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Abstract 
 

This work presents an approach for automating the discretization and approximation 

procedures in constructing digital representations of composites from micro-CT images 

featuring intricate microstructures. The proposed method is guided by the Support Vector 

Machine (SVM) classification, offering an effective approach for discretizing 

microstructural images. An SVM soft margin training process is introduced as a 

classification of heterogeneous material points, and image segmentation is accomplished 

by identifying support vectors through a local regularized optimization problem. In 

addition, an Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is 

proposed for appropriate approximations of weak discontinuities across material interfaces. 

The proposed method modifies the smooth kernel functions with a regularized Heaviside 

function concerning the material interfaces to alleviate Gibb's oscillations. This IM-RKPM 

is formulated without introducing duplicated degrees of freedom associated with the 

interface nodes commonly needed in the conventional treatments of weak discontinuities 

in the meshfree methods. Moreover, IM-RKPM can be implemented with various domain 

integration techniques, such as Stabilized Conforming Nodal Integration (SCNI). The 

extension of the proposed method to 3-dimension is straightforward, and the effectiveness 

of the proposed method is validated through the image-based modeling of polymer-ceramic 

composite microstructures.  
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1 Introduction  

In recent years, a variety of non-destructive imaging techniques, such as micro-X-ray 

computed tomography (micro-CT), have emerged as powerful alternatives to obtain detailed 

information about the microstructure and internal deformation of composite materials [1]–[4]. 

Nevertheless, modeling microstructures remains challenging owing to their geometrical and 

topological complexities and heterogeneity, making the body-fitted mesh generation for mesh-

based methods extremely tedious and time-consuming, especially in the three-dimension model 

construction. An example of a 2D micro-CT image slice of a polymer-ceramic composite specimen 

(polymer matrix reinforced by ceramic particles) is shown in Figure 1(a) with a resolution of 8 𝜇𝑚, 

and a body-fitted FEM mesh is generated for a selected Region of Interest (ROI) of 200 by 200 

pixels in Figure 1(b) to demonstrate the meshing complexity. As can be seen, body-fitted meshing 

requires significant mesh refinement near material interfaces of inclusions with complex 

geometries. This adds complexity to mesh generation and demands extensive mesh density in the 

discretization, yielding 37,454 elements and 112,538 nodes in this demonstration example. 

 

Figure 1: Micro-CT image of a polymer-ceramic composite microstructure and its 

corresponding body-fitted finite element mesh 

Various image segmentation techniques have been developed over the past several 

decades, including region-based and classification-based methods [5]. Global and local 

thresholding [6] is a simple region-based method that uses a threshold value to separate objects 
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from the background, but it can lead to poor results if the threshold is not chosen correctly. The 

region growing method [7] is another region-based approach that relies on user-selected seed pixels 

and offers advantages over thresholding, but the numerical results can be sensitive to the selection 

of initial seed points. Clustering-based methods [8], such as K-mean clustering, hierarchical 

clustering, and Gaussian Mixture Models, are region-based, unsupervised algorithms that partition 

images into local regions or clusters based on the similarity of their attributes. They can perform 

image segmentation directly with image pixel information without labeled data, but appropriate 

selection of features and number of clusters are essential to the effectiveness of many clustering 

methods. On the contrary, classification-based methods generally adopt a global approach for 

image segmentation, whereby an automatic pattern recognition process is utilized in the context of 

supervised learning based on manually segmented training datasets. K-Nearest Neighbor is a 

simple, non-parametric supervised learning model that makes predictions based on the k-nearest 

neighbors in the training data, but it usually requires a large amount of training data to suppress 

high variance problems [9]. Tree-based algorithms, including decision trees and random forests, 

are another widely used supervised learning techniques in which the training data is partitioned into 

smaller subsets without much data pre-processing and with high interpretability and computational 

efficiency. However, these methods may have limited ability to predict unseen data, restricted 

decision boundary expressiveness, and can be sensitive to imbalanced data [10]. Recently, deep 

learning algorithms have enabled to develop state-of-the-art image segmentation methods, 

especially those based on convolutional neural networks, which can automatically learn features 

from raw images with minimal human interaction. However, these methods require large amounts 

of labeled datasets with extensive training and are mathematically more challenging to interpret 

due to the highly non-linear relationships between input features and output labels [11], [12]. Other 

techniques besides machine learning algorithms have also been widely adopted for image 

segmentation. The level set method originated from Osher and Sethian [13] uses an auxiliary 

function to represent and track the evolution of interfaces in images [14]. While it is capable of 

handling irregular shapes and complex topologies, identification of zero level set can be time 

consuming. Fast Fourier Transform explores the frequency domain of images where quick 

computations can be performed on frequency components of images. This algorithm is highly 

efficient as it operates in low-dimensional frequency domain. However, Fast Fourier Transform 

provides limited direct spatial localization information of images features, and it works more 

optimally for certain image processing task like image registration [15] and periodic patterns 

reconstruction and segmentation [16].  
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The present work employs the Support Vector Machine (SVM) algorithms as the image 

segmentation method to guide the numerical model generation. SVM is a classification-based 

machine learning algorithm built on solid mathematical foundation and optimization frameworks 

[17], [18]. Compared to other supervised algorithms, SVM is advantageous because it generates a 

unique maximum-margined global hyperplane for separating training datasets, providing a global 

solution for data classification. Additionally, it is not sensitive to the underlying probabilistic 

distribution of the training dataset, ensuring high performance for limited, noisy, or imbalanced 

datasets [19]. One apparent limitation of the standard SVM is that it requires 𝑂(𝑙3) operations, 

where 𝑙 is the length of the training dataset, to solve a complex quadratic programming problem 

(QPP) with inequality constraints. Various approaches have been proposed to overcome this 

limitation, such as the training decomposition method [20] and the reduced support vector machine 

algorithm [21], which significantly improves SVM’s training speed. Additionally, more efficient 

formulations of SVM have been introduced, such as the Least Square SVM algorithm [22] and the 

Lagrangian SVM algorithm [23]. The Least Square SVM algorithm optimizes a dual problem 

directly using a least-square loss function, replacing the hinge loss function in the original SVM’s 

formulation to reformulate the complex QPP as a linear system of equations. In contrast, the 

Lagrangian SVM algorithm utilizes an implicit Lagrangian for the dual of the standard quadratic 

program of a linear SVM, leading to the minimization of an unconstrained differentiable convex 

function in the space of dimensionality equal to the number of training datasets. Both mentioned 

algorithms eliminate the necessity of complicated programming problem solvers, making them 

feasible for classifying large datasets. In addition to the binary SVM classifier, extensive research 

has been done to extend SVM to multi-class classification. The one-vs-all method, one-vs-one 

method, error-correcting output codes, and directed acyclic graphs are among the most widely used 

approaches to handle multi-class classification with SVM [24]. The traditional binary SVM 

algorithm is adopted in this work for its effective applicability to the two-phase materials.  

Numerical modeling of heterogeneous materials remains challenging for both mesh-based 

methods discretized with body-fitted discretization and meshfree methods formulated with smooth 

approximations. For the Finite Element Method (FEM), incomplete handling of discontinuities in 

mesh construction can lead to suboptimal convergence [25], and aligning meshes with interfaces is 

a non-trivial task for composites with complex microstructures and significant variations in 

constituent moduli. The Finite Cell Method is a high-order embedded domain technique [26] that 

provides simple yet effective modification of traditional FEM to bypass the necessity of exhaust 

body-fitted meshing for geometrically and topologically complex microstructures. Korshunova et 

al. [27], [28] presented image-based numerical characterization and validation of additively 
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manufactured structures using Finite Cell Method and numerical homogenization. Special 

numerical integration schemes need to be considered to differentiate between inside and outside 

the physical domain for the Finite Cell Method. The meshfree methods utilize point-wise 

discretization instead of carefully constructed body-fitted meshes. However, meshfree methods 

such as element-free Galerkin (EFG) [29] and reproducing kernel particle method (RKPM) [30]–

[32] typically suffer from Gibb's-like oscillation in the approximation when modeling weak 

continuities in composite materials, as their smooth approximation functions with overlapping local 

supports fail to capture gradient jump conditions across material interfaces [33]. Considerable effort 

has been dedicated to developing effective techniques for dealing with interface discontinuities. 

Since the proposed work is under the Galerkin meshfree framework, the review of methods 

developed based on mesh-based context to address interface discontinuities is omitted here. 

Reviews on some key non body-fitted FEM developments for interface discontinuities can be found 

in [34], [35].  

Two primary approaches in meshfree methods have been proposed for handling material 

interface weak discontinuities. The first approach involves introducing discontinuities in the 

meshless approximation function. Krongauz and Belytschko proposed two types of jump 

enrichment functions into the conventional Moving Least Squares or Reproducing Kernel (RK) 

approximation of the field variables [33]. The enrichment functions introduce discontinuous 

derivatives into solutions along material interfaces, but additional unknowns must be solved in this 

method. Chen et al. [36] introduced the jump enrichment functions into the RK shape function 

based upon enforcing the consistency conditions, which is termed the interface-enriched 

reproducing kernel approximation. However, coupling interface-enriched RK shape functions with 

the standard RK shape function requires duplicated unknowns. In addition, Masuda and Noguchi 

introduced a discontinuous derivative basis functions to replace the conventional polynomial basis 

function used in Moving Least-Squares approximations [37]. Another class of methods introduces 

modifications to the weak formulation to consider the effects of discontinuity in a weak sense. 

Codes and Moran treated material interface discontinuities by a Lagrange Multiplier technique so 

that the approximations are disjoint across the interfaces while the Lagrange Multiplier imposes 

the interface continuity constraints into the variational formulation of the meshfree discretization 

[38]. This approach introduces additional degrees of freedom to be solved associated with the 

Lagrange Multiplier, and stability conditions need additional attention. On the other hand, the 

discontinuous Galerkin formulation has also been considered, where the continuity of a field 

variable and its resulting interface flux or traction across interfaces are imposed in the weak form 

[39], [40]. Wang et al. proposed a Discontinuous Galerkin reformulation of the EFG and RKPM to 
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address interface discontinuity problems of composite materials [41]. This approach avoids 

duplicated unknowns, and by decomposing the domain into patches, the gradient jump of the 

dependent variable is captured by the boundary of the adjacent patches while the continuity 

condition is realized weakly through an augmented variational form with associated flux or traction 

crossing material interfaces. Additionally, other meshfree methods have also been proposed for 

non-body-fitted discretization of heterogeneous media, such as the immersed methods [42], [43].  

However, these methods require special care of interface oscillations due to the employment of 

volumetric constraints on the foreground and background discretization. 

The current work introduces a novel Interface-Modified Reproducing Kernel Particle 

Method (IM-RKPM) to properly handle weak discontinuities in composite materials across 

material interfaces. The proposed approach utilizes signed distance functions obtained from SVM 

classified micro-CT images to introduce regularized weak discontinuities to the kernel functions 

for arbitrary interface geometries. No duplicated unknowns, special enrichment functions, or 

complicated reformulation of the RK shape functions are required in the proposed approach, 

offering automated model construction capabilities for modeling complex microstructures.  

The remainder of the paper is organized as follows. Section 2 provides basic equations for 

the model problem and the Reproducing Kernel Particle Method, and the associated numerical 

domain integration techniques are also discussed in this section. A brief introduction of the SVM 

formulation and the proposed SVM and RK-guided procedures for image segmentation of 

heterogenous materials are introduced in Section 3. Section 4 presents an interface-modified kernel 

function and the Interface-Modified Reproducing Kernel Particle Method formulation to introduce 

weak discontinuities in the image-based modeling of composite microstructures. In section 5, two 

numerical examples for image-based modeling of microstructures are demonstrated, and the paper 

concludes with a discussion and summary in Section 6. Throughout the paper, the following 

abbreviations and symbols have been introduced: 

• SVM: Support Vector Machine 

• IM-RKPM: Interface-Modified Reproducing Kernel Particle Method 

• SCNI: Stabilized Conforming Nodal Integration 

• micro-CT: micro-X-ray Computed Tomography 

• ROI: Region of Interest 

• QPP: Quadratic Programming Problem 

• FEM: Finite Element Method 

• EFG: Element-Free Galerkin 
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• RKPM: Reproducing Kernel Particle Method 

• SVM-RK: Support Vector Machine Guided Reproducing Kernel 

• B2: Quadratic B Spline Kernel Function 

• B3: Cubic B Spline Kernel Function 

• SEM: Scanning Electron Microscopy 

• EDS: Energy Dispersive X-ray Spectroscopy 

• PK: Power Kernel Function 

• 𝕊RK: SVM-RK discretization node set containing total number of 𝑁𝑃 nodes 

• Ψ𝐼(𝒙): RK shape function with support centered at node 𝒙𝐼 and evaluated at point 𝒙  

• 𝜙𝑎(𝒙 − 𝒙𝑰) : RK kernel function with a compact support 𝑎  defined over a node 𝐼 ’s 

associated subdomain Ω𝐼 

• 𝑯𝑇(𝒙 − 𝒙𝐼): Vector of monomial basis functions to the order of 𝑛 

• 𝑴(𝒙): Moment matrix 

• ∇̃Ψ𝐼(𝒙𝐿): Smoothed RK shape function gradient evaluated at nodal integration point 𝒙𝐿 

• 𝑩̃(𝒙𝑳): Gradient matrix associated with smoothed nodal RK shape function gradient 

• 𝐃 = {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑙 : Labeled SVM training data set containing 𝑙 pairs of training data 𝒙𝑖 ∈

ℝ𝑑 and corresponding response label 𝑦𝑖 ∈ {−1,1} 

• 𝒘: 𝑑-dimensional weight vector 

• 𝑏: A scalar bias 

• ℎ(𝒙; {𝒘, 𝑏}): 𝑑-dimensional separating hyperplane 

• {𝒙𝑖
𝑆𝑉}

𝑖=1

𝑁𝑆𝑉
: The set of support vectors with a total number of 𝑁𝑠𝑣 data points 

• 𝜉∗: Margin 

• ℎ∗(𝒙): Optimal separation hyperplane that maximizes the margin 

• ∇𝜖𝑖: Slack variable corresponding to the 𝑖𝑡ℎ data point 

• 𝐶: Penalty weight parameter 

• 𝑲(𝒙𝑖, 𝒙𝑗): Kernel function used in non-linear SVM formulation 

• 𝛾: Gaussian radial basis kernel scale 

• 𝑆(𝒙): SVM classification score function 

• 𝕊0: A set of training data points located at image pixel centroids with a total number of 

𝑁𝑃0 points 

• 𝕊+: A subset of 𝕊0 that contains elements with non-negative classification scores 

• 𝕊−: A subset of 𝕊0 that contains elements with negative classification scores 
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• {𝒙𝐾
+, 𝒙𝐾

−}𝐾=1
𝑁𝑃𝐼𝐹 : Interface-searching node pairs with 𝒙𝐾

± ∈ 𝕊±  as a near-interface 

master/slave node 

• 𝑑𝐾
∗ : A scaler line search step for identifying interface node 𝒙𝐾

∗  

• 𝑹𝐾: Interface node line search direction for identifying interface node 𝒙𝐾
∗  

• 𝕊𝐼𝐹: Interface node set, containing a total number of 𝑁𝑃∗ identified interface node 𝒙∗ 

• 𝕊𝐶+: Master candidate node set, a subset of 𝕊+ containing near-interface master nodes 

• 𝕊𝐶−: Slave candidate node set, a subset of 𝕊− containing near-interface slave nodes 

• 𝑆̃(𝒙): RK shape function interpolated classification score function 

• 𝑠𝐼: SVM classification score value for node 𝒙𝐼 ∈ 𝕊0 

• Ψ𝐼
0(𝒙): RK shape function centered at node 𝒙𝐼 ∈ 𝕊0 

• 𝐻̃: Regularized Heaviside function for interface modification 

• 𝜙̅𝑎(𝒙 − 𝒙𝐼): Modified RK kernel function with a compact support 𝑎 

• 𝜉̅(𝒙): A distance measure normalized with respected to the nodal spacing 

• 𝑴̅(𝒙): Modified moment matrix 

• Ψ̅𝐼(𝒙): Interface modified reproducing kernel shape function 

• {𝒙𝐾
∗+, 𝒙𝐾

∗−}: Mirrored node pair for the interface node 𝒙𝐾
∗  

2  Basic Equations 

2.1 Model problem 

Let a model elasticity problem be defined on a domain Ω with its boundary assigned as 

𝜕Ω = 𝜕Ω𝑔 ∪ 𝜕Ωℎ , 𝜕Ω𝑔 ∩ 𝜕Ωℎ =  ∅ , where the subscripts 𝑔  and 𝑡  denote the Dirichlet and 

Neumann boundaries, respectively. The strong form for heterogeneous elastic media can be 

described as: 

 

∇ ⋅ 𝝈 + 𝒔 = 𝟎 in Ω 

     𝒖 = 𝒖̅ on 𝜕Ω𝑔 

              𝒏 ⋅ 𝝈 = 𝒕 on 𝜕Ω𝑡 

(1) 

where 𝒖 represents the unknown displacement field, 𝝈 is the Cauchy stress tensor, 𝒔 is the body 

force vector, 𝒖̅ and 𝒕 are the prescribed displacement vector and the applied surface traction vector 

on the Dirichlet and Neumann boundaries, respectively, and 𝒏 is the unit outward normal of the 

Neumann boundaries. The elastic constitutive relationship for heterogeneous materials is 

represented as: 
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  𝝈(𝒙) = 𝑪(𝒙): 𝜺(𝒖(𝒙)) (2) 

Here 𝑪(𝒙) is the elasticity tensor defined as: 

 𝑪(𝒙) = {
𝑪𝟏,   𝒙 ∈ Ω1

𝑪𝟐,   𝒙 ∈ Ω2 (3) 

where Ω𝑖 are material sub-domains to be segmented by the SVM classification of microstructure 

image pixels. 

The weak formulation is to find 𝒖(𝒙) ∈ 𝑈 ⊂ 𝐻𝑔
1, such that for all weight function 𝒗(𝒙) ∈

𝑉 ⊂ 𝐻0
1, 

 ∫𝜺(𝒗)
Ω

: 𝝈(𝒖)𝑑Ω = ∫𝒗
Ω

⋅ 𝒔𝑑Ω + ∫ 𝒗
∂Ωℎ

⋅ 𝒕𝑑Γ (4) 

The Galerkin formulation seeks the trial solution function 𝒖ℎ ∈ 𝑈ℎ ⊂ 𝑈, so that for all weight 

function 𝒗ℎ ∈ 𝑉ℎ ⊂ 𝑉, 

 ∫ 𝜺(𝒗ℎ)
Ω

: 𝝈(𝒖ℎ)𝑑Ω = ∫𝒗ℎ

Ω

⋅ 𝒔𝑑Ω + ∫ 𝒗ℎ

∂Ωℎ

⋅ 𝒕𝑑Γ (5) 

2.2  Reproducing Kernel Approximation 

Let a closed domain  Ω̅ = Ω ∪ 𝜕Ω ⊂ ℝ𝑑 be discretized by a set of 𝑁𝑃 nodes denoted by 

𝕊RK = {𝒙1, 𝒙2, … , 𝒙𝑁𝑃 ∣∣ 𝒙𝐼 ∈ Ω } , and let the approximation of a field variable 𝒖(𝒙)  in Ω  be 

denoted by 𝒖ℎ(𝒙). The RK approximation of the field variable 𝒖(𝒙) based on the discrete points 

in the set 𝕊RK is formulated as follows: 

 𝑢𝑖
ℎ(𝒙) = ∑Ψ𝐼(𝒙)𝑑𝑖𝐼

𝑁𝑃

𝐼=1

 (6) 

where Ψ𝐼 denotes the RK shape function with support centered at the node 𝒙𝐼 and 𝑑𝑖𝐼 is the nodal 

coefficient in 𝑖𝑡ℎ dimension to be sought. Moreover, let a node 𝐼 be associated with a subdomain 

Ω𝐼, over which a kernel function 𝜙𝑎(𝒙 − 𝒙𝑰) with a compact support 𝑎 is defined, such that Ω̅ ⊂

⋃ Ω𝐼𝐼∈𝕊RK  holds. The RK approximation function is constructed as [30]–[32], [44]:  

 
Ψ𝐼(𝒙) = 𝐶(𝒙; 𝒙 − 𝒙𝐼)𝜙𝑎(𝒙 − 𝒙𝐼) = ( ∑ (𝒙 − 𝒙𝐼)

α

|α|≤𝑛

𝑏α(𝒙))𝜙𝑎(𝒙 − 𝒙𝐼)

≡ 𝑯T(𝒙 − 𝒙𝐈)𝒃(𝒙)𝜙𝑎(𝒙 − 𝒙𝐈) 

(7) 

 𝑯𝑇(𝒙 − 𝒙𝐼) = [1, 𝑥1 − 𝑥1𝐼 , 𝑥2 − 𝑥2𝐼 , … , (𝑥3 − 𝑥3𝐼)
𝑛]   (8) 
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where α is a multi-index notation such that α = (α1, α2, … , α𝑑) with a length defined as |α| =

α1 + α2 + ⋯+ α𝑑 , and 𝒙𝛼 ≡ 𝒙1
𝛼1 ⋅ 𝒙2

𝛼2 , … , 𝒙𝑑
𝛼𝑑 , 𝑏α = 𝑏α1α2⋯α𝑑

. The term 𝐶(𝒙; 𝒙 − 𝒙𝐼) =

 𝑯T(𝒙 − 𝒙𝐈)𝒃(𝒙) is called the correction function of the kernel 𝜙𝑎(𝒙 − 𝒙𝐼) designed to introduced 

completeness to the RK approximation. The terms {(𝒙 − 𝒙𝐼)
α}|α|≤𝑛 form a set of basis functions, 

and 𝑯𝑇(𝒙 − 𝒙𝐼) is the corresponding vector of basis functions to the order 𝑛. The vector 𝒃(𝒙) is 

the coefficient vector of {𝑏𝛼(𝒙)}|𝛼|≤𝑛 and is solved by enforcing the following discrete reproducing 

conditions [45]:  

 ∑Ψ𝐼(𝒙)𝒙𝐼
α

𝑁𝑃

𝐼=1

= 𝒙α,  |α| ≤ 𝑛 (9) 

or equivalently, 

 

∑Ψ𝐼(𝒙)(𝒙 − 𝒙𝐼)
α

𝑁𝑃

𝐼=1

= 𝛿0α,  |α| ≤ 𝑛 

Or 

∑Ψ𝐼(𝒙)𝑯(𝒙 − 𝒙𝐼)

𝑁𝑃

𝐼=1

= 𝑯(𝟎) 

(10) 

where 𝑯(𝟎) = [1,0, … ,0]𝑇  according to Eq. (8). After inserting Eq. (10) into Eq. (7), 𝒃(𝒙) is 

obtained as: 

 𝒃(𝒙) = 𝑴−𝟏(𝒙)𝑯(𝟎)𝜙𝑎(𝒙 − 𝒙𝐈) (11) 

where 𝑴(𝒙) is the moment matrix and is formulated as: 

 𝑴(𝒙) = ∑𝑯(𝒙 − 𝒙I)𝑯
T(𝒙 − 𝒙I)𝜙𝑎(𝒙 − 𝒙I)

𝑁𝑃

𝐼=1

 (12) 

Finally, the RK shape function is obtained as: 

 Ψ𝐼(𝒙) = 𝑯𝐓(𝟎)𝑴−𝟏(𝒙)𝑯(𝒙 − 𝒙𝐈)𝜙𝑎(𝒙 − 𝒙𝐈) (13) 

Examples of 1-dimensional kernel functions are shown in Figure 2, and the 1- and 2-dimensional 

RK shape functions constructed based on cubic B-spline kernel function and linear basis functions 

are shown in Figure 3. The locality and the smoothness of the RK approximation functions are 

determined by the kernel function, while the order of completeness in the approximation is 

determined by the order of basis functions 𝑛. Interested readers are referred to [30]–[32], [44], [46], 

[47] for basic properties of reproducing kernel approximation. 
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Figure 2: RK domain discretization and examples of kernel functions 

 

Figure 3: Examples of 1D and 2D RK shape functions constructed based on the cubic B-

spline kernel function and linear basis functions 

2.3 Numerical domain integration 

Due to the rational nature and arbitrary local supports, introducing RK approximations in 

the Galerkin weak form requires special attention. The conventional Gauss integration on 

background integration cells leads to a sub-optimal convergence unless significantly high-order 

quadrature rules are used, which is computationally infeasible especially in three-dimension [44]. 

More recent quadrature integration methods have been developed to handle broken integration cells 

commonly encountered in non-geometrically conforming meshes, such as the moment fitting based 

methods [48], [49] and smart octree based methods [50]. Those quadrature methods can achieve 

similar accuracy with low order quadrature points compared to the conventional Gauss integration 

and handle complex and irregular integration domains. However, it would be natural for meshfree 
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methods to use nodal-based numerical integrations. Several nodal-based integration techniques 

have been proposed, such as stabilized conforming and non-conforming nodal integrations [51]–

[56] and variationally consistent integration [57], along with various stabilization methods [58]–

[60]. The stabilized conforming nodal integration methods is utilized in this work and is 

summarized in this section.  

2.3.1 Stabilized Conforming Nodal Integration 

One solution that significantly eases the computational cost of Gauss domain integration 

is to use the discretized nodes as integration points [58], referred to as the direct nodal integration. 

The direct nodal integration technique is appealing because of its simplicity and efficiency, as it 

does not require a background integration mesh, which makes numerical approximation truly 

"mesh-free." Nevertheless, since it is similar to a one-point quadrature rule, the under-integration 

of the weak form results in improper zero energy modes in most situations [51], [58]. 

Chen et al. [51] introduced the Stabilized Conforming Nodal Integration (SCNI) method 

as an enhancement of the direct nodal integration by fulfilling the consistency conditions between 

the approximations and the numerical integration of the weak form known as the integration 

constraints. The SCNI method is formulated to exactly meet the first-order integration constraint 

Error! Reference source not found.and also to remedy the rank deficiency in the direct nodal 

integration method by introducing the following smoothed gradient in the Galerkin approximation: 

 ∇̃Ψ𝐼(𝒙𝐿) =
1

𝑊𝐿
∫ ∇Ψ𝐼(𝒙)dΩ
Ω𝐿

=
1

𝑊𝐿
∫ Ψ𝐼(𝒙)𝒏
∂Ω𝐿

dΓ, 𝑊𝐿 = ∫ 𝑑Ω
ΩL

 (14) 

where Ω𝐿 denotes the nodal representative conforming smoothing cells, and 𝒏 represents the unit 

outward normal of the smoothing cell boundaries. A convenient way of generating conforming 

smoothing cells is to create the Voronoi diagram according to the domain boundaries and nodal 

coordinates, as illustrated below in Figure 4, where the boundary integral in the smoothed gradient 

in Eq. (14) is carried out by the cell boundary quadrature pointsError! Reference source not 

found..  
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Figure 4: Voronoi tessellation of domain and representative nodal cell 

The associated gradient matrix 𝑩̃(𝒙𝑳) of RK approximation evaluated at nodal integration point 

𝒙𝑳 is now expressed in terms of smoothed gradient as:  

 

𝑩̃𝐼(𝒙𝐿) = [

𝑏̃𝐼1(𝒙𝐿) 0

0 𝑏̃𝐼2(𝒙𝐿)

𝑏̃𝐼2(𝒙𝐿) 𝑏̃𝐼1(𝒙𝐿)

] 

𝑏̃𝐼𝑖(𝒙𝐿) =
1

𝑊𝐿
∫ Ψ𝐼(𝒙)𝑛𝑖(𝒙)𝑑Γ
Γ𝐿

 

(15) 

The stiffness matrixError! Reference source not found. is then integrated by nodal integration 

with the smoothed gradient as: 

 𝑲 = ∑ 𝑩̃𝑻(𝒙𝐿)𝑪(𝒙𝐿)𝑩̃(𝒙𝐿)

𝑁𝑃

𝐿=1

𝑊𝐿 (16) 

It is noted that Voronoi cells conformed to the material interfaces without confining to the 

existing pixel points can be constructed, as demonstrated in Figure 4Error! Reference source not 

found.. In such construction, the centers of those Voronoi cells can be viewed as the integration 

points that are not coincided with the image pixel points. A naturally stabilized nodal integration 

[56] can be added to SCNI for additional stabilization. Details of constructing those Voronoi cells 

near the material interface are given in Appendix A. 
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3 Support Vector Machine (SVM) classification of Micro-CT images and model 

discretization 

3.1  Support Vector Machine (SVM) classification algorithm 

The Support Vector Machine (SVM) is a class of supervised machine learning algorithms 

that assigns labels to objects through training [61]. Let a labeled classification dataset containing 𝑙 

sets of data be denote as 𝐃 = {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑙 , where 𝒙𝑖 ∈ ℝ𝑑 is the 𝑑-dimensional data points, and 

𝑦𝑖  is the label corresponding to the 𝑖𝑡ℎ  data point. Since the primary focus of this work is bi-

material classification, 𝑦𝑖 is assumed to be either −1 or +1, representing the negative (matrix) and 

positive (inclusion) classes, respectively. If the given dataset is perfectly linearly separable, the 

SVM classification process can be described as to find a separating hyperplane in the form of a 

linear discriminant function in 𝑑-dimension: 

 ℎ(𝒙; {𝒘, 𝑏}) = 𝒘𝑇𝒙 + 𝑏 (17) 

where 𝒘  denotes a 𝑑 -dimensional weight vector and 𝑏  denotes a scalar bias. Additionally, 

ℎ(𝒙; {𝒘, 𝑏}) serves as a linear classifier for class prediction following the decision rule: 

 𝑦 = {
+1    if ℎ(𝒙; {𝒘, 𝑏}) > 0
−1    if ℎ(𝒙; {𝒘, 𝑏}) < 0

 (18) 

Therefore, the weight vector 𝒘 is orthogonal to the defined hyperplane, and for each 𝒙𝑖 ∈ 𝐃, the 

relative distance in terms of 𝒘 to the defined hyperplane can be expressed as: 

 𝜉𝑖 =
𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏)

‖𝒘‖
 (19) 

The margin of the linear classifier is identified by selecting a collection of the data points that 

achieve a minimum distance to ℎ(𝒙; {𝒘, 𝑏}), which are called the support vectors {𝒙𝑖
𝑆𝑉}

𝑖=1

𝑁𝑆𝑉
, and 

are defined as: 

 {𝒙𝑖
𝑆𝑉}

𝑖=1

𝑁𝑆𝑉 = argmin
𝐱𝑖∈𝑫

{
𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏)

‖𝒘‖
} (20) 

Note that if the distances of all support vectors to the hyperplane are normalized to be 1, the margin 

can be defined as 𝜉∗ =
1

‖𝒘‖
. Thus, the goal of training the SVM with a linear classifier as Eq. (17) 

can be described as to find the optimal hyperplane ℎ∗(𝒙) as follows: 

 ℎ∗(𝒙) = ℎ(𝒙; {𝒘∗, 𝑏∗}), (21) 
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𝒘∗, 𝑏∗ = argmax
𝒘,𝑏

{
1

‖𝒘‖
},  

subject to:  𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1, ∀𝒙𝑖 ∈ 𝐃 

The constrained optimization problem described in Eq. (21) can be formulated as an equivalent 

convex constrained minimization problem: 

 
min
𝒘,𝑏

𝐽(𝒘) =
1

2
‖𝒘‖2, 

subject to:  𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1, ∀𝒙𝑖 ∈ 𝐃 

(22) 

which is called the primal formulation of SVM with linear classifier [18]. Instead of directly solving 

the primal convex minimization problem, it is computationally more efficient to solve the dual 

problem, formulated using the Lagrange multipliers. To construct the dual problem, a Lagrange 

multiplier 𝜆𝑖  is introduced for each linear constraint based on the Karush-Kuhn-Tucker (KKT) 

conditions [62]: 

  𝜆𝑖(𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) − 1) = 0, 𝜆𝑖 ≥ 0 (23) 

Then the objective of the dual problem can be formulated as: 

 min
𝒘,𝑏

𝐿 =
1

2
‖𝒘‖2 − ∑𝜆𝑖(𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏) − 1)

𝑙

𝑖=1

 (24) 

By finding the stationary point of the Lagrangian 𝐿 with respect to 𝒘, the optimal weight vector 𝒘 

can be expressed in terms of a linear combination of the data points, data label, and Lagrange 

multipliers: 

 𝒘 = ∑𝜆𝑖𝑦𝑖𝒙𝑖

𝑙

𝑖=1

 (25) 

Additionally, a new constrain arises when minimizing 𝐿 with respect to the bias, which indicates 

that the sum of the labeled Lagrange multipliers must be equal to zero. Therefore, by substituting 

Eq. (25) into Eq. (24), the dual problem’s training objective can be formulated as: 

 

max
𝝀

𝐿𝑑𝑢𝑎𝑙 = ∑𝜆𝑖

𝑙

𝑖=1

−
1

2
∑∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑙

𝑗=1

𝑙

𝑖=1

,    

subject to:  𝜆𝑖 ≥ 0,∑𝜆𝑖𝑦𝑖 = 0

𝑙

𝑖=1

, for 𝑖 = 1,2,3,… , 𝑙 

(26) 

where Eq. (26) forms a well-known convex quadratic programming problem (QPP).  
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Nevertheless, it is possible that no such hyperplane can be found through Eq. (26) as the 

real-world data sets are rarely perfectly separable. To deal with cases with overlapping classes, a 

non-negative slack variable ∇𝜖𝑖  is introduced to each data point 𝒙𝑖 ∈ 𝐃 , such that the linear 

constraint in Eq. (21) and Eq. (22) is modified as: 

 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1 − ∇𝜖𝑖, ∀𝒙𝑖 ∈ 𝐃, ∇𝜖𝑖 ≥ 0, ∀ 𝑖 = 1,2,3,… , 𝑙 (27) 

It is worth noting that the magnitude of ∇𝜖𝑖  affects the correctness of the classification of its 

corresponding data point 𝒙𝑖: when ∇𝜖𝑖 ≥ 1, the data point will be misclassified as it appears on the 

wrong side of the hyperplane. As a result, for non-separable data sets, SVM introduces a “soft 

margin” concept into the training process, and the new training objective function can be described 

as: 

 

min
𝒘,𝑏,{∇𝜖𝑖}

{
1

2
‖𝒘‖2 + 𝐶 ∑∇𝜖𝑖

𝑙

𝑖=1

},     

subject to:  𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) ≥ 1 − ∇𝜖𝑖, ∀𝒙𝑖 ∈ 𝐃, 

∇𝜖𝑖 ≥ 0,∀ 𝑖 = 1,2,3,… , 𝑙 

(28) 

where 𝐶 is a weight parameter that penalizes the cost of misclassification and ∑ ∇𝜖𝑖
𝑙
𝑖=1  gives the 

loss due to the deviation from the separable cases with the introduction of slack variables. Moreover, 

the penalty weight parameter 𝐶 controls the trade-off between maximizing the hyperplane’s margin 

and minimizing the misclassification’s loss. Therefore, the selection of 𝐶 depends on the nature of 

problems and datasets at hand. Figure 5 presents the hard- and soft-margined linear SVM classifiers 

trained on a binary dataset. For the hard-margined SVM classifier, the support vectors are located 

exactly on the maximum lower and upper margins, while the soft-margined SVM classifier relaxes 

the linear separability constraints, which allows some support vectors to cross over the decision 

boundary. Note that although the dataset in Figure 5 is linearly separable, if the linear separability 

is strictly enforced, as for the hard-margined case, the resulting margin is significantly smaller than 

the one for the soft-margined case. 
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Figure 5: Hard- and soft-margined SVM linear classifiers 

By introducing Lagrange multipliers 𝜆𝑖 and 𝛽𝑖, corresponding to each of the constraints in 

Eq. (28), a Lagrangian of Eq. (28) can be formulated as: 

 𝐿 =
1

2
‖𝒘‖2 + 𝐶 ∑∇𝜖𝑖

𝑙

𝑖=1

− ∑𝜆𝑖(𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑏) − 1 + ∇𝜖𝑖)

𝑙

𝑖=1

− ∑𝛽𝑖∇𝜖𝑖

𝑙

𝑖=1

 (29) 

By minimizing the 𝐿  with respect to 𝒘 , 𝑏 , and ∇𝜖𝑖 , respectively, one additional relationship 

connecting the penalty weight parameter 𝐶 to 𝜆𝑖 and 𝛽𝑖 is obtained, in addition to the ones acquired 

in the linearly separable cases: 

 𝐶 = 𝜆𝑖 + 𝛽𝑖 (30) 

Therefore, the dual objective can be described as: 

 

max
𝝀

𝐿𝑑𝑢𝑎𝑙 = ∑𝜆𝑖

𝑙

𝑖=1

−
1

2
∑∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗

𝑙

𝑗=1

𝑙

𝑖=1

,    

subject to:  0 ≤ 𝜆𝑖 ≤ 𝐶,∑𝜆𝑖𝑦𝑖 = 0

𝑙

𝑖=1

, for 𝑖 = 1,2,3,… , 𝑙 

(31) 

Note that the objective function achieved for the inseparable cases is the same as the one obtained 

from the linearly separable cases in Eq. (26), except one additional constraint on the Lagrange 

multiplier 𝜆𝑖.  

For complicated data sets, the linear classifier is often found inadequate. One strategy is to 

introduce non-linear transformation function 𝜙 , which maps the data points 𝒙  to a higher 
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dimension so that the projected data points 𝜙(𝒙) are approximately linearly separable in the higher 

dimensional feature space. However, upscaling the dimensionality usually leads to high and 

impractical computational costs. Since the Lagrange dual formulation in Eq. (31) only depends on 

the dot product between two vectors in the feature space, the SVM can utilize the “kernel trick” to 

include high-degree polynomial features. The idea of the kernel trick is to represent 𝑙 data point 𝒙 

by a 𝑙  by 𝑙  kernel matrix 𝑲  that contains elements 𝑘𝑖,𝑗 = 𝑲(𝒙𝑖, 𝒙𝑗) = 〈𝜙(𝒙𝑖), 𝜙(𝒙𝑗)〉 , which 

performs pairwise similarity comparisons between the original low dimensional data points without 

an explicit definition of the transformation function 𝜙 for mapping data to high dimensions. More 

detailed introduction to the requirement and existence of kernel function can be found in [19]. 

Therefore, the dual formulation of the training objective for non-linear SVM can be described by 

replacing 𝒙𝑖
𝑇𝒙𝑗 in Eq. (31) by a kernel function 𝑲(𝒙𝑖, 𝒙𝑗): 

 

max
𝝀

𝐿𝑑𝑢𝑎𝑙 = ∑𝜆𝑖

𝑙

𝑖=1

−
1

2
∑∑𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑲(𝒙𝑖, 𝒙𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

,    

subject to:  0 ≤ 𝜆𝑖 ≤ 𝐶,∑𝜆𝑖𝑦𝑖 = 0

𝑙

𝑖=1

, for 𝑖 = 1,2,3,… , 𝑙 

(32) 

Note that Eq. (32) can be viewed as a generalized Lagrange dual formulation of SVM since for 

linear cases, the kernel function can be expressed as the data point dot product as: 

 Linear: 𝑲(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 (33) 

Other widely used kernel functions are polynomial and Gaussian radial basis kernel functions, 

which are illustrated in Eq. (34) and Eq. (35), respectively.  

 Polynomial: 𝑲(𝒙𝑖, 𝒙𝑗) = (1 + 𝒙𝑖
𝑇𝒙𝑗)

𝑞
, 𝑞 = 2,3, …, (34) 

 Gaussian radial basis: 𝑲(𝒙𝑖, 𝒙𝑗) = 𝑒−𝛾‖𝒙𝑖−𝒙𝑗‖
2

, 𝛾>0 (35) 
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Figure 6: An example of training the non-linear SVM with the Gaussian kernel (The circled 

data points are the support vectors) 

Figure 6 demonstrates the transformation of the 2-dimensional training data to 3-dimension using 

a Gaussian kernel. It is clear that the 3-dimensional data points become linearly separable by a 2-

dimensional hyperplane, and the resulting separating hyperplane can be projected back to the 2-

dimensional space, which becomes a nonlinear decision boundary.  

Moreover, the SVM produces a classification score by predicting new datasets that provide 

information about the material class and reveal the location of material interfaces. The classification 

score is a signed distance measure for an observation point 𝒙 to its nearest decision boundary, with 

a score of zero denoting 𝒙 is precisely on the decision boundary. Therefore, the classification score 

acts as a guide in identifying material boundaries in the image, facilitating more accurate numerical 

model generation. The classification score for predictions at 𝒙 to the positive class is defined as: 

 𝑆(𝒙) = ∑ 𝜆𝑗𝑦𝑗𝑲(𝒙𝑗, 𝒙) + 𝑏

𝑁𝑆𝑉

𝑗=1

  (36) 

where 𝑁𝑆𝑉  is the total number of support vectors and (𝜆1, 𝜆2, … , 𝜆𝑁𝑆𝑉
, 𝑏) are the trained SVM 

parameters.   

In summary, the SVM algorithms have shown promising performances in many application 

fields [63]. During the hyperplane selection process, SVMs utilize different kernel functions to 

transform the low-dimensioned, non-linear, and possibly non-separable training data to higher-

dimensional feature spaces, which allows the data to be linearly separated. In addition, the selected 

high-dimensional hyperplane can be projected back down to the original space where the training 

data belong, providing non-linear decision boundaries between the separated classes [64]. As a 

result, SVMs not only aid in classifying different material pixels from micro-CT images of 

heterogeneous materials but also inherently identify material interfaces. Here, we use SVMs to 
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guide numerical model discretization for the proposed Interface-modified Reproducing Kernel 

Particle Method, which will be introduced in the later sections.  

3.2  From Micro-CT images to numerical models 

In this work, the sample images are taken from micro-CT, which is an imaging technique 

that generates three-dimensional images of an object's microstructure with (sub)micron resolution 

using an X-ray tube with cone-beam geometry as a source and a rotating sample holder [65]. The 

overall processes of generating Support Vector Machine Guided Reproducing Kernel (SVM-RK) 

numerical model from micro-CT images are summarized in Figure 7. 

 

Figure 7: Flowchart of SVM-RK numerical model generation 

3.2.1 Training data preparation and training the SVM 

The training data points are located at the centroid of each pixel cell in the sample image, 

and the physical coordinates of those data points are assigned as the training data for the SVM. To 

supervise the SVM's training, response labels 𝑦, are created by segmenting the sample image using 

Otsu's method [66]. Otsu's method selects a global threshold that maximizes inter-class intensity 

variance from the zeroth- and the first-order cumulative moments of the sample image's intensity-

level histogram. Figure 8 illustrates an alumina-epoxy composite micro-CT image slice, where the 

white areas in the sample image indicate the alumina inclusion material and the grey areas represent 

the epoxy material in the matrix. A ROI of 30×30 pixels (area in the red box) containing 4 

irregularly shaped alumina particles is selected to demonstrate the SVM training and numerical 

model generation processes. Note that only the pixel centroid material class assignments and 
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physical coordinates are provided as labeled training data, and the goal of training is to identify 

material class at arbitrary locations within the image domain for numerical integration purposes.  

 

Figure 8: Sample alumina-epoxy image 

Specific hyperparameters of the training must be determined beforehand to facilitate SVM 

classification, which are summarized in Table 1.  

 

SVM training hyperparameters Values 

Kernel function Gaussian radial basis function 

Kernel scale (𝛾 in Eq. (35)) 0.25 

Penalty weight parameter ( 𝐶 in Eq. (28)) 500 

Table 1: SVM hyperparameters selected for training the sample image 

The kernel scale determines the extent to which each data point affects the shape of the decision 

boundaries, which is selected as 0.25. Furthermore, a penalty weight parameter 𝐶 of 500 is chosen 

to ensure that the resulting separation hyperplane resembles the material interface. The Gaussian 

radial basis function is selected as the kernel function based on the geometries of the inclusions, as 

they are distinctive small particles. The selections of the kernel scale and penalty weight parameter 

are optimized utilizing an iterative Bayesian optimization process, and the objective function for 

the Bayesian optimization process is to minimize the 5-fold cross validation classification loss. A 

total of 30 iterations are performed, and once the iterations are completed, the hyperparameter 

configuration associated with the smallest validation classification loss is selected as the optimal 

set of hyperparameters for the SVM model. Additionally, a standardization in which the training 
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data points are normalized to have a zero mean and a standard deviation of unity is performed. The 

standardization of the training data is critical because SVM training is based on the relative 

distances between the training data points, and without standardization, larger-scale training data 

may dominate in distance determination, leading to a biased model.  

3.2.2 RK interface nodes 

In the Interface-modified RK approximation to be proposed in Section 4, a set of interface 

nodes are included to introduce proper weak discontinuity across material interfaces. In this section, 

we present an approach to generate interface nodes, utilizing the score 𝑆(𝒙) (Eq. (36)) that is 

produced during the SVM classification and can be interpreted as a scaled signed distance function. 

 Let 𝕊0 ≡ {𝒙𝐼}𝐼=1
𝑁𝑃0 be the set of training data points located at the image pixel centroids in 

the image domain Ω̅ , and define 𝕊+ ≡ {𝒙 ∈ 𝕊0 | 𝑆(𝒙) ≥ 0}  and 𝕊− ≡ {𝒙 ∈ 𝕊0 | 𝑆(𝒙) < 0} . 

Consequently, defining a set of interface-searching node pairs {𝒙𝐾
+, 𝒙𝐾

−}𝐾=1
𝑁𝑃𝐼𝐹 in which 𝒙𝐾

± ∈ 𝕊± is a 

near-interface master/slave node (see Remark 3.1 for details). The search of an interface node 𝒙𝐾
∗ ≡

𝒙𝐾
+ + 𝑑𝐾

∗ 𝑹𝐾 can be defined as follows:  

Find 𝑑𝐾
∗ ∈ ℝ such that: 

 𝑆(𝒙𝐾
+ + 𝑑𝐾

∗ 𝑹𝐾) = 0,   ∀ 𝐾 = 1⋯𝑁𝑃∗ (37) 

where 𝑹𝐾 = (𝒙𝐾
− − 𝒙𝐾

+)/‖𝒙𝐾
− − 𝒙𝐾

+‖ is the line search direction. The resulting RK node set is then 

𝕊𝑅𝐾 ≡ 𝕊0 ∪ 𝕊𝐼𝐹 with 𝕊𝐼𝐹 ≡ {𝒙𝐾
∗ }𝐾=1

𝑁𝑃∗
, which serves as the SVM-RK discretized model. 

 

Remark 3.1. The interface-searching node pairs {𝒙𝐾
+, 𝒙𝐾

−}𝐾=1
𝑁𝑃𝐼𝐹  can be determined in various ways. 

In this work, the following approach is taken: given the set of support vectors {𝒙𝐿
𝑆𝑉}

𝐿=1

𝑁𝑆𝑉
, define the 

master candidate node set 𝕊𝐶+ ≡ {𝒙𝐼 ∈ 𝕊+ | ‖𝒙𝐼 − 𝒙𝐿
𝑆𝑉‖ ≤ 𝜉ℓ, ∀𝐿 = 1⋯𝑁𝑆𝑉}, in which ℓ and 𝜉 

denote the image voxel size and a scaling factor, respectively. In this work 𝜉 = 1.5 is used. The 

corresponding nearest slave nodes 𝒙𝐾
− are found such that, for 𝒙𝐾

+ ∈ 𝕊𝐶+, 

 𝒙𝐾
− = argmin

𝒙𝐼∈𝕊𝐶−
‖𝒙𝐼 − 𝒙𝐾

+‖ (38) 

with the slave candidate node set 𝕊𝐶− ≡ {𝒙𝐼 ∈ 𝕊− | ‖𝒙𝐼 − 𝒙𝐿
𝑆𝑉‖ ≤ 𝜉ℓ, ∀𝐿 = 1⋯𝑁𝑆𝑉}. Note that 

Eq. (38) can result in multiple 𝒙𝐾
−  for one 𝒙𝐾

+ and lead to the master-slave pairs. Figure 9 (a) 

illustrates an example of the master and slave candidate nodes plotted along with the support 

vectors. The corresponding candidate node pairs are shown in Figure 9 (b). 
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Remark 3.2. The solution of 𝑑𝐾
∗  in Eq. (37) can be determined iteratively by the Newton-Raphson 

method. For the (𝜈 + 1)𝑡ℎ iteration, the increment 𝛥𝑑𝜈+1 for 𝑑𝐾
∗𝜈+1 = 𝛥𝑑𝐾

∗𝜈+1 + 𝑑𝐾
∗𝜈 is obtained 

as follows: 

 Δ𝑑𝐾
∗𝜈+1 = −𝑆(𝒙𝐾

∗𝜈)/(
𝜕𝑆(𝒙𝑲

∗𝜈)

𝜕𝒙𝐾
∗𝜈 ⋅ 𝑹𝐾)  (39) 

 

Remark 3.3.  One may consider interpolating the score function with SVM predicted nodal score 

values without constructing Eq. (36) as follows: 

 𝑆̃(𝒙) = ∑Ψ𝐼
0(𝒙)𝑠𝐼

𝑁𝑃0

𝐼=1

 (40) 

where Ψ𝐼
0(𝒙) and 𝑠𝐼 are the RK shape function constructed on 𝕊0 and SVM score value (signed 

distance) for node 𝒙𝐼, respectively. The RK shape function can serve as a filter for potentially noisy 

predicted score values to provide smoothing on the zig-zag material interface determined directly 

from image pixels. Eq. (40) is used for numerical implementation in the current work. 

 

Remark 3.4. To ensure relative even distribution of nodes around interfaces, a MATLAB in-built 

function “uniqetol” with a relative tolerance 0.01 is applied to the interface node set 𝕊𝐼𝐹 . In 

addition, 𝒙𝑰 ∈ 𝕊0 is removed if  ‖𝒙𝑰 − 𝒙𝐾
∗ ‖ < 𝜁ℓ for all 𝒙𝐾

∗ ∈ 𝕊𝐼𝐹, and 𝜁 = 1/3 is selected in this 

work. An example of rearranged RK nodes is illustrated in Figure 10. The material interfaces are 

represented by a simple line connection in Figure 10 for visualization purposes; the interface-

modified RK approximation to be discussed next requires only the interface point locations and the 

signed distance of each discrete point obtained from SVM. Note that discretization far from the 

material interfaces can be made coarser to improve computational efficiency. 
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Figure 9: Interface node candidates and resulting master-slave interface node search pairs  

 

Figure 10: RK numerical model for the test image 

3.3  Image-based SVM-RK model validation 

3.3.1  Validation with a synthetic image 

A synthetic two-phase image containing the known locations of inclusions is generated, as 

illustrated in Figure 11Error! Reference source not found.. The synthetic image has a dimension 

of 10 mm × 10 mm and a resolution of 224 × 224 pixels. To account for uncertainties in the imaging 

process, Gaussian noise is added to the original image, and the manufactured testing image is scaled 
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down to 100 × 100 pixels to lower the resolution, especially around the material interfaces. Figure 

12Error! Reference source not found. demonstrates the manufactured noisy testing image, which 

will serve as the input image for the image-based SVM-RK model generation. The accuracy of the 

obtained interface nodes is determined by a normalized mean square error of the discretized 

material interfaces as: 

 𝑀𝑆𝐸 =
1

𝑁𝐶 ⋅ 𝐿
(∑ ∑(‖𝒙𝐾

∗ − 𝒄𝑗‖ − 𝑅𝑗)
2

𝑁𝑃∗

𝐾=1

𝑁𝐶

𝑗=1

)

1
2

 (41) 

where 𝒄𝑗 and 𝑅𝑗 represent the center coordinates and radius of the inclusion to which the interface 

node 𝒙𝐾
∗ ∈ 𝕊𝐼𝐹 belongs, 𝑁𝑃∗ is the total number of generated interface nodes in the set 𝕊𝐼𝐹, and 

𝑁𝐶 and 𝐿 denote the total number of inclusions in the synthetic image and the x-dimension of the 

synthetic image, respectively.  

 

Figure 11: Synthetic testing image for validating the SVM-RK interface node generation 

 

Figure 12: Manufactured noisy testing image for validating the SVM-RK interface node 

generation 

As previously discussed, for implementation the score function is interpolated using the 

RK shape function in Eq. (40), and the locality and smoothness of the RK shape function may differ 

depending on the size and order of continuity of the kernel function chosen for its construction. 

Therefore, various RK kernel support sizes and kernel functions with different orders of continuity 

are employed to study their effects on the accuracy of the SVM-RK interface node generation 
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algorithm. Figure 13 illustrates the obtained interface nodes overlaid with the synthetic image using 

a cubic B spline RK kernel (B3, C2 continuity) with a normalized support size of 2 and linear 

bases. In addition, results of the interface node generated with various support sizes and kernel 

function continuities can be found in Table 2 and Table 3, respectively. Upon comparison of results 

in Table 2 and Table 3, it can be observed that the proposed SVM-RK interface node search 

algorithm converges less than an average of 5 iterations for all instances, and the resulting interface 

nodes achieve average scores (Eq. (40)) to the order of 10−12. Additionally, the normalized mean 

square error of the proposed image-based RK discretization model generation process is 

approximated 0.65% for all scenarios. Moreover, the results show that the generated interface nodes 

are not sensitive to the choices of the kernel support size and kernel continuity (tent function with 

C0continuity, quadratic B spline function (B2) with C1continuity, and B3 with C2 continuity) used 

in constructing the score function (Eq. (40)).  

 

Figure 13: Interface nodes overlapped with the manufactured test image 

Support size 

Number of 

constructed interface 

nodes 

Mean iteration 

number 

Mean score 

values 

Edge detection mean 

squared error 

1.10 134 3.72 1.63E-12 0.0065 

1.50 134 4.61 5.91E-12 0.0065 

2.00 134 4.60 4.40E-12 0.0065 

2.50 133 4.62 2.99E-12 0.0066 

3.00 131 4.97 4.15E-12 0.0067 

Table 2: Results of interface node search algorithm with various kernel support sizes 

Kernel 

Function 

Number of 

constructed interface 

nodes 

Mean iteration 

number 

Mean score 

values 

Edge detection mean 

squared error 

C0 (Tent) 133 3.62 5.92E-13 0.0065 

C1 (B2) 132 4.64 4.78E-12 0.0066 

C2 (B3) 134 4.60 4.40E-12 0.0065 
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Table 3: Results of interface node search algorithm with various RK kernel functions 

3.3.2 Validation of the image-based SVM-RK discrete model with Scanning Electron 

Microscopy (SEM) images  

To analyze the quality of the proposed image-based  RK discretization model generation 

procedure, a comparison is made between the constructed digital surface model from micro-CT 

and a surface image obtained from Scanning Electron Microscopy (SEM) with a spatial resolution 

of 1.5 𝜇𝑚 for the same specimen as a comparison reference. SEM uses an electron beam to scan 

the surface of a material, producing a high-resolution image that reveals details such as surface 

topography, crystalline structure, chemical composition, and electrical behavior of the top 1 𝜇m 

portion of a specimen [67]. The inclusion materials in SEM are identified based on the Energy 

Dispersive X-ray Spectroscopy (EDS), a chemical analysis technique that detects X-rays emitted 

by the material in response to the electron beam to form an elemental mapping of the SEM-scanned 

specimen surface [68]. The micro-CT input image for constructing the numerical model is selected 

accordingly near the surface of the same specimen, and a ROI around 2.82 mm by 2.37 mm is 

chosen to match the SEM scanned area, which is highlighted in the red box in Figure 14.  

An SVM-RK discretization model is created from the input 2D slice of the micro-CT image 

using the proposed method, as illustrated in Figure 15, containing discretized nodes in the epoxy 

matrix, alumina inclusions, and on the identified material interfaces.  

 

Figure 14: Micro-CT input image selection for quantitative RK discretization model 

validation 
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Figure 15: Constructed RK discretization model for the quantitative validation 

The constructed SVM-RK discretization model is superimposed over the original micro-CT image, 

and the result is shown in Figure 16. Furthermore, the alumina inclusions enclosed by the identified 

interface nodes in the constructed SVM-RK discretization model are highlighted and overlaid onto 

the SEM surface image, which is contrasted with the EDS-layered SEM image shown in Figure 17. 

As can be seen, the obtained image-based RK discretization model agrees well with the input micro-

CT image in detail.  

 

Remark 3.5: It is worth noting that the surface of the specimen was polished to enhance imaging 

quality for SEM, which may cause slight alterations to the distribution of surface particles. Figure 

18 illustrates the minor discrepancies between the SEM and micro-CT images. As the blue boxes 

indicate, misalignments can be observed for certain inclusion particles. Additionally, smaller 

particles were not captured in the SEM scan, as highlighted in the red boxes. Consequently, the 

inclusion particles identified by the SVM-RK discretization model exhibit slight variances 

compared to the EDS elemental mapping result, as illustrated in Figure 17. Nevertheless, they are 

mostly consistent, particularly for the larger and more distinctive inclusion particles.  



 

 

 29 

 

Figure 16: Constructed SVM-RK discretization model superimposed with the micro-CT 

input image (only showing the interface nodes) 

 

Figure 17: Comparison of EDS overlaid and SVM-RK discretization model overlaid SEM 

surface images 

 

Figure 18: Comparison between the SEM surface image and micro-CT image  

                                                                                              



 

 

 30 

4 Interface-Modified Reproducing Kernel Approximation Guided by Support 

Vector Machine 

4.1 Interface-Modified kernel functions 

With the material interface segmented by the SVM, the weak discontinuities across the 

material interfaces are to be introduced by modifying the regular RK kernel function with a 

regularized Heaviside function 𝐻̃ as follows: 

 𝜙̅𝑎(𝒙 − 𝒙𝐼) = 𝜙𝑎(𝒙 − 𝒙𝐼)𝐻̃ (𝜉𝐼̅(𝒙)) (42) 

where 𝜙̅𝑎(𝒙 − 𝒙𝐼) is a modified kernel function, and 𝐻̃(⋅) and 𝜉𝐼̅(𝒙) in Eq. (42) are defined as: 

 𝐻̃(⋅) = max(0, tanh(⋅)) (43) 

and 

 𝜉𝐼̅(𝒙) = {
−

𝑆(𝒙)

𝑐
, 𝑆(𝒙𝐼) < 0

+
𝑆(𝒙)

𝑐
, 𝑆(𝒙𝐼) > 0

 (44) 

where 𝑆(𝒙) is the score function, and 𝑐 denotes a scaling factor that has a length of the order of 

nodal spacing. Note that 𝑆(𝒙) is a signed distance of an evaluation point to its nearby interface, 

which is given from the output of the SVM-RK image segmentation and is readily available for 

evaluation of regularized Heaviside function 𝐻̃ . This normalized distance measure 𝜉̅(𝒙)  is 

applicable to general n-dimensional image data. The kernel functions associated with nodes away 

from the interfaces have been scaled to zero at the material interfaces by the regularized Heaviside 

function, and the kernel functions associated with the interface nodes are not scaled. As will be 

discussed in the next section, the “reproduced” RK shape functions via the reproducing conditions 

given in Eqs. (9)-(10) reveals a weak (C0) continuity of the approximated function at the material 

interface due to the Heaviside scaling in Eq. (42) regardless of the continuity of kernel function 

associated with nodes at the material interfaces. Hence, cubic B spline (B3) kernel functions with 

C2 continuity or power kernel (PK) function with C0 continuity [69] can be considered for the kernel 

function associated with the interface nodes: 

 𝜙𝑎
𝐵3(𝑧) =  

{
 
 

 
 

2

3
− 4|𝑧|2 + 4|𝑧|3                for 0 ≤ |𝑧| ≤

1

2
4

3
− 4|𝑧| + 4|𝑧|2 −

4

3
|𝑧|3   for

1

2
≤ |𝑧| ≤ 1

0                                      otherwise

      𝑧 =
𝒙 − 𝒙𝐼

𝑎
 (45) 
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 𝜙𝑎
𝑃𝐾(𝑧) =  {

(1 − 𝑧)𝛼        for 0 ≤ 𝑧 ≤ 1
0              otherwise

      𝑧 =
𝒙 − 𝒙𝐼

𝑎
 (46) 

Figure 19 shows the un-modified kernel functions 𝜙𝑎(𝒙 − 𝒙𝐼) , regularized Heaviside 

function 𝐻̃(𝜉𝐼̅(𝒙)) , the interface-modified kernel functions 𝜙̅𝑎(𝒙 − 𝒙𝐼)  and their derivatives 

𝜙̅𝑎,𝑥(𝒙 − 𝒙𝐼) in 1D with different choices of interface kernels. The blue, red, and black kernel 

functions are associated with the interface node, nodes within the support of interface nodes, and 

nodes away from the interface, respectively.  

 

Remarks 4.1. 

1. One can observe that after the interface modification, the influence domains of all nodes, 

except the interface node, terminate at the interface location, which naturally introduces a weak 

discontinuity to interface-modified kernel functions, even for the case of the smooth B-spline kernel 

at the interface.  

2. The added computational cost to perform the proposed kernel modifications is marginal 

because only a scaling is applied to the original kernel functions to construct kernel modifications, 

and this can be done effortlessly for arbitrary spatial dimensions.  

 

Figure 19: Plots of 1D interface-modified kernels with different interface kernels (Left to 

right: original kernel function, regularized Heaviside scaling function, modified kernel 

function, modified kernel function’s derivative) 
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4.2 Interface-Modified RK (IM-RK) approximation 

Let us consider the RK discretization node set 𝕊𝑅𝐾 in the SVM-RK discretized numerical 

model. Recall that interface nodes in 𝕊𝑅𝐾 are contained in the set 𝕊𝐼𝐹. Let 𝕊𝑅𝐾\𝕊𝐼𝐹 denotes the set 

of all RK discrete points excluding those on the interfaces, then the RK shape function can be 

written as follows: 

 {
Ψ𝐼(𝒙) = 𝐶(𝒙; 𝒙 − 𝒙𝐼)𝜙𝑎(𝒙 − 𝒙𝐼) = (𝑯T(𝒙 − 𝒙𝐈)𝒃(𝒙))𝜙𝑎(𝒙 − 𝒙𝐼),          ∀𝐼 ∈ 𝕊𝐼𝐹

  
Ψ𝐼(𝒙) = 𝐶(𝒙; 𝒙 − 𝒙𝐼)𝜙̅𝑎(𝒙 − 𝒙𝐼) = (𝑯T(𝒙 − 𝒙𝐈)𝒃(𝒙))𝜙̅𝑎(𝒙 − 𝒙𝐼), ∀𝐼 ∈ 𝕊𝑅𝐾\𝕊𝐼𝐹

 (47) 

where 𝜙𝑎(𝒙 − 𝒙𝐼) is the regular kernel functions without interface modification and 𝜙̅𝑎(𝒙 − 𝒙𝐼) is 

the interface-modified kernel function defined in Eq. (42). The unknown coefficient vector 𝒃(𝒙) is 

obtained by imposing the 𝑛𝑡ℎ order reproducing conditions, as shown in Eq. (10). Substituting Eq. 

(47) into Eq. (10) yields: 

 𝒃(𝒙) =  𝑴̅−1(𝒙)𝑯(𝟎) (48) 

where 𝑴̅(𝒙) is the modified moment matrix: 

 

𝑴̅(𝒙) = ∑ 𝑯T(𝒙 − 𝒙𝐼)𝑯(𝒙 − 𝒙𝐼)𝜙𝑎(𝒙 − 𝒙𝐼)

𝐼∈𝕊𝐼𝐹

+ ∑ 𝑯T(𝒙 − 𝒙𝐼)𝑯(𝒙 − 𝒙𝐼)𝜙̅𝑎(𝒙 − 𝒙𝐼)

𝐼∈𝕊𝑅𝐾\𝕊𝐼𝐹

 

(49) 

By substituting Eq. (48) into Eq. (47), the interface modified reproducing kernel shape function is 

obtained as:  

 Ψ̅𝐼(𝒙) = {
𝑯𝑇(𝟎)𝑴̅−1(𝒙)𝑯(𝒙 − 𝒙𝐼)𝜙𝑎(𝒙 − 𝒙𝐼),           ∀𝐼 ∈ 𝕊𝐼𝐹

𝑯𝑇(𝟎)𝑴̅−1(𝒙)𝑯(𝒙 − 𝒙𝐼)𝜙̅𝑎(𝒙 − 𝒙𝐼),         ∀𝐼 ∈ 𝕊𝑅𝐾\𝕊𝐼𝐹 (50) 

Finally, the IM-RK approximation of the displacement field 𝒖ℎ(𝒙) is expressed as: 

 𝑢𝑖
ℎ(𝒙) =  ∑Ψ̅𝐼(𝒙)𝑑𝑖𝐼

𝑁𝑃

𝐼=1

 (51) 

As shown in Eq. (51), no duplicated degrees of freedom associated with the interface nodes 

are added (such as interface enrichments) when using the IM-RK to approximate the displacement 

field. Figure 20 compares the 1D traditional RK and IM-RK shape functions and their derivatives 

in a domain [0, 10] with a material interface at x = 5. The red-colored node in Figure 20 is the 

interface node, and the shape functions colored black, blue, and red are associated with nodes 

outside the support of the interface node, nodes within the influence of the interface node, and the 

interface node, respectively.  
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Remarks 4.2.  

1. Owing to the regularization function 𝐻̃(𝜉𝐼̅(𝒙)) introduced in Eqs. (43)-(44), nodes on 

different sides of the interface lose communication, leading to weak discontinuities in the IM-RK 

shape functions. This is true even when a smooth cubic B-spline kernel is used for all nodes, 

including the interface nodes, as shown in Figure 20. Same weak discontinuity properties exist in 

high dimensions, as shown in Figure 21, regardless of the smoothness of interface kernel functions. 

Figure 22 illustrates the IM-RK interpolation of a function: 

𝑓(𝒙) = {
𝑒𝑐1‖𝒙‖2

,    𝑖𝑓 ‖𝒙‖ ≤ 𝑅

𝑒𝑐2‖𝒙‖2
+ (𝑒𝑐1𝑅

2
− 𝑒𝑐2𝑅

2
),   𝑖𝑓 ‖𝒙‖ > 𝑅 

  

 where 𝑐1 = 0.5, 𝑐2 = 0.1, and the interface is a circular arc with 𝑅 = 0.8. IM-RK shape functions 

with smooth cubic B-spline kernels can effectively capture weak discontinuities along the interface 

in the interpolated function and represent its discontinuous x-directional derivative field, while 

both the interpolated function and its x-directional derivative fields are smooth across the interface 

when using the standard RK shape functions with B3 kernels.   

2. Since all kernel functions vanish at the interface, except for the kernel functions defined 

on the interface nodes, the resulting IM-RK approximation functions possess weak Kronecker delta 

properties, as have been discussed in [46]. These weak Kronecker delta properties, however, do 

not exist in high dimensions because the supports of interface nodes overlap except for interface 

nodes located on domain boundaries. 
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Figure 20: 1D traditional RK and IM-RK shape functions and derivatives 
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Figure 21: 2D IM-RK shape functions constructed with different interface kernels using (a) cubic B-

spline interface kernels and (b) 4th order power interface kernels (the blue and the black functions on 

the left represent IM-RK shape function on the opposite sides of the material interface) 
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Figure 22: IM-RK interpolation of a 2D function 

In this work, the meshfree method using the above IM-RK approximation as the 

approximation function for the test and trial functions under the Galerkin framework is named the 

Interface-Modified Reproducing Kernel Particle Method (IM-RKPM). Two numerical examples 

are presented in Appendix B to validate the accuracy and convergence of proposed IM-RKPM.  

4.3 IM-RK shape functions for the image-based numerical model  

Figure 23 and Figure 24 respectively show the IM-RK shape functions of non-interface 

nodes near the interfaces and the IM-RK shape functions of the interface nodes, constructed on the 

image-based SVM-RK discretized model shown in Figure 10.  
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Figure 23: IM-RK shape functions for nodes around the interfaces: top view (right) and the 

zoom-in plot of two shape functions in the black box (left) 

In Figure 23 and Figure 24, the non-zero IM-RK shape functions are color-coded by different color 

blocks, and the maximum shape function is shown at each plotting point in the top view. By 

observing the results in Figure 23, the shape functions are truncated across arbitrarily shaped 

interfaces. The interface nodes’ shape functions, however, provide support coverage to the nodes 

located on both sides of the interface with C0 continuity along the interfaces’ normal direction for 

embedding weak discontinuities normal to the interface.  
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Figure 24: IM-RK shape function for interface nodes: top view (right) and the zoom-in plot 

of two shape functions in the black box (left) 

5 Image-Based Numerical Results 

5.1 Compression-shear test on 2D composite microstructure 

In this numerical example, a compression-shear test is conducted on a composite 

constructed based on the image shown in Figure 25. The image consists of 200 × 200 pixels with 

a pixel size of 8 μm. The physical dimensions of the specimen are 1.6 mm in width and height. 

The bottom edge of the specimen is fixed in both x- and y- directions, while the top edge is 

prescribed with a total displacement of −0.01 mm in both x- and y- directions. In addition, two 

vertical edges of the specimen are assigned as traction-free. The material constants for the alumina 

inclusion materials are: 𝐸1 = 320 GPa, 𝜈1 = 0.23 , while the epoxy material is with material 

constants: 𝐸1 = 3.66 GPa, 𝜈1 = 0.358.  
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Figure 25: Schematic of compression-shear test on a polymer-ceramic composite 

The problem at hand is examined using the proposed IM-RKPM and compared with the 

results produced using ANSYS [72], a commercially available FEM software with a much refined 

body-fitted mesh. All numerical analyses are performed under the 2D plane strain condition. The 

proposed IM-RKPM uses Nitsche’s method [70] to apply Dirichlet boundary conditions. The 

numerical model of the test image is constructed following Section 3.2, as shown in Figure 26, and 

the IM-RKPM approximation functions presented in Section 4 using cubic B-spline kernel with 

normalized support size of 2 and linear bases. The model employed for FEM analysis is manually 

traced from the inclusion geometries of the test image, resulting in a slight variation between the 

FEM and IM-RKPM discretization near interfaces. The FEM approximation involves a fine body-

fitted mesh that comprises of 37,454 elements and 112,538 nodes, as illustrated in Figure 27. On 

the other hand, the IM-RKPM approximation uses only 11,316 nodes to discretize the image 

domain, which is approximately one-tenth of the number of nodes used in the FEM model. Figure 

28 demonstrates the IM-RKPM and FEM approximated displacement solutions, respectively, and 

it is observed that both IM-RKPM and FEM predict similar displacements.  
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Figure 26: Discretized RK numerical model for IM-RKPM simulation (Unit: mm) 

 

Figure 27: FEM body-fitted mesh 
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Figure 28: IM-RKPM and FEM approximated displacement solution in both x- and y-

directions (Unit: mm) 

Figure 29 shows the strains predicted by IM-RKPM and FEM, respectively. As shown in Figure 

29, the strains of IM-RKPM display sharp transitions across the material interfaces and 

concentrated strains around the corners of the material interfaces, comparable to the results 

obtained using the FEM approximation. Furthermore, both the IM-RKPM and FEM 

approximations of strain solutions show some coalescence of the strain concentration around some 

closely positioned inclusions, as indicated by the boxed areas in Figure 29. The results show that 

the proposed IM-RKPM, accompanied by the SVM-based RK discretization with simple interface 

modified RK approximation functions, is capable of modeling composite materials with 

complicated microstructure and arbitrarily shaped inclusions with accuracy comparable to that 

obtained from a much refined and laborious FEM model.  
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Figure 29: IM-RKPM and FEM approximated strain solutions in plane view 

5.2 Uniaxial tensile test on 3D composite microstructure 

In this example, a three-dimensional image-based SVM-RK model is constructed, and a 

uniaxial tensile test is conducted on the specimen’s numerical model with the same material 

properties and essential boundary treatment by Nitsche’s method [70] as those used in Example 

5.1. The input of imaged-based 3D numerical model generation is performed by stacking 30 slices 

of ROI of 30 by 30 pixels extracted from reconstructed micro-CT 2D images of a specimen’s 

internal microstructure along the z-direction into a volumetric data matrix, as illustrated in Figure 

30. The size of the test volume is 0.24 mm × 0.24 mm × 0.24 mm, corresponding to an input 

image voxel size of 8 𝜇m. The uniaxial tension is applied to the two surfaces with surface normal 

in the z-direction under prescribed displacements in the z-direction while without constraints in the 

x-y displacements.  
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Figure 30: 3D view of the input image volumetric data matrix  

Although the training data points are now in ℝ3, the discrete model generation procedures 

remain the same as those for 2D, which corresponds to the physical coordinates of voxel centroids, 

as detailed in Section 3.2. The training response labels are obtained by stacking the segmented 

ROIs using Otsu’s method into a binary volumetric data label matrix. It is important to note that 

both matrices that contain the training data points and training response labels are concatenated 

before being fed into the SVM, which means that the combined training data set can be represented 

as 𝐃 = {𝒙𝑖, 𝑦𝑖}𝑖=1
𝑙 , where 𝒙𝑖 ∈ ℝ3, 𝑦𝑖 ∈ {−1,1}, and 𝑙 = 27,000 for the present case. For the SVM 

training, the same hyperparameters specified in Section 0 are utilized. Figure 31 demonstrates the 

SVM material classification results, the support vectors resulting from training, and the RK 

interpolated decision boundaries. It is worth mentioning that the resulting RK interpolated 

separating hyperplane, which is the material interface determined by the SVM training and RK 

interpolation, exhibits a smoother appearance in contrast to the inclusion geometries represented 

by binary label data volumetric matrix. This outcome is not surprising, given that SVM considers 

all three dimensions of the training data points to identify an appropriate separating hyperplane, 

which is more realistic and resembles a specimen image stack with higher resolution (i.e., with a 

smaller voxel size).  
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Figure 31: SVM training and prediction results and RK interpolated decision boundaries 

(Unit: mm) 

Figure 32 illustrates the results of identified interface nodes and the 3D RK discrete model 

of the test volume, where the black (small) nodes, blue nodes, and red nodes represent the epoxy 

material points, alumina material points, and points on the material interfaces, respectively. The 

3D SVM-RK discretization model contains in total 17,648 discretized nodes, among which 2330 

nodes are on the material interfaces.  

The produced 3D SVM-RK discrete model is utilized for a uniaxial tensile test in the z-

direction. The model’s bottom surface is fixed in all three directions, while a z-directional 

displacement of 0.01 mm is prescribed at the top surface of the model. The other surfaces of the 

specimen are assigned traction-free boundary conditions. The proposed IM-RKPM is employed for 

the numerical solution, and Figure 33 depicts the displacement solution in all three directions.  
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Figure 32: 3D interface node assignment result and RK discretized numerical model for the 

test volume (Unit: mm) 

 

Figure 33: IM-RKPM approximated displacement solutions (Unit: mm) 
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Figure 34: IM-RKPM approximated normal strain solutions (Unit: mm) 

The predicted normal strains are plotted in Figure 34, to which a transparency filter is applied such 

that strain with a large magnitude is not visible. As shown in Figure 34, the regions with the 

relatively small magnitude of strains are consistent with the shapes of the alumina inclusions, which 

is expected because the alumina inclusions are significantly stiffer than the surrounding epoxy 

matrix. In Figure 35, Figure 36, and Figure 37, the normal strains are plotted on multiple slices and 

are compared with the slices of the inclusion contours. The results show that distinctive strain 

transitions in all three dimensions can be observed across interfaces. In addition, some strain 

concentrations are observed between two nearby inclusions and around the corner of the inclusions. 

Overall, this example demonstrates the capability of the proposed SVM-RK image-based model 

and IM-RKPM in modeling composite material with arbitrarily shaped inclusions in three 

dimensions.  
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Figure 35: Slices of x-directional normal strain results compared to the interface contours  

 

Figure 36: Slices of y-directional normal strain results compared to the interface contours 
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Figure 37: Slices of z-directional normal strain results compared to the interface contours 

6 Conclusion 

A Support Vector Machine (SVM) guided model discretization and reproducing kernel 

approximation, utilizing micro-CT images of heterogeneous materials as input, is introduced in this 

work. The trained SVM-RK model generates classification scores for RKPM model discretization 

from the image, enabling their use as inputs for 1) interface node generation and 2) the interface 

kernel modification to construct a modified RK approximation of weak discontinuities. The SVM 

classification scores, representing the signed distances, enables identification of material phase, 

interface discretization, and interface surface normals, allowing automatic construction of RK 

approximation with weak discontinuities and interface-conforming gradient smoothing cells for 

SCNI based domain integration. The proposed image-based SVM-RK model generation process 

was validated through a synthetic image and a high-resolution surface image obtained from the 

SEM.  

The resulting Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) 

effectively remedy Gibb's oscillations commonly seen in the conventional RKPM for modeling 

problems with weak discontinuities. The proposed method incorporates a regularized Heaviside 

function defined on the SVM classification score to achieve RK approximation with interface weak 

discontinuity while avoiding Gibb-type oscillations. These procedures involved in the proposed 
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SVM guided RK approximation with interface weak discontinuities are fully automatic in 3-

dimensions and without the need of using duplicated degrees of freedom on the interface nodes 

common in other interface-enriched meshfree methods [33], [36]. In addition, this IM-RKPM with 

interface weak discontinuities can be constructed by kernel functions with arbitrary 

smoothness/roughness while achieving optimal convergence as demonstrated in the numerical 

examples using both Gauss integration and SCNI. 

Finally, the effectiveness of the proposed automated SVM-RK model generation process 

in conjunction with the IM-RKPM method is demonstrated through numerical examples based on 

test micro-CT images in both 2- and 3-dimensions. Notably, the 3D example shows that the 

proposed approach is applicable for 3D simulations where the SVM-RK model precisely represents 

the geometry of the inclusion particles, trained based on stacked image slices.   

It is worth mentioning that while the present work utilizes the standard binary SVM library 

for two-phase materials, it is possible to explore multi-class SVM algorithms, or more advanced 

machine learning algorithms, such as the convolutional neural network, for multi-phase materials 

segmentation.  

Acknowledgements 

This research is supported by the National Science Foundation (#1826221). The authors 

are grateful to the program manager, Dr. Siddiq Qidwai, for his encouragement and support. 

Appreciation is extended to Dr. Timothy Stecko of Penn State Center for Quantitative Imaging for 

technical assistance with micro-CT scanning and Ms. Julie Anderson for technical assistance with 

SEM imaging.  

Appendix A. Construction of interface-conforming gradient smoothing cells  

Since the interface locations are determined by the RK interpolated score function in Eq. 

(40), the outward unit normal of the interfaces at an interface point 𝒙𝑲
∗  can be calculated as follows: 

 𝒏(𝒙𝑲
∗ ) =

𝜵𝑆̃(𝒙)

‖𝜵𝑆̃(𝒙)‖
|
𝒙=𝒙𝐾

∗

  (52) 

To construct interface-conforming gradient smoothing cells for SCNI domain integration, a 

mirroring technique is utilized. For all interface nodes 𝒙𝐾
∗ ∈ 𝕊𝐼𝐹, the mirrored node pair {𝒙𝐾

∗+, 𝒙𝐾
∗−} 

is obtained as follows: 

 𝒙𝐾
∗± = 𝒙𝐾

∗ ± 𝜖𝒏⃑⃑ (𝒙𝐾
∗ ) (53) 
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where 𝜖 is a small perturbation number, and the interface normal 𝒏⃑⃑ (𝒙𝐾
∗ ) is defined in Eq.  (52). In 

this work, 𝜖 = 10−3ℓ is chosen, where ℓ is the image voxel size. As an illustration example, 

mirrored nodes are shown in the black box in Figure 38 (a), and the resulting gradient smoothing 

cells are shown in Figure 38 (b). Note that these mirrored node pairs are only used to generate the 

“interface conforming” Voronoi cells; they are not the RK nodes, and they don’t carry degrees of 

freedom. 

This approach allows for the use of conventional techniques, such as Voronoi tessellation, 

which will result in the two smoothing cells adjacent to either side of the interface having a common 

boundary along the interface location as shown in Figure 38 (b). In addition, the material class for 

the smoothing cells can be assigned according to the centered mirrored nodes’ material classes. As 

a result, smoothing cells away from the material interfaces are uniformly arranged, and the material 

interfaces are well represented by the adjacent two layers of smoothing cells.   

 

Figure 38: Interface conforming gradient smoothing cells’ construction (Perturbation 

distances are magnified 𝟏𝟎𝟐 times for mirrored nodes in (a) for demonstration purpose) 

Appendix B. Verification of IM-RKPM 

Numerical Example 1: One-dimensional composite rod problem 

A one-dimensional composite rod with a centered material interface is fixed at the left and 

is subjected to a displacement of 1 on the right end, as demonstrated in Figure 39. The rod is also 

subjected to a polynomial body force up to the third order 𝑏(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3. The 
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Young’s modulus of the two sections of the rod are set as 𝐸1 = 10000, for 𝑥 ∈ [0,5] and 𝐸2 =

1000, for 𝑥 ∈]5,10]. The exact solution to this problem is provided in [33]. 

 

Figure 39: Schematic of the 1D bi-material rod problem 

The example is analyzed with two body force cases: (1) 𝑏 = 0 ; (2) 𝑏(𝑥) = 25𝑥 −

7.5𝑥2 + 0.5𝑥3. The 1D problem domain is discretized with 11 uniformly distributed nodes, and 

the problem is approximated using a linear basis in both standard RKPM and IM-RKPM with a 

constant normalized nodal support size of 2. SCNI and 5-point Gauss integration are selected as 

numerical integration methods for case (1) and case (2), respectively. Figure 40 and Figure 41 

demonstrate the approximated displacement and strain solutions using RKPM and IM-RKPM for 

case (1), respectively. The results show that RKPM strain solution exhibits Gibb’s-like oscillations 

and fails to reproduce the exact weak discontinuity at the material interface. On the other hand, IM-

RKPM with SCNI can precisely capture the displacement and strain field to the machine’s 

precision. 

 

Figure 40: Case (𝟏) RKPM approximated solutions compared to the analytical solutions 
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Figure 41: Case (𝟏) IM-RKPM approximated solutions compared to the analytical solutions 

Similar behaviors are observed for case (2), as illustrated in Figure 42 and Figure 43, IM-RKPM 

significantly reduces the oscillations of the strain solution and can accurately capture the weak 

discontinuity across the material interface.  

 

 

Figure 42: Case (𝟐) RKPM approximated solutions compared to the analytical solutions 
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Figure 43: Case (𝟐) IM-RKPM approximated solutions compared to the analytical solutions 

In addition, the convergence behaviors of IM-RKPM with the cubic B spline and the power 

interface kernels and standard RKPM are investigated in terms of the normalized displacement 

and energy error norms as follows with high-order Gauss quadrature rule: 

 ‖𝒖 − 𝒖ℎ‖
0
= √

∫ (𝒖exact(𝒙) − 𝒖ℎ(𝒙))
2
𝑑Ω

Ω

∫ (𝒖exact(𝒙))2𝑑Ω
Ω

 (54) 

 

 
‖𝒖 − 𝒖ℎ‖

𝐸
= √

∫ (𝜺exact(𝒙) − 𝜺ℎ(𝒙)) ⋅ (𝝈exact(𝒙) − 𝝈ℎ(𝒙))𝑑Ω
Ω

∫ 𝜺exact(𝒙) ⋅ 𝝈exact(𝒙)𝑑Ω
Ω

 

 

(55) 

As illustrated in Figure 44, standard RKPM exhibits a suboptimal convergence rate of 1 for the 

displacement norms and 0.5 for the energy norm, while the accuracy and convergence rates are 

substantially improved in IM-RKPM, restoring the optimal convergence rates of 2 and 1, 

independent to the continuity of the interface kernel functions.  
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Figure 44: Accuracy of RKPM and IM-RKPM with different interface kernels (R: rate of 

convergence) 

Numerical Example 2: 2D circular inclusion in an infinite plate 

An infinite plate with a circular inclusion subjected to a constant dilatational eigenstrain 

𝜀∗ = 0.01, as shown in Figure 45, is analyzed.  

 

Figure 45: Schematic of the 2D infinite plate with circular inclusion problem 

The material constants selected for the inclusion material are: 𝜆1 = 497.16, 𝜇1 = 390.63, and 

matrix material are: 𝜆2 = 656.79, 𝜇2 = 338.35, where 𝜆 and 𝜇 are Lamé parameters. Due to the 

symmetry of the domain and loading conditions, only the upper right quadrant of the domain is 

modeled. The length of each side of the finite quarter domain is 5, the radius of the circular 

inclusion is 𝑅 = 1, and an analytical displacement field is prescribed on the boundaries. The 

analytical solutions in cylindrical coordinates can be found in [71]. 
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The example is modeled as a plane strain axisymmetric problem. Both 5 × 5  Gauss 

integration and SCNI method are employed as the numerical integration schemes, and RK 

approximation with linear basis and a normalized support size of 2 are utilized throughout the 

numerical analysis. Figure 46 demonstrates an example of domain discretization and background 

integration cell arrangement for the Gauss integration.  

 

Figure 46: Nodal arrangement and background integration cells for Gauss integration 

The approximated radial displacement, radial strain, and hoop strain solutions using RKPM, IM-

RKPM with cubic B spline interface kernels, and IM-RKPM with fourth-order power interface 

kernels, accompanied with 224 non-uniform nodes and 5 × 5 Gauss integration, are plotted along 

the line 𝑦 = 𝑥 in Figure 47. Like the 1D composite rod example, the RKPM solution of the radial 

strain and hoop strain are both oscillatory near the interface. IM-RKPM, on the other hand, 

effectively alleviates the oscillations in the strain solutions. In addition, a convergence study is 

performed for both RKPM and IM-RKPM with different interface kernels, and the results are 

shown in Figure 48. The IM-RKPM recovers the optimal convergence rates with the Gauss 

domain integration for both smooth and C0 interface kernels.  
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Figure 47: 𝒖𝒓
𝒉, 𝜺𝒓𝒓

𝒉 , 𝜺𝜽𝜽
𝒉  approximated using RKPM and IM-RKPM with Gauss integration 

Next, the same problem is solved using the computationally efficient SCNI. Figure 49 

demonstrates an arrangement of 211 non-uniformly distributed nodes and conforming strain 

smoothing cells for SCNI. The numerical solutions obtained by RKPM and IM-RKPM with 

different interface kernels are plotted in Figure 50.  
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Figure 48: Accuracy of RKPM and IM-RKPM with different interface kernels with Gauss 

integration (R: rate of convergence) 

 

Figure 49: Nodal arrangement and conforming strain smoothing cells for SCNI 

Similar to the Gauss integration, the standard RKPM with SCNI again experiences strain 

oscillations near the interface. However, solutions obtained by the IM-RKPM with different 

interface kernel functions are consistent with the ones obtained with Gauss integration in Figure 

47. By observing results in the convergence plots shown in Figure 51, IM-RKPM with SCNI has 

displacement and strain solutions to converge optimally. These results show that the proposed IM-

RKPM performs well with different selections of numerical domain integration techniques.  
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Figure 50: 𝒖𝒓
𝒉, 𝜺𝒓𝒓

𝒉 , 𝜺𝜽𝜽
𝒉  approximated using RKPM and IM-RKPM with SCNI 
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Figure 51: Accuracy of RKPM and IM-RKPM with different interface kernels with SCNI 

(R: rate of convergence) 
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