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Abstract

Introduction: High blood pressure (HBP) in children causes pre-clinical damage to the heart 

and accelerates atherosclerosis. Current pharmacological treatments have limited ability to prevent 

end-organ damage, particularly that of the kidneys. A contrasting element between adult vs. 

pediatric HPB treatment, is the emphasis in adults on exercise regimens that target increments in 

cardiorespiratory fitness [CRF, (peak VO2)]. The aim of this study was to evaluate the association 

of CRF with blood pressure percentiles and blood pressure status in children with normal and 

excessive adiposity (NA vs. EA). An exploratory aim was to measure associations of CRF with 

a) other cardiovascular disease risk factors commonly found in children with HBP, and b) kidney 

function.

Methods: Children (n= 211), attended one study visit. CRF was measured using an incremental 

bike test, and body composition by dual-energy X-ray absorptiometry. Fat-free mass (FFM) 

index was calculated as kilograms of fat-free mass per square meter. Multiple logistic and linear 

regression analyses were used to model the probability of HBP, and other variables of interest 

[plasma lipids, HOMA2-IR, ALT, and glomerular filtration rate (eGRF)] against peak VO2.
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Results: CRF interacted with adiposity status in predicting the probability of HBP. Each 

additional milliliter per minute per FFMI in peak VO2 decreased the odds of HBP by 8% in 

the EA group only (OR= 0.92; CI= 0.87–0.99). Systolic and diastolic blood pressure percentiles 

decreased, and eGFR increased with increasing CRF in both adiposity-level groups. HOMA2-IR 

and ALT decreased with increasing CRF in children with EA only.

Conclusions: Higher CRF associated with decreased probability of clinical HBP, lower insulin 

resistance, and improved liver function in children with EA. Yet, blood pressure percentiles and 

kidney function improved with increasing CRF irrespective of adiposity status.

Keywords

Obesity; adiposity; peak VO2; hypertension

Introduction

Pediatric primary high blood pressure (HBP), which encompasses elevated blood pressure 

(previously known as pre-hypertension: blood pressure values ≥90th and <95th percentiles), 

stage-1, and stage-2 hypertension (HTN), is a growing public health concern (1). Data 

from the National Health and Nutrition Examination Survey (NHANES) revealed that 

between 1988–1994 and 1999–2008 the prevalence of pediatric HBP increased by 21% 

in boys (from 15.8% to 19.2%) and 53% in girls (from 8.2% to 12.6%) (2). In 2017, the 

American Academy of Pediatrics (AAP) created new pediatric blood pressure reference 

guidelines (1). Under these guidelines, 2.7% of children previously considered normotensive 

are classified as having elevated blood pressure while 26% of children with previous 

diagnosis of HBP are reclassified with a more severe clinical stage of HBP (3). Importantly, 

children whose blood pressure status worsens due to these reclassifications are more likely 

to present with dyslipidemia, prediabetes, and overweight/obesity (OW/OB) when compared 

to normotensive controls (3).

The most prevalent cardiovascular disease (CVD) risk factor associated with pediatric HBP 

is OW/OB. However, the clustering of multiple CVD risk factors in these patients is not 

uncommon, which contributes to the process of accelerated atherosclerosis (4). As 84% of 

children with OW/OB will continue to have excessive weight as adults, public health efforts 

are largely focused on this high-risk population (5). Major cardiovascular events attributable 

to HBP do not occur in childhood; however, there is silent damage to target organs (6, 7). 

Even mild elevations in blood pressure (≥90th and <95th percentiles) are associated with 

higher frequency of left ventricular hypertrophy and increased arterial stiffness (6). In adults, 

HBP is the second leading cause of end-stage renal disease. While current pharmacological 

treatments are effective at reducing blood pressure, their ability to prevent kidney injury 

is limited, which underscores the necessity of safe and effective strategies to protect target 

organs (8).

Unfortunately, HBP literature in children is not as robust as that in adults (1). When it comes 

to treatment and management of adult HBP, for example, increasing both cardiorespiratory 

fitness [CRF, peak oxygen consumption (Peak VO2)] and physical activity (PA) are essential 

goals (quality of evidence: level A) (9–11). In contrast, the recommendation of PA as a 

Diaz et al. Page 2

Med Sci Sports Exerc. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



non-pharmacological approach to counter HBP in children is based on low quality evidence 

(level C) and therefore the strength of this recommendation is weak (1). Nevertheless, 

lifestyle modifications specifically PA and dietary changes, are the choice of treatment at the 

time of diagnosis for the majority of children (1, 12, 13). A contrasting element, however, 

that distinguishes the approach to adult vs. pediatric HBP is the emphasis in adults on 

exercise regimens that target increments in CRF (10, 14). Current clinical guidelines to 

pediatric HBP contemplate neither objective measurements of CRF to assess risk, nor CRF 

oriented goals to guide treatment.

Most studies evaluating the association between CRF and cardiovascular health in children 

rely on indirect measurements of fat mass and/or indirect measurements of CRF. Moreover, 

the role of CRF on blood pressure status assessed using current screening guidelines from 

the AAP has not been evaluated. To address these gaps and provide new insight to the field, 

we conducted direct measurements of CRF (peak VO2) and adiposity (dual-energy X-ray 

absorptiometry, DXA) in 7 to 10-year-old children. We hypothesized that CRF improves 

blood pressure percentiles and blood pressure status, particularly in children at higher 

risk for clinical HBP (i.e., excessive adiposity). An exploratory aim was to evaluate the 

association of CRF with other markers of CVD risk frequently found in children with HBP 

(4). Finally, the association between CRF and the estimated glomerular filtration rate as a 

measure of kidney function was assessed.

METHODS

Subjects

Two-hundred-eleven children (7–10 years old) enrolled in the Arkansas Active Kids Study 

(AAK) were included for analyses (Table 1) (15). Exclusion criteria were: severe persistent 

asthma (determined by daily use of oral/inhaled corticosteroids to keep asthma symptoms 

under control and/or frequent use of rescue inhaler), metabolic/endocrine diseases (e.g., type 

1 or type 2 diabetes mellitus, hypothyroidism), being on hormonal replacement therapy, 

cancer, autoimmune diseases and bleeding disorders. Qualifying children attended a one-day 

study visit at the Arkansas Children’s Nutrition Center (ACNC) Laboratory for Active Kids 

and Families. The institutional review board at the University of Arkansas for Medical 

Sciences approved the study protocol. All parents and children gave written informed 

consent and assent, respectively.

Measures

Anthropometry and body composition—In the overnight-fasted state, body weight 

and height were measured using a digital scale (Seca 877, Seca GbmH & Co. KG, Hamburg, 

Germany) to the nearest 0.1 kg and 0.1 cm, respectively, and triplicate values averaged. 

Body composition and visceral fat area (cm2) were assessed using DXA (Horizon-A with 

Advanced Body Composition™, Hologic, Bedford, MA, USA). Fat mass (FM) index [FMI= 

FM (kg)/height (m2)] and fat-free mass (FFM) index [FFMI= FFM (kg)/height2 (m)] z­

scores were computed using normative values in children (16). Children were determined to 

have excess adiposity (EA) if their FMI z-score ≥1, whereas those with an FMI z-score <1 

were considered to have normal adiposity (NA).
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Blood pressure measurements—Children were asked to empty their bladders and rest 

lying down for a minimum of 20 minutes. Blood pressure was measured in duplicate at 

1-minute interval on the right arm using an electronic vital sign monitor (CARESCPE™ 

VC150, Milwaukee, WI, USA). For data analyses, systolic (SBP) and diastolic (DBP) blood 

pressure percentiles as well as clinical stage [normal (SBP/DBP percentile <90th), elevated 

(SBP/DBP percentile ≥90th to <95th or 120/80 mmHg to <95th percentile, whichever was 

lower), stage-1 HTN (SBP/DBP percentile ≥95th to <95th plus 12 mmHg or 130/80–139/89 

mmHg, whichever was lower), and stage-2 HTN (SBP/DBP percentile ≥95th plus 12 

mmHg or ≥140/90 mmHg, whichever was lower)] were determined for each of the two 

measurements using the AAP 2017 pediatric blood pressure guidelines (1, 17). If blood 

pressure clinical stage did not change from the first to the second measurement then values 

from the first measurement were used, unless both systolic and diastolic blood pressure were 

lower in the second measurement. If clinical staging improved (i.e., HTN to elevated or 

elevated to normal) from the first to second measurement or vice versa, then values from the 

less severe clinical staging were used (18).

Blood draw and analytes—Blood was drawn from the antecubital vein via venipuncture 

following an overnight fast. Serum levels of sodium, chloride, calcium, creatinine, 

urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, total 

cholesterol, high-density lipoproteins (HDL), low-density lipoproteins (LDL), glycerol, 

and C-reactive protein (CRP) were measured using an RX Daytona clinical analyzer and 

following manufacturer’s instructions (Randox Laboratories-US Limited, Kearneysville, 

WV, USA). Insulin levels were measured using enzyme-linked immunosorbent assay 

(Meso Scale Discovery, Rockville, MD, USA). The updated homeostasis model assessment 

(HOMA2) calculator from the Oxford Centre for Diabetes, Endocrinology and Metabolism 

(19) was used to estimate insulin resistance (HOMA2-IR), insulin secretion (HOMA2-%β), 

and insulin sensitivity (HOMA2-%S). Glomerular filtration rate (eGFR, ml·min−1·1.73 m−2) 

was estimated using the updated Schwartz equation (20, 21) shown below:

eGFR = 0.413 × height  cm /serum creatinine  mg/dL

Cardiorespiratory fitness—Peak VO2 was assessed through a graded exercise test on 

a pediatric cycle ergometer (Corival Pediatric, Lode B.V., Groningen, the Netherlands). 

Oxygen consumption during the exercise test was measured using a metabolic cart 

(Medgraphics Ultima PFX® system, MGC Diagnostics Corporation, St. Paul, MN, USA). 

Sit height was adjusted to a corresponding knee angle of 15 degrees which was measured 

using a goniometer with the pedal at its lowest position. Crank length was set at 13 cm 

for 7-year-old children, and 15 cm for 8–10-year-old children (22). The workload increased 

every minute in increments of 10 Watts for children < 120 cm tall and 15 Watts for children 

≥120 cm tall. During the test, children were instructed to keep the pedal frequency between 

50–60 rpm. Children were included for analyses if they met the following criteria: 1) heart 

rate ≥80% of age predicted maximum, and/or 2) respiratory exchange ratio ≥ 1.0, and/or 3) 

ratings of perceived exertion on the children’s OMNI scale ≥ 8. Careful attention was paid to 

not terminate the test before children displayed signs consistent with maximal effort.
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In this study, peak VO2 was normalized to FFMI (ml·min−1· FFMI−1; FFMI is in kg/m2) 

in order to account for the effect of height on FFM [r = 0.88; p<0.001)] for a more 

accurate comparison among children of different statures (23). The ratio method which 

intends to remove the influence of FFM (or body weight) from peak VO2, assumes that the 

relationship between these two variables is linear with a Y-intercept not different from zero 

(24). However, the assumption of a zero intercept is systematically violated when FFM or 

body weight are used as denominators. This has raised concerns and has been a topic of 

discussion for many years due to the possibility of spurious conclusions when deviations 

from assumptions occur (24). Our approach met both assumptions of the ratio method [i.e., 

linear association between peak VO2 and FFMI (β = 87.1, p<.0001), and Y-intercept not 

different from zero (intercept =100.3, p=0.4494)] which was not the case when FFM or body 

weight were used.

Sodium consumption—Sodium consumption was assessed on the day of the study visit 

using the Block Food Screener 2007 for children ages 2 to 17 years. Records were analyzed 

using NutritionQuest’s Data-on-Demand system (NutritionQuest, Berkley, CA) (25).

Statistical analysis

Our sample size derives from the cross-sectional study AAK (NCT03221673). A detailed 

description of the study design, study protocols, and statistical analysis has been published 

elsewhere (15). Briefly, we estimated that a sample size of 200 subjects has 80% power 

to detect a standardized difference of 0.23 in cardiometabolic risk profile, and a difference 

of 0.35 in BMI z-score at the 0.05 significance level. Cardiometabolic risk is the primary 

outcome of AAK and is defined as an integrated variable measured from a range of variables 

collected in the AAK study.

Data measures in the interval scale are summarized as mean ± SD whereas data measures 

in the ordinal or nominal scale are summarized as percentages and counts. Depending on 

the data distribution, comparisons of continuous variables between EA and NA groups were 

done with the two-sample Wilcoxon test or the two-sample t-test. Categorical variables 

between groups were compared using the Chi-square or Fisher exact tests. The probability 

of having HBP (i.e., elevated blood pressure, stage-1 HTN and stage-2 HTN) using peak 

VO2 as a predictor was fitted using logistic regression analysis. The association of SBP 

percentile, DBP percentile, eGFR, HDL cholesterol, and LDL cholesterol (dependent 

variables) with peak VO2 and adiposity status (EA vs. NA; independent variables) was 

modeled using simple and multiple generalized linear regression analysis. Sex, age, and race 

were included in the final models if a significant association (p<0.05) existed between these 

variables and the outcomes of interest.

RESULTS

Subject characteristics (Table 1)

The distribution of blood pressure status significantly differed between EA and NA groups. 

That is, 69% of children in the EA group had HBP vs. 24% of children in the NA group.
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Metabolic profile of children with EA and NA (Table 2)

Fasting insulin, HOMA2–IR, and HOMA2-%β were 1.6 to 2.0 times higher in children with 

EA when compared to children with NA. Similarly, fasting LDL cholesterol, CRP and ALT 

were higher in children with EA vs. NA. On the other hand, HDL cholesterol was lower in 

children with EA when compared to children with NA. eGFR did not differ between NA and 

EA groups.

Logistic regression analysis and odds ratio estimates (Table 3)

The difference in the (log) odds of HBP was 8.3 units higher in children with EA compared 

to children with NA (β = 8.3, p = 0.0077) (Table 3). There was interaction between 

peak VO2 and adiposity status (EA vs. NA) in predicting the probability of HBP (Wald 

Chi-square 4.54; p = 0.0332). Increasing peak VO2 decreased the odds of HBP but only 

in the EA group (Figure 1). Specifically, each additional ml·min−1· FFMI−1 in peak VO2 

decreased the odds of HBP by 8% in children with EA (OR= 0.92; CI = 0.87–0.99). On the 

other hand, the effect of peak VO2 on HBP was not statistically significant in children with 

NA (OR = 0.99; CI = 0.97–1.01) (Table 3).

Linear regression analyses between peak VO2, adiposity status (EW vs. NW) and their 
interaction with markers of cardiometabolic health and kidney function (Table 4)

SBP and DBP percentiles negatively associated with peak VO2. For every unit increase in 

peak VO2, SBP and DBP percentiles decreased by 0.21 (p = 0.0044) and 0.25 (p = 0.0001) 

percentage – points, respectively (Table 4). SBP and DBP percentiles were in average 14.6 

(p<.0001) and 8.5 (p = 0.0074) percentage – points higher in the EA group compared to the 

NA group. There was no interaction between peak VO2 and adiposity status in predicting 

blood pressure percentiles. HOMA2-IR was in average 0.62 units higher in children with EA 

compared to children with NA (p<0.0001) (Table 4). There was interaction between peak 

VO2 and adiposity status in predicting HOMA2-IR (Figure 2). Specifically, HOMA2-IR 

decreased with increasing CRF in children with EA (β = −0.01, p = 0.0499) but not in 

children with NA (Table 4).

LDL- cholesterol was on average 0.54 mmol/L higher in children with EA compared to 

children with NA (p = 0.0002). LDL - cholesterol levels were not associated with peak VO2 

nor was interaction found between adiposity status and CRF in association with LDL levels. 

There was a marginal association between HDL – cholesterol and peak VO2 (p = 0.0577) 

which was primarily mediated by sex (data not shown), with girls exhibiting lower values 

of HDL cholesterol compared to boys. ALT was in average 5.5 IU/L higher in children with 

EA compared to children with NA (p = 0.0049). There was interaction between peak VO2 

and adiposity status in association with ALT levels. ALT decreased by 0.24 IU/L per unit 

increased in peak VO2 but only in the EA group (Figure 2).

eGFR positively associated with CRF. For every unit increase in peak VO2 eGFR increased 

by 0.12 ml·min−1·1.73 m−2. eGFR did not associate with adiposity status nor interaction was 

found between peak VO2 and adiposity group (Table 4).
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Multiple linear regression analyses between peak VO2 and adiposity status (EW vs. NW) 
with SBP percentiles, DBP percentiles, LDL – cholesterol, HDL – cholesterol, and eGFR 
(Table 5)

SBP (p = 0.0465) and DBP (p = 0.0003) percentiles decreased with increasing peak 

VO2 independently of adiposity status (Table 5, Figure 3). Sodium intake was marginally 

associated with DBP percentiles but not with SBP percentiles. Adiposity status (EW vs. 

NA) was the strongest predictive variable of SBP percentile followed by peak VO2 and 

explained 5.5% and 1.7% of the observed variance (p = 0.0004) respectively. On the other 

hand, peak VO2 was the strongest predictive variable of DBP percentile explaining 5.4% of 

the observed variance (p = 0.0003). Fasting levels of HDL and LDL – cholesterol did not 

associate with peak VO2 after adiposity status was controlled for. Adiposity status accounted 

for 5.3% and 7.1% of the variance in HDL and LDL – cholesterol levels, respectively. Sex 

was a significant predictor of HDL - cholesterol with girls having lower fasting HDL levels 

compared to boys.

DISCUSSION

The present study evaluated the relationship of CRF (peak VO2) with blood pressure 

percentiles and blood pressure status in children with normal (NA) and excessive adiposity 

(EA). Blood pressure was assessed using the 2017 clinical guidelines from the American 

Academy of Pediatrics for screening and management of HBP in children and adolescents 

(1). An additional exploratory aim, was to assess the relationship of CRF with kidney 

function and with other markers of CVD risk frequently found in children diagnosed with 

HBP. The major finding of this study was that CRF interacted with adiposity status in 

predicting the probability of HBP. Specifically, the probability of HBP decreased with 

increasing peak VO2 in children with EA, but not in children with NA. Yet, SBP and DBP 

percentiles inversely associated with CRF in both adiposity-level groups. Similarly, CRF 

interacted with adiposity status in association with HOMA2-IR and ALT levels. That is, 

insulin resistance and liver function tests improved with increasing peak VO2 in the EA 

group compared to the NA group. Finally, independently of age and adiposity status, eGFR 

directly associated with CRF. Taken together, these results suggest that increasing CRF 

confers protection against HBP, insulin resistance, and liver injury in children with EA. 

However, all children benefit from increasing CRF as evidenced by improved blood pressure 

percentiles and kidney function.

We saw a slightly higher prevalence of elevated blood pressure (14% vs. 11%), and HTN 

(19% vs. 15%) in our study compared to data reported following an initial screening in 

10-to-12 year old children from Houston, Texas where childhood overweight and obesity 

rates are similar to those of Arkansas (26). It is worth noting that in the aforementioned 

study 6.9% of children who were initially classified as having HTN did not meet HTN 

criteria in follow-up visits which resulted in a much lower confirmed HTN prevalence 

of 2.3% (estimated prevalence of 3.2% after accounting for those lost to follow up). The 

decrease in HTN prevalence from initial to follow-up measurements was directly mediated 

by a reduction in stage-1 HTN. It is known that HBP readings fluctuate within and between 

visits (i.e., accommodation effect) which is why repeated measurements over time are 

Diaz et al. Page 7

Med Sci Sports Exerc. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



needed to confirm HTN diagnosis (18). The cross-sectional design of our study prevented us 

from measuring changes in blood pressure status in the overall group and in relation to CRF.

In adults, a wealth of evidence has demonstrated that low CRF is a major risk factor for 

the development of CVD and mortality (27). While the role of CRF in pediatric health is 

gaining recognition (28), the quantity and quality of the current evidence are insufficient to 

inform pediatric clinical practice guidelines. Elevated blood pressure (previously known as 

pre-hypertension), and hypertension are classic CVD risk factors that track from childhood 

to adulthood (29, 30). Recently, in a study involving 3,800 Canadian children ages 6 to 17 

years (31), a negative association was reported between indirect measurements of CRF (i.e., 

submaximal step test) and systolic and diastolic blood pressure values. The study, however, 

did not evaluate the relationship between CRF and clinical blood pressure status in children 

with different body habitus.

Obesity is a strong determinant of HBP risk in children (32). On the other hand, many 

questions remain unanswered around the role of CRF for blood pressure status and other 

physiological responses during childhood. In other words, to what degree is the obesity­

associated increased risk for hypertension driven by sedentary behavior and sub-optimal 

PA, versus body weight per se? Epidemiological data derived from NHANES surveys 

between 1988 and 2008 show a parallel increase in the prevalence of HBP and pediatric 

obesity (2, 33). In contrast, research on trajectories of CRF over time is limited but there is 

evidence that running performance, an indirect measure of aerobic capacity, in children from 

developed countries (n= ~120,000) declined at a rate of 0.43% per year between 1981 and 

2000 (34).

Ekelund et. al. (35) evaluated the association between CRF in children 9–10 years old (n = 

1,092) and clustered cardiovascular risk. A composite score that incorporated standardized 

values of fasting glucose, insulin, HDL - cholesterol, triglycerides, waist circumference, and 

the average of the sum of SBP and DBP (in mmHg) was used. Clustered cardiovascular 

risk decreased with increasing CRF, but the association was confounded by adiposity (i.e., 

waist circumference). Analyses were not further stratified by BMI status. The authors also 

reported a negative association between CRF and fasting glucose levels. Similarly, our 

findings showed a negative association between CRF and insulin resistance (HOMA2-IR), 

but only in children with EA. β - cell secretion estimated using the HOMA2-%β decreased 

with increasing peak VO2 (β = −0.01, p = 0.0008) but only at higher levels of adiposity 

(CRF × FMI – z scores interaction, data not shown). A similar trend was seen for fasting 

glucose levels (data not shown, β = −0.006, p = 0.0516).

The same authors (35) also reported no association between CRF and systolic or diastolic 

blood pressure. It is worth noting, however, that systolic and diastolic blood pressure values 

were standardized to the mean by sex and age, and height was not considered in multiple 

linear regression analysis. The latter may be a limitation since height is a major determinant 

of blood pressure in children and should always be considered in conjunction with age 

and sex (1). We found a negative linear association between systolic and diastolic blood 

pressure percentiles and peak VO2 in children, regardless of adiposity status. In this study, 

the effect of peak VO2 on DBP percentile was greater compared to that on SBP percentile. 
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Greater improvement in DBP vs. SBP in relation to exercise training and peak VO2 was 

recently reported in adults with solid organ transplant (36). The diastolic component of 

blood pressure is generated by the systemic vascular resistance which in turns regulate blood 

supply to peripheral tissues and organs (36).

Interestingly, in this study, kidney function measured using the eGFR directly associated 

with CRF. In agreement with our finding, Vanden Wyngaert and colleagues (37) 

reported a significant increase in eGFR (+2.16 ml∙min−1∙1.73m−2) and peak VO2 (+2.39 

ml∙kg−1∙min−1) in patients with chronic kidney disease (CKD) participating in aerobic 

endurance training. While our study does not explore mechanisms of action, there is 

evidence to support that systemic vascular resistance, sympathetic nervous system activity, 

and plasma renin activity decrease with endurance training (38). Sympathetic stimulation 

of the afferent arteriole of the glomeruli leads to vasoconstriction and reduced hydrostatic 

pressure within the lumen of glomerular capillaries which in turns reduces the glomerular 

filtration rate (39). We did not find an association between DBP / SBP percentiles and eGFR 

(data not shown). Similarly, Vanden Wyngaert et. al. (37) reported that improvements in 

eGFR occurred in the absence of significant changes in blood pressure in patients with 

CKD.

Blood ALT concentration is currently the recommended screening test for nonalcoholic 

fatty liver disease (NAFLD) in children with OW/OB (40). Our data showed a negative 

association between CRF and ALT levels in children with EA. While the etiology of 

NAFLD is multifactorial, insulin resistance has been proposed as a crucial mechanism 

in the pathogenesis and progression of NAFLD (41). Our study shows that HOMA2-IR 

and ALT levels decrease in relation to CRF in children with EA. Including HOMA2-IR 

in the model (β = 3.4, p = 0.0280), however, did not modify the association between 

CRF and ALT. In 15-year-old boys with obesity, a 3-month exercise intervention resulted 

in a ~2% reduction in intrahepatic lipid content measured by proton magnetic resonance 

spectroscopy (42). Children were randomized to participate in aerobic or resistance training. 

In both groups, peak VO2 increased by ~8 ml∙kg−1∙min−1, and visceral fat decreased by 

0.5 kg. However, insulin sensitivity measured using the hyperinsulinemic-euglycemic clamp 

technique improved only in the resistance training group (42). Taken together, these results 

suggest that the observed decrease of ALT in relation to CRF cannot solely be explained by 

improvements in insulin sensitivity. Other pathways (e.g., lipid production, lipid processing, 

and lipid clearance capacity by the liver) may be involved.

Our study is limited by its cross-sectional design. Blood pressure measurements were done 

during a single study visit, which may result in overestimation of HBP in some cases. On 

the other hand, this study has significant strengths. Children underwent direct measurements 

of CRF and of body composition which are lacking in most of the published studies in this 

area. Also, blood pressure percentiles and blood pressure status were assessed using the 

most updated guidelines from the AAP, allowing for interpretations that are meaningful for 

both health care providers and researchers.

In summary, higher CRF associates with improved SBP and DBP percentiles, and kidney 

function in children, regardless of adiposity status. Increasing CRF in children with EA 
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associates with decreased probability of clinical HBP, lower levels of insulin resistance, 

and improved liver function. The current results support the idea that improvement in CRF 

should be considered as a therapeutic strategy for the reduction of CVD risk in children with 

EA.
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Figure 1. 
Logistic plot showing the association between peak aerobic capacity (X axis) and probability 

of high blood pressure plus 95% confidence intervals (Y axis) in 7–10-year-old children 

with normal or excess adiposity. High blood pressure refers to elevated blood pressure, 

stage-1 and stage-2 hypertension.
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Figure 2. 
Regression plot showing the association of peak aerobic capacity (X axis) with HOMA2-IR, 

and plasma ALT (IU/L) levels plus 95% confidence intervals (Y axis) in 7–10-year-old 

children with normal or excess adiposity.
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Figure 3. 
Regression plot showing the association of peak aerobic capacity (X axis) with systolic, and 

diastolic blood pressure percentiles plus 95% confidence intervals (Y axis) in 7–10-year-old 

children with normal or excess adiposity.
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Table 1.

Subject characteristics

Variable All (n=211) EA (n=39) NA (n=172) p-value

Age (years) 9.0 ± 1.2 9.0 ± 1.3 9.0 ± 1.2 0.9722

Sex, n (%) 0.0772

 -Girls 113.0 (54) 26.0 (67) 87.0 (51)

 -Boys 98.0 (46) 13.0 (33) 85.0 (49)

Race, n (%) 0.1686

 -White 154 (73) 25.0 (64) 129 (75)

 -Black 57.0 (27) 14.0 (36) 43 (25)

BMI percentile 63.8 ± 28.7 95.9 ± 3.0 56.5 ± 26.9 <.0001

Peak VO2 (ml·min−1·FFMI−1) 95.6 ± 18.8 86.1 ± 19.3 97.7 ± 18.1 0.0004

FMI z-score 0.29 ± 0.72 1.40 ± 0.25 0.04 ± 0.54 <.0001

FFMI z-score −0.02 ± 0.88 0.93 ± 0.72 −0.23 ± 0.76 <.0001

Visceral fat area (cm2) 34.6 ± 14.9 51.8 ± 14.5 30.7 ± 12.0 <.0001

Systolic BP percentile 0.74 ± 0.21 0.86 ± 0.17 0.72 ± 0.21 <.0001

Diastolic BP percentile 0.71 ± 0.18 0.78 ± 0.18 0.70 ± 0.18 0.006

Blood pressure status, n (%) <.0001

 -Normal 142.0 (67.30) 12.0 (30.77) 130.0 (75.58)

 -Elevated 29.0 (13.74) 9.0 (23.08) 20.0 (11.63)

 -HTN 40.0 (18.96) 18.0 (46.15) 22.0 (12.79)

Data presented as means and SD or counts and percentages. BMI = body mass index; Peak VO2 = peak oxygen consumption; FMI = fat mass 

index; FFMI = fat free mass index; AC = activity counts; BP = blood pressure; HTN = hypertension. Clinical measures were collected in the 
overnight fasted state.
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Table 2.

Metabolic profile of 7 to 10-year-old children with excess adiposity (EA) and normal adiposity (NA) 

participating in the Arkansas Active Kids Study.

Variable All (n=211) EA (n=39) NA (n=172) p-value

Insulin (pmol/L) 44.7 ± 29.6 72.8 ± 38.7 38.5 ± 23.2 <.0001

Glucose (mmol/L) 4.9 ± 0.5 4.8 ± 0.5 4.9 ± 0.5 0.8233

HOMA2-IR 0.8 ± 0.5 1.3 ± 0.7 0.7 ± 0.4 <.0001

HOMA2-%S 179.0 ± 134.5 107.2 ± 95.5 194.9 ± 137.0 <.0001

HOMA2-%β 86.7 ± 38.4 123.4 ± 50.7 78.6 ± 29.7 <.0001

Cholesterol (mmol/L) 4.3 ± 0.8 4.5 ± 0.8 4.3 ± 0.8 0.1449

HDL cholesterol (mmol/L) 1.7 ± 0.4 1.5 ± 0.4 1.8 ± 0.4 0.0003

LDL cholesterol (mmol/L) 2.8 ± 0.8 3.3 ± 0.8 2.7 ± 0.8 0.0005

Glycerol (mmol/L) 87.5 ± 28.3 90.5 ± 23.9 86.8 ± 29.2 0.1809

CRP (mg/L) 1.5 ± 3.1 3.7 ± 4.9 1.0 ± 2.3 <.0001

Urea (mmol/L) 4.4 ± 1.0 4.4 ± 0.9 4.4 ± 1.0 0.9960

Potassium (mmol/L) 4.1 ± 0.4 4.1 ± 0.4 4.1 ± 0.4 0.3346

Sodium (mmol/L) 146.7 ± 4.4 146.6 ± 4.3 146.8 ± 4.4 0.8019

Chloride (mmol/L) 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.0675

Calcium (mmol/L) 91.7 ± 3.9 92.5 ± 3.4 91.5 ± 4.0 0.2109

Creatinine (mg/dL) 2.6 ± 0.2 2.6 ± 0.1 2.6 ± 0.2 0.7242

Glomerular filtration rate
(ml
· min−1 · 1.73
m−2)

80.7 ± 7.3 80.9 ± 7.3 80.7 ± 7.3 0.8807

AST (IU/L) 34.9 ± 15.7 33.7 ± 26.0 35.2 ± 12.4 0.0010

ALT (IU/L) 19.3 ± 10.8 23.9 ± 18.4 18.3 ± 8.0 0.0280

Data presented as means and SD. HOMA2 = updated homeostatic model assessment; IR = insulin resistance; %S = percent insulin sensibility; %β 
= percent β cell function; TG = triglycerides; HDL = high density lipoprotein; LDL = low density lipoprotein; CRP = C reactive protein; AST = 
aspartate aminotransferase; ALT = alanine aminotransferase. Results are from serum or plasma collected in the overnight-fasted state (see Methods)
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Table 3.

Logistic regression analysis and odds ratio estimates exploring the relationship of high blood pressure 

(response variable) with adiposity status (EA vs. NA), peak VO2 (ml·min−1· FFMI−1), and their interaction in 

7 to 10-year-old children.

Logistic Regression Analysis

Parameter Estimate SE Wald
Chi-Square p-value

Group

 Normal Adiposity Reference

 Excess Adiposity 8.29 3.11 7.10 0.0077

Peak VO2 −0.01 0.01 0.47 0.4943

Peak VO2 × Group

 Normal Adiposity Reference

 Excess Adiposity −0.07 0.03 4.54 0.0332

Odd Ratio Estimates and Wald Confidence Intervals

Group Estimate 95% Confidence Limits

 Excess Adiposity 0.92 0.87 – 0.99

 Normal Adiposity 0.99 0.97 – 1.01
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Table 5.

Multiple linear regression analyses between peak VO2 and adiposity status (EW vs. NW) with SBP 

percentiles, DBP percentiles, HDL cholesterol, LDL cholesterol, and eGFR.

Model β 95% CI Pr2 p-value

SBP percentile
Peak VO2 −0.150 −0.300 −0.002 1.7 0.0465

EA vs. NA (reference) 12.90 5.790 19.982 5.5 0.0004

DBP percentile

Peak VO2 −0.235 −0.364 −0.106 5.4 0.0003

EA vs. NA (reference) 5.957 −0.229 12.143 2.2 0.0591

Sodium intake 3.318 −0.021 6.657 1.6 0.0515

HDL cholesterol

Peak VO2 0.001 −0.002 0.004 0.2 0.5044

EA vs. NA (reference) −0.236 −0.374 −0.098 5.3 0.0008

Girls vs. Boys (reference) −0.126 −0.234 −0.019 2.5 0.0216

LDL cholesterol
Peak VO2 0.002 −0.004 0.008 0.3 0.4522

EA vs. NA (reference) 0.563 0.274 0.853 7.1 0.0001

eGFR

Peak VO2 0.060 −0.003 0.122 5.1 0.0009

EA vs. NA (reference) 1.148 −1.472 3.768 0.3 0.3905

Age 0.098 0.040 0.156 2.0 0.0391

Pr2 = squared partial correlation; SBP = systolic blood pressure; DBP = diastolic blood pressure; eGFR = estimated glomerular filtration rate; HDL 
= high density lipoprotein; LDL = low density lipoprotein; EA = excess adiposity group; NA = normal adiposity group.
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