotspot region, then

it is filtered out. Additionally, if all fragment atoms are not
contained within an apolar hotspot, then we consider the
fragment to be unsuitable for elaboration and terminate the
algorithm. While this might appear to be overly restrictive, in
practice, the apolar hotspot maps typically cover the majority
of binding sites in a target, and this filtering step can be easily
negated if the user believes that a fragment is a suitable
candidate for elaboration.
The final output of the processing scheme are the 3D

coordinates of the remaining cluster centroids from the
acceptor and donor maps (hereafter “pharmacophoric
points”). In the subsequent molecule generation steps, our
aim is to generate elaborations which place matching
functional groups in close proximity to the pharmacophoric
points. While the above pipeline automates the process of
defining pharmacophoric points, we also provide a simple-to-
use functionality for users to define their own pharmacophoric
points, allowing them to pursue a range of different design
hypotheses (see Methods and Customizability).
Next, we describe how STRIFE uses a set of pharmaco-

phoric points to generate elaborations with complementary
pharmacophores to the target.

Generative Model. The generative model employed by
STRIFE is similar to our previous work, DEVELOP,19 where
the generative process is based upon the constrained graph
variational autoencoder framework proposed by Liu et al.7

STRIFE differs from DEVELOP in the structural information
D provided to the model when decoding molecules (see
Methods and STRIFE Algorithm). Given a fragment, f, and
structural information, D, elaborations are generated as
follows: Representing f as a graph, each node v is assigned
an h-dimensional vector representation zv and corresponding
label lv, denoting the atom type of the node. A set of K
“expansion nodes”, zv1,···,zvK are generated by sampling from an
h-dimensional standard normal distribution, and each ex-
pansion node is assigned a label lvk

by a linear classifier which

Figure 2. Illustration of how STRIFE generates elaborations which place pharmacophores close to a specified pharmacophoric point. (a) STRIFE
first generates elaborations using a coarse-grained pharmacophoric profile and docks them using the constrained docking functionality in GOLD.38

(b) Elaborations which placed a matching pharmacophore in close proximity to the pharmacophoric point are used to derive a fine-grained
pharmacophoric profile. STRIFE then generates elaborations using those pharmacophoric profiles; the resulting molecules are docked and ranked
by their predicted ligand efficiency.
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takes zvk
and D as input. The expansion nodes represent the

possible atoms which may be appended to the fragment.
Starting from the fragment exit vector, the model samples a

node to add to the graph from the set of expansion nodes. To
choose whether to form a bond between node v and node u,
we use a neural network which takes as input

Dt s s d H H, , , , , ,v u
t

v
t

u
t

v u
t

, ,
0ϕ = [ ]

where t is the number of time steps that have currently been
taken. sv

t = [zv
t , lv] is the concatenation of latent vector and label

at the tth time step. du,v is the graph distance between u,v. Hj is
the average of all latent vectors at the jth time step.
After a new node has been added to the graph, a gated graph

neural network36 is used to update the encodings for each
node to reflect its potentially altered neighborhood. This
iterative approach continues until termination where the final
molecule is returned. Additional details regarding the
generative model framework can be found in our previous
work.19,20

STRIFE Algorithm. Above, we described how STRIFE uses
fragment hotspot maps (FHMs)32 to obtain an interpretable
representation of structural information and how, given a
fragment, f, and structural information, D, we can generate
elaborations to the fragment. Here, we describe how these
processes fit within the STRIFE algorithm. In particular, we
outline how the 3D pharmacophoric points derived from the
FHMs are converted to a representation of structural
information, D, which is used to generate elaborations.
The structural information D can be provided to the

generative model in two different forms. The first is a coarse-
grained pharmacophoric representation, where the model is
simply provided with a vector containing the number of
hydrogen bond acceptors, the number of hydrogen bond
donors, and the number of aromatic groups. The desired
pharmacophoric profile of the generated elaborations can also
be more precisely specified by adding the predicted path
distances (the length of the shortest sequence of atoms
connecting two points) from the exit vector to the
pharmacophore, providing a greater degree of control over
the types of elaborations made by the model. STRIFE utilizes
both of these representations of pharmacophoric information
at different stages of the algorithm. In the exploration phase
(Figure 2a), STRIFE uses the coarse-grained representation to
generate a wide range of elaborations, which are then assessed
for suitability. In the refinement phase (Figure 2b), fine-
grained pharmacophoric profiles are derived from the most
suitable elaborations and are used to generate further
elaborations. Additional details are provided below and in
the Supporting Information.
In a standard fragment elaboration campaign, where

practitioners typically work in an iterative way, making small
elaborations to a fragment which is then optimized before
making additional elaborations to the optimized molecule. In
this paper, we demonstrate STRIFE-generating elaborations
which place a pharmacophore close to a single pharmacophoric
point at a time. For example, if the set of pharmacophoric
points contains one donor and one acceptor, STRIFE will
attempt to produce a set of elaborations which include a donor
in close proximity to the donor pharmacophoric point and a
set of elaborations which place an acceptor in close proximity
to the acceptor pharmacophoric point but will not attempt to
satisfy both pharmacophoric points simultaneously. STRIFE is

capable of attempting to satisfy multiple pharmacophoric
points simultaneously, but this is not recommended unless the
pharmacophoric points have been manually specified or
inspected by the user, as it may not be possible to
simultaneously satisfy certain combinations of pharmacophores
with a single elaboration. After obtaining a series of
pharmacophoric points from the FHM, STRIFE proceeds as
follows:

Exploration Phase. STRIFE aims to generate a set of
elaborations which contain functional groups in close
proximity to a pharmacophoric point. To facilitate this, for
each pharmacophoric point, we predict the atom-length
distance between the fragment exit vector and the pharmaco-
phoric point using a trained support vector machine.37 As the
generative model requires the specification of a desired
elaboration length, we use the atom-length prediction to
control the length of elaborations proposed by STRIFE. To
allow for the inclusion of rings and side chains in the
elaboration, we use several different desired elaboration
lengths; if the predicted atom distance is p, we generate
elaborations with a requested length of up to p + 4. As well as
specifying a desired elaboration size, the generative model
requires us to specify a desired pharmacophoric profile. In the
exploration phase, we generate molecules using the coarse-
grained pharmacophoric profile; as the coarse-grained
pharmacophoric profile does not specify a desired path
distance between the exit vector and the ligand pharmaco-
phore, the pharmacophores in the elaborations proposed by
the generative model will occupy a broad range of different
positions in the binding pocket.
The proposed elaborations are filtered (Supporting In-

formation) and docked using the constrained docking
functionality in GOLD,38 where the structure of the fragment
is provided as the constraint. Each molecule is docked 10
times, and the top-ranked pose selected. For each top-ranked
pose, we compute the distance between the 3D pharmaco-
phoric point and a matching pharmacophore in the molecule.
We then identify all molecules where the resulting distance is
less than 1.5 Å and select the five molecules for which the
distance between pharmacophoric point and ligand pharma-
cophore is smallest. If less than five molecules exhibit a
distance of less than 1.5 Å, we select only molecules which
fulfill this criteria.

Refinement Phase. The molecules which exhibit a func-
tional group in close proximity to a pharmacophoric point
provide useful information, as they can be used to derive the
more fine-grained representation of structural information
which specifies the path distance between the exit vector and
each ligand pharmacophore; as such, we refer to these
molecules as “quasi-actives”, because they play a similar role
to known actives in existing generative models. Having
obtained a set of quasi-actives for each pharmacophoric
point and used them to derive a set of structural information
vectors D1, D2,···, Dn, the user can either generate a fixed
number of elaborations using each Di or request a fixed total
number of elaborations, where a structural information vector
is randomly sampled from {Di}i = 1

n for each elaboration. As
before, the generated molecules are filtered and docked using
the constrained docking functionality in GOLD.38 Finally, each
unique molecule, m, is ranked by its ligand efficiency,
computed as the docking score divided by the number of
heavy atoms, allowing the user to quickly prioritise a small
number of elaborations for consideration.
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ADMET Filtering. To reduce the likelihood of proposing
molecules with undesirable ADMET characteristics, we
provide an additional, optional filter that can be applied post
hoc. The filter is based on the quantitative estimate of
druglikeness (QED).39 The QED score is based on a range of
factors (e.g., hydrophobicity, molecular weight) which are
important ADMET considerations, so can be used to quickly
flag molecules which might exhibit problematic ADMET
characteristics.
As the QED associated with an elaborated molecule will be

heavily dependent on the original fragment, we use the QED
attained by the original fragment as a threshold for flagging a
molecule proposed by STRIFE. In other words, a molecule is
flagged if it is predicted to be “less-druglike” than the original
fragment. We also provide the option for the user to alter the
flagging threshold.
Customizability. Although STRIFE can automatically

extract a set of pharmacophoric points from a protein, in a
real-world drug discovery setting, practitioners may wish to
explore their own design hypotheses. To facilitate such usage,
we provide a simple-to-use functionality which allows a user to
manually specify the location of a pharmacophore in the
context of the protein. The tool, shown in Figure 3, loads a
lattice centered around the fragment exit vector into a
molecule viewer. To manually specify their own pharmaco-
phoric profiles, the user simply selects the lattice points
corresponding to their desired pharmacophore location, saves
the resulting object, and runs STRIFE as usual.
Model Training. We trained our generative models using a

training set derived from the subset of ZINC41 randomly
selected by Goḿez-Bombarelli et al.6 For each molecule, we
obtained a series of fragment−ligand pairs by enumerating all
cuts of acyclic single bonds which were not part of functional
groups. The resulting training set comprised approximately
427,000 examples. The same hyperparameters were used for
training as in our previous work.19

Experiments.We assessed the ability of our model to make
appropriate elaborations using a test set derived from the
CASF-2016 set.29 This test set was constructed using the same

procedure used to generate our training set and initially
comprised 237 examples. As our aim was to assess the ability of
our model to learn from the structural information supplied by
the FHMs, we excluded from our test sets examples where the
ground truth molecule was not contained within an apolar
hotspot region and examples where no suitable pharmaco-
phoric points could be identified by the hotspots algorithm. In
addition, we filtered examples where STRIFE was unable to
identify any quasi-actives. These filtering steps removed 109,
26, and 1 examples from the test set, respectively, leaving a
final test set of 101 examples (a full list is given in Table S1).
While the filtering steps outlined above removed a substantial
proportion of examples from our test set, the initial test set was
constructed by fragmenting the ground truth ligand without
consideration of the associated protein. As such, many of the
fragments would not have been considered suitable candidates
for elaboration.
Using the STRIFE pipeline (Figure 2), we sampled a set of

250 elaborations for each example in the test set. We compared
STRIFE to four baselines: the deep generative model
published by Aruś-Pous et al.,17 “Scaffold-Decorator”, the
database-based CReM and DeepFrag, and a truncated version
of the STRIFE algorithm (STRIFENR) which generated
elaborations from the coarse-grained model (essentially only
conducting the exploration phase from Figure 2a and omitting
the refinement phase). We provided CReM with the same set
of 250,000 molecules we used to derive the training sets for
STRIFE, which was converted into a database of fragments
using CReM’s fragmentation procedure. The Scaffold-Deco-
rator model was trained using the same set of examples as the
STRIFE generative models. For DeepFrag, we used the saved
model trained by the original authors in the original
publication;24 as the DeepFrag training process requires a
fragment and associated protein structure for each example, it
is not possible to use the 250,000 subset of ZINC41 to train the
DeepFrag model. As DeepFrag is trained on an entirely
separate region of chemical space compared to all other
baselines, including protein−ligand complexes included in the
CASF-2016 set, it is difficult to objectively compare it to the

Figure 3. Example of how the pharmacophoric points provided to STRIFE can be customized using the molecule viewer PyMOL.40 A lattice of
points are centered about the fragment exit vector (denoted by the gray atom), and the user simply selects the point(s) they wish to denote as a
pharmacophoric point and saves them in an SDF file. The red and blue points represent an acceptor point and donor point, respectively. STRIFE
can then be run as usual and will attempt to make elaborations which places matching pharmacophores close to the user-specified pharmacophoric
points.
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other methods. We include the results from DeepFrag
primarily for completeness to give an indication as to how
STRIFE compares to another structure-aware approach.
Evaluation Metrics. For our experiments on the CASF test

set, we report several standard 2D metrics in line with those
reported in our previous work:19

• Validity: Proportion of generated molecules which could
be parsed by RDKit42 and for which at least one atom
was added to the fragment.

• Uniqueness: Proportion of distinct molecules generated
by the model, calculated as the number of distinct
molecules divided by the total number of molecules.

• Novelty: Proportion of generated molecules for which
the elaboration was not included in the model training
set.

• Passed 2D Filters: Proportion of generated molecules
which passed a set of 2D filters. A generated molecule
was filtered out if the SAScore43 of the generated
molecule was higher (harder to synthesize) than the
SAScore associated with the fragment, if the elaboration
contained a nonaromatic ring with a double bond, or if
the molecule failed to pass any of the pan-assay
interference (PAINS)44 filters.

We did not compute the proportion of unique or novel
associations proposed by CReM, as CReM does not allow the
specification of a desired number of elaborations. CReM
returns the set of elaborations contained in the database
deemed “reasonable”, meaning that all elaborations proposed
by CReM are by design unique. As CReM proposes molecules
from a fixed vocabulary of possible elaborations, none of the
elaborations proposed by CReM could be considered novel.
Similarly, we did not compute novelty or uniqueness values for
DeepFrag and for each example attributed 250 elaborations to
DeepFrag by selecting the elaborations ranked 1−250 (from a
vocabulary of 5000 possible elaborations) by DeepFrag’s own
ranking method.
In addition to the 2D metrics proposed above, we report an

additional 2D metric based upon QED39 to assess whether
attempting to satisfy the identified pharmacophoric points
impacts STRIFE’s ability to generate druglike elaborations

• ΔQED: The average difference in the QED attained by
the elaborated molecules and the original fragment,
c a l c u l a t e d a s QED QED

n j
n

j
1

1Δ = ∑ Δ= , w h e r e

QED QED(mol ) QED(frag )j k i
k

ij j
1

1Δ = ∑ −= .

To assess the ability of STRIFE to generate elaborations
capable of forming promising interactions with the target, we
used the constrained docking functionality in GOLD38 to dock

each generated ligand 10 times and calculated the docking
score of the top-ranked pose for each ligand. To mitigate the
tendency of classical scoring functions to favor larger molecules
over smaller ones,45 we calculated the ligand efficiency of each
molecule by dividing the docking score by the number of
heavy atoms. To account for the variation in docking scores
across different targets, we standardize the ligand efficiencies
attained by a model on a specific example to have zero mean
and unit variance, applying the same transformation to the
ground truth ligand efficiency. For the jth example, we
compute ΔSLEα,j = SLEα,j − SLEGT,j, where SLEα,j is the
average standardized ligand efficiency of the top α ranked
molecules, and SLEGT,j is the standardized ligand efficiency of
the corresponding ground truth. If α is specified as greater than
the total number of elaborations for which the ligand efficiency
was computed (as only molecules which pass the 2D filters are
docked), we use the average standardized ligand efficiency of
all such molecules. We average over all examples to obtain

SLE SLE
n j

n
j

1
1 ,Δ = ∑ Δα α= . ΔSLEα (standardized ligand effi-

ciency improvement) only considers a subset of the molecules
generated by each model, mirroring how a large number of
molecules produced by a generative model would be assessed
in a real-world fragment-to-lead campaign, where it is unlikely
that a human expert would manually inspect hundreds of lowly
ranked molecules.
As CReM is unable to return a fixed number of elaborations,

we calculated three sets of summary statistics for CReM, each
using a different subset of the test set. In all cases, if CReM
returned more than 250 elaborations for a specific example, we
sampled a set of 250 elaborations from the larger set:

• The set of examples for which CReM returned 250
elaborations (n = 45).

• The set of examples for which CReM returned 50 or
more elaborations (n = 62).

• The set of examples for which CReM returned at least
one elaboration (n = 82).

We present the results for the first set in Table 1 and
compare the results between the three subsets in the
Supporting Information (Table S2). In the case where we
included all examples with at least one elaboration, the ΔSLEα

values were substantially degraded by the subset of examples
where only a small number of elaborations were proposed.

■ RESULTS AND DISCUSSION
We assessed the ability of STRIFE to propose elaborations to
fragments by incorporating meaningful pharmacophoric
information into the generative process. Through a large
scale evaluation on a test set derived from the CASF-2016

Table 1. Comparison of CReM, Scaffold-Decorator, DeepFrag, STRIFENR, and STRIFE on the CASF Test Seta

Metric CReM Scaffold-Decorator DeepFrag STRIFENR STRIFE

Valid 100% 99.98% 100% 99.5% 98.96%
Unique N/A 32.78% N/A 56.96% 37.31%
Novel N/A 4.23% N/A 55.65% 49.21%
Pass 2D filters 66.06% 98.2% 78.47% 73.81% 75.38%
ΔQED −0.148% -0.05% −0.125% −0.09% −0.086%

ΔSLE20 −0.029 0.1 −0.177 0.44 0.512
ΔSLE50 −0.489 −0.222 −0.56 0.078 0.164
ΔSLE100 −0.992 −0.572 −0.979 −0.316 -0.228

aSee Methods and Evaluation Metrics for definitions of the metrics. Bold indicates the best value obtained across the different methods.
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set,29 we show that STRIFE is able to generate a wide range of
chemically valid elaborations, many of which were not
contained in the training set. In addition, in terms of
generating elaborations which exhibit high ligand efficiency,
STRIFE substantially outperforms existing computational
methods for fragment elaboration,17,22 illustrating the advan-
tages of incorporating structural information into the
generative model. We demonstrate the applicability of STRIFE
to real-world fragment-to-lead campaigns using two case
studies derived from the literature; in particular, we show
how STRIFE can be used to explore design hypotheses
including side-chain movement.
Large Scale Experiments. Our experiments on the CASF

set demonstrate the benefits of including structural information
in the generative process (Table 1). All methods generated
chemically valid elaborations in more than 99% of cases,
illustrating their ability to apply basic valency rules. Scaffold-
Decorator, the SMILES-based, structure-unaware generative
model proposed by Aruś-Pous et al.,17 generated the smallest
proportion of unique molecules (33%). STRIFENR, a truncated
version of the STRIFE algorithm which terminates before the
refinement phase so does not account for the location of
fragment hotspots, generated a greater proportion of unique
elaborations (57%) than STRIFE (37%). However, this is to
be expected as the refinement phase of the algorithm attempts
to sample elaborations from a greatly reduced chemical space
compared to the exploration phase.
Illustrating its ability to generalize beyond the information

provided in the training set, almost half (49%) of the
elaborations proposed by STRIFE were not contained in the
training set. By contrast, only 4% of the elaborations generated
by Scaffold-Decorator were novel, suggesting that it relies more
heavily on the training set when making elaborations. Almost

all of the elaborations proposed by Scaffold-Decorator (98%)
passed the set of 2D filters, compared to 75% of elaborations
generated by STRIFE and 74% by STRIFENR. As nearly all of
the elaborations proposed by Scaffold-Decorator were
contained in the training set, which itself was filtered to
remove undesirable elaborations, the high pass rate of 2D
filters is unsurprising.
STRIFE obtained the second highest ΔQED value among

the different methods, behind Scaffold-Decorator, suggesting
that attempting to satisfy the pharmacophoric points extracted
from the FHM did not unduly affect the ability of STRIFE to
propose druglike elaborations. We note that on average, the
molecules proposed by all methods were “less druglike” than
the corresponding fragment. This is not entirely surprising as
none of the models were trained to optimize the QED score,
but all methods were able to produce a substantial number of
elaborations that were more druglike than the original
fragment (Table S3)
On ΔSLE, which assesses the ability of models to generate

elaborations which are more ligand efficient than the ground
truth ligand, models that incorporate structural information
proposed more ligand efficient elaborations. When considering
the top 20 elaborations, the elaborations generated by CReM
(ΔSLE20 = −0.029) and Scaffold-Decorator (ΔSLE20 = 0.1)
were on average less ligand efficient than the ground truth, in
contrast to STRIFENR (ΔSLE20 = 0.44) and STRIFE (ΔSLE20
= 0.512). These results indicate that the fine-grained
pharmacophoric profiles extracted during the refinement
phase allow STRIFE to generate more ligand efficient
elaborations, as the model more often generates elaborations
which place pharmacophores in close proximity to a
pharmacophoric point. We observed the same trend when
the top 50 and 100 elaborations were considered, although in

Figure 4. Fragment elaboration case study. (a) Left: Crystal structure (PDB ID: 5O48) of the fragment bound to P. vivax NMT. Right: Crystal
structure (PDB ID: 5O6H) of the optimized compound bound to human NMT1. The trimethylpyralzole facilitates an interaction with the residue
S319. (b) Processed pharmacophoric points from the fragment hotspot Map calculated on P. vivax NMT. The orange spheres correspond to
hydrogen bond acceptor points, while the purple sphere corresponds to a hydrogen bond donor point. (c) Elaboration proposed by Mousnier et
al.30 (left) compared to several elaborations proposed by STRIFE which satisfied the same design hypothesis (right). The number underneath each
elaboration corresponds to the rank assigned to it by STRIFE. (d) Docked pose of one of our elaborations, which appears to be capable of forming
the same hydrogen bond interaction with S319.
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this case the average ligand efficiency obtained by all models
was lower than the ground truth ligand efficiency. We show
how ΔSLEα varies for different values of α in the Supporting
Information (Figure S3).
In terms of the proportion of all generated elaborations

which were more ligand efficient than the ground truth,
STRIFE achieved the largest number, with 26% of elaborations
obtaining a higher ligand efficiency than the ground truth,
compared to 22%, 17%, and 12% for STRIFENR, Scaffold-
Decorator, and CReM (when considering examples with 250
elaborations), respectively.
Comparison with DeepFrag. As mentioned above, it is

difficult to objectively compare the performance of DeepFrag
to the other baselines. As training examples for DeepFrag
require a protein−fragment complex, DeepFrag may be
hindered by the relatively scarcity of such structures (the
Binding MOAD database46 used to construct their training set
contains approximately 40000 structures) and is therefore
restricted to a much smaller region of chemical space
compared to the other models. On the CASF test set,
DeepFrag obtained the lowest ΔSLE20 and ΔSLE50 values
across all models and only attained a better ΔSLE100 value than
CReM. It is somewhat surprising that DeepFrag is not able to
leverage the structural information provided to it to design
more ligand efficient elaborations than the structure unaware
Scaffold-Decorator; we provide additional information about
the elaborations proposed by DeepFrag in the Supporting
Information.
Fragment-Based Design of an N-Myristoyltransferase

Inhibitor. Rhinovirus is a pathogen which plays a key role in
complications arising in a variety of important respiratory
diseases, including asthma, chronic obstructive pulmonary
disease (COPD),47 and cystic fibrosis.48 Several studies49,50

have reported that the host cell’s N-myristoyltransferase
(NMT) supports capsid assembly and infectivity, making
NMT a potential antiviral drug target.
Following a fragment screen against NMT from the human

malaria parasite Plasmodium falciparum,51 Mousnier et al.30

identified a fragmentlike compound, IMP-72 (Figure 4a), with

weak (IC50 = 20 μM) activity against human NMT1
(HsNMT1). The binding mode of IMP-72 was originally
determined in NMT from the malaria parasite P. vivax
(PvNMT), but as the fragment’s key interactions involved
residues which are conserved in human NMTs, it was
considered to be a viable starting point for the development
of an HsNMT1 inhibitor. The authors noted that IMP-72
bound in a region complementary to a previously identified
quinoline inhibitor,52 MRT00057965; however, closer in-
spection of the overlaid binding modes precluded a fragment
merging strategy. To address this, the authors constructed a
simplified quinoline fragment, IMP-358, which could recapit-
ulate the same interactions as MRT00057965 (S319 in
PvNMT and S405 in HsNMT1) without clashing with IMP-
72. Despite exhibiting weak inhibition of HsNMT1 (17% at a
concentration of 100 μM), IMP-358 facilitated a synergistic
inhibition alongside IMP-72, with the potency of IMP-72
increasing 300-fold for HsNMT1 in the presence of IMP-358.
The authors developed a further compound, IMP-917, derived
by replacing IMP-358 with a trimethylpyrazole group which
was then linked to IMP-72 with an ether linker. Compared to
IMP-72, IMP-917 exhibited a 1500-fold improvement in
potency (IC50 = 0.013 μM) and retained the key interactions
made by both IMP-72 and IMP-358. Finally, the authors made
slight modifications to the core of IMP-917 and used the
resulting compound to show that NMT inhibition completely
prevents rhinoviral replication without inducing cytotoxicity,
thereby identifying a potential drug target.
We investigated the ability of STRIFE to propose molecules

that could satisfy the design hypothesis put forward by
Mousnier et al.30 Instead of iteratively refining the original
quinoline fragment and constructing a linker, we viewed the
task as an elaboration problem and sought to propose
elaborations which could form interactions with S319. As
input to STRIFE, we provided the SMILES string of IMP-72,
the exit vector we wished to make elaborations from, and the
crystal structure of PvNMT (PDB ID: 5O48). Although our
aim was to design compounds for HsNMT1, we did not have
access to a crystal structure of IMP-72 bound to HsNMT1, so

Figure 5. Visualization of flexible docking using Hermes35 (a) fragment (yellow carbons, PDB ID: 6OOY) with elaborated molecule (magenta
carbons, PDB ID: 6OOZ) reported by O’Connell et al.31 The side chain of Y119A moved substantially to form a hydrogen bond. The orange
sphere represents a user-specified pharmacophoric point which we provided as input to STRIFE. (b) An example of one of the molecules generated
by STRIFE that appears to satisfy the specified design hypothesis. The molecule was docked into the fragment crystal structure (PDB ID: 6OOY,
magenta side chain is the predicted conformation) using the flexible docking functionality in GOLD and supports the hypothesis that the side chain
might move to accommodate the ligand.
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given the high degree of conservation of NMTs across species,
we considered it preferable to use the P. vivax NMT as
opposed to docking IMP72 into the crystal structure of IMP-
917 in complex with HsNMT1. We used STRIFE to generate
250 elaborations for IMP-72, which we docked using the
constrained docking functionality in GOLD,38 ranking each
compound by its ligand efficiency. Figure 4C shows the
structure added to IMP-72 to create IMP-917 and several
highly ranked elaborations proposed by STRIFE which appear
to be capable of interacting with the Serine residue in the same
way. Despite only generating a total of 250 compounds, some
of the molecules proposed by STRIFE bear a striking
resemblance with the trimethylpyrazole elaboration proposed
by Mousnier et al.30 A list of all unique elaborations generated
by STRIFE can be found in the Supporting Information
(Figures S6−S10)
Customizability. While structure-aware generative models

are increasingly being proposed, existing models incorporate
such information through a single static structure, making
them unable to account for the possibility that a side chain may
move to interact with a ligand. By utilizing the flexible docking
functionality in GOLD,38 STRIFE allows the user to explore
design hypotheses where a specified side chain moves; we
illustrate how by considering a fragment-elaboration example
from the literature.
O’Connell et al.31 developed a small molecule inhibitor of

tumor necrosis factor (TNF), a cytokine which has been
shown to be a key factor in several autoimmune diseases, by
making elaborations to a weakly binding fragment. The first
elaboration allowed the formation of a hydrogen bond between
the appended pyridyl group and the residue Y119A, which
moved substantially in order to make the interaction, yielding a
2500-fold improvement in binding affinity (Figure 5a).
The magnitude of the Y119A side-chain movement presents

a challenge for a generative model, as it would not be possible
for a structure-aware model to predict that the side chain
would move, and if it was predicted by a chemist that the
residue would be likely to move to form a hydrogen bond, then
it would not be possible to communicate such information to
the generative model. While STRIFE is unable to predict the
movement of specific side chains in advance, if a human expert
has reason to believe a side chain might move to accommodate
a ligand, it is able to generate molecules which satisfy such a
design hypothesis. This can be done by manually specifying a
pharmacophoric point (see Methods and Customizability)
such that a ligand pharmacophore placed at those coordinates
would be able to interact with the residue side chain if it were
to move in the hypothesized fashion. Under this setup,
STRIFE attempts to generate molecules with pharmacophores
close to the user-specified pharmacophoric point and uses the
flexible docking functionality in GOLD38 to dock the
molecules while allowing the residue of interest to move
freely; the user can then identify high scoring elaborations
which were predicted to form the desired interaction with the
protein.
To assess the ability of STRIFE to generate molecules which

satisfied the design hypothesis specified by O’Connell et al.,31

we manually specified a pharmacophoric point (Figure 5a) and
generated 250 elaborations using the same procedure as for
our other experiments. To allow GOLD’s genetic algorithm to
adequately explore the larger solution space created by side-
chain flexibility, we generated 100 poses per molecule and used
the highest scoring pose to calculate the corresponding ligand

efficiency; further details of the flexible docking protocol can
be found in the Supporting Information.
STRIFE successfully recovered the highly potent pyridyl

elaboration proposed by O’Connell et al.,31 while also
proposing a wide range of structural analogues which appeared
to be capable of making a similar hydrogen bond interaction
with Y119A. In particular, the most common elaboration
proposed by the model was a pyridine with a meta substitution
pattern. In total, 49 of the 250 elaborations contain a pyridine
substructure, while 125 elaborations included a hydrogen bond
acceptor that was also part of an aromatic group. Elaborations
comprising a six-membered aromatic ring with a hydrogen
bond acceptor were not scored among the most ligand efficient
using GOLD’s PLP scoring function, which generally rated
pyrazole analogues or elaborations with hydrophobic groups
more highly. However, consistent with the observed bound
crystal structure, for both the ground truth pyridyl elaboration
and several highly ranked elaborations which met the stated
design hypothesis, the side chain of Y119A moved substantially
to accommodate the proposed elaboration. An example is
shown in Figure 5b, and further details of the elaborations
proposed by STRIFE can be found in the Supporting
Information (Figures S11 and S12).
The above analysis was dependent on manually choosing the

location of the pharmacophoric point. To assess STRIFEs
robustness to the exact positioning of the pharmacophoric
point, we constructed a lattice of pharmacophoric points in the
binding pocket (Figure S13) and used each one in turn as an
input to STRIFE. As expected, modifying the position of the
pharmacophoric point affected the types of elaborations
proposed; pharmacophoric points that were placed closer to
the fragment exit vector tended to produce shorter
elaborations than when the pharmacophoric point was further
away (Figure S14).
STRIFE successfully recovered the ground truth pyridyl

elaboration for 11 of the 27 different pharmacophoric points,
demonstrating its robustness to the exact placement of
pharmacophoric points. However, it is of greater interest to
assess how often STRIFE was able to generate elaborations
with an equivalent pharmacophoric profile to the pyridyl
ground truth, as such elaborations would likely have the best
chance of exhibiting similar behavior to the pyridyl elaboration.
For each pharmacophoric point in the lattice, we calculated the
number of elaborations proposed by STRIFE which were of
length 5 or 6 and contained an aromatic hydrogen bond
acceptor and plotted the values against the distance between
the fragment exit vector and pharmacophoric point (Figure
S15). Figure S15 shows that when the pharmacophoric point
was placed between 3 and 4 Å away from the exit vector,
STRIFE was usually able to generate a sizable number of
elaborations which had an equivalent pharmacophoric profile
to the pyridyl ground truth. This suggests that STRIFE is fairly
robust to the precise placement of the pharmacophoric point
(it does not need to be placed in an exact spot in order to
generate sensible elaborations) but also that the placement of
the pharmacophoric point does strongly affect the elaborations
produced.
In summary, despite only making a small number of

elaborations, we were able to use the pharmacophoric
information provided to make a range of plausible elaborations
which satisfied the specified design hypothesis. In practice,
predicting if and how a side chain may move is often extremely
difficult, but in such cases, STRIFE can be used to assess the
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plausibility of such a movement and provide starting points for
a fragment-to-lead campaign.

■ CONCLUSION
We have proposed a model for fragment elaboration which
derives meaningful information from the target into the
generative process; unlike other generative models for
fragment elaboration, STRIFE can incorporate target-specific
information without using an existing active (although
information from existing actives can easily be incorporated).
Currently, STRIFE uses information from FHMs which

guide the placement of hydrogen bond acceptors and donors
within the appended structure. Although hydrogen bonds
between ligands and proteins often lead to large improvements
in binding affinity, they are by no means the only consideration
when making elaborations to a fragment; the framework could
easily be expanded to explicitly account for properties such as
hydrophobicity and aromaticity, allowing a greater degree of
control over the design process. While we have used FHMs to
extract important information from the protein, one could also
use alternative pharmacophore interaction fields, such as
GRAILS53 or T2F,54 to extract similar information which
could then be supplied to the generative model. A further
limitation of the default implementation of STRIFE is that it
does not seek to simultaneously satisfy multiple pharmaco-
phoric points within a single elaboration, potentially curtailing
its ability to generate highly efficient elaborations in some
scenarios. However, fragment elaboration campaigns generally
involve incrementally making small additions to the molecule,
and STRIFE provides the functionality to attempt to
simultaneously satisfy multiple pharmacophoric points
(whether FHM derived or manually specified) should the
user wish to.
While we have used a two stage exploration-and-refinement

approach to generate the final set of molecules, using a coarse-
grained pharmacophoric profile followed by a fine-grained one,
an alternative approach would be to use a single stage where
elaborations are generated using a large number of potential
pharmacophoric profiles. However, we believe that our two-
stage approach is likely to be more computationally efficient, as
generating elaborations using a series of different fine-grained
pharmacophoric profiles, without any assessment of the
suitability of such profiles, would lead to docking large
amounts of unsuitable molecules.
STRIFE ranks the final set of generated molecules by their

predicted ligand efficiency, calculated by docking each
molecule and dividing the docking score by the number of
heavy atoms in the molecule. While docking scores are known
to not correlate perfectly with experimental binding affinities
(see, for example, ref 29), they have successfully been used in a
variety of scenarios to quickly screen large libraries and
prioritize small numbers of compounds for experimental
validation55−57 and can give a useful indication to a human
expert over whether a molecule is likely to bind to the target. If
a user wished to use an alternative metric to rank the molecules
produced by STRIFE, they would easily be able to do so.
Compared to existing structure-unaware models for frag-

ment elaboration, the STRIFE algorithm carries a moderate
up-front computational cost in calculating an FHM and
identifying the set of quasi-actives (between 30 and 60 min on
a desktop computer, in most cases). However, the most
significant computational expense when generating a large
number of elaborations is the docking of each generated

molecule to estimate its ligand efficiency. As the quasi-actives
only need to be identified once for a given fragment, the
computational cost associated with STRIFE is therefore
broadly comparable to other methods when generating large
sets of molecules.
Although STRIFE is capable of being applied with minimal

user input, one area which requires user specification is the
choice of fragment and the associated exit vector. In practice,
screening a fragment library may reveal dozens of weakly
binding hits, yielding a large set of fragment−exit vector pairs
to be explored. STRIFE could readily sample exhaustively from
each fragment and exit vector; however, a future avenue of
research would be to develop a prioritization scheme capable
of identifying promising starting points for a fragment-to-lead
campaign to allow a more efficient allocation of resources.
An advantage of the representation of structural information

that STRIFE extracts from the target is that it is extremely easy
for a user to interpret. While this is useful in allowing the user
to understand why STRIFE generates the kinds of elaborations
it does for a specific target, it also allows the user to easily
specify their own design hypotheses. As such, we hope that
STRIFE will be useful both in cases where a practitioner
wishes to automatically generate a set of elaborations to a
fragment bound to a novel target and in cases where they wish
to rapidly enumerate a set of elaborations that conforms to a
specific design hypothesis and can be used as a basis for further
designs.

■ DATA AND SOFTWARE AVAILABILITY

STRIFE is available to download at https://github.com/oxpig/
STRIFE. The default implementation of STRIFE is dependent
on the commercial CSD Python API for calculating FHMs and
carrying out constrained docking with GOLD. Users without
access to the CSD Python API can still use STRIFE by
manually specifying pharmacophoric points (see Methods,
Customizability) and using alternative docking software.
SMILES strings of the molecules used to train the generative
models and path length model can be accessed in the STRIFE
github repository, as can the structures used for the large scale
evaluation.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01311.

Additional details of STRIFE algorithm, list of all ligands
and proteins used in the CASF test set, additional results
using CReM algorithm, performance of different
methods on ΔSLEα for different values of α, proportion
of molecules generated with a higher QED than the
starting fragment, details of molecules proposed by
STRIFE and DeepFrag, and flexible docking protocol for
case study (PDF)
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