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ABSTRACT OF THE DISSERTATION

Techniques in Two-Photon Microscopy for Neuroscience

by

Jonathan Daniel Driscoll

Doctor of Philosophy in Physics

University of California, San Diego, 2011

Professor David Kleinfeld, Chair
Professor Gert Cauwenberghs, Co-Chair

Fluorescence imaging in biology has become a fundamental tool to understanding

structure and function. In addition, the past two decades has seen the first implementation,

and subsequent widespread use, of two-photon scanning laser microscopy as a tool to allow

fluorescent data to be acquired in new modalities, such as imaging at depth, complete

three-dimensional reconstructions, rapid acquisition of cellular activity, and accurate

assessment of cerebral blood flow at the level of individual vessels.

This thesis examines the use of two-photon microscopy to study neurovascular cou-

pling, the process by which computational mechanism in the brain actively reroute blood

flow to regions of increased neural activity, where it is needed the most. Understanding

the mechanisms through which this occurs is an active area of research, and represent

a “sweet spot” in terms of complexity: the function of the system can be stated simply,

ix



and many of the mechanisms involved are understood in isolation. However, putting

everything together into a complete picture has remained elusive, and understanding how

the brain accomplishes this seemingly simple task should provide insight into the general

computational mechanisms of the brain.

Central to this research was the development of scanning hardware and software

techniques that allow the rapid acquisition of the biologically relevant variables with

high signal-to-noise ratios. This lead to the development of computer control software

for creating user-defined scan lines, which can interface with machine learning programs

for quickly and accurately identifying relevant regions in the field of view, and photon-

counting hardware to make the most out of the limited amount of light that can be

collected per unit time.

The photon-counting hardware and firmware, developed at UCSD, let to some

unexpected and previously unanalyzed findings about what happens to the signal under

high light conditions, and the resulting analysis and corrections are generally useful

to two-photon microscopy. It is hoped that the data acquisition and analysis tools

discussed here, and currently being used in the laboratory, will help advance the field of

neuroscience, and provide some insight to long standing questions in brain function.
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1 Introduction

1.1 Two-Photon Microscopy for Biology and Neuroscience

The phenomenon of fluorescence has been known for over 150 years. In 1852,

Sir G.G. Stokes published a series of experiments in which he observed molecules that,

when excited with light in the violet or ultraviolet wavelengths, emitted light in a redder

portion of the spectrum [Stokes, 1852].

When light impinges upon a fluorescent molecule, photons with a characteristic

energy can be absorbed, and the energy is stored by moving an electron to a higher

energy state within the molecule. The molecule can stay in an excited state, typically

on the order of nanoseconds, before reemitting the energy as a photon. However, since

some of the energy of the excitation photon is lost to vibrational and other modes in

the molecule, the reemitted photon has a shorter wavelength, a phenomenon known as

Stokes shift.

The development of quantum mechanics in early part of the 20th century provided

a theoretical basis for understanding the phenomenon, and also led to an interesting

prediction. In her 1931 thesis dissertation, Maria Goeppert Mayer predicted that if two

photons, each with half the energy need for an excitation, arrive at the molecule at nearly

the same time, both could be absorbed and excite the molecule into a fluorescent state,

just as in single photon fluorescence [Göppert-Mayer, 1931].

From the uncertainty principle, the uncertainty in an energy measurement made

in a given time is given by

∆E∆t ≥ h̄

2
(1.1)

A photon has an energy of 1 eV at 1243 nm. For energies of about 2 eV,

corresponding to a red photon, the characteristic time for two photon absorption would

1
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be about 0.16 femtoseconds. That is, as a rough estimate, two photons must pass the

absorption cross section of a fluorescent molecule within a fraction of a femtosecond in

order to have the same effect as a single photon. Thus, the threshold for where two

photon absorption can take place is at an extremely high fluence of light, far outside the

reaches of what was available at the time the phenomenon was originally proposed.

Another 30 years passed before the two photon absorption phenomena was

demonstrated experimentally. In 1962, Abella published his results of the two photon

absorption, and subsequent fluorescent emission, from low pressure Cesium vapor. In

this case, a continuous wave, 2 Watt laser was used [Abella, 1962].

Once again, another 30 years passed before the two photon phenomena was put

to use as a microscope. In 1990, Denk and colleagues published the results from the first

two-photon laser scanning microscope. By scanning the focal point of the laser excitation

beam around the sample, the group was able to acquire fluorescent images, segmented

into a plane [Denk et al., 1990].

The key technology was the invention of the pulse mode laser, which uses a crystal

with non-linear index of refraction, such as Titanium-Sapphire, and dispersion correction

prisms to condense the energy from a continuous pump laser into brief pulses of photons.

A modern pulse laser, such as used in this dissertation work, may operate at 76.5 MHz,

meaning the pulses are spaced 13 nanoseconds apart in time. Each pulse will only last

typically a few hundred femtoseconds. This represents a compression of the laser energy

by a five orders of magnitude.

The pulsed laser allows imaging with laser powers in the range milliwatt range

— Denk used an excitation power of 3 mW — rather than the 2 Watts originally used

by Abella. This lower laser power, three orders of magnitude in this case, is absolutely

necessary for imaging biological preparations, as continuous laser powers on the order of

Watt cause severe damage to biological tissue.

Focusing the light from a pulsed laser to a small point using a microscope objective

leads to a small volume of high intensity light in which two photon excitation can occur.

The size of this volume is ideally diffraction limited, and therefore a function of the

wavelength of the excitation pulse and the numerical aperture (NA) of the objective. To

get an idea of the resolution, the axial radius of the focal point is (see [Tsai and Kleinfeld,

2009]):
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rfocus,lateral =
1

π

λ0

NA

√
1− (

NA

n
)
2

(1.2)

where NA is the numerical aperature of the lense and n is the index of refraction of the

media. The resolution in the Z direction is given by the confocal distance,

zfocus,axial =
πn

λ0
rfocus,lateral (1.3)

For a typical setup of NA = 0.8, with an excitation wavelength of 800 nm passing

through water (n = 1.33), this gives a focal volume of approximately 0.15µm3.

The result is that two-photon excitation allows only a confined region of fluores-

cence to be excited. By scanning the beam in the X and Y direction, a two dimensional

image can be formed. More advanced scanning patterns such as 3 dimensional scans or

scans across only regions of interest within a plane, will be discussed in later chapters.

1.2 Blood Flow in the Brain

The enormous metabolic needs of the brain requires an efficient means of routing

the oxygen and glucose rich blood to entire organ, and a means of dynamically reallocating

the nutrient rich blood to regions where it is needed the most, such as regions of high neural

activity. The process by which the brain accomplishes this is known as “neurovascular

coupling,” and is a system which is studied in order to elucidate how the brain accomplishes

a relatively well defined, but still somewhat poorly understood task.

Oxygen rich blood from the heart is distributed across the surface of the brain by

a series of arteries that branch successively into smaller vessels, called arterioles. The

penetrating arterioles dive into the cortex itself, bring blood into the cerebral tissue.

These penetrating arterioles continue to branch into smaller vessels, until they reach the

size of a vessel capillary. It is in the capillaries, which are so thin the red blood cells can

only pass through in single file, that the nutrients and gasses can be exchanged with the

surrounding tissue.

The vascular architecture which returns the blood back to the heart is essentially

a mirror of the arteriole structure. Capillaries carrying oxygen and nutrient depleted

blood merge into larger venules. The ascending venules carry the blood back to the

surface of the brain, where it is returned to the heart.
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This branching of the vascular architecture in the brain allows for an extremely

high surface area by for nutrient exchange. Moreover, even though the total blood volume

is only approximately 2% of the brain by volume, neuronal soma have a mean distance of

only 15µm from the nearest capillary, and a maximal distance of 25µm [Tsai et al., 2009].

The cerebral vascular architecture also contains means to control the rate of blood

flow to various regions of the brain. Certain arterioles are surrounded by smooth-muscle

cells, which can contract or relax in order to change the diameter of the vessel. Small

changes in the diameter of cells can have a dramatic effect of the resistance to flow in

that vessel. Laminar fluid flow in a pipe, which is a fairly good first order approximation,

follows Poiseuille’s law

Q =
πD4∆P

128Lη
(1.4)

Which relates the volume flux (flow) Q of a liquid with viscocity η through a pipe

with length L and diameter d. Note the quartic dependence on diameter: a contraction of

a vessel by 25%, which is entirely within physiological range, will increase the resistance

to the flow by a factor of greater than three.

Laminar flow models of blood flow are a useful approximation, and adequate

in this case to demonstrate the strong dependence of flow on resistance. Systematic

deviations from this model occur in actual blood flow through vessels because of effects

such as the finite diameter of red blood cells, and the composition of the vessel walls. As

a computational tool, it is useful to assume Poiseuille’s law is the correct description,

and vary η as a parameter of the vessel radius as a correction factor. Note also that in

capillaries, the red blood cells pass in single file, and are typically distorted, and the

laminar flow approximation does not hold. See [Secomb et al., 1998,Pries and Secomb,

2005], for instance.

The smooth muscles on the arterioles are in turn responsive to a number envi-

ronmental conditions, or vasoactive compounds, found in the blood and brain tissue.

Gasses such as nitric oxide (NO) and peptides such as vasoactive intestinal peptide (VIP)

cause vasodilatation, while several neuropeptides, including somatostatin (SOM) and

neuropeptide Y (NPY) can cause vasoconstriction or contraction [Kleinfeld et al., 2011].

One special cell type — the astrocyte, or astroglia — is commonly implicated in

controlling cerebral blood flow. Astrocytes are the “other” type of cell in the brain, tra-

ditionally much less studied than neurons, and have had a traditionally underappreciated
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role and in brain function.

Although astrocytes do not spike as neurons do, they show slower voltage and

calcium changes, and can function as processing units in a similar way to neurons. For

instance, it has been shown that astrocytes exhibit response tuning curves, much as

neurons do. In the ferret visual cortex, astrocytes labeled with the calcium indicator

Oregon Green Bapta (OGB1) responded to features in the visual stimuli such orientation,

spatial frequency, and location in the visual field. The responses were similar to that of

nearby neurons [Schummers et al., 2008].

Astrocytes are thought to be directly involved in neurovascular coupling, since

their processes synapse directly onto the smooth muscles of the arterioles. Moreover,

it has been directly shown that calcium transients in the end feet of astryocytes cause

constriction in arterioles in vitro [Mulligan and MacVicar, 2004], leading to the idea that

they play a direct role in neurovascuar function, although it is not currently clear how

this plays out in vivo.

Astrocytes also wrap their processes around neuronal synapses. This so called

“tripartite synapse” consists of a presynaptic terminal, which signals to a postsynaptic

cell across the synaptic cleft. The cleft is surrounded by an astrocytic process, which

can absorb and respond to neurotransmitter spillover from the neurons. The astrocyte

thus becomes a computational part of the circuit. It has been shown that the astrocytes

are not merely “listening” passively, as astrocytic activity can influence the activity of

nearby neurons as well. See [Araque et al., 1999] for a review.

The logical implication is that of all of this is that the system by which the brain

actively reroutes blood to areas where it is needed, an process know as “neurovascular

coupling,” can be thought of as a computational system within the brain, and can be

studied as a complete system in order to gain insight to elucidate the way the brain

accomplishes a seemingly simple, straightforward task.

Roughly, the inputs to the system are neural activity or local oxygen content,

actuators are the smooth muscle cells around the arterioles, which in turn affect the flow

of blood. How exactly this is accomplished is an active area of research. The simplistic

picture, where neuronal activity results in neurotransmitter spillover, which is taken up

by astrocytes which in turn activate smooth muscle cells in the arterioles, has not been

reliably demonstrated in vivo. Further confounding the picture, neural activity can lead

to both vasoconstriction and vasodilation [Kleinfeld et al., 2011].
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1.3 Organization of this Dissertation

Chapter 2 begins with an overview of surgical techniques to create a cranial

window in rat an mice in order to gain optical access to the cortex for the study of

blood flow and neural activity. The chapter also introduces a technique developed by the

dissertation author to create a user-defined scan paths across regions of interest in the

field of view, a technique which has been used extensively with the laboratory for blood

flow, neural activity, and stroke studies.

Chapter 3 discusses the use of photon counting in two-photon microscopy. Al-

though photon counting is a well established technique, having a history going back

nearly 40 years, some new and interesting phenomenon were discovered in the course

of this dissertation research. Under high laser excitation light, photons begin to arrive

too fast to be resolved by the detection circuitry: two photons arriving within a few

nanoseconds only result in a single count, leading to a apparent fluorescence intensity

decreases. In many imaging techniques, such as imaging of calcium indicator dyes, this

non-linearity results in inaccurate data.

We develop a model of correcting for the missing counts, and examine what

happens to the noise of the reconstructed data. Although this had been done previously

in the case of constant fluorescent excitation illumination, the case of pulsed excitation

had not been previously studied. Central to this study was the use of custom built,

reprogrammable electroncis, schematics of which are included at the end of the chapter.

Chapter 4 is a review of the use of two-photon microscopy in the study of blood

flow and neural activity, and gives a summary of the current state of the field.

Part A of the appendix contains a proposed improved circuit for photon counting.

This circuit allows for counting at extremely high frequencies, contains no AC coupling,

and consists of only a few components per channel. Note that the circuit has not yet been

built, but has been designed by the dissertation author, and given a “sanity check” by

Allen White of the UCSD electronics shop. This circuitry would be useful, for instance,

for anyone who wanted to commercialize flexible, reconfigurable photon counting devices

for use in flourescence scanning microscopy.

Part B of the appendix is a user and developer’s guide to the MpScope3 software.

While working in this dissertation, it was determined that a rewrite of the current software

which controls the two-photon microscope was required to address shortcomings of the

previous software version, such as limited frame size, a hard limit in data file size, and the
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inability to use newer data acquistion cards. In addition MpScope3 was written in order to

allow for the addition of more advanced features at a later date, such as three-dimensional

scanning, intelligent control and advanced automation through MATLAB, and extremely

large (gigapixel) imaging, all of which are techniques which are “on the radar” for future

use in the laboratory.



2 Two-photon imaging of blood

flow in cortex

2.1 Abstract of Chapter

Cerebral blood flow plays a central role in maintaining homeostasis in the brain,

and its dysfunction leads to pathological conditions such as stroke. Moreover, under-

standing the dynamics of blood flow is central to the interpretation of data from imaging

modalities — such as intrinsic optical signaling and functional magnetic resonance imag-

ing — that rely on changes in cerebral blood flow and oxygen level to infer changes

in the underlying neural activity. Recent advances in imaging techniques have allowed

detailed studies of blood flow in vivo at high spatial and temporal resolutions. We discuss

techniques to accurately measure cerebral blood flow at the level of individual blood

vessels using two-photon laser-scanning microscopy. By directing the scanning laser

along a user-defined path, it is possible to measure red blood cell velocity and vessel

diameter across multiple vessels simultaneously. The combination of these measurements

permits accurate assessment of total flux with sufficient time resolution to measure fast

modulations in flux, such as those caused by heartbeat, as well as slower signals caused

by vasomotion and hemodynamic responses to stimulus.

2.2 Introduction

Neural activity is accompanied by both increases and decreases in local blood flow

to active brain regions [Woolsey et al., 1996,Derdikman et al., 2003,Devor et al., 2008].

Detection of functional changes in cerebral blood flow are the basis of wide-field brain

imaging modalities, including intrinsic optical signaling [Grinvald et al., 1986,Frostig et al.,

1990] and functional magnetic resonance imaging [Ogawa et al., 1990]. An understanding

8
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of the fundamental mechanisms of neurovascular coupling is critical for interpreting such

data and is an active area of research.

Two-photon laser scanning microscopy is an ideal method for studying blood

in individual vessels, from the level of the pial vessels down to subsurface capillaries.

Two-photon microscopy has been used to acquire red blood cell (RBC) velocity [Kleinfeld

et al., 1998,Belayev et al., 2002,Chaigneau et al., 2003,Hirase et al., 2004,Chuquet et al.,

2007,Zhang et al., 2007] or lumen diameter [Devor et al., 2007,Devor et al., 2008,Shih

et al., 2009] from a single vessel in a given imaging trial. However, the oxygen- and

nutrient-carrying capacity of a vessel is proportional to its flux, which requires knowledge

of both RBC velocity and vessel diameter. Since these two parameters can change

independently, both must be measured simultaneously to accurately access total blood

flow [Kontos, 1989,Shih et al., 2009].

Here, we review general techniques for animal preparation and measurement of

blood flow with two-photon microscopy. We incorporate extensions to existing methods

to accurately acquire flux data simultaneously across multiple vessels in a single trial.

Central to these measurements is the ability to generate scan paths that smoothly connect

user-defined lines of interest while maintaining high accuracy of the scan path.

2.3 Protocol - Cranial Window Preparations in the Rat or

Two-Photon Imaging of Blood Flow in the Cordex

A craniotomy is made above the cortical area of interest; see [Mostany and

Portera-Cailliau, 2008] for a demonstration of the original procedure [Kleinfeld et al.,

1998]. In our example data, this corresponds to the somatosensory area of parietal

cortex in rat. A custom made headframe is cemented to the skull to provide a means to

secure the animal under the microscope (Fig. 2.1). As a means to protect the brain and

prevent motion artifacts, the exposed region of cortex is covered with agarose prepared

in an artificial cerebral spinal fluid and sealed with a microscope cover slip. Note that

an alternative technique for mice makes use of a thinned and reinforced skull to avoid

exposing the brain at the price of restricted optical access [Drew et al., 2010b]. All

procedures must be performed in accordance with the relevant animal care guidelines.
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Figure 2.1: Setup for in vivo imaging of blood flow through a cranial window. (A)

To immobilize the head of the animal during imaging, we designed a metal frame that

could be cemented to the skull, and then anchored to an optical setup. The frame is

constructed of type 410 stainless steel with dimensions of 2.00 inches long, 0.61 inches

wide, and 0.029 inches thick, and can be secured between two posts in a standard optical

breadboard. An inset region, 0.015 inches deep, borders the frame window to hold a cover

glass over the craniotomy. The window cover, 0.015 inches thick of type 301 stainless

steel, is then secured to the frame with four screws, sandwiching a no. 1 cover glass in

place. (B) A typical experimental setup. Note: The metal frame attached to the skull

is immobilized between two anchoring posts inserted into an optical breadboard. (C)

Diagram of cranial window preparation for rat. (D) A crosssectional view of the cranial

window. (Inset) An inverted coronal view of surface vessels and deep microvessels that

are targeted for occlusion.
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2.3.1 Materials

CAUTION: See Appendix 6 for proper handling of materials marked with (!) See

the end of the chapter for recipes for reagents marked with (R)

Reagents

• Dextrose, 5% (w/v) in saline

• Fluoroscein-dextran (2 MDa, Sigma) or Texas Red-dextran (70 kDa, Invitrogen),

5% (w/v) in saline. Freeze the dextran-conjugated dye solution(s) in aliquots at

−20◦C for later use.

• Heparin, 20 U/mL in saline (!)

• Isoflurane anesthesia (for survival studies) (!)

• Lidocaine solution, 2% (v/v)

• Modified artificial cerebral spinal fluid (mACSF), free of carbonate and phosphate

(R)

• Opthalamic ointment

• Rose Bengal, 1% (w/v) in saline (filtered before use)

• Freeze the 1% Rose Bengal solution in aliquots at −20◦C for later use.

• SurgiFoam (Edgepark)

• Urethane (!) or -cholarlose anesthesia (for terminal studies)

• VetBond (3M)

Equipment

• Blood gas mononitor (RapidLab 248; Bayer)

• Blood pressure monitor (BP1, World Precision Instruments for intra-arterial;

XBP1000, Kent Scientific for tail cuff measurements)

• Catheter (Surflo; Terumo)
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• Cover Glass, no. 1 thickness

• Dental acrylic (Grip Cement; Dentsply)

• Dental drill, air-powered (Silent Air)

• Drill burrs, 0.5- and 0.25-mm tip sizes (Henry Schein)

• Forceps, extra-sharp (Dumont no. 55; Fine Science Tools)

• Glass cutter

• Head-frame, custom-made (Fig. 2.1A)

• Heat pad, feedback-regulated (Harvard for rats; FHC for mice)

• Hemostats

• Isoflurane vaporizer (IsoTec)

• Kimwipes

• Optical breadboard with head holder (Fig. 2.1B) and devices for physiological

support and monitoring

• PE50 tubing, for femoral artery/vein catheters (Intramedic)

• Periosteal elevator (Roboz)

• Pulse oximeter (Nonin for rats; Starr Life Sciences for mice)

• Scalpel blades

• Screwdriver, miniature

• Screws, self-tapping (#000-3/32; Small Parts Inc.)

• Stereotaxic frame (Kopf)

• Syringe needle, 26-gauge

• Two-photon laser-scanning microscope - Our TPLSM is a custom-design optimized

for in vivo studies [Nguyen et al., 2006, Nguyen et al., 2009, Tsai and Kleinfeld,

2009].
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2.3.2 Experimental Method

Anesthetizing the Rat

1. Anesthetize the rat. Common anesthetic choices include (1) urethane delivered

intraperitoneally, that is, 1000 mg/kg body weight initial dose with 100 mg/kg

supplements as required [Kleinfeld et al., 2000], or (2) initial isoflurane for surgery

followed by a transition to intravenous delivery of α−chloralose for imaging, that

is, an initial bolus at 50 mg/kg body weight for induction and continuous delivery

of 40 mg/kg for maintenance (Devor et al. 2007). Both urethane and α−chloralose

should be prepared fresh on the day of the experiment. Heating to 60◦C and

agitation is necessary to dissolve α−chloralose. These anesthetics are not suitable

for survival experiments.

2. Check for lack of toe pinch reflex to ensure an adequate level of anesthesia.

3. Secure the rat in a stereotaxic frame.

4. Apply opthalamic ointment to its eyes to keep them moist.

5. Inject 0.1 mL of 2% (v/v) lidocaine subcutaneously into the scalp as a local

anesthetic before incision (in Step 11).

Monitoring Requirements

The following procedures need to be performed throughout the surgery and during

imaging.

6. Monitor heart and breathing rates with a pulse oximeter. They should remain

within a normal range: 300–400 beats/min and 60–120 events/min.

7. Maintain body temperature at 37◦C using a feedback-regulated rectal probe and

heat pad.

8. Inject 5% (w/v) dextrose in saline intraperitoneally at 3 mL/kg body weight every

2 h to maintain body fluids and energy requirements.

9. Install a femoral artery catheter to collect blood samples and a femoral vein catheter

to administer drugs. Monitored blood gases every 2 h.
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10. Monitor arterial blood pressure continuously from the femoral arterial line. Alter-

natively, the tail cuff method can be used to noninvasively measure blood pressure

at intermittent time points.

Cranial Window Surgery

11. Shave and make a 4–5 cm incision down the midline of the scalp. Use a periosteal

elevator to remove the thin periosteum from the surface of the skull.

12. Demarcate the location of the cranial window. We typically consider measurements

over primary somatosensory cortex, which is the part of parietal cortex that

nominally lies between –1 and –5 mm relative to the Bregma point and between 1

and 7 mm from the midline on the mediolateral axis for rats [Paxinos and Watson,

1986].

13. Attach a custom metal frame to the skull with dental acrylic. The frame holds the

head of the animal rigidly to the optical apparatus (Fig. 2.1A,B).

(a) Clean the contact regions on the bone of soft tissue.

(b) Apply a thin layer of VetBond.

(c) Introduce small self-tapping screws into the anterior and posterior aspects

of the skull. (Note that one of the screws passes through an opening in the

frame.) Mechanically link the screws to the frame with dental cement (Fig.

2.1C).

(d) Secure the threads of the screws to the bone with a small dab of VetBond.

Note that the temporalis muscle may need to be retracted in some cases, and

the temporal ridge may need to be flattened with a dental drill. This is to

ensure that the metal head frame is cemented tangential to the cortical surface

when imaging the lateral aspects of the barrel cortex.

14. Perform a craniotomy above the brain region of interest using a high-speed drill.

(a) Thin the skull throughout the entire window to approximately one-quarter

of its original thickness using a 0.5-mm drill burr until the underlying pial

vasculature becomes visible following application of mACSF. During drilling,
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flush the window regularly with mACSF to reduce heat buildup and to remove

blood and bone shavings.

(b) Carefully thin the edges of the window with a 0.25-mm burr until the bone

begins to craze.

(c) Use forceps to gently separate the bone flap from the skull without protruding

too deeply.

(d) Use two forceps to grasp adjacent corners of the loosened bone flap, and slowly

peel it away from the underlying dura mater.

15. Reflect the dura to the edges of the window (Fig. 2.1D).

(a) Make a small incision using the cutting edge of a 26-gauge syringe needle.

Bend the needle to an obtuse angle with hemostats to ensure that the cutting

edge approaches the dura at a suitable angle.

(b) Use two sharp no. 55 forceps to gently lift the dura away from the cortical

surface, starting at the incision site, and tearing in small increments. Whenever

possible, tear around large dural vessels to avoid bleeding. Limit any dural

bleeding with small pieces of Surgifoam soaked in mACSF, and Kimwipes

twisted to a fine point with the fingers. Keep the cranial window moist with a

piece of moist Surgifoam.

(c) Retract the dural flaps to the side of the window, and flush the cortical surface

with mACSF. It is crucial to avoid any damage to pial vessels. Hemorrhaging

will alter cerebral blood flow, accelerate edema, and severely degrade imaging

quality.

16. Fill the interior of the chamber with 1.5% (w/v) low-melting-point agarose dissolved

in mACSF (Fig. 2.1D) (Kleinfeld and Delaney 1996). Dissolve the agarose by

heating it in a microwave. The temperature of the agarose must not exceed 37◦C

when it is applied to the brain.

17. Immediately seal the chamber using a cover glass as a window (Fig. 2.1D). Resealing

the craniotomy is crucial to protect the cortex and suppress motion from cranial-

pressure fluctuations due to heartbeat and breathing. One edge of the window can

remain uncovered to allow insertion of electrodes or micropipettes.
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18. Suture the skin together around the frame, and trail agarose around the cover glass

to hold water for the dipping lens.

19. Stabilize the animal on an optical breadboard for imaging, using the frame as a

head support. Our separate plate can be transported between surgical and imaging

suites with the animal and all physiological monitoring devices assembled as one

unit (Fig. 2.1B).

2.4 Example Application

A cranial window was generated over the rat somatosensory cortex (Fig. 2.2).

Intrinsic optical imaging was used to determine the locations of the hindlimb and forelimb

cortical representation [Drew and Feldman, 2009]. The cerebral vasculature of the

hindlimb somatosensory region was mapped using a TPLSM image stack obtained with a

low magnification 4x objective (Fig. 2.2A). A single penetrating arteriole and neighboring

ascending venule were selected for measurement under a 40x objective (Fig. 2.2B).

A scan path was created to traverse along the length of the lumen center, and

across the lumen width for each vessel. The accuracy of the scan path can be verified

by comparing the value of the mirror position encoder with the control voltage. Scan

accuracy in user-selected linear scan paths is ∼ 1µm, whereas intervening segments that

connect the user-defined regions and are not used in data analysis have a higher error,

up to ∼ 1µm (Fig. 2.2C). The resulting line scan is a space-time image (Fig. 2.2D).

Portions of the scan path along the vessel length appear as streaks within the line-scan

image. These streaks represent nonfluorescent RBCs that move through a fluorescent

background. The xaxis represents the distance traveled by the RBCs, and the y-axis is

the time. The centerline velocity is then calculated from the slope of the RBC streaks

(Fig. 2.2E, right panel). Previously, singular value decomposition was used to find the

slope of these streaks and calculate the RBC velocity (Kleinfeld et al. 1998; Schaffer et

al. 2006). A faster method that can calculate the velocity in near real time makes use

of the Radon transform [Drew et al., 2010a]. In either case, the velocity is taken using

windowed portions of the line scans, typically 25 msec of data for a Nyquist frequency of

20 Hzp.

Portions of the scan path across the vessel width capture the diameter of the

vascular lumen, because the fluorescently labeled blood plasma provides high contrast
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with the unlabeled region immediately outside the vessel. To increase the signal-to-noise

ratio, multiple scans across the vessel diameter are averaged together before the profile

is calculated. As with the velocity calculation, the diameter transform is taken on a

windowed portion of the data. Typically, the same window size as for velocity is used

so that both parameters can be calculated on the same timescale. Vessel diameter is

calculated as full-width at half-max (FWHM) of the vessel profile (Fig. 2.2E, left). Since

the intensity profile tends decrease in the center of the vessel, where a large volume of

RBCs exclude the fluorescently labeled plasma, the two outermost half-max points are

used. Linear interpolation is used to add subpixel accuracy to the diameter measurement.



18

Figure 2.2: Simultaneous measurement of diameter and velocity in multiple

vessels using spatially optimized linescans. (A) Image of fluorescently stained vessels in

somatosensory cortex of a Sprague Dawley rat. The forelimb and hindlimb representations

across cortex were mapped using intrinsic optical imaging. (B) Image of a surface arteriole

and venule, with scan pattern superimposed. Portions of the scan path along the length

are used to calculate red blood cell (RBC) velocity, while portions across the diameter

of the vessels are used to calculate diameter. Scans were acquired at a rate of 735 lines

per second. (C) Scan path, colored to show the error between the desired scan path and

the actual path the mirrors traversed. The error along linear portions of the image is

∼ 1µm, and increases when the mirrors undergo rapid acceleration. The error between

successive scans of the same path is < 0.15µm, several times lower than the point-spread

function of a TPLSM. (D) Mirror speed as a function of time. Note that portions used

to acquire diameter and velocity data are constant speed (top). The line scans generated

from the path can be stacked sequentially as a function of time to produce a raw cascade

image (bottom). (E) Vessel diameter is calculated as the full width at half-maximum of a

time average of several scans across the width of a vessel (left). RBC velocity calculated

from the angle of the RBC streaks. (F) Data traces of diameter, velocity, and flux for

the arteriole and venule, processed to remove heart rate and smoothed with a running

window. Both vessels show an increase in flux in response to forelimb stimulation. In

the arteriole, this flux increase is due to simultaneous increase of lumen diameter and

RBC velocity. In contrast, flux increase in the venule is due only to an increase in RBC

velocity, as diameter is unchanged by stimulation.
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(continued from previous page)

We now consider combining the velocity and diameter measurements to calculate

flux. In laminar flow, the velocity v(r) of the fluid through the pipe with radius R

measured at a distance r from the center has a quadratic profile, with a maximal velocity

v(r) in the center and tapering to 0 at the edges, that is,

v(r) = v(0)

(
1− r2

R2

)
(2.1)

Measurements of RBC velocity as a function of distance from the vessel center

show that this model is a close approximation [Schaffer et al., 2006], although systematic

deviations result from the nonnegligible size of the red blood cells. This tends to flatten

the profile, and prevents the velocity from reaching 0 at the edges of the vessel. Neglecting

these effects, the integrated flux through the vessel is given by [Helmchen and Kleinfeld,
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2008]:

F =
1

2
v(0)πR2 (2.2)

In our example, both vessel diameter and RBC velocity in the arteriole respond to

somatotopic stimulation. The flux through the arteriole increases by 100% over baseline,

compared with 35% and 40% for diameter and velocity measurements alone, respectively

(Fig. 2.2F). Since the scan path runs at 733 Hz in this example, the diameter and RBC

velocity traces are collected nearly simultaneously from both the penetrating arteriole

and ascending venule.

2.5 Generation of Spatially Optimized Line Scans

The microscope laser is directed by a pair of fast x–y scan mirrors (Cambridge

Technology, 6210H galvometer optical scanner with MicroMax 673xx dual-axis servo

driver). The mirror controller employs a closed loop position feedback system to accurately

map control voltage to mirror position. The position accurately tracks the control voltage,

with ∼ 90µs delay.

To create an arbitrary scanning path, several full-frame images of the region

containing the desired vessels are first acquired and averaged together to increase the

signal-to-noise ratio. This image is loaded by custom software written in MATLAB

(MathWorks), which allows users to interactively create lines of interest (i.e., scans across

or along vessels) on the full frame image. The mirror voltages used to acquire the original

full frame image are known, so that positions on the image can be mapped one-to-one to

mirror voltages. Linear portions of the scan path, such as those used to track along a

vessel to measure RBC speed and those that span the vessel to measure diameter, are

given by

P = P0 + Vlineart (2.3)

where P and V are two-dimensional vectors that contain x and y coordinates. Linear

portions of the scan path, scanned at constant velocity, must be connected by a function

that creates a physically realistic path for the mirrors to follow (Lillis et al. 2008).

Although there are an arbitrary number of such functions, the simplest is a third-order

polynomial given by
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Pspline = Pi + Vit+ Ct2 + Dt3 (2.4)

For computational convenience, the connecting spline is taken to start at t = 0,

and end at t = τ . The initial these position Pi and velocity Vi of the spline are set to

match the position and velocity of the endof the linear region preceding the spline. The

additional spline parameters depend on the length (in time) of the spline, τ , and the final

position and velocity of the spline, Pf and velocity Vf , and are given by

C =
3Pf

τ2
− 3Pi

τ2
− 2Vi

τ
− 2Vf

τ
(2.5)

and

D =
Vf

3τ2
− Vi

3τ2
− 2C

3τ
(2.6)

The value of used should be the smallest positive real value that does not subject

the mirrors to an acceleration larger than a user-defined maximal value, m, typically 100

V/msec2. Because the acceleration of the spline is a linear function of time, the extreme

values of acceleration occur at the beginning and the end of the spline.

Candidate values for the shortest possible spline length are found by setting the

mirror acceleration to m at the beginning at end of spline, and finding all positive real

values for τ :

0 = ±mτ2 + (2Vi,x + 4Vf,x)τ + (6Pi,x − 6Pf,x) (2.7)

0 = ±mτ2 + (2Vi,y + 4Vf,y)τ + (6Pi,y − 6Pf,y) (2.8)

0 = ±mτ2 + (4Vi,x + 2Vf,x)τ + (6Pi,x − 6Pf,x) (2.9)

0 = ±mτ2 + (4Vi,y + 2Vf,y)τ + (6Pi,y − 6Pf,y) (2.10)

The actual time used is the smallest value that keeps the acceleration within

limits at the beginning and end of the spline; that is, all of |2Cx| < m, |2Cy| < m,

|2Cx + 6Dxτ | < m, and |2Cy + 6Dyτ | < m are true.
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2.6 Summary

Two-photon laser scanning microscopy offers a means to obtain high-resolution

images of RBC velocity and vessel diameter in vivo. These measurements can be combined

to calculate the flux for a given vessel, which is a more accurate metric of the oxygen-

and nutrient-carrying capability of blood.

Velocity and diameter measurements can change independently (Fig. 2.2F) and

thus they must be measured nearly simultaneously to accurately access flux. This can be

achieved with the spatially optimized line-scan algorithm described above. This technique

can be extended to image other types of fluorescent signals, for instance, neural activity as

indicated by calcium-sensitive dyes. In principle, this technique can be readily extended

to scan in three dimensions as well. However, the speed of current mechanical z-axis

scanners is currently much slower than what can be achieved when scanning in the x–y

plane alone [Göbel et al., 2007,Göbel2007 and Helmchen, 2007].

2.7 Recipe

CAUTION: See Appendix 6 for proper handling of materials marked with (!).

Recipes for reagents marked with (R) are included in this list. Modified Artificial Cerebral

Spinal Fluid (mACSF), Free of Carbonate and Phosphate

1. NaCl 125 mM

2. Glucose 10 mM

3. HEPES 10 mM

4. CaCl2 (!) 3.1 mM

5. MgCl2 1.3 mM

6. Adjust the pH to 7.4 (from Kleinfeld and Delaney 1996).
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3 Photon counting, censor

corrections, and lifetime imaging

for improved detection in

two-photon microscopy

3.1 Abstract of Chapter

We present a high-speed photon counter for use with two-photon microscopy.

Counting pulses of photocurrent, as opposed to analog integration, maximizes the signal-

to-noise ratio so long as the uncertainty in the count does not exceed the gain-noise of

the photodetector. Our system extends this improvement through an estimate of the

count that corrects for the censored period after detection of an emission event. The

same system can be rapidly reconfigured in software for fluorescence lifetime imaging,

which we illustrate by distinguishing between two spectrally similar fluorophores in an in

vivo model of microstroke.

3.2 Introduction

Two-photon laser scanning microscopy (TPLSM) [Denk and Svoboda, 1997,Denk

et al., 1990,Denk et al., 1995,Helmchen and Denk, 2005,Yasuda et al., 2006] involves the

periodic excitation of molecules by hundred-femtosecond laser pulses, followed by the

emission of fluorescent light before the arrival of the next pulse. Despite the relatively

large number of photons in each excitation pulse, roughly 100 million at the focus of the

objective for nonsaturating intensities, the average number of fluorescence photons that

24
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are detected is typically of order one or less [Neher and Hopt, 2001,Tsai and Kleinfeld,

2009]. Thus it is imperative to optimize all aspects of TPLSM, from ensuring that the

excitation beam is free from temporal and spatial aberrations [Cui, 2011, Field et al.,

2010a,Ji et al., 2010,Rueckel et al., 2006,Tsai et al., 2007] to the collection and detection

of as many of the emitted photons as possible [Engelbrecht et al., 2008].

All measurements of light contain shot noise, which reflects the discrete nature of

photons and limits the signal-to-noise ratio (SNR) for a pixel with an average count of N

photons to SNR =
√
N . Ideally, the photodetection process will not add to this noise.

Photomultiplier tubes (PMTs) are universally used to convert the arrival of a photon into

a pulse of current, which is then amplified, filtered or integrated, and digitized to generate

a pattern of the intensity of fluorescent emission as a function of the position of the focus

of the excitation beam. This pattern forms the optically sectioned planar image reported

with TPLSM [Denk et al., 1990]. Photomultiplier tubes offer a unique combination of

good quantum efficiency, high conversion gain, high speed, and linearity of the output

current with incident intensity. However, the serial amplification of photocurrents along

the dynode chain in a PMT results in a variation in the amplitude of the individual output

pulses [Zworykin et al., 1936] that multiplies the variance of the shot effect [Shockley and

Pierce, 1938]. The exact value of this additional noise depends on details of the PMT

but is typically 20-70%.

Photon counting is commonly used as a means to circumvent variation in the

intensity of the output pulses from the PMT. This technique is based on the assumption

that current pulses that exceed a threshold amplitude are the result of photoelectrons

generated by absorption of a single photon at the cathode of the PMT, as opposed to

a thermally generated electrons. Photon counting devices employ a discriminator to

convert analog pulses from the PMT into digital pulses, which are then summed. Since

each photon will result in exactly one count, this eliminates a source of variability in the

detection process. Photon counting is preferred so long as the rate of emitted photons is

low, so that each emitted photon is counted before a second photon arrives. Although the

chance of two photons arriving at the PMT at exactly the same instance is nil, dispersion

of the electron current in the PMT, the capacitance of cables, and the response time

of amplifiers leads to a photocurrent pulse with a width of one to a few nanoseconds.

This creates a censored period after a photon arrives that briefly blocks the counting

of subsequent photons. Uncertainty in the number of uncounted events constitutes a



26

source of variability. This uncertainty is negligible when the rate of fluorescent emission

is low but will exceed the variability associated with the amplitude of the photocurrent

pulses when the rate of emission is high. The best SNR is thus obtained by switching

from photon counting to analog integration when the dominant noise source changes

from analog variability to uncertainty in the count. However, algorithms to estimate the

number of missed counts, as well as to identify the exact count at which the switch from

counting to analog detection should occur, do not appear in past literature.

In this report we describe a reconfigurable photon counting system that achieves

a resolution of 3.2 ns between successive pulses with a temporal accuracy of 1.5 ns per

photon. It is used in conjunction with a maximum likelihood estimate of the number of

censored pulses as a means to increase the dynamic range of counting. At the core of the

system is a high-speed complex programmable logic device (CPLD) that operates together

with commercially available components to transfer pulses to a master computer at the

typical 0.5- to 2.5-MHz rates of pixel acquisition. Although photon counting has been

previously utilized for TPLSM [Amir et al., 2007,Benninger et al., 2008,Buehler et al.,

2005,Field et al., 2010b,Sheetz et al., 2008,Vučinić and Sejnowski, 2007], previous systems

did not transfer the measured counts at these clock rates. Furthermore, the flexibility of

our counter allows it to be rapidly reconfigured for fluorescent lifetime imaging (FLIM)

[Berezin and Achilefu, 2010,Harvey et al., 2008,Konig et al., 1996,Yasuda et al.,

2006] and potentially other modes of nonlinear imaging

3.3 Methods

Optomechanics. All data were obtained with a custom-built twophoton microscope,

as described previously [Tsai and Kleinfeld, 2009], and a tunable Ti:Al2O3 pulsed laser

(Mira 900; Coherent) that operated at 75.5 MHz. We used x20, 1.0 numeric aperture (NA)

(Zeiss) and x40, 0.8 NA (Olympus) dipping objectives. The microscope was controlled with

MPScope 2.0 software (Nguyen et al. 2006, 2009), which synchronized data acquisition,

both analog and digital, with bidirectional scanning of galvanometric mirrors.

Electronics. Signal acquisition begins with a PMT (H7422-40; Hamamatsu) that

converts photons into brief current pulses with a conversion gain of ∼ 105. For imaging

by analog integration, the PMT output is switched (ZSWA-4-30DR; Mini-Circuits) to a

currentto- voltage converter and a direct current-coupled amplifier, both with a 0.3µs

time constant, low-pass filtered with a 3-pole Bessel filter (model 3202; Kronhn-Hite) set
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so that the -3 dB cutoff frequency of the filter, denoted fc, is equal to

√
ln(2)
πfpixel

, where

fpixel is the frequency of the pixel clock [Tan et al., 1999], and then digitized by an

analog-to-digital board (PCI-6110; National Instruments), where it is sampled at the

pixel clock rate (Fig. 3.1).

For imaging by photon counting, the output of the PMT is directed through a

high-speed alternating current-coupled amplifier (ZPUL- 30P; Mini-Circuits), and the

signal is converted to a transistor-totransistor logic (TTL) pulse with a discriminator,

either a commercial device (PRL-350TTL; Pulse Research Lab) or one of local design

(Fig. 3.5)

The threshold is set above the thermal voltage noise and typically at 0.2 times

the measure height of the current pulse. All lines are terminated at 50Ω. The TTL pulses

are counted using a custom photon counting board, implemented with a CPLD (ispMach

LC4256V; Lattice). The counts are read from the board at the pixel clock rate by a

digital interface board (DIO-32HS, National Instruments) on a Windows-based computer.

The firmware for the CPLD is written in ispLevel Classic (Lattice Semiconductor) and

is flashed to the CPLD board through a standard parallel port interface. The CPLD

implements a high-speed dual ripple counter (Fig. 3.6), in which the active counter

alternates at each imaging pixel. This allows time for the counters to settle before being

read by the computer interface board, which inputs 32 bits in parallel from the CPLD

counters at the pixel clock rate.

For FLIM, a timing signal from the laser excitation pulse must be passed to

the CPLD counting board. We split a small portion of the pulsed laser excitation light

onto a high-speed photodiode (DET10A; Thor Labs). This signal is amplified (ZJL-4G;

Mini-Circuits) and divided by a passive coupling device (ZFDC-10-5; Mini-Circuits).

The larger portion of the signal is piped to a discriminator, where it is converted to a

TTL logic level signal, while the weaker signal is directed to an oscilloscope to monitor

the mode-locking of the excitation laser. Fluorescence lifetime data for each pixel are

acquired by sequentially enabling a series of six separate counters on the CPLD device.

These counters are gated so that the first counter is enabled for 0-1.5 ns after the initial

laser excitation pulse, the second counter is enabled for 1.5-3 ns after the laser excitation

pulse, and so forth. The end result is a six-bin histogram of arrival times for fluorescence

photons from which the exponential decay time of the fluorophore, τ , can be calculated.

The implementation of multiple counters for FLIM, acquisition of specific number of
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Figure 3.1: Fig. 1. Photon counting system. Single photons arriving at the photomulti-

plier tube (PMT) are converted to discrete current pulses. For analog integration, the

signal is routed to a custom-built direct current-coupled amplifier, filtered using a Bessel

filter, and passed to the analog input of the data acquisition card. For photon counting,

the signal from the PMT is sent to a wide-band amplifier and then into a discriminator

to convert the pulses to a transistor-to-transistor logic (TTL)-level logic signal. These

pulses are read by a custom-built board containing a complex programmable logic device

(CPLD), which implements a dual counter scheme for each channel and sends the output

to a digital interface card on the computer. In addition, a portion of the laser excitation

beam is split off with a glass slide and sent to a high-speed photodiode. The output from

the diode is amplified with a high-speed amplifier and split into 2 signals using a passive

transformer-based splitter. One of the outputs from the coupler is sent to an oscilloscope,

and the other is converted to TTL-level pulses with an additional discriminator channel,

sent through an adjustable fine-scale analog delay line, and routed to the CPLD for use

with fluorescence lifetime imaging microscopy (FLIM). I/V converter, current-to-voltage

converter; BNC, Bayonet Neill-Concelman connector.
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counts per pixel clock, and simultaneous data acquisition by two or more PMTs is detailed

in 3.7 and Figs. 3.6–3.8.

The timing signal for the laser excitation pulse must be aligned to coincide with

the start of the fluorescence excitation. We thus delay the signal from the excitation

pulse to maximize fluorescence counts acquired in the first time bin. A coarse delay line,

with a resolution of 1.5 ns, is implemented in the firmware of the CPLD (Fig. 3.7A).

A finegrained delay is achieved with a custom analog delay line that was constructed

by switching among 12 lengths of impedance-matched (50 Ω) wire that incremented the

delay from 0 to 1.65 ns in increments of 0.15 ns.

In vivo physiology. Our subjects were C57Bl6 mice and green fluorescent protein-

expressing inhibitory interneuron (GIN) mice that ranged in mass from 20 to 30 g. All

procedures were performed in anesthetized animals. Anesthesia was induced with 4%

(vol/vol) isoflurane in 30% oxygen and 70% nitrous oxide and was maintained with 1-2%

(vol/vol) isoflurane. The care and experimental manipulation of our mice were reviewed

and approved by the Institutional Animal Care and Use Committee at the University of

California at San Diego.

In the GIN animals, a craniotomy was performed to generate a cranial window

with the dura left intact [Helmchen and Kleinfeld, 2008,Holtmaat et al., 2009]. Individual

neurons were imaged as described [Drew et al., 2010b]. The C57Bl6 mice were used to

form occlusions to single penetrating arterioles, as described previously [Blinder et al.,

2010, Nishimura et al., 2007], with some modifications for mice. The pial vasculature

was imaged through a thinned skull preparation reinforced with a glass coverslip [Drew

et al., 2010b] check. The vasculature was labeled by injecting 50 µl of 2.5% (wt/vol)

Texas red-dextran (70 kDa; Invitrogen) in phosphate-buffered saline (PBS) through the

infraorbital vein. Targeted photothrombosis was initiated by illuminating a target vessel

with focused 530-nm laser light immediately following the injection of 50 µl of 1.25%

(wt/vol) rose Bengal in PBS, also administered through the infraorbital vein. After

confirmation of single vessel occlusion, the mice were allowed to survive for 2 days before

reimaging. The vasculature was relabeled with another injection of Texas red-dextran.

The nuclei of dying, membrane-disrupted cells were labeled by a single intraperitoneal

injection of 1 mg/kg propidium iodide in PBS, as described previously [Cevik and Dalkara,

2003].

Immunohistology. Mice were injected with a fatal dose of pentobarbital and
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transcardially perfused with PBS followed by 4% (wt/vol) paraformaldehyde in PBS.

The brains were removed and cryoprotected in 30% (wt/vol) sucrose overnight. The

forebrain was cryosectioned coronally at a thickness of 50 µm, and immunohistochemistry

was performed on free-floating sections. Tissues were stained with primary antibodies

for microtubule-associated protein-2 (MAP-2; no. AB5622, Chemicon) and secondary

antirabbit Alexa 488 antibodies. Images were obtained using a Fluoview 1000 confocal

microscope with an oil-immersion x63 objective.

3.4 Results

At low signal intensities, the average fluorescence that follows each laser pulse will

contain, on average, significantly less than one photon. The signal must be integrated

across multiple pulses, and the background electronic noise from the PMT, as well as

from associated analog electronics, will reduce the ability to distinguish image features

from the background. As an example, we used in vivo TPLSM [Svoboda et al., 1997]

to image neurons in parietal cortex of mice that express green fluorescent protein in

somatostatin-positive inhibitory cells (Bozza et al. 2004). The same field was imaged,

using the same rate for the pixel clock, with our photon counting scheme (Fig. 3.2A) and

with traditional analog integration (Fig. 3.2B). In general, the lower noise in the counting

image reveals processes and details that are not seen in the analog images (n = 5 fields).

A histogram of the counts and normalized intensity shows a clearly perceptible hump in

the digital count (star in Fig. 3.2C), consistent with a non-Poisson distribution of the

signal photons

The scaling of excess noise with analog integration versus photon counting was

directly tested by obtaining equivalent images of a sample, fluorescein-labeled cellulose

that had a broad spatial distribution of emission intensities (Fig. 3.2D,E). The mean

count per pixel is βr, where r is the number of laser pulses in the period of the pixel

clock, i.e., r ≡ fpulses
fpixel

∼ 100, and β is the measured number of emissions per laser pulse

(3.1). The variance for the photon counting data, denoted sigma2, scales identically with

the mean count per pixel, i.e., sigma2 = βr. In contrast, the analog signal showed excess

variance compared with the Poisson limit (Fig. 3.2F). The data were well described by

the phenomenological fit of sigma2 = (1 + η)βr, with η = 0.57 for our conditions.

Correction to the photon count and variance. We analyzed the effect of near-

simultaneous arrival of multiple photons, or photon pileup [Coates, 1968], that can
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Figure 3.2: Comparison of digital and analog images under conditions of low emission

rates. A: photon counting image of labeled neurons in a green fluorescent protein-

expressing inhibitory interneuron (GIN) mouse at low signal level: single frame, pixel

clock of 5µs (r = 383 laser pulses per pixel), ∼ 125µm below the pia, and ∼ 30mW of

incident laser power as measured through the objective at λ = 900nm. B: image of the

same field in A taken via analog integration using the same pixel clock. For comparison

of the analog and digital images, the baseline amplitude has been subtracted from the

analog image and the mean value of the intensity scaled to match the mean values from

the photon counting data. Note that the fine processes are barely visible compared with

the digital image in A. C: histogram for the images in A and B using a binwidth of 0.25

counts. Only discrete values, i.e., 0, 1, 2, . . . , are recorded with photon counting.

The star indicates excess counts that correspond to signal photons. D: photon counting

image of cellulose stained with rhodamine B at low signal level: 200-frame average, pixel

clock of 3µs (r = 230), and ∼ 6mW of incident laser power at λ = 800nm. E: image

of the same field in D taken via analog integration using the same frame averaging and

pixel clock. F: plot of the variance for the photon counting data, with the Poisson fit

of σ2 = βr, along with the variance for the analog data with a phenomenological fit of

σ2 = βr.
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occur when the lifetime of the fluorophore is comparable to the time resolution of the

detection electronics. This is the typical case with genetically expressible indicators and

most biologically relevant organic dyes, but not for quantum dots [Berezin and Achilefu,

2010,Shaner et al., 2005]. At modest to high imaging intensities, a single laser excitation

pulse can result in two or more signal photons arriving at the PMT within the pulse-pair

resolution of a single channel of the photon counter, denoted ∆, where ∆ = 3.2ns for

our system. Thus pairs or n-tuples of photons are counted as a single event, because all

but the first photon are censored for a period ∆. This phenomenon leads to the loss of

information as to the exact number signal photons per laser excitation pulse.

How can we estimate the true count, α, from the measured count, β? In principle,

there is a monotonic relation between these quantities. However, as an approximation, one

can estimate α from the measured distribution of counts with zero, one, two, etc., photons

per laser pulse. We consider first the case of using only the number of samples with zero

events, i.e., laser pulses that did not lead to a photocurrent, denoted r0. A maximum

likelihood estimate (MLE) yields an estimate, denoted α̂, in closed form (Supplementary

Information on Count Estimate), i.e.,

α̂ = −ln(
r0

r
) (3.1)

and

σ2 =
r − r0

r · r0
(3.2)

The value of α̂ for each pixel forms the image, and the ratio α̂
σ forms the MLE of

the SNR for that pixel.

An improved MLE for α̂ is formed by including r1, the number of laser pulses that

lead to exactly one measured count. This calculation incorporates the possibility that

additional photons may have arrived in the censored period and yields an expression for

α̂ that must be evaluated numerically (Supple- mentary Information of Count Estimate).

We use the Newton-Raphson method to find the value of alpha that maximizes the

log-likelihood function l(α), where

l(α) = r0ln[p0(α) + r1ln[p1(α)] + (r − r0 − r1)ln[1− p0(α)− p1(α)] (3.3)

with
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p0(α) = e−α (3.4)

and

p1 =
e−αe

−−∆
τ

1− e−
−∆
τ

(3.5)

The variance is found by numerically computing the second derivative of l(α)

with respect to α, evaluated at α = α̂ (Eq. 3.3) so that

σ2 = −
(
∂2l(α)

∂α2

∣∣∣∣
α=α̂

)−1

(3.6)

Note that the above expressions (Eqs. 3.1–3.6) can further include corrections

for emissions that fail to occur with the time between laser pulses (Supplementary

Information on Count Estimate). These emissions are not lost but can be counted as

originating from a subsequent laser pulse.

We applied the above relations to images taken under relatively high laser inten-

sities, for which the average count per laser pulse was well above one for bright regions

of the image. We compared the image found with uncorrected counts (Fig. 3.3A), the

image and SNR using the estimate of α̂ at each pixel with just the number of pulses with

no detected emission (Fig. 3.3B1 using Eq. 3.1 and Fig. 3.3B2) using Eq. 3.2), the image

and SNR using the estimate of ˆalpha at each pixel with both the number of pulses with

zero and exactly one detected emission (Fig. 3.3C1 using Eqs. 3.3–3.5 and Fig. 3.3C2

using Eq. 3.6, and, last, the image obtained with analog detection (Fig. 3.1,D1,D2).

These data illustrate three keys points. First, the dynamic range of the uncorrected

image was compressed compared with the corrected images (cf. A with B1 and C1 in

Fig. 3.3) and compared with the analog image (cf. A with D1 in Fig. 3.3). This occurs

from the systematic loss of counts the high emission rates associated with bright pixels.

Second, the SNR increases substantially when both r1 and r0 are used to estimate α̂ for

each pixel, compared with just r0 (cf. B2 with C2 in Fig. 3.3). Last, the SNR when both

r1 and r0 are used to estimate α̂ for each pixel approaches that of analog recording at

these high light levels, for which there is substantial censoring.

Crossover from photon counting to analog integration. At lower imaging intensities,

photon counting offers an improved SNR compared with analog integration (Fig. 3.2F

and Fig. 3.3E). At high intensities, however, the uncounted photons in the censored
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Figure 3.3: Fig. 3. Measured and estimated true photon counts and signal-to-noise ratios

(SNR) for imaging under conditions of high emission rates. The image is cellulose paper

stained with rhodamine 6G, for which τ , the exponential decay time of the fluorophore,

is 4.1 ns. We used a pixel clock of 1.35µs (r = 102) and 5.6 mW of incident laser power,

with λ = 840nm. We averaged 200 frames per image. A: plot of frame-averaged intensity,

βr, for the raw counts. B: the image (B1) and SNR (B2) calculated from the number of

samples with zero counts (Eqs. 3.1 and 3.2) on a pixel-by-pixel basis. C: the image (C1)

and SNR (C2) calculated from the number of samples with both zero and one count (Eqs.

3.3–3.6) on a pixel-by-pixel basis. D: the image formed using analog integration with a

low-pass filter frequency of 448 kHz (D1) and the SNR found by direct calculation of the

frame-to-frame variability for each pixel (D2). The data were scaled so that the intensity

of the averaged analog image matched that of the corrected digital image. E: plot of the

variance as a function of the counts using data similar to that in B1, C1, and D1, but

with an excitation power of 7.0 mW to increase the emission rate by 55%. The arrows

mark the number of counts per pixel where analog integration will have a lower noise

than photon counting together with the maximum likelihood estimate (MLE) for α̂.
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Table 3.1: Symbols used in analysis of measured counts

Symbol Definition Typical Value

fpulses Frequency of laser pulses 75.5 MHz
fpixel Frequency of pixel clock 0.5-2.5 MHz
τ Fluorescent lifetime of dye ∼ 4ns for fluorescein
∆ Censored period or pulse-pair resolution 3.1 ns
α True, mean number of photon counts per laser

pulse
< 3

β Measured, mean number of photon counts per
laser pulse

α̂ MLE number of photon counts per laser pulse
r Sample size or laser pulses per pixel clock,

fpulses/fpixel
r0 Number of samples with a count of zero per

laser pulse
r1 Number of samples with a count of exactly

one per pulse

region result in additional variance that degrades the SNR of photon counting. There is

a crossover point, above which analog integration yields a higher SNR for bright pixels

and is preferable. In the example of (Fig. 3.3), obtained with relatively high incident

intensity, the crossover point is α̂ = 0.8 when only the number count for no emissions

is used, but α̂ = 1.5 when both the number of events with zero count and one count

are used (Fig. 3.3E). There is a 0.45 chance of emitting two or more photons per laser

pulse at the intensity that corresponds to α̂ = 1.5, clearly demonstrating the utility of

our approach to correct for censored counts.

In vivo detection of neuronal cell death using FLIM. The distribution of time

between an excitation pulse and the returned fluorescence photon is a means to determine

the lifetime of the fluorophores [de Grauw and Gerritsen, 2001,Suhling et al., 2005,Wang

et al., 1990]. Thus FLIM can be exploited to separate multiple fluorophores with

overlapping emission spectra but different fluorescence lifetimes within the same biological

sample [Steinkamp et al., 1999]. We use FLIM to distinguish between two red emission

dyes, Texas-red dextran and propidium iodide, in a model of microstrokes in which

single penetrating arterioles are blocked by targeted photoexcitation [Blinder et al.,

2010,Nishimura et al., 2007]. The single occlusion leads to a cessation of blood flow in a

500-µm-diameter neighborhood of the block and the eventual formation of a cyst. Both
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dyes are essential to the assessment of neuronal damage. Texas red-dextran enables deeper

vascular labeling than related molecules with green emission, such as fluorescein-dextran,

and is used to locate the margin of the stroke. Propidium iodide is commonly used as a

cell death indicator, because it preferentially stain cells with membranes disrupted by

necrosis or apoptosis. Past studies have shown that propidium iodide can be used as a

histological assay of cell damage when administered as an intravenous injection [Cevik

and Dalkara, 2003]. We now extend this technique to image cell death in vivo.

Two-photon imaging based solely on intensity, or counts, yields individually

labeled cells and vessels that are indistinguishable on the basis of brightness (Fig. 3.4A).

Imaging based on lifetime clearly distinguishes between the two structures (Fig. 3.4B),

consistent with the 4.1-ns lifetime of Texas red [Brismar et al., 1995] and the 6- to 12-ns

lifetime of propidium iodide when bound to DNA [Hanley et al., 2002]. The merged

counts and lifetime clearly highlights dying cells (red cells; arrowhead in Fig. 3.4C) and

filled microvasculature (blue vessel; arrow in Fig. 3.4C). Post hoc histological analysis of

this region shows that propidium iodide-labeled neurons are most prominent within the

border of the microinfarction (Fig. 3.4D) and that labeled cells appear to be primarily

neurons, based on immunohistochemistry with the pan-neuronal marker MAP-2 (Fig.

3.4E).

3.5 Discussion

Photon counting (Fig. 3.1) provides a simple way of increasing the SNR of images

obtained with two-photon microscopy for low and medium imaging intensities (Fig. 3.2).

At higher intensities, the increased SNR is offset by the arrival of multiple photons per

laser pulse. The undercounting inherent in this process results in an additional noise

source. Our analysis shows how to correct for undercounting in a manner that essentially

doubles the count at which one needs to switch to analog integration (Eqs. 3.3–3.6). In

fact, the correction for cen Photon counting (Fig. 3.1) provides a simple way of increasing

the SNR of images obtained with two-photon microscopy for low and medium imaging

intensities (Fig. 3.2). At higher intensities, the increased SNR is offset by the arrival of

multiple photons per laser pulse. The undercounting inherent in this process results in an

additional noise source. Our analysis shows how to correct for undercounting in a manner

that essentially doubles the count at which one needs to switch to analog integration

(Eqs. 3.3–3.6). In fact, the correction for censored counts is sufficiently good to obviate
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Figure 3.4: Fig. 4. Fluorescence intensity and lifetime imaging of spectrally similar

dyes in a mouse model for experimental stroke. A: an intensity image collected with

in vivo two-photon laser scanning microscopy (TPLSM) within infarcted tissue shows

propidium iodide (PI)-labeled cells and Texas red-dextran (TR)-labeled vessels, which

are indistinguishable by intensity alone. Images were acquired 140µm below the pia,

using 30 mW of incident laser power, at λ = 825nm. Images were acquired at 512 X

512 resolution and then binned 3 X 3 for analysis and median filtered. We averaged 132

frames with r = 68 laser pulses per pixel. B: a fluorescence lifetime image demonstrating

that labeled vessels and the cells can be distinguished on the basis of lifetime of the

different fluorophores. C: a combined fluorescence lifetime and intensity image, with

the color indicating lifetime and the saturation indicating number of photon counts,

enables vessels (arrow) and cells (arrowhead) to be clearly distinguished. D: coronal

section showing infarcted cortical region 2 days following occlusion of a single penetrating

arteriole. Note that extravasation of the TR dye and PI labeling of necrotic cells is

prominent within the infarct. An asterisk labels the approximate location of in vivo

imaging. E: magnified view of the infarct in D showing strong microtubule-associated

protein-2 (MAP-2) staining (green) of viable neurons within the stroke margin (open

arrowheads). Within the stroke, intensity of MAP-2 labeling decreases and damaged

neurons exhibit PI labeling of nuclei (arrowheads). Extravasation of TR (arrows) is more

prominent within the infarcted region.



38

the need for analog detection, even at high emission rates (Fig. 3.3).

Theoretical analysis of the shot-to-shot variation in output pulses from the PMT

predicts that the analog signal should have a multiplicative factor of η = (1−g−d+1)/g − 1

excess noise power over the Poisson limit (Shockley and Pierce 1938), where g is the gain

per stage in the PMT at a particular supply voltage and d is the number of stages. For

g = 3.5 and d = 9, parameters for the operating point of our PMT in these studies, the

theoretical value of η = 0.4 falls short of the observed value of η = 0.6. The reason for

this excess is unclear, yet the implication is that photon counting is effective at higher

intensities than suggested by theory.

Our system allows for uninterrupted counting at speeds up to 350 MHz with

the use of relatively inexpensive commercially available parts. In addition, by creating

the electronics around a reprogrammable CPLD core and by locking the counters to

the onset of the excitation pulse, we are able to extend the photon counting device to

acquire fluorescence lifetime images with 1.5-ns binwidths (Fig. 3.4). Locking of the

counters to the laser pulse is also essential when alternate pulses are used to acquire

different modalities, such as switching between focal depth or polarization [Carriles et al.,

2009,Field et al., 2010b]. Other potentially useful configurations are possible with only a

change in firmware, such as gating to isolate the extremely short-lived signals that are

generated by second [Campagnola et al., 2001,Moreaux et al., 2000] and third [Débarre

et al., 2006,?] harmonic process and coherent anti-Stokes Raman scattering [Ly et al.,

2007].

Continuing advances in high-speed digital electronics and serial communica-

tion suggest that a next-generation photon counting system may make use of a field-

programmable gate array with a USB 2.0 serial communication channel, rather than

the current CPLD and parallel communication channel. Furthermore, advances in PMT

design and high-speed signal conditioning should decrease the censored period below 3 ns.
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3.6 Supplementary Material - Estimating the Emission Count

For each experimental run, we assume that the number of photocurrent events,

i.e., detected fluorescent emission events, N , is a Poisson random variable with mean

α. If N = n ≥ 1, then let W1, . . . ,WN be the times of the N emissions; we assume that

each Wi is exponentially distributed and that the emission times are independent of the

number of emissions. For all calculations below, our clock is in units of the fluorescent

lifetime, τ , of the emission times; thus, each Wi has mean 1. Next, sort the emission

times in increasing order to get the order statistics W(1) < · · · < W(n). In general, the

joint distribution is a bit involved, but there is a convenient representation for order

statistics from exponential random variables that facilitates many computations. In short,

when N = n, start with independent and identically distributed (i.i.d.) exponential

random variables U = (U1, . . . , Un), each with mean 1; then the joint distribution of

(W(1),W(2), . . . ,W(n)) is the same as that of V = (V1, . . . , Vn), where

Vk =

[
U1

n
+

U2

n− 1
+ . . .+

Uk
n− k + 1

]
, for k = 1, . . . , n, (3.7)

[Cox and Hinkley, 1979]. Thus, calculations involving the order statistics can be

recast as those involving V , which in turn are weighted linear combinations of the i.i.d.

exponential random variables, U.

The distribution of an order statistic or the joint distribution of several order

statistics is easy in principle, but the expressions are a bit involved. For example, suppose

that X1, . . . , Xn are i.i.d. random variables with continuous cumulative distribution

function (cdf) F . Let X(1) < . . . < X(n) be the corresponding order statistics. Then,

writing C(n, j) = n!/[j!(n− j)!], we have

[X(k) ≤ x] = [at least k of the Xi are at most x],

so that

P (X(k) ≤ x) =
n∑
j=k

C(n, j)F (x)j(1− F (x))n−j ,

and the probability density function (pdf) of X(k) is

fX(k)
(t) = kC(n, k)f(x)F (x)k−1(1− F (x))n−k. (3.8)

For each experimental run, the observation period is T and is normalized by the

fluorescent lifetime, τ . If an emission occurs after T , it is not observed in that run. If an



41

emission occurs before T , there is a dead period of length δ, again in units normalized by

τ , during which any emissions are censored. As a practical matter, we can observe at most

T/δ emissions during an experimental run. For the current hardware the observation

period is 13 ms and the dead period is 3.2 ms, so we can observe at most four emissions.

In order to estimate α from a series of such experiments, we need the probabilities of

observing i emissions (or dead periods) for i = 1, . . . , 4. Let D denote the number of

emissions observed in an experimental run. We now evaluate pi = P (D = i) for i = 0, 1

(we suppress the dependence of pi(α) on T and δ for simpler notation). Our main results

are that

p0(α) = e−α(1−e−T ), (3.9)

p1(α) =
e−α[e−δ−e−T ] − e−δe−α[1−e−(T−δ)] − (1− e−δ)e−α[1−e−T ]

(1− e−δ)
. (3.10)

The computations of pi(α) for i = 2, 3, 4 are considerably more cumbersome, have

progressively smaller contributions, and are thus omitted.

The proof of equation (3) is elementary. First, note that the generating function

of a Poisson random variable is

∞∑
n=0

P (N = n)βn = eα(β−1).

Then note that the event [D = 0] occurs if and only if either [N = 0] or [N ≥ 1,W(1) > T ].

Conditioning on N = n, we know from (1) that W(1) has an exponential distribution

with pdf ne−nx; thus,

p0(α) = P (N = 0) +
∞∑
n=1

P (N = n)e−nT = e−α +
∞∑
n=1

e−α
αn

n!
e−nT

=
∞∑
n=0

e−α
αn

n!
e−nT = e−α(1−e−T ). (3.11)

The proof of equation (4) is more involved. We consider the cases N = 1, N = 2,

and N ≥ 3 separately. When N = 1, we observe one emission only if W1 < T , so

P (D = 1, N = 1) = P (N = 1,W1 < T ) = P (N = 1)(1− e−T )

= P (N = 1)[(1− e−(T−δ)) + e−T (eδ − 1)]. (3.12)
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Next, when N = 2, we observe only one emission if one of the following conditions

holds: (a) [T − δ < W(1) < T ], (b) [W(1) ≤ T − δ,W(2) ≤ W(1) + δ]|, or (c) [W(1) ≤
T − δ,W(2) > T ]. The probabilities of the three events are

P (T − δ < W(1) < T ) = e−2(T−δ) − e−2T ,

P (W(1) ≤ T − δ,W(2) ≤W(1) + δ) = (1− e−δ)(1− e−2(T−δ)), and (3.13)

P (W(1) ≤ T − δ,W(2) > T = 2e−T (1− e−(T−δ)).

These calculations come from the representation in equation (1).Thus, P (D =

1, N = 2) is P (N = 2) times these three terms.

When N = n for n ≥ 3, a similar listing of the configurations which allow us to

observe one emission give the following probabilities. Once again, from the representation

in equation (1), we have

P (T − δ < W(1) < T ) = e−n(T−δ) − e−nT = e−nT (enδ − 1).

Next,

P (W(1) ≤ T − δ,W(n) ≤W(1) + δ) = P

U1

n
≤ T − δ,

n∑
j=1

Uj
n− j + 1

≤ U1

n
+ δ


= P [U1 ≤ n(T − δ)]P

 n∑
j=2

Uj
n− j + 1

≤ δ


= (1− e−n(T−δ))(1− e−δ)n−1,

and

P (W(1) ≤ T − δ,W(2) > T ) = P

[
U1

n
≤ T − δ, U1

n
+

U2

n− 1
> T

]
=

∫ n(T−δ)

0
e−(n−1)(T−x/n)e−x dx

= ne−(n−1)T (1− e−(T−δ)).

Next, for j = 2, . . . , n− 1,
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P (W(1) ≤ T − δ,W(j) ≤W(1) + δ,W(j+1) > T ) = P (A1 ≤ T − δ, A2 < δ,
3∑
i=1

Ai > T ),

where A1 = U1/n has pdf ne−nx,

A2 =
j∑
i=2

Ui
n− i+ 1

has pdf

gA2(y) = (j − 1)C(n− 1, j − 1)(1− e−y)j−2e−(n−j+1)y

because it has the same distribution as that of the (j − 1)st order statistic from a sample

of size (n− 1), and A3 = Uj+1/(n− j). Thus, conditioning on A1 and A2, we get

P [W(1) ≤ T − δ,W(j) ≤W(1) + δ,W(j+1) > T ] =

∫ T−δ

0

∫ δ

0
e−(n−j)(T−x−y)gA2(y)ne−nx dy dx

= C(n, j)e−(n−j)T [1− e−j(T−δ)][1− e−δ]j−1.

Combining these terms, we get

p1(α) =
∞∑
n=1

P (N = n)Bn =
∞∑
n=0

P (N = n)Bn, (3.14)

where

Bn = e−nT (enδ − 1) +
n∑
j=1

C(n, j)(1− e−δ)je−(n−j)T (1− e−j(T−δ))

= e−nT (enδ − 1) +
n∑
j=0

C(n, j)(1− e−δ)je−(n−j)T (1− e−j(T−δ))

= e−nT (enδ − 1) +
(1− e−δ + e−T )n − (e−(T−δ)(1− e−δ) + e−T )n

(1− e−δ)
.

Note that B0 = 0, as is the zeroeth term in the binomial expansion contained in

Bn. Finally, we use the generating function of a Poisson random variable to sum the

series in equation (9) to get the expression in equation (4).

Estimation of α

We now turn to the problem of estimating the Poisson parameter α. Suppose

that we have r experimental runs, with ri cases having i observed emissions. Below we
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deal with two cases: use only r0 or use both (r0, r1). In both cases we seek the maximum

likelihood estimate (MLE).

We first summarize the key facts about MLEs in general [Lehmann and Casella,

1998]. Suppose that X(n) = (X1, . . . , Xn) are independent and identitcally distributed

observations with pdf f(x|θ), where θ is unknown. The likelihood is (up to a constant

that does not depend on θ)

L(θ|X(n)) =
n∏
i=1

f(Xi|θ).

More convenient is the log-likelihood l(θ|X(n)) = lnL(θ|X(n)). The MLE is the value

θ̂n = θ̂n(X(n)) which maximizes l(θ|X(n)). When l(θ|X(n)) is sufficiently smooth, the MLE

is a solution to l′(θ|X(n)) = 0 Under certain regularity conditions, θ̂n is unique and for large

n, is approximately normal with mean θ and standard deviation s = [−l′′(θ̂n|X(n))]−1/2.

Thus, an approximate 95% confidence interval for θ is θ̂n ± 1.96s. With these general

results, we now turn to the details of the two cases.

1. Use only r0.

Suppose that there are r experimental runs, with r0 having no emissions and the remaining

(r − r0) having at least one emission. The likelihood and log-likelihood functions for α

are, respectively,

L(α|r, r0) ∝ p0(α)r0(1− p0(α))r−r0

and

l(α|r, r0) = r0 ln(p0(α)) + (r − r0) ln(1− p0(α)).

In the expression for L, we omit the combinatorial coefficient C(r, r0) because it does

not depend on α. In this case, maximum likelihood estimate (MLE) of p0(α) is easy to

compute: p̂0(α) = r0/r; thus, the MLE of α is

α̂0r = − ln(p̂0(α))

(1− e−T )
= − ln(r0/r)

(1− e−T )
.

Using the second derivative of the log-likelihood at the MLE, the approximate standard

deviation is given by

ŝ0r = (1− e−T )−1

√
(r − r0)

rr0
. (3.15)
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2. Use only (r0, r1).

This time, suppose that there are r experimental runs, with r0 having no emissions,

r1 having one emission, and the remaining (r − r0 − r1) having at least two emissions.

Writing q(α) = 1− p0(α)− p1(α), the log-likelihood function is

l(α|r, r0, r1) = r0 ln(p0(α)) + r1 ln(p1(α)) + (r − r0 − r1) ln(q(α)).

An explicit solution for the MLE α̂1r is not available, but search using Newton-Raphson

iterations with an analytic expression for the first derivatives will yield α̂1r. To do these

calculations, we need the following expressions:

l′(α|r, r0, r1) = r0
p′0(α)

p0(α)
+ r1

p′1(α)

p1(α)
+ (r − r0 − r1)

q′(α)

q(α)
,

where
p′0(α)

p0(α)
= −(1− e−T ) or p′0(α) = −(1− e−T )p0(α)

and

(1− e−δ)p′1(α) = −(e−δ − e−T )e−α[e−δ−e−T ] + e−δ(1− e−(T−δ))e−α[1−e−(T−δ)]

+(1− e−δ)(1− e−T )e−α[1−e−T ]

allow for the calculation of l′(α|r, r0, r1). Next, because p′0/p0 does not depend

on α, the second derivative is

l′′(α|r, ro, r1) = r1
p1(α)p′′1(α)− [p′1(α)]2

p1(α)2
+ (r − r0 − r1)

q(α)q′′(α)− [q′(α)]2

q(α)2
,

for which we need the expressions

p′′0(α) = (1− e−T )2p0(α)

and

(1− e−δ)p′′1(α) = (e−δ − e−T )2e−α[e−δ−e−T ] − e−δ(1− e−(T−δ))2e−α[1−e−(T−δ)]

−(1− e−δ)(1− e−T )2e−α[1−e−T ].
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3.7 Supplementary Material - Photon Counting Circuitry

3.7.1 Fast Discriminator Circuitry

We created a discriminator circuitry that allows for counting at speeds of 350

MHz and can be integrated into a single board which contains also contains the complex

programmable logic device (CPLD) and auxiliary circuitry (Fig. S1). As an alternative

strategy, fast discrimination can be accomplished with a commercial discriminator device

(PRL-350TTL, Pulse Research Lab), albeit with the lower maximum effective counting

rate of 280 MHz.

3.7.2 CPLD Circuitry

Critical to the implementation of our counting device is the use of an ultrafast

CPLD, which allows digital counting and timing circuitry to be created in software and

then downloaded into the device’s firmware. We use the Lattice IspMach LC4256V chip,

which allows for 256 logic devices and runs at a maximum effective speed of greater than

400 MHz. The CPLD circuitry is created using ispLEVER Classic, and flashed to the

chip using a standard parallel port interface.

Use of a CPLD results in a minimal digital hardware, since the counters, time

gating, and delay line for synchronization with the laser pulses can all be implemented in

the firmware of a single chip.

Fast counters.

There are many possible ways to implement digital counters. In the case of our

photon counters, we designed for the following requirements. (i) The counters should

be able to operate as quickly as possible, to allow for the possibility of multiple pulses

within one laser repetition. (ii) The counters should not miscount in the case of two

closely spaced pulses. (iii) The counters should avoid misreads by the computer (PC),

since a pulse can occur even during a read, which could result in an erroneous value if

the counter has not settled.

The solution is to use a dual ripple counter scheme (Fig. S2). Ripple counters

are fast and stable, but have the disadvantage of a slower settling time, since only one

flip-flop can change state at a time, and changes of more significant bits ripple through the

system. Time multiplexing two separate counters allows for the fastest possible counting
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Figure 3.5: Fast discriminator The discriminator threshold is set over the range of ±2.5 V

by a front panel 10-turn potentiometer. The threshold voltage can be monitored at a front

panel BNC. The discrimination is accomplished by an ultrafast comparator integrated

circuit, (MAX9600, Maxim IC), which takes the input signal and the discrimination

threshold voltage as inputs. The differential ECL output from the discriminator is

converted to a ground referenced signal through a transformer and then amplified (GVA-

84+, Mini-Circuits). The trimmer and inductor network provide power to the amplifier,

and level-shift the output for TTL compatibility. Two amplifiers (HFA-1112IBZ, Intersil)

provide buffered outputs for monitoring the input and output signals respectively.
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Figure 3.6: Counting circuitry for lifetime imaging. Shown is an 8-bit counter for one

channel. At any given time, only one of the counters is active, and the contents of

the other inactive counter are connected to the output pins through a multiplexer. A

rising edge of the SCANCLK from the data acquisition card means that a read has been

completed; this clears the inactive counter, then switches the active and inactive counters

after a short delay, giving time for the previously active counter to settle before being

the next read cycle. The result is a counter which can operate up to 400 MHz, while

avoiding the miscounting and read errors. For a typical photon counting setup, this is all

the CPLD circuitry that is needed. In practice, three output channels can easily fit onto

one CPLD chip. Four-bit counters (not shown) are identical, with the exception of four

rather than eight flip-flops, and a 4-bit rather than 8-bit multiplexer at the output.

speed, without the possibility of counting or read errors. The dead time of this system is

negligible, on the order of 1 ns.

Programmable digital delay line and multi-bin time gating.

In addition to functioning as a highspeed counter, the CPLD can be programmed

to sort the incoming photon pulses into separate counters according to the arrival time

relative to a synchronization signal (Fig. 3.7A) and thus execute fluorescent lifetime

imaging microscopy (FLIM). The synchronization signal is derived from the laser pulse,

and is sent through a series of gates that implement user-selectable delay lines. The delay

line is set so that photon counts immediately following the excitation pulse fall into the

first bin. In this configuration, a total of six time gated four-bit counters are used (Fig.

3.7B,C). The computer acquires this data as values from three eight-bit counters, and
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sorts and analyses the data in post-processing.
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Figure 3.7: Time delay and gating circuitry. (A) To capture lifetime decay

information, a series of six gates are opened in sequence after a laser sync signal indicates

the initial fluorescent excitation. In order to time the gates so that the initial fluorescence

signal (after excitation) falls in the first gate, a digital delay line made from buffer gates is

used. The length of the delay line is controlled by a 4-bit switch connected to the device

(DLA), which allows the delay line to be tapped after a user-selected number of gates.

The delayed laser-sync signal then uses a series of flip-flops to open six gates in sequence.

The time between the opening of successive gates, as well as the active time of a given

gate, is 1.5 ns. (B) When using the counting hardware for lifetime imaging, the counters

can be run in one of three modes, selectable by an thumbwheel switch connected to the

device. With the wheel set to 0, the photomultiplier tube (PMT) signal is connected

to an 8 bit counter, in the standard configuration. With the wheel set to 1, channel

1 displays the result from the first time bin only. This is useful for setting the delay

between the laser-sync signal and the PMT. With the wheel set to 1, the first 4 bits of

channel 1 are used for time gated counter 1, and the remaining 4-bits are used for time

gated counter 2. (C) In addition, four additional 4-bit counters are used to count pulses

from the time bins 3, 4, 5, and 6.
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Figure 3.7

(continued from previous page)

The overall design is similar to the standard photon counting setup, except

that the FLIM design can be run in one of three modes, which are selectable using a

thumbwheel on the counting device (Fig. S3B). Setting the thumbwheel to 0 implements

the standard photon counting mode, using a single 8-bit counter. This is useful to obtain

an overall image of the sample, or in cases where FLIM is not necessary or desired. Setting

the thumbwheel to 1 implements a single 4-bit counter on channel one. In this mode,

only counts from the first time bin (the bin which catches the initial excited photons)

are displayed. This is useful for adjusting the delay lines on the laser-sync signal, and

insuring that the counters do not rollover and exceed the maximum of 15 counts possible
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for a 4-bit counter. And finally, setting the thumbwheel to 2 implements the full FLIM

mode. In this mode, the six time gated channels, with 4-bits each, are multiplexed into

the three imaging channels of the scope.

Counting the number of pulses per laser repetition.

The CPLD can be reconfigured to give the distribution of counts per laser

repetition, in additional to acquiring the full number of counts. The key additional

component is the use of flip-flops, configured so that the counters will inactivate after

receiving either one or two pulses (Fig. S4). The flips-flops are reset by the laser sync

signal. Because pulses arriving exactly during the reset can be missed, the laser-sync

delay is adjusted to give the maximum number of pulses in the gated bins, thus ensuring

the reset happens immediately before a new laser repetition, after the fluorescence has

died out.

The number of times zero pulses occurred, r0, is calculated by subtracting the

number of time one or more pulse occurred from the number of laser repetitions per pixel.

Similarly, the number of times exactly one pulse occurred, r1, is calculated by subtracting

the number of times two or more pulses occurred from the number of times one or more

pulses occurred.
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Figure 3.8: Measuring counts per laser repetition. In this configuration, three 8-bit

counters are used. The upper counter records the number of times that one or more count

occurred during a laser repetition. The middle counter, records the number of times two

or more counts occurred during a laser repetition, and the third counter counts the full

number of pulses. The PMT input to the upper two counters employ flip-flops, which are

reset by the laser sync signal, to limit the number of counts per laser repetition.



4 Two-photon microscopy to

measure blood flow and

concurrent brain cell activity

4.1 Abstract of Chapter

The cerebral vascular system services the constant demand for energy during

neuronal activity in the brain. Attempts to delineate the logic of neurovascular coupling

have been greatly aided by the advent of two-photon laser scanning microscopy to

concurrently image blood flow and the activity of individual neurons and astrocytes

involved in the control of the flow. Here we review the procedures to generate optical

access to the cortex for both rats and mice, determine the receptive fields of the exposed

areas, and use two-photon microscopy to accurately measure blood flow in individual

cortical vessels concurrent with local cellular activity. We illustrate the techniques with

acute recordings from rats and chronic recordings from mice.

4.2 Introduction

Blood is a vital and limited resource in the brain. All aspects of neuronal and

nonneuronal activity require a supply of oxygen and glucose — a need that constantly

evolves with changes in brain activity [Fox and Raichle, 1986, Leybaert, 2005]. How

is the distribution of blood controlled relative to these changing needs? Delimiting

this phenomenon, commonly termed functional hyperemia or neurovascular coupling,

remains an active area of research [Attwell et al., 2010]. However, recent studies have

highlighted important conditions under which neural activity and blood flow become

decoupled [Devor et al., 2008,Sirotin and Das, 2008,Jukovskaya et al., 2011], and thus

54
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raise basic questions about neurovascular coupling [Kleinfeld et al., 2011]. One set of

questions concerns the patterns of neuronal signals that lead to vasoactivity. A second

set concerns the astrocytes that ensheath the vasculature and their role as intermediary

cells that deliver signals from neurons to blood vessels.

The answer to the above questions depends on the ability to image blood flow

and cells throughout the depth of cortex, 1.2 to 1.5 mm in rat and 1.0 to 1.2 mm in

mouse. Imaging at this depth with subcellular resolution is facilitated by two-photon

laser scanning microscopy (TPLSM) [Denk et al., 1990], an optical sectioning technique

in which absorption of light to excite fluorescent molecules occurs only at the laser focus.

Past studies have made use of TPLSM to examine vascular dynamics and blood flow

in multiple brain regions, including somatosensory cortex [Kleinfeld et al., 1998,Zhang

et al., 2005,Hutchinson et al., 2006,Schaffer et al., 2006,Wang et al., 2006,Brown et al.,

2007, ?, Stefanovic et al., 2007, Winship et al., 2007, Zhang and Murphy, 2007, Devor

et al., 2008, Shih et al., 2009, Sigler et al., 2009, Blinder et al., 2010, Fernández-Klett

et al., 2010,McCaslin et al., 2010,Nishimura et al., 2010,Tian et al., 2010,Drew et al.,

2011] and the olfactory bulb [Chaigneau et al., 2007, Petzold et al., 2008, Lecoq et al.,

2009, Jukovskaya et al., 2011], down to depths of 600µm, which is sufficient to resolve

vessels and neurons in layer 4. Recent advancements show that TPLSM can achieve

imaging depths that allow single microvessels to be studied throughout the full depth of

cortex [Kobat et al., 2009], and neuronal dynamics down to layer 5b [Mittmann et al.,

2011], which is an important issue since vascular regulation in cortex appears to initiate

in middle and deeper layers of cortex [Tian et al., 2010]. A further advantage is the

concomitant use of exogenous and endogenous fluorescent based functional reporters

to observe cellular activity, such as changes in intracellular Ca2+ concentration [Wang

et al., 2006, Chaigneau et al., 2007, Petzold et al., 2008], and the ratio of NADP to

NAD+ [Mittmann et al., 2011,Kasischke et al., 2011] concurrent with blood flow and

vessel diameter changes.

Here we discuss basic procedures of single and multi-vessel TPLSM imaging of

blood flow dynamics, concurrent with cellular activity, in the somatosensory cortex of

anesthetized and awake rodents. We further provide case studies. The equipment and

algorithms used in these studies have been summarized elsewhere, including comprehensive

reviews of basic methodology of vascular imaging [Shih et al., 2012], hardware [Tsai and

Kleinfeld, 2009,Driscoll et al., 2011b] and software [Nguyen et al., 2006,Nguyen et al.,
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2009] for TPLSM, and algorithms for data analysis [Drew et al., 2010a,Valmianski et al.,

2010,Driscoll et al., 2011a,Kleinfeld and Mitra, 2011]. Additional work has addressed

the use of TPLSM to image histological tissue with labeled vasculature [Tsai et al.,

2003,Ragan et al., 2007,Tsai et al., 2009,Kleinfeld and Mitra, 2011,Tsai et al., 2011].

4.3 Choice of preparation

Both rats and mice have their place in cerebral blood flow imaging studies. The

relatively large size of rats allows them to tolerate anesthesia better than mice and makes

them the animal of choice for complex surgical procedures. Extended cranial windows

can be fabricated to permit access to multiple regions of cortex, blood samples may be

obtained at multiple time points in a procedure, and physiological parameters can be

readily controlled. However, a current disadvantage of cranial windows, and thus rats, is

that the imaging quality degrades within days. The use of mice have two advantages.

First, they allow researchers to exploit the wide range of vascular related transgenic

animals. Second, transcranial windows with a thinned skull may be fabricated. The use

of transcranial windows obviates potential problems with inflammation and changes in

cranial volume and are excellent for repeated imaging studies over many months. On the

down side, blood sampling and physiological control is limited with mice compared with

rats.

4.4 Cranial windows

The generation of a cranial window for optical access in rats and mice differ on

a number of levels. In rats, the overlying bone must be completely removed. Further,

the dura mater must be carefully resected to the edge of the imaging window for optical

access [Levasseur et al., 1975,Morii et al., 1986,Kleinfeld and Delaney, 1996]. The window

must then be resealed to restore intracranial pressure and to minimize motion artifacts

caused by heart beat and breathing. Very large windows can be generated, i.e., 4 x

6 mm, to facilitate easy positioning of electrodes and cannulas. The clarity through

such a cranial window is initially optimal as the materials overlying the pial surface

cause minimal scattering. However, dural regrowth degrades the imaging quality such

that repeated imaging is limited to about four days. As a result, chronically implanted

windows for repeated imaging in rats are rarely reported and the use of pharmacological
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agents to suppress inflammation may also affect the phenomenon under study, such as

the magnitude of injury in experimental stroke models [Tuor et al., 1993]. Longer lasting

windows may, in principle, be achieved by using inert substances such as Kwiksil silicone

for movement suppression [Dombeck et al., 2009].

Cranial windows in mice are surgically less demanding, as the dura is thin and

does not need to be removed for optical access. Detailed methods have been described

for cranial windows [Mostany and Portera-Cailliau, 2008, Holtmaat et al., 2009] and

transcranial, thinned skull windows [Yang et al., 2010].

4.5 Transcranial windows

An alternate method that is suitable for mice is to generate a stable transcranial

window, where the skull is thinned, polished and reinforced with a thin layer of glue and

cover slip [Drew et al., 2010b]. These windows, which may be as large as 2 x 2 mm, greatly

minimizes disruption of the intracranial milieu, reduces inflammation, and prevents bone

regrowth. While the imaging depth and clarity are somewhat reduced compared to

windows with complete bone removal, polished and reinforced cranial windows in mice

have been proven to give excellent clarity for TPLSM imaging months after the initial

surgery. This procedure has so far failed with rats because of the lower clarity of the

dura and skull.

4.6 Localization of active areas

Standard brain atlases provide approximate coordinates for different brain re-

gions as a means to locate the vasculature in relation to loci of neuronal activity. Yet

somatotopically refined maps are often of considerable value. The lissencephalic structure

of the rodent brain permits different regions in cortex to be further mapped to determine

receptive fields using a variety of classical tools. For sensory areas, these include surface

electrodes and intrinsic optical signal (IOS) imaging. The latter technique avoids any con-

tact with the brain and uses changes in the intensity of reflected light to report a change

in the ratio of oxy- to deoxyhemoglobin that occurs secondary to changes in neuronal

activity [Grinvald et al., 1986,Frostig et al., 1990]. Motor areas may also be mapped in

one of three ways: (i) measuring limb or vibrissa movement in response to intracortical

microstimulation with bipolar microelectrodes; (ii) measuring electromyogenic activity in
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response to intracortical microstimulation; or (iii) through the use of focal illumination

in conjunction with mice that express channelrhodopsin in projection neurons [Ayling

et al., 2009][60].

We illustrate the mapping process with IOS imaging for the case of vibrissa primary

sensory cortex (Fig. 4.1). A craniotomy was prepared, as described previously [Kleinfeld

and Delaney, 1996], and individual vibrissae on the face of the animals were mechanically

stimulated. Stimulation of a single vibrissa leads to a net decrease in reflectance within a

localized region of vibrissa primary sensory cortex (Fig. 4.1A). This corresponds to a

local decrease in blood oxygenation. The centroid of this signal and the overall shape of

the active region remains roughly constant between blocks of trials (Fig. 4.1B), although

the amplitude varies greatly between blocks. Nonetheless, IOS imaging serves as a useful

tool for mapping the center of activation in cortex for the different vibrissa (Fig. 4.1C).

The branching arrangement of pial arterioles and venules, which is unique to each animal,

serve as fiducials to relocate the active region between intrinsic imaging and two-photon

measurements.

4.7 Measurement of blood flow dynamics in single cortical

vessels

We consider first the measurement of the flux of blood flow. This involves a

user-defined scan profile for TPLSM to simultaneously measure both the speed of red

blood cells (RBCs) and the diameter of vessels as a means to compute the volume

flux of RBCs. The vasculature is labeled with an intravenous bolus of fluorescein- or

rhodamine-conjugated dextran for green and red light emission, respectively. The cerebral

vasculature within the window is first imaged at low resolution with a 5X objective

(Fig. 2.2A); this image can be directly compared with that made with IOS imaging (Fig.

4.1C). High resolution imaging of surface pial vessels, penetrating vessels, and subsurface

capillaries can then be performed in smaller regions with a high numerical aperture water

dipping objective, such as a 20X to 40X objective with a numerical aperture ranging

from 0.8 to 1.0 (Fig. 2.2B).

When the serum is labeled, RBCs exclude the dextran dye and appear as dark

objects moving against a bright fluorescent background. We used custom software to direct

the imaging laser beam in a user-defined path within the imaging plane (4.11) [Valmianski

et al., 2010,Driscoll et al., 2011a]. Linear segments of constant scan speed traverse along
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Figure 4.1: A female Long Evans adult (2 month) rat was anesthetized with isoflurane

(2% in O2 for induction and < 1% sustained) and a 4 mm x 4 mm closed craniotomy

performed over the vibrissa area of primary somatosensory cortex. The intrinsic optical

signal (IOS) was obtained as the reflectance at 633nm as a function of time and trial,

i.e., Ri(x, y, t) where i labels the trial, the sampling period is 50ms, and the pixel width

is 8µm. The duty cycle for each trial was 18s, and we typically obtained 30 trials. We

computed the smoothed, trial-averaged response as R(x, y, t) ≡ Gaussian[< Ri(x, y, t)−
median[R(x, y, t)] > trial] where the Gaussian filter had a width of σ = 4 pixels. The

initial 4s of the average signal constitutes baseline, i.e., Rbase(x, y) ≡< R(x, y, t) >0s≤t≤4s,

the second 4s were used to deflect individual vibrissae (±12◦ by 10Hz square wave filtered

with a 6th order 100Hz Bessel low pass filter), and a period after the onset of stimulation

was used to form the response, i.e., Rresponse(x, y) ≡< R(x, y, t) >4.5s≤t≤9s. We report

the IOS as ∆R
R ≡ [Rresponse(x,y)−Rbase(x,y)]

Rbase(x,y) . (A) An example of the intrinsic signal for

deflection of the C2 vibrissa. The dark declivity indicates reduced reflectance of red light,

suggesting an increase of deoxygenated hemoglobin and thus increased neural activity in

that region. (B) Intrinsic signal for a profile line through the centroid of the activated

region in panel A for three separate blocks of trials. The horizontal dashed lines are a

50% decrease of the intrinsic signal; the solid vertical lines indicate the centroids. (C)

The thresholded IOS image, e.g., dashed line in panel B, for 14 different vibrissae across

the cortical surface. The surface map was obtained by reflectance at 475 nm. Thresholds

values were B1 = −1, B2 = −2.5, B3 = 0, C1 = −2, C2 = −1, C3 = 0, C4 = −1.5,

D1 = −2, D2 = −1, D3 = −1.5, D4 = −3, E1 = −0.5, E2 = −3, E3 = 0; all ×10−4. In

some areas the vessels were masked from the calculation, e.g., vibrissa D2.
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the length of the center of the vessel and across the width of the vessel to measure RBC

speed and lumen diameter, respectively. These linear scan segments are connected by

polynomial splines, where connecting portions of the scan are accelerated to allow for

rapid data collection across multiple vessels [Driscoll et al., 2011a] (Fig. 2.2C).

The resulting line scan data forms a space-time image, typically displayed with

the individual scan lines stacked on each other (Fig. 2.2D). In principle, many vessels that

lie in the same plane can be measured simultaneously. Portions of the scan path along

the centerline of the vessel lumen reveal angled streaks within the cascade image. Moving

RBCs in flowing vessels sampled at a sufficient rate will appear as diagonal streaks. The

centerline velocity is proportional to the slope of the RBC streaks, measured from vertical

(Fig. 2.2E). Determining this slope is most efficiently performed with a Radon transform

of the data [Drew et al., 2010a].

A velocity time series is calculated by transforming successive time windowed

portions of the line scans (right panel in 2.2F). The temporal spacing of successive

windows must be close enough to resolve the highest velocity modulation frequency, the

heart rate, which is 6 Hz for rats and 10 Hz for mice. In addition, the window size

must be large enough to capture enough streak lines so that the Radon transform has

sufficient data to calculate an accurate velocity value. We find that a window size of

40 ms with a spacing of 10 ms is a good compromise. In addition to heart rate, other

physiological signals detected in the RBC velocity time series include breathing, at 1

Hz for rats and 2 Hz for mice, and vasomotion at 0.1 Hz for rat and 0.1 to 1 Hz for

mice [Mayhew et al., 1996,Drew et al., 2010b,Kleinfeld and Mitra, 2011].

As with the velocity calculation, the diameter calculation is taken from a temporal

windowed portion of the data (Fig. 2.2D). The same window size and spacing used for

velocity is also used for diameter so that both parameters are concurrently calculated.

Vessel diameter is defined as full width at half maximum of the vessel profile for each

window (left panel in Fig. 2.2E); the intensity profile tends to increase near the edges due

to the exclusion of RBCs from the glycocalyx. The two outermost half maximal points of

these peaks are used to calculate the vessel boundary. Linear interpolation is used to add

subpixel accuracy to the diameter measurement.

When the diameter of the vessel is much greater than that of the RBC, the flow

is laminar and nearly parabolic [Rovainen et al., 1993, Schaffer et al., 2006]. The two

vascular parameters, RBC velocity and lumen diameter, are combined to calculate the
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volume flux, RBCs and plasma, for each vessel. The volume flux through the vessel is

given by

F =
1

2
v(0)πR2 (4.1)

where v(0) is the time averaged RBC velocity at the center line of the vessel, and

R is the radius of the lumen. This formula underestimates the flux as the nonzero spatial

extent of the RBC flattens the parabola of Poiseuille flow.

As an example, we measure the change in flux at the level of single penetrating

vessels in response to somatosensory stimulation. Both diameter and RBC velocity in the

arteriole respond to stimulation (left column in Fig. 2F). The flux through the arteriole

increases to a peak of 86% over baseline, compared with a much smaller peak increase of

29% and 24% for diameter and velocity measurements alone, respectively. The increase

in RBC velocity is partially masked by a peak in the underlying vasomotor fluctuation,

but remains a significant increase over an average one minute period of basal activity.

In contrast to the arteriole, a neighboring venule exhibits no change in lumen diameter,

but a 23% change in RBC velocity. As a result, the flux increases in the venule by 23%

as well (right column in Fig. 2.2F). This increase in venular flux would not be detected

with methods that measure diameter only.

4.8 Simultaneous imaging of blood flow and local cellular

activity

An important goal is to identify the cell types and signaling pathways that regulate

neurovascular coupling. The activity of various neuronal cell types and astrocytes can be

monitored in superficial cortex by bulk loading the tissue with functional dyes, in this

case Oregon Green Bapta-1 AM (OGB-1 AM), to detect changes in intracellular Ca2+

concentration [Stosiek et al., 2003,Garaschuk et al., 2006](Fig. 3A). The Ca2+ indicators

may be injected by pipette into the active region through a vent in the cranial window

under two-photon guidance, or prior to sealing the window during the initial craniotomy

procedure. Astrocytes are selectively labeled with the astrocytic marker sulforhodamine

101 (SR101) in the same tissue to distinguish them from neurons in a second imaging

channel [Nimmerjahn et al., 2004].
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Figure 4.2: (A) A full field image of 19 neurons (N), 1 astrocyte (A), and 3

blood vessels, obtained at 4 frames/s, with a scan path superimposed on cells determined

by our machine learning algorithm. All cells and vessels are scanned at 110 Hz. The

green channel shows the fluorescence from OGB-1 and fluorescein while the red channel

shows fluorescence from SR101. (B) Activity of neurons and an astrocyte, indicated in

panel A, in response to a single weak electrical shock to the forelimb. (C) The Ca2+

response of the astrocyte (A1), the average neuronal response (N1 - N19), and the speed

of red blood cells in one capillary (V1). All panels adapted from Valmianski et al. [42].
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We consider a particular field of view that contains 20 identified cells, i.e., 19

neurons and one astrocyte, along with three blood vessels. Even at this level it is tedious

to localize each labeled cell and guide the laser scan path manually. We thus used

a machine learning algorithm to locate each soma [Valmianski et al., 2010] (4.11) in

conjunction with full-field images from the OGB-1 emission channel. Cells that were

colabeled with SR101 were automatically labeled as astrocytes; the coordinates of selected

blood vessels were also marked. We then calculated the fastest scan path through each

soma along with selected microvessel (Fig. 4.2A) (4.11). The typical signal-to-RMS-noise

ratio, which we define as the ratio of the peak of the response to the RMS noise during

the baseline, for a change in intracellular Ca2+ induced by a single sensory stimulus is 10

(Fig. 4.2B). Further, the resulting line scan image contains stereotypical angled streaks for

calculation of RBC speed, as well as intensity traces from selected neurons and astrocytes,

similar to that seen in Figure 2.2C. The composite data permits changes in astrocytic

Ca2+ levels, together with changes in the speed of RBCs in a nearby microvessel, to be

compared with the composite neuronal activity (Fig. 4.2C).

4.9 Stimulated and basal hemodynamics in awake mice

We consider the quantification of blood flow both at and below the cortical surface

in awake mice. Mice were habituated to head fixation and blood flow was measured in

single vessels through a chronically implanted transcranial window (Fig. 4A). Robust

arteriole dilations could be evoked by prolonged contralateral whisker stimulation (Figs.

4B and 4C, red). Small arterioles dilated proportionally more than larger arterioles and

the rapid dilation that followed vibrissa simulation and vibrissae evoked dilation (Figs.

4.3A and 4.3B). In contrast, the delayed, second peak in the dilation does not show a

significant dependence on vessel size (Fig. 4.3B), nor does the response to control stimuli

(Fig. 4.3C). Pial venules, typically thought to be static in terms of diameter, show a

delayed and weak dilation in the awake state that had no dependence on initial diameter

(Fig. 4.3C). These data suggest that functional hyperemia changes detected by BOLD

fMRI may be dominated by large changes in arteriole volume, in agreement with recent

studies [Kim and Kim, 2011], rather than in venules [Buxton et al., 1998].

Individual traces of the arteriole diameter show a high degree of variation and

spontaneous dilation (Fig. 4.3B). Similar to the case of stimulus induced changes,

small arterioles dilated proportionally more than larger arterioles for both spontaneous
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Figure 4.3: (A) Schematic of the experimental setup. The awake mouse is head fixed

by means of a bolt and sits passively in an acrylic cylinder beneath the two-photon

microscope. Air puffers for sensory stimulation are aimed at the vibrissa and as a control

at the tail. (B) Individual dilation responses to 30 s vibrissae stimulation. (C) Plot

of peak averaged dilation responses to 30 s vibrissae stimulation. Early arterial peaks,

in the 0 to 10 s interval after stimulation, are denoted by red circles; regression slope

= 0.007µm−1 (r2 = 0.15, p < 0.02). Late arterial peaks, greater than 10s after onset,

are denoted by red triangles; the linear regression (not shown) is not significant. Venules

are denoted by blue dots; the linear regression is not significant. (D) Plot of peak value

of the spontaneous dilations for arteries, in red, and veins, in blue. Grey area shows

the 0.2µm resolution limit of detectable changes. Lines show linear regressions; slope

= −0.004µm−1 for arterioles is significant (r2 = 0.13, p < 0.001), while that for veins

(not shown) is not significantly different from zero. All panels adapted from Drew et al.

[27].
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events (Fig. 4.3D). The critical point raised by this data is that the magnitude of both

prompt and delayed arterial responses induced by stimulation are similar in magnitude

to spontaneous arterial dilations, with typical dilations of 30% and maximum dilations

near 50% for both cases (Figs. 4.3B to 4.3D). Thus, from the point of control, stimulus

induced changes in blood flow are small, i.e., on the order of the noise level. The corollary

is that individual stimulus events cannot be distinguished from spontaneous dilations

based on magnitude alone [Kleinfeld et al., 1998,Drew et al., 2008].

4.10 Imaging of blood flow in deep cortical layers

An important development in TPLSM is the ability to image deep cortical layers

that are responsible for the output of neuronal processing [Helmchen and Denk, 2005].

Further, different cell types predominate in different layers, so that deep imaging permits

neurovascular coupling to be studied in changing environments. Longer wavelengths of

light penetrate deeper into tissue as a result of reduced scattering, absorption, and optical

aberration by the tissue. In the example of Figure 5, a cranial window was prepared in

a mouse and the dye Alexa 680-conjugated dextran was used to label the blood serum.

The dye was excited with 1280 nm wavelength light from a Ti:sapphire pumped optical

parametric oscillator and was found to enable imaging through the entire depth of cortex,

i.e., 1 mm deep (Figs. 5A and 5B) [Kobat et al., 2009]. Red blood cell velocities in

capillaries could be resolved as deep as 900µm into cortex (Figs. 4.4C and 4.4D).

4.11 Automatic Identification of Regions of Interest

In order to generate a standard two dimensional TPLSM image, the laser focal

point is scanned systematically across the entire field of view in a raster pattern. Repeating

the scan pattern generates a time series of frames, resulting in an easy to interpret movie

of the entire field of view or a zoom of a smaller region. However, in many cases the

relevant optical signal is spread through small portions of the field of view, such as

when a sparse network of labeled neurons fire in response to stimuli. In such cases, it

is advantageous to scan primarily across the active regions of interest, to maximize the

number of signal photons acquired per unit of time. This not only maximizes the signal

to noise ratio, but allows imaging on much faster timescales than the typical raster scan

frame rates.
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Figure 4.4: (A) Maximum intensity projections of mouse cortical vasculature in the

coronal orientation. The image stack was collected over the entire depth of cortex through

a cranial window with the dura intact. To reduce scattering and improve imaging depth,

a long wavelength of excitation, i.e., 1280 nm, was used and the blood plasma was labeled

by intravenous injection of Alexa 680 conjugated to dextran (Table 2). (B) Single planar

image taken from panel A at the depth of the red line. (C) Magnified image taken from a

vessel from the region in the red box in panel B. (D) Magnified image taken from a vessel

from the region in the red box in panel B. All panels adapted from [Kobat et al., 2009].
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Frequently, the field of view contains only a few obvious neurons, or regions

of interest (ROIs), which can be selected by the user during the experiment. In cases

where a large number of ROIs are present, such as a sparse network of labeled neurons

which are responsive to stimuli, machine learning can be used to automatically detect

the regions and create an optimized scan path which passes through all of them in a

minimum amount of time. Typically, a computer algorithm is trained on experimental

data which has been annotated by a human to mark relevant areas that the algorithm

learns to recognize. During an experiment, the algorithm can then be used to quickly

and automatically identify the ROIs. A typical workflow is [Valmianski et al., 2010]:

1. A region of cortex is labeled with a Ca2+ indicator. An initial, full frame movie is

collected while the animal is stimulated so that a subset of the cells responds with

increased fluorescence. Multiple training and validation datasets can be created by

taking multiple movies over the same or similar regions.

2. After the experiment, the movies are marked by a human expert. Regions are

labeled as a ”cell” or ”possibly a cell”. Unmarked regions are considered to be not

a cell. This training data set is used to create a pixel classifier, which is used to

determine if a given pixel is or is not a cell, and a blob classifier, which uses the

shapes of pixels to determine actual cell regions. The data is used to generate a

set of mathematical rules, which can be implemented by the computer, to form

a basis for the classifiers [Freund, 2009]. The classifiers operate on eight features

in the dataset: the mean, variance, covariance, and correlation contained in the

images, as well as the mean, variance, covariance, and correlation normalized by

the standard deviation. After identifying pixels which are likely to belong to a cell,

a morphological classifier using features such as size and eccentricity are used to

delineate intact cells.

3. During subsequent experiments, a movie is taken of a region similar to that used in

the original experiment. This movie, along with the classifiers created previously, is

fed into the software, which automatically generates a set of ROIs along, with an

initial laser scan path across them. The ROIs can then be modified by the user,

typically by adding or removing ROIs.

4. The time it takes to scan across all the ROIs will depend on the order in which they

are scanned. Optimizing the order is the classic traveling salesman problem, which
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has been extensively studied in computer science and mathematics. In general, it is

not possible to search through all possible paths, and some computational shortcuts

are taken. We use the ANT optimization algorithm to search rapidly through a

subset of all possible paths as a means to find the shortest path that travels through

all regions [Di Caro and Dorigo, 1998].

4.12 summary

Two-photon microscopy provides a number of advantages that will aid the study

of the mechanisms underlying neurovascular coupling and cerebrovascular disease in

animal models, including i) the resolution needed to visualize single cortical vessels and

their surrounding cells, ii) penetration depths of 250µm through a transcranial window

and 500 µm with craniotomies at 800nm excitation, and imaging to 1000µm with longer

excitation wavelengths, iii) reduced photodamage, iv) high speed user-defined line scans

for near simultaneous measurement of RBC velocity, lumen diameter and local cellular

activity, and v) the opportunity to image vascular dynamics deep in the cortex of awake

mice.

A wide variety of functional fluorescent dyes can be exploited for studies of

neurovascular control. Recent focus has been on Ca2+ sensors to study cellular activity.

Exogenous sensors have the advantage of labeling both neurons and astrocytes, along with

a meshwork of processes that intervene between cell bodies. However, the cellular source

of a signal may be difficult to resolve when focusing on fine processes. Transgenic mice

with different neuronal subtypes labeled with fluorescent proteins can aid the separation

of responses from different cell populations [Sohya et al., 2007]. Genetically encoded

Ca2+ sensors exclusively expressed in a specific cell type can be essential in separating

signals from individual cells [Tian et al., 2009]. Finally, cyclic adenosine monophosphate

sensors would also be of value since Ca2+ independent pathways may also be involved in

neurovascular control.

The intermixing of cell types within a small tissue volume also hinders electrophys-

iological and pharmacological approaches to query the role of cell types in neurovascular

coupling. New advances with light activated opsins [Lee et al., 2010] or engineered

receptors with unnatural affinities for exogenous chemicals [Alexander et al., 2009] may

help to unravel issues with cellular specificity [Kleinfeld et al., 2011]. However, caveats

should also be considered, as activation of one cell type does not preclude activation
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of non-targeted cells linked within the same circuitry. The manipulation of cell-specific

vasoactive signaling cascades will be an important step in dissecting the chemical basis

of neurovascular coupling, but will also be challenging as new tools to knockdown gene

expression will need to be developed [Kleinfeld et al., 2011].
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5 Conclusions and Future

Directions

Techniques and tools to understand the neurovascular coupling system, and the

brain in general, have progressed at an incredible pace in the past two decades. With the

invention of the two-photon microscope 20 years ago, the subsequent widespread use of

transgenic animals allowing for fluorescence imaging of specific proteins and systems, and

an ever expanding library of reporter molecules such as calcium and voltage indicators,

the ability to actually see what is happening in vivo in now entering a new era.

However, we still do not know much about how the brain actually accomplishes

many tasks, even basic ones. For instance, although early experiments strongly implicated

direct astrocytic control of vascular tone [Mulligan and MacVicar, 2004], experiments

in this lab and others have so far failed to find a reliable connection between astrocytic

activity and neighboring vessel diameter.

It may be that the brain has frequently been studied in conditions far from

that found in normal, healthy animals, and clear answers to brain function have been

confounded by looking at partially damaged or non-functioning systems. In the extreme

case, in vitro experiments in slice can demonstrate features of neurovascular coupling,

such as vessel diameter change is response to astrocytic calcium transients, but exhibit

timescales an order of magnitude slower or more than that found emphin vivo [Mulligan

and MacVicar, 2004]. Even in anesthetized animals, the use of anesthesia itself can have

a profound impact on the neurovascular coupling system — certainly, an anesthetized

animal behaves differently than an awake one! In fact, recent research has compared the

anesthetized state with that of a “reversible coma,” certainly not the desired state for

understanding normal brain function.

Future work in lab is refocusing on the use of awake, behaving animals to study

the brain in its natural state. In addition, surgical techniques which allows for optical
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access to the brain through a thinned skull circumvent the trauma associated with full

craniotomies [Drew et al., 2010b]. In the future the use of ablation lasers with feedback

from second harmonic generation and atomic spectra for surgery may allow an additional

level of less invasive imaging, as many of the effects of heating and vibration associated

with traditional surgical techniques can be avoided [Jeong et al., 2011].

In addition, current research in the lab is focused on the use of scanning systems

with close to gigapixel resolution over roughly a square centimeter, with the goal of

looking neurovascular coupling on a much larger scale, for instance, bilaterally across the

two hemispheres of the brain. In conjunction with this, scanning techniques have been

developed which allow for three dimensional scanning [Göbel et al., 2007], though technical

challenges remain. The use of advanced reported dyes and cells, such phosphorescence

oxygen sensors or CNiFER [Nguyen et al., 2010] reporter cells, open the possibility of

actually seeing the state variables and computational mechanisms of the system, rather

than just the presumptive inputs (neural activity) and outputs (vessel diameter).

If the if neuroscience technology and techniques over the next two decades progress

at anything near the pace of the previous two, we may very well be on the cusp of a

major breakthrough in understanding how the brain work; regardless of how things turn

out, the path forward will certainly be challenging and rewarding



A Ultrafast PMT Preamplifier

and Discriminator

The current laboratory electronics setup for photon counting involves the use

of several separate electronics enclosures, connected together through 50Ω BNC wiring.

Although this is an extremely practical setup, since most of these components are

commercially available, there are a number of disadvantages.

1. The high-speed amplifier, ZPUL-30P, is AC coupled. Although this amplifier a

wide-bandwidth, pulse amplifier, the lower corner frequency on the amp is 2.5kHz,

giving a decay constant τ of roughly 64µs. For most low-to-mid intensity imaging,

the AC coupling is a non-issue, since the PMT current pulses are spaced far apart,

and thus do not change the baseline voltage offset of the output, which remains near

zero volts. However, at high light intensities, the current from the PMT can cause

the baseline voltage to drift, potentially resulting in missed pulses. In imaging,

this shows up as apparent banding around high intensity regions. A DC coupled

amplifier would avoid these issues.

2. Since the CPLD takes a CMOS level input, the discriminator must drive a fairly

high voltage signal (> 4V ) across the BNC connectors, in order for the digital

signal to still be above threshold at the receiving end. This is because the 50 Ohm

output impedance and the 50 Ohm termination form a resistor divider network,

cutting the voltage in half. This requires fairly complex circuitry. A better solution

would be a system where the discriminator is integrated with the CPLD chip, which

would reduce the necessary voltage swing by half, allowing much simpler, standard

comparator and level translation chips to be used.

3. Although not a part of the original project, if the counting board were to be

commercialized or used by other labs, there is a cost effectiveness to creating a
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Figure A.1: The proposed circuit includes a two stage PMT pre-amp with a bandwidths

of in excess of 1 GHz, fast discriminator, and a logic conversion stage for interfacting

with the CPLD. See text for an detailed cirucit description

small, integrated system, using a minimal part count. Integrating the system into

one box not only would make the setup much more practical and user friendly, but

also allows for higher performance with less cost.

As a note for future applications, this section describes a proposed circuit to

integrate a high-speed (> 1GHz) preamplifier, with a high speed comparator and level

translation circuit, which can be integrated into a board containing the CLPD counter

and digital interface circuit. The discriminator and level translation circuitry operate

with rise times > 750ns, faster than the typical rise times of the PMT pulses, and slightly

faster than the ∼ 400MHz maximum counting speed of the CPLD



75

A.1 Component Overview

A.1.1 Fast DC coupled amplifier

The ADA4960-1 chip by Analog Devices is a new chip, which provides 18 dB

of gain in a single stage when used differentially, and 9 dB of gain as a single-ended

amplifier. By cascading two gain stages, a 27 dB amplifier can be made, giving a gain of

22. This is approximately the same gain as the ZPUL-30P amplifier by mini-circuits, and

provides enough gain to run the comparator. Each stage has a −3dB bandwidth of 1.2

GHz, and a rise time of a few hundred ps, faster than the rise time of the PMT pulses.

Furthermore, the ADA4960-1 chip can be DC coupled from end to end, eliminating

any AC coupling artifacts, requires very few supporting components, and is relatively

inexpensive.

A.1.2 Ultrafast Comparator

The ADCMP572 by Analog Devices comparator chip is one of a number of

possible chips to convert the analog PMT pulse to a digital signal. As with all ultrafast

comparators, the output is differential, and the output signal must pass through a level

translator before being passed to the CPLD.

A.1.3 Level shifting

Most ultrafact comparitors have differential outputs, typically ECL, PECL, LVDS,

or CML. In this case, the ADCMP572 chip has CML outputs, which must be translated

into CMOS / TTL levels in order to be compatible with the CPLD inputs.

The MC100EPT21 level translation chip can operate in excess of 500 MHz, and

still maintain a swing from < 0.5V to > 2.2V . Note that the datasheet lists a typical

maximum output frequency of 350 MHz, since this is the maximum rate for a full swing of

the output; however, the CPLD will still trigger on a reduced swing output. In addition,

this chip requires minimal supporting components.

A.2 Circuit description

The ADA4960-1 chip is typically run using a V cc = +5V signal and ground, with

the inputs and outputs running on a DC offset of V cc
2 . In order to DC couple the inputs

and outputs, the chip can be run from ±2.5V , meaning the offset in this configuration is
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0V. The input voltage range in this configuration is ∼ 250mV , and the output range is

3.5V PP.

The first gain stage gives a differential voltage gain of 18 dB, with is then fed into

a second ADA4960-1 chip. Since the second chip must supply a single-ended output, it

adds an additional 9 dB of gain to the system.

The comparator is run from a +3.3V source, and can work with input levels from

-0.2 V to 1.2V. Since PMT pulses result from and electron cascade, they are negative going

pulses by default. By using the negative input from the second stage, the comparator

can trigger on a positive going pulse, which simplifies design.

Finally, a translator must be used to convert the CML output from the comparator

into a single ended. All commercially available ultrafast comparators have some form of

differential output, which is not compatible with the single ended CMOS / TTL level

required by the CPLD chip. The MC100ETP21 chip accomplishes the translation with

minimal fuss. Note, the specs on the chip state > 275MHz, operation speed but this is

extremely conservative. For the voltage swings necessary to operate the CPLD, the chip

can operate at least to 500MHz, due to the rise and fall times of approximately 750ps.

One final note this circuit has not, as of yet, been built and tested. Other

modifications may be necessary. It is presented here as a reasonable future possibility for

further development.



B MpScope3 User and

Developer’s Guide

B.1 Overview

MpScope is a software suite designed to control a two-photon scanning microscope.

The software coordinates hardware, such as the analog and digital DAQ cards and motion

stages, handles streams large datasets to file, and includes both a graphical interface and

the ability to script through MATLAB.

MpScope was originally written by Quoc Nguyen in the Kleinfeld lab at UCSD.

The software is distributed free of charge, and is currently used in over two dozen labs

worldwide. Version 2.0 added the abitily to use photon counting hardware. However, this

version was written in Pascal using older data acquisition card drivers, and has a number

of other features in need of improvement. For instance, MpScope 2.0 has limitations with

the file format (files are limited to 2 GB of data and a 4096 frames, and can only be

opened on 32-bit Windows machines), scan size (512 x 512 image resolution is hard-coded

throughout the software), and data acquisition hardware.

Thus, MpScope was rewritten to add in additional features, and create a stable,

scalable code base for additional, more complex features, such as 3D scanning.

The 3.0 version is a complete rewrite of the code using C# and the modern

.NET platform. The newer version was written by Jonathan Driscoll in the Kleinfeld

lab. In order to easily handle large file sizes in a transparent, cross-platform way, the

new software writes data in HDF5 format, which is free and well supported file format

from the supercomputer world. In addition, the newer NI-DAQmx drivers allow for a

broader range of hardware options, and the ability add additional cards for additional

data acquisition.

This document describes MpScope 3.0, first from a practical, user viewpoint, and
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Figure B.1: The C# components, shown in beige, center around the Engine, which is

the core of the program. The C# forms, which provide user interaction, are shown in

light beige. Additional components, shown in white, and typically accessed through the

.NET interface.

then more in depth, for those who may want to modify the code at a later date.

B.2 Setting Up The Program

B.2.1 Software Drivers and Libraries

MpScope needs several drivers and software libraries to in order to work prop-

erly. This software is located in the “MpScope3 Install” directory of the MpScope 3.0

distribution. Below are the steps required to install the software

• Install HDF5 file support. The HDF5 library must be installed on the system

for file access. To install, simply copy the files in ”HDF5 library,“ on the Installation

disk, to the “Windows\System32” directory. Note that many programs, such as

MATLAB, already can read and write HDF5 files.

• Install NI-DAQmx. If the system does not have NI-DAQmx installed, install this

now. The latest version as of this writing is 9.4, but in general the latest available

version (available from the National Instruments website) should be installed. If

the system is going to be used for developing code, be sure make sure the to install

the development libraries as well. When installing, select custom installation, and
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add the .NET 3.5 language support. (Note that MpScope 3.0 uses .NET version

3.5, since not all libraries are available for the later 4.0 version of the runtime.)

• Install the Galil Controller Software. Run the Galil .NET software installer,

which allows MpScope to talk to the stages.

• Install the HDF5 viewer (optional). Although not strictly necessary, it is

convenient to be able to open the data files to look at the contents and structure

of the file. The HDFView program is a simple, java based program which allows

viewing of the MpScope data files. The latest version can be downloaded from the

web.

• Install Visual Studio Express 2010 for C# (optional). For code development,

install Microsoft Visual Studio Express 2010.

B.2.2 Hardware for MpScope

• Main Scanning Card. The PCI-6110 data card is standard, and is required to be

installed as the main card. Note that other cards may work without modification

of the code, but this has not yet been tested.

• Auxillary Analog Input Card. The PCI-6052 data card can be added for addi-

tional analog data acquisition. Again, other cards may work without modification

of the code, but this has not yet been tested.

• Photon Counting Card. The PCI-6534 can be used for acquiring digital photon

counting data. Again, other cards may work without modification of the code, but

this has not yet been tested.

• RTSI. In order for the cards to synchronize correctly, they must be connected by a

RTSI bus. This is a physical cable running between the cards, which connects the

scan clock and data trigger, as well as other signals. After the cable is installed, it

must be registered in NI-DAQmx. (Note, this step is new to MpScope 3.0, since it

uses NI-DAQmx.) To set up the cable, open MAX (Measurement and Automation

Explorer), right click on “Devices and Interfaces,” and select “create new”.

• Galil Stages. MpScope 3.0 is designed to work with stage controllers made by

Galil Motion Control. Support for other stages may be added in the future.
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B.3 Using the Program

B.3.1 Initial startup

On the first program startup, the program will load the default file configuration.

Before actually scanning, the program must find the location of the data cards.

Open the Configuration with the Configuration button, and select the “Cards” tab. Select

“Search for Cards.” This should automatically select the correct cards.

The main card, which is used for analog output (to the scanners) and input (for

analog data reads) is the PCI-6110.

The Auxillary Analog card is currently the PCI-6052, which is used for additional

analog inputs (and will be used for additional outputs) The digital input card, is currently

the which runs the photon counters, is correctly the PCI-6534

Other cards may be added in the future, and may actually work “as is”. The

above listed cards will be detected and selected automatically, if available. After selecting

the cards and clicking “okay,” remember to save the default configuration.

B.3.2 User Configuration.

The user configuration contains most of the state variables and parameters of the

program, such as frame size, pixel rate, which channels are active, etc. These parameters

are all set from the configuration form. To set the configuration, press the configuration

button, and set the correct values on the form. Press the okay button to use the new

values, or cancel to not use the new values. Note, the configuration is not saved to disk

at this point. The user configuration can be saved to disk by selecting “File → Save ...”,

or when prompted on exit.

B.3.3 Using the Stages.

The stage motion works by clicking on any of the available viewers. To move

1/10th the distance, hold the shift key while clicking. In order to scroll in Z, make sure

“scoll in Z” is selected for the mousewheel action, and use the mousewheel. Again, holding

the shift key moves the distance by 1/10th the full distance..

Note that the mousewheel can also be used to rotate and zoome the image.
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B.3.4 Scripting with MATLAB

Previously, scripting in MpScope was handled through a Visual Basic scripting

interface. In MpScope 3.0, scripting is handled through MATLAB. This allows users to

write more powerful scripts (for instance, integrating data processing features and other

user MATLAB scripts), without having to lean an additional programming language.

Note, in order to use this feature, you must have MATLAB 2009a or later, which is the

first version to contain the .NET interface.

Since MpScope 3.0 is written in C#, all the public static functions are automati-

cally available to the outside world, including MATLAB scripts. In order to use them,

the assembly (which is just the MpScope executable) must be loaded into MATLAB.

Following is a simple script to demonstrate control through MATLAB:

% querry to make sure .NET works on this system

disp([’Today’’s day, from .NET: ’ num2str(System.DateTime.Now.Day)])

% add the assembly, to allow access to functions

% note, actual location of the .exe file will vary

MpScopeAssembly = NET.addAssembly(’C:\MpScope.exe’);

% functions are called using the normal dot notation

% for instance, try a simple function from the library

MpScope.MpLib.SquareNumber(5) % returns 25

% start and MpScope session as a separate thread

MpScope.Program.RunAsThread()

% make sure this has time to load

pause(5)

% scanning can be initialize by running StartScan

% (this is equivalent to pressing the StartScan button)

MpScope.Engine.StartScan()

% wait for scanning to complete by polling

% note, this time can also be used to accomplish other

% calculations, such as data analysis of previous files

while( MpScope.Engine.IsScanning() )

pause(.2)

end

% the scan can also be stopped manually:
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MpScope.Engine.StopScan();

An HTML file of all the available commands is available.

B.4 Developer’s Guide

MpScope was originally written by Quoc Nguyen for the Kleifeld laboratory in

UCSD, and is used in dozens of laboratories around the world. MpScope is fast, stable,

freely available to researchers.

In order to address some limitations of the original software, expand the capa-

bilities, and create a easy to understand and use platform which can be expanded for

future needs (for instance, 3d scanning, automation, etc.), the code has been completely

rewritten as as MpScope3 (MpScope, version 3.0).

Many of these changes are internal, and transparent to the user. Below is an

overview of the main new features. These will be discussed in more detail later in the

document.

• User Interface Improvements. the User Interface is greatly simplified. Scanning

cards are detected automatically, and the mouse can be used for navigation by

clicking (for stage movement) and scrolling on the image (for zoom, rotation, and Z

movement).

• Scan Waveform Improvements. Arbitrary high scanning resolutions are sup-

ported (beyond the previous 512 x 512 scan limitations). The scan path is now

calculated using a user-defined mirror acceleration, which remains constant at

different zoom levels; this allows consistent imaging at different resolutions and

zoom levels, and also allows for cases where the mirror acceleration must be lower

than standard (for instance, when driving large mirrors) or higher (for instance,

with AOD systems) than standard.

• Written in C#/.NET MpScope was originally written in Delphi Pascal. The

newer code uses C#, a programming language similar C++/Java, which is an

extremely powerful way to code Windows Software. C# uses the .NET framework,

the native and preferred was to interface with many hardware devices as well as

Windows system calls. Moreover, the C# IDE, Visual Studio, has a number of
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features which make programming easier (such as Intellisense and refactoring), and

is available as a free download from Microsoft.

• Small, clean code base. the code base of MpScope3 is extremely compact, and

well documented. Many of the features implemented in the original code have been

implemented in a simpler, more compact way; for instance, user configuration data

is written as an .xml file format, requiring only a few lines of code to save and

retrieve the data, which is stored in a transparent and platform independent file

format.

• NI-DAQmx. In order to use the latest data acquisition cards from National

Instruments, the software now uses NI-DAQmx, rather than the older NI-DAQ.

This allows for the faster, newer cards to be used; it also greatly simplifies the

coding required to use the cards, since many of the complicated data acquisition

features (such as double-buffering for fast continuous data acquisition) are now

handled mostly by the NI-DAQmx drivers.

• New File Format The previous version of MpScope used a custom file format,

the .mpd file. In order for platform independence and a simpler file format interface,

MpScope now uses the HDF5 file format. This format has a large user and support

base, and has been well established for rapid access to large, structured datasets

for decades. It is completely platform independent, meaning that it can be used on

64-bit systems, Mac, etc., and is and supported natively in MATLAB.

• Scripting Through MATLAB - One of the powerful features of MpScope is the

ability to script the commands through Visual Basic. Since MpScope3 is built on

.NET, publically accessable functions can be called through MATLAB, which is

the preferred scripting language. It is possible that other languages with operate

through .NET, such as IronPython, will also work, though this has not been tested.

B.4.1 Setting up and Using C#

C# was chosen as the programming language for MpScope3, since it offers a

fast and powerful way of programming Windows applications. C# is probably the most

widely used language to program Microsoft Windows applications, and uses familiar

c-style syntax. C# uses managed code, which makes the code stable and easy to debug,
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and allow for direct memory access (“unsafe” code) for performance critical sections,

where necessary.

Other languages could have been used, but each has its own drawbacks. Java is

platform independent, but correspondingly, accessing the hardware and low-level system

calls (required for speed) must be done through wrappers. Java also cannot do direct

memory manipulations operations. Similarly, MATLAB is extremely high-level, and has

a correspondingly limited user interface options and programming capabilities, such as

data structures and threads. C++ has no particular advantages over C# (which was

designed to be an improved C++), has an awkward interface into .NET, and lacks native

features such as dynamic allocation of multidimensional arrays, a native thread library,

etc.

The newest version of the C# IDE (Integrated Development Environment) is

Visual Studio 2010, and uses .NET 4.0 (backwards compatible with previous versions of

.NET). The Express version, which still contains basically all of the functionality of the

Professional version, can be downloaded for free from Microsoft. You must register each

copy within 30-days, but the registration is also free.

After installing the program, it is recommended to change the following settings

to work with the MpScope3 code. Note, many of these changes (such as the selection of

.NET 3.5) have already been made in the MpScope3 project.

• To enable the complete menu options, go to Tools → Settings → Expert Settings.

• Similarly, Select Tools → Options, and select “Show all Settings.” To view line

numbers in the code editor, go to Text Editor → All Languages, and select Display

Line Numbers.

• MpScope3 uses “K&R” type formatting rules, in which the open brace character “{”
appears at the end of the line, rather than on a separate line (the default setting).

To keep the indentation consistent, go to Tools → Options ... the go to Text Editor

→ C# → New Lines, and uncheck all the “New line options for braces.”

• Many useful library compiled for .NET (such as the Galil and HDF5 libraries) have

not been updated to use the latest version, .NET 4.0, which is the default for Visual

Studio 2010. This can be changed to by selecting Project → MpScope Properties,

and changing the Target Framework to .NET Framework 3.5.
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For an overview of the C# language, many resources are available, such as “C#

4.0 in a Nutshell” by Albahari & Albahari. The sample chapter on Threading is available

for free on the Internet. In addition, there are numerous programming notes and tutorials

produced by Microsoft. Some useful ones are:

• Threading Tutorial

• Threading (C# Programming Guide)

• Events Tutorial, Events

• (C# Programming Guide), etc.

Following are some tips and tricks for getting started Visual Studio and C#.

• To create a new project Go to File → New Project ... and select “Windows Form

Application.” Be sure to name the project appropriately, and then select “OK.”

• Note that renaming files happens intelligently. So, for instance, the file “Form1”

can be renamed to something more descriptive, like “FormMain,” and VS will

automatically rename references to this object (and the code will still compile).

This is known as refactoring, and can be used to intelligently rename other variable

or functions as well - right click on a name, and select Refactor → Rename ...

• The Project can be run by pressing “F5,” (or pressing the “play” button), and can

be stopped by pressing “shift+F5”. This runs in debug mode which is useful for

development. The code will run without the debugger, by pressing control+F5.

• To auto-format a selection, go to Edit → Advanced → Format Selection (or Format

Document)

• To make a Release version (as opposed to a “Debug” version), Go to “Build →
Configuration Manager,” and select Release.

• External .NET libraries are added to the project through “references” to other

.NET assemblies. These are added though “References” in the Solution Explorer.

For example, MpScope adds references and the NI-DAQmx, XML, HDF5, and the

Galil controller. Once a reference is added, a “using” statement in the class allows

the IDE and compiler to use the reference, without typing in the full path to the

function.
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B.4.2 Setting up and using NI-DAQmx

In order to use NI-DAQmx, the latest drivers must also be downloaded and

installed.

For development, download the NI-DAQmx 9.3. Note that this version (9.3 or

later) is required to run with .NET 4.0. However, since MpScope uses the .NET 3.5 frame-

work, this should also be installed. When installing NI-DAQmx, select custom installation,

and add the .NET 3.5 language support, as well as the Examples. Note that the examples

are one of the central ways of learning to use NI-DAQmx, since the documentation is

somewhat diffuse. The examples will install to “C:\Users\Public\Documents\National

Instruments\NI-DAQ\Examples”.

To use NI-DAQmx in C#, You must included the line “using NationalInstru-

ments.DAQmx;” and add the references to NI-DAQ. To add the reference, in the Solutions

Explorer, right click the project, go to “add a reference,” and select “National Instruments

DAQmx” and “National Instruments Common.” Do not add “Common Native,” this

will result in a compile error.

Double Buffering, and Asynchronous Callbacks

The most algorithmically difficult part of using the cards is the continuous

acquisition and processing (descanning the frames, writing to file) of the data. This

is accomplished by NI-DAQmx using a behind-the-scenes circular buffering scheme,

documented in Waveform and Single-Point I/O in NI-DAQ 7 (and later versions).

NI-DAQmx uses delegates to control callbacks from the card. To understanding

how these work check out the ms example. When a delegate is constructed, it takes the

name of the function to do the processing in the constructor.

Synchronizing across the RTSI bus

In order for the various DAQ cards (the main card, analog input card, and digital

counting card) to synchronize their start, and use the same clock, the RTSI cable must

be physically installed and configured in max. See the NI RTSI overview for more

information. To set up the cable, open MAX, right click on “Devices and Interfaces,”

and select “create new”
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More NI-DAQmx Documentation

The documentation for NI-DAQmx is somewhat diffuse and can be difficult to

find.

There are a number of Examples, which can be installed when the drivers are

installed.

Learn 10 Functions in NI-DAQmx and Handle 80 Percent of Your Data Acquisition

Applications– a good initial overview of the NI-DAQmx system

Using NI-DAQmx in Text Based Programming Environments - a good general

overview of programming in C# (and Visual Basic)

Programming NI-DAQ in Visual C# .NET

Text Based NI-DAQmx Data Acquisition Examples - includes additional examples,

not installed with NI-DAQ

Timing and Synchronization Features of NI-DAQmx

Much of the main documentation is installed in a help file, which is available from

the Start Menu. “C:\ProgramData\Microsoft\Windows\Start Menu\Programs\National

Instruments\NI-DAQ\Text-Based Code Support” contains a hyperlinked help file “NI-

DAQmx ¡version¿ .NET Framework Help”, containing most of the API Information, etc.

Note that National Instruments steers users towards using the “Measurement Studio,”

which is a separate package (available for a fee). MpScope3 does not use this, sticking to

the core classes instead.

B.4.3 Automatically Generated Documentation (Doxygen)

Standard XML tags to add internal documentation to the code are becoming

more standard. For instance, typing “///” into Visual Studio IDE will automatically

generate a stub for a “summary” comment,

/// <summary> comments look like this </summary>

A number of parsers are able to look through all the source file, and assemble

these comments, along with the function stubs, into usable documenation (such as html,

microsoft help files, or RTF document files). One of the most popular and easy to use

tools is doxygen. Doxygen for windows has a helpful user GUI, which allows for an

easy way to customize what the help files look like. The MpScope3 release contains a

settings file for Doxygen, which is an easy way to create documentation of all the publicly

available function calls, as well as any comments associated with them.
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B.4.4 Setting up and using HDF5 (file format)

The file format in MpScope 2.0 and earlier was based on the Microsoft Streams

file access implementation. Although this approach has a number of advantages (fast, and

fully supported on Windows machines), there are a also number of disadvantages. The

file write and read (MPFILE.OCX active X control, and the Mp2Mat.m programs) must

be separately maintained. This ads to code complexity, and potential errors. Similarly,

the file format does not currently work with Windows 64-bit (since it would require

a 64 bit active X control), or other operating systems, such as Mac or Linux. The

solution is to use one of the established formats for reading large data sets. There are

several possibilities, such as CDF, netCDF, FITS, and HDF5. All of these are commonly

available, and supported by MATLAB.

The HDF5 file format was chosen since it is widely supported (available for

many platforms, has been ported to .NET, and is natively supported in MATLAB),

well maintained, easy to use, and fast. HDF5 is was created by the National Center for

Supercomputing Applications (NCSA) at the University of Illinois. The data can be

written in whatever format is convenient (multiple 2d frames, 1d data, using doubles,

bytes, etc.), making it easy to mix imaging, electrophysiology, configuration data together

in the same file.

Note, Another close contender is CDF / netCDF. In the netCDF vs. HD5 debate,

a number of posts point to HDF5 as being superior, due to the hierarchical nature of

storage (grouping), and the built-in compression support. (Newer versions of netCDF

implement these features, by using a HDF5 format.) See Comment on HDF5 vs netCDF

and Another comparison.

HDF5 files can have extensions hdf, h4, hdf4, h5, hdf5, he4, he5. MpScope3 uses

“.h5” Mathematica will import .h5, but not cdf. To simplify, all MpScope3 files use the

“.h5” extension.

B.4.5 HDF5

Tools to use HDF5 with C# are available here. Note that the test programs were

written with Visual Studio 2005 - later version of VS will import the projects with no

problem, though the project must be set to target .NET 3.5.

If you run the test program (CSharpExample1) as-is, it will crash with the note:

“The specified module could not be found. (Exception from HRESULT: 0x8007007E)”
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This is due to the supporting files (the HDF5 libraries) not actually being installed in a

location where they can be found by the program!

The binaries can be downloaded from here. For a program to compile, a reference

to “HDF5DotNet” must be included. In addition, the following files (libraries) must be

added to C:\Windows\Sytem32\ hdf5dll.dll, hdf5dll.lib, hdf5 hldll.dll, hdf5 hldll.lib, zlib

1.dll, zlib 1.lib szip.dll szip.lib ... from the \hdf5DotNet\HDF5DotNet\Release folder

Into the Windows\System32 folder. Not having these will result in a run-time error.

For 64-bit windows, you must copy the HDF5DotNet.dll, hdf5dll.dll,szlibdll.dll,zlib1.dll,msvcr71.dll,msvcr90.dll

into the SysWOW64 director, instead of the system32 directory. This has not yet been

tested.

There is a free HDF5 viewer,hdfview, which allows browsing and editing HDF

files. HDFView is is JAVA based ... note that occasionally on launch, it will generate a

“LaunchAnywhere Error Windows Error 6 occurred while loading the Java VM” error.

This is not an error in the underlying HDF file.

An HDF5 group is analogous to a file system directory

In HDF, There are three classes of named objects: group, dataset, and named

datatype. An HDF5 group is analogous to a file system directory.

The datatype are analogous to “double,” “byte,” etc.

The datasets contain the actual data. These can be a single value (a scalar), an

1d array, or a matrix of 2 or higher dimensions (such as imaging frames).

The HDF5 dataspace describes the layout of the elements of a multidimensional

array. Conceptually, the array is a hyper-rectangle with one to 32 dimensions. A typical

dataspace would be a frame, for instance. The HDF5 datatype object describes the layout

of a single data element

Attributes - Any HDF5 named data object (group, dataset, or named datatype)

may have zero or more user defined attributes

The basic steps for writing an HDF file are on p. 21 of the User’s Guide, section

2.1.

• Create the file

• Create a dataset

– Create and initialize a dataspace for the dataset

– Define a datatype for the dataset
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– Create and initialize the dataset

Note that HDF5 uses C storage conventions, assuming that the last listed dimen-

sion is the fastest-changing dimension. This is the same as C#.

The File Format Data in an HDF5 file is arranged in Groups (essentially, folders),

and these groups may contain attributes. The Groups may contain other groups, or

contain data (like arrays, etc.).

Since data is acquired in chunks, corresponding to frames of the image, data is

also stored as a series of these frames. This is true both for imagining data, which is

written frame-by-frame, as well as the analog data, which is written in “frames” as well.

Each frame in the Analog data sequence spans the same time as the imaging

frame. That is, if Imaging frames are taken 200 ms apart, then the analog data frames

would be 200 ms apart as well. (Typically, however, they will be downsampled from the

full scanning speed, and thus contain fewer samples per frame. When reading the file,

the analog frames can be strung back together for a continuous time sequence, or left as

separate frames.

In general, the .h5 files generated by MpScope3 have the following format: /Config

- the config group does not actually contain data, but rather has the scanning attributes

attached to it.

/Image - the main imaging data, up to four channels Ch1 Ch2 .... /AnalogMain -

Analog data, taken from the main scanning board. Note, data on the National Instruments

board is acquired as doubles, and then converted to shorts (signed 16 bit numbers), for

compact storage. To convert back to a voltage value, the samples can be multiplied by

the “ChannelPrecision” attribute. Ch1 Ch2 ...

/AnalogAux - Analog data, taken from the auxiliary analog input board. The

format is similar to that for the data taken by the main board.

B.4.6 Setting up and Using the Galil Controller

To use the Galil controllers, GalilTools must be installed - this installs all of the

necessary .dll’s as well. Software can be downloaded from Galil. For the .NET framework,

download DMC .NET API Framework 2 (VS2005), which supports all the Visual Studios.

Instructions are in the current app note.

Note that these target Visual Studio 2005 - however, they will work fine with

Visual Studio 2010, as long as the project is set to use .NET 3.5 (rather than 4.0).
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Creating a .NET Application without Measurement Studio

To view the NI-DAQmx .NET documentation, go to StartAll ProgramsNational

InstrumentsNI-DAQNI-DAQmx .NET Reference Help. Expand NI Measurement Studio

HelpNI Measurement Studio .NET Class LibraryReference to view the function reference.

Expand NI Measurement Studio HelpNI Measurement Studio .NET Class LibraryUsing

the Measurement Studio .NET Class Libraries to view conceptual topics for using NI-

DAQmx with Visual C# and Visual Basic .NET.

To get to the same help topics from within Visual Studio, go to Help Contents.

Select Measurement Studio from the Filtered By drop-down list and follow the previous

instructions.

Photon Counting The photon counting in MpScope 2.0 currently uses the NI

PCI-6534. The newer version of this board, recommended by NI, is the NI PCIe-6536

(25 MHz) or the NI PCIe-6537 (50 MHz).

The appropriate cable for the PCI-6534 is SH68-68-D1 Cable, which is available

in .4, 1.0, 2.0 and 5.0 meter lengths. For the NI PCIe-6536, use the Note that this is

unshielded - they also make shielded cables (SHC68-H1X38), but these are much more

expensive. (Seems the limit is 2M on these?)

Turn Calculations - Y scan mirror

For the Y turn, it’s easiest to calculate for the turn starting at t = 0, and lasting

for a time T. The mirror position at the start of the turn is 0, and Y (the frame height)

at the end. Note that in this case, the mirror velocity will be -V.

P(t = 0) = 0 (starts at point 0) P′(t = 0) = V (y scan velocity at the start)

P (t = T ) = Y (full Y height at the end of the turn) P ′(t = T ) = V (y scan velocity af

the end)

This can be solved with a spline:

P (t) = a+ bt+ ct2 + dt3 (B.1)

With the first two constraints (initial position and velocity), this becomes:

P (t) = V t+ ct2 + dt3 (B.2)

Adding the second two constraints (final position and velocity) gives
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Y = V T + cT 2 + dT 3 (B.3)

(final position) and

V = V + 2cT + 3dT 2 (B.4)

(final velocity)

These can be solved to give:

c = −3dT/2 (B.5)

(from final velocity equation)

d = 2(V T − Y )/T 3 (B.6)

(substituting in c to final position equation)

P (t) = V t+ ct2 + dt3 (B.7)

B.4.7 Servo Power Control

The power can be controlled by a servo, typically the HS-785. This is controlled

by the counter1 output on the main board. Note, from the Hitec site: “All Hitec servos

require a 3-4V peak to peak square wave pulse. Pulse duration is from 0.9ms to 2.1ms

with 1.5ms as center. The pulse refreshes at 50Hz (20ms).”

B.4.8 Theading and Program Execution in C#

MpScope is a type of program knows as a “Windows Forms Application.” Like

most programs, at initialization there is only one execution thread. This is true, even if

the program spawns off multiple child windows (like Viewers, or the Configuration form

for instance).

In a forms application, after initializing, application will just wait for user input.

This could be in the form of a button press, or an action such as a mouse over. Whenever

such an action occurs, an event is placed on a message queue to execute the function (such

as a button press handler), and the thread begins processing that function. If another

event occurs (such as a different button press, or a resize, etc.) while that function is
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execting, the function is not preempted. Rather, after the function exits, the message

queue will execute the next event in sequence.

The advantage of this execution scheme is that nothing in the application has

to be thread safe. A button press handle in a child window can access the same data

as the main window, without the possibility of a “torn read” or other errors that can

occur in a multithreaded application. Keeping application mostly single-threaded makes

development and debugging much, much easier.

The disadvantage is that sometime a function which is takes a long time to

execute can cause the user interface to become unresponsive. For instance, if a button

handler contains the call “System.Threading.Thread.Sleep(5000)”, then the UI will

become unresponsive for 5 seconds, and will not draw updates not handle any additional

button presses. For this reason, it is occasionally useful to spawn off different threads,

but frequently this can be handled with a Windows Timer.

The Timer class (System.Windows.Forms.Timer) allows a function to schedule a

function to be run at some later time. This can be useful, say, when a stage update must

occur at some later time (i.e., after the stage has moved). Scheduling a timer essentially

adds an event to the message queue, and is similar to just calling the function at a later

time. Note that timers will not result in a prempting of the current thread, since they do

not run in additional threads.

As a subtle point of confusion, there is an additional type of timers other than

the Forms Timer, such as “System.Threading.Timer”. These are multithreaded, and will

not be discussed here.

Scripting in MATLAB - note that the situation is similar with MpScope is being

run from MATLAB. Only one functionin MpScope can run at a time, so the whole

program is intrinsically thread-safe. However, be careful when running from BOTH the

GUI and MATLAB! In this case, since both MATLAB and the GUI are running separate

threads, it is possible to call functions in an thread-unsafe matter, for instance by clicking

a button and then issuing the same command in MATLAB.
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[Débarre et al., 2006] Débarre, D., Supatto, W., Pena, A. M., Fabre, A., Tordjmann,
T., Combettes, L., Schanne-Klein, M. C., and Beaurepaire, E. (2006). Imaging lipid
bodies in cells and tissues using third-harmonic generation microscopy. Nature Methods,
3:47–53.

[Denk et al., 1990] Denk, W., Strickler, J. H., and Webb, W. W. (1990). Two-photon
laser scanning fluorescence microscopy. Science, 248:73–76.

[Denk et al., 1995] Denk, W., Sugimori, M., and Llins, R. (1995). Two types of calcium
response limited to single spines in cerebellar purkinje cells. Proceedings of the National
Academy of Sciences USA, 92:8279–8282.

[Denk and Svoboda, 1997] Denk, W. and Svoboda, K. (1997). Photon upmanship: Why
multiphoton imaging is more than a gimmick. Neuron, 18:351–357.

[Derdikman et al., 2003] Derdikman, D., Hildesheim, R., Ahissar, E., Arieli, A., and
Grinvald, A. (2003). Imaging spatiotemporal dynamics of surround inhibition in the
barrels somatosensory cortex. Journal of Neuroscience, 23:3100–3105.

[Devor et al., 2008] Devor, A., Hillman, E. M., Tian, P., Waeber, C., Teng, I. C., Ru-
vinskaya, L., Shalinsky, M. H., Zhu, H., Haslinger, R. H., Narayanan, S. N., Ulbert,
I., Dunn, A. K., Lo, E. H., Rosen, B. R., Dale, A. M., Kleinfeld, D., and Boas, D. A.
(2008). Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate
in ipsilateral somatosensory cortex. Journal of Neuroscience, 28:14347–14357.

[Devor et al., 2007] Devor, A., Trevelyan, A., and Kleinfeld, D. (2007). Is there a common
origin to surround-inhibition as seen through electrical activity versus hemodynamic
changes? focus on duration-dependent response in si to vibrotactile stimulation. Journal
of Neurophysiology, 97:1880–1882.

[Di Caro and Dorigo, 1998] Di Caro, G. and Dorigo, M. (1998). Antnet: Distributed
stigmergetic control for communications networks. Journal of Artificial Intelligence
Research, 9:317–365.

[Dombeck et al., 2009] Dombeck, D. A., Graziano, M. S., and Tank, D. W. (2009).
Functional clustering of neurons in motor cortex determined by cellular resolution
imaging in awake behaving mice. Journal of Neuroscience, 29:13751–13760.

[Drew et al., 2010a] Drew, P. J., Blinder, P., Cauwenberghs, G., Shih, A. Y., and Kle-
infeld, D. (2010a). Rapid determination of particle velocity from space-time images
using the radon transform. Journal of Computational Neuroscience, 29:5–11.

[Drew et al., 2008] Drew, P. J., Duyn, J. H., Galanov, E., and Kleinfeld, D. (2008).
Finding coherence in spontaneous oscillations. Nature Neuroscience, 11:991–993.



97

[Drew and Feldman, 2009] Drew, P. J. and Feldman, D. E. (2009). Intrinsic signal imag-
ing of deprivation-induced contraction of whisker representations in rat somatosensory
cortex. Cerebral Cortex, 19:331–348.

[Drew et al., 2010b] Drew, P. J., Shih, A. Y., Driscoll, J. D., Knutsen, P. M., Davalos,
D., Blinder, P., Akassoglou, K., Tsai, P. S., and Kleinfeld, D. (2010b). Chronic optical
access through a polished and reinforced thinned skull. Nature Methods, 7:981–984.

[Drew et al., 2011] Drew, P. J., Shih, A. Y., and Kleinfeld, D. (2011). Fluctuating and
sensory-induced vasodynamics in rodent cortex extends arteriole capacity. Proceedings
of the National Academy of Sciences USA, 108:84738478.

[Driscoll et al., 2011a] Driscoll, J. D., Shih, A. Y., Drew, P. J., Cauwenberghs, G., and
Kleinfeld, D. (2011a). Two-photon imaging of blood flow in cortex. In Helmchen, F.,
Konnerth, A., and Yuste, R., editors, Imaging in Neuroscience: A Laboratory Manual,
volume 2, pages 927–938. Cold Spring Harbor Laboratory Press, New York.

[Driscoll et al., 2011b] Driscoll, J. D., Shih, A. Y., Iyengar, S., Field, J. J., White, G. A.,
Squier, J. A., Cauwenberghs, G., and Kleinfeld, D. (2011b). Photon counting, censor
corrections, and lifetime imaging for improved detection in two-photon microscopy.
Journal of Neurophysiology, 104:1803–1811.

[Engelbrecht et al., 2008] Engelbrecht, C. J., Johnston, R. S., Seibel, E. J., and Helmchen,
F. (2008). Ultra-compact fiber-optic two-photon microscope for functional fluorescence
imaging in vivo. Optics Express, 16:5556–5564.

[Fernández-Klett et al., 2010] Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller,
J., and Lindauer, U. (2010). Pericytes in capillaries are contractile in vivo, but arterioles
mediate functional hyperemia in the mouse brain. Proceedings of the National Academy
of Sciences USA, 107:22290–22295.

[Field et al., 2010a] Field, J. J., Carriles, R., Sheetz, K. E., Hoover, E. E., Chandler,
E. V., Tillo, S., Hughes, T. E., Sylvester, A. W., Kleinfeld, D., and Squier, J. A.
(2010a). Optimizing the photon yield in two-photon excitation microscopy by dispersion
compensation. Optics Express, 18:13661–13672.

[Field et al., 2010b] Field, J. J., Sheetz, K. E., Chandler, E. V., Hoover, E. E., Young,
M. D., Ding, S.-Y., Sylvester, A. W., Kleinfeld, D., and Squier, J. A. (2010b). Dif-
ferential multiphoton laser-scanning microscopy. IEEE Journal of Selected Topics in
Quantum Electronics, in press.

[Fox and Raichle, 1986] Fox, P. T. and Raichle, M. E. (1986). Focal physiological uncou-
pling of cerebral blood flow and oxidative metabolism during domatosensory stimulation
in human subjects. Proceedings of the National Academy of Sciences USA, 83:1140–
1144.

[Freund, 2009] Freund, Y. (2009). A more robust boosting algorithm. arXive, page
Arxiv/0905.2138.



98

[Frostig et al., 1990] Frostig, R. D., Lieke, E. E., Ts’o, D. Y., and Grinvald, A. (1990).
Cortical functional architecture and local coupling between neuronal activity and the
microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals.
Proceedings of the National Academy of Sciences USA, 87:6082–6086.

[Garaschuk et al., 2006] Garaschuk, O., Milos, R. I., and Konnerth, A. (2006). Targeted
bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature
Protocols, 1:380–386. 1750-2799 (Electronic) Journal Article Research Support, Non-
U.S. Gov’t.
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