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special issue on the application of scRNA-seq to the
study of environmental response
Patrick Allard, Justin A. Colacino and Kristine L. Willett
Introduction
Since the first report of single-cell RNA sequencing in 2009, scRNA-seq
and related single-cell ‘omics have become omnipresent in biological
research. The analysis of gene expression at individual cell levels has
transformed our understanding of cellular differentiation, carcinogenesis,
development, aging, and many other fields by providing an unprecedented
unbiased and comprehensive look into cells’ molecular programs.

As with other fields of research, toxicology has also tremendously
benefited from scRNA-seq. Specifically, this approach allows the profiling
of cells to: (1) detect the earliest toxicity-associated molecular changes
that may be hidden when performing bulk RNA-seq; (2) reveal changes in
cell-type composition over time, for example during development, during
disease progression, or aging; and (3) relatedly, investigate, in each tissue
or organ examined, which cell types are most sensitive (as defined by the
amplitude of transcriptional shift) to the chemical exposure.
A brief history of single-cell seq
The emergence of scRNA-seq can be tied to the development and scaling
up of next-generation sequencing methods in the early 2000s. With
increased throughput and decreasing sequencing costs, sequencing of
RNA, albeit in bulk form, became standard for studying gene expression,
providing average expression profiles of entire cell populations.

Some of the earliest examinations of individual cells’ gene expression
involved the use of glass pipettes to separate and isolate cells. The material
was then processed towards the generation of cDNA libraries that served as
a template for RT-PCR [1] or micro-array analysis [2e5]. This approach
proved particularly valuable for delineating the distinct transcriptional
program underlying the differentiation program of individual neurons [2,3].
The first use of mRNA sequencing of an individual cell was reported soon
after, in 2009, with the manual isolation of mouse embryonic blastomeres
and oocytes followed by single-cell cDNA preparation and sequencing [6].
Current Opinion in Toxicology 2024, 40:100503
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A major breakthrough in the development of scRNA-seq came in 2015
through two concurrent technologies, Drop-seq and InDrops, in which
microfluidics was combined with mRNA sequencing to generate
encapsulated cells [7,8]. The barcoding of droplet-containing cells
allowed the massive parallel single-cell sequencing with relative ease.
The commercialization of this approach by 10x Genomics and their
Chromium Single Cell 30 platform dramatically increased access to
scRNA-seq. Over the years, advances in scRNA-seq have continued to

be made with improvements in library preparation, droplet-based sys-
tems, and, significantly, with the development of a large number of
computational tools and pipelines for data analysis. ScRNA-seq has also
been increasingly combined with other ‘omics approaches, notably
ATAC-seq, in order to refine cell clustering and deepen our biological
understanding at the single-cell level. Recently, single-cell approaches
have been adapted in the tissue context to allow for high-resolution
spatial mapping of molecular signatures in a tissue using imaging and
sequencing-based approaches.
From single cells to whole organisms
One significant advantage of scRNA-seq is its application at scale, from
tissue to organs, and to whole organisms. This versatility of the approach
lies in the identification of the appropriate cellular dissociation method,
usually enzymatic or mechanical, that will favor cell isolation without
compromising cellular integrity. Thus, starting from 2019, the report of the

profiling of entire organisms, such as Hydra and Caenorhabditis elegans
emerged [9e11]. These whole organs and organisms approaches opened
the door to mapping cellular changes across development [9e11] or across
the life course, i.e. during aging [12,13].

When cellular integrity is difficult to maintain or in tissues that are
syncytial, a compromise can be found in the application of single-nu-
cleus RNA-seq. The scalability of sc/sn-RNAseq represents a fantastic
opportunity for toxicologists to combine the precision of a cell-level
resolution with the comprehensiveness of a whole organ or whole or-
ganism approach [14].
Single-cell approaches and toxicology
The uptake of scRNA-seq by the field of Toxicology is recent and apparent
starting in 2019/2020. Following the 2019 publication by Zhang and col-
leagues highlighting the value of applying scRNA-seq to toxicological
questions [15], the following year’s annual meeting of the Society of

Toxicology saw the presentation of the first session dedicated to single-cell
approaches entitled: “Single Cell Technologies: A Potentially Trans-
formative Tool for Toxicology”. Moving from its potentiality to its proven
benefit, a 2022 SOTannual meeting session that also focused on scRNA-
seq was entitled: “Applications of Single Cell Profiling Methods to
Enhance Mechanistic Understanding of Toxicological Responses”.
Furthermore, the opening plenary session of the 2023 meeting, delivered
by Dr. Namandjé Bumpus from the U.S. FDA was entitled: “Advancing
Single Cell Technologies in Toxicology” which presented the clear
advantage of single-cell proteomics to understand cell-to-cell variability in
chemotherapeutic drug response in human [16]. The widespread adoption

of scRNA-seq in Toxicology is also evidenced by the large number of
presentations and abstracts at the most recent 2024 SOTannual meeting
making use of scRNA-seq.
www.sciencedirect.com
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Summary of issue and goals of issue
The goal of this issue of COTOX was to cover how

single-cell profiling is informing toxicological research
questions in the context of different organ systems and
disease models. It highlights the power of the approach
to understand precise cell-specific mechanism-based
responses across the dose and time course of toxic insult.
In addition, perspectives are provided on the method-
ological considerations and limitations of the assays and
on how these approaches can inform regulation.

Focusing on the liver, Dr. Rance Nault highlights on
single-cell transcriptomics and has provided detailed

insights into the distinct roles of liver cell types in
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced
liver damage and how TCDD disrupts the cellular
microenvironment and architecture of the liver [17]. By
leveraging these approaches, researchers have identified
common and novel mechanisms in models of toxicant-
associated fatty liver disease (TAFLD) and other fatty
liver disease (FLD). Additionally, Jigang Wang and co-
authors provide further perspectives of how single-cell
approaches can inform mechanisms and cell type sus-
ceptibility of hepato- and nephrotoxicity following

glyphosate and aristolochic acid exposures, respectively
[18].

Dr. Alessandro Venosa presents compelling studies that
highlight the significant gaps in our understanding of
lung injury stemming from ozone exposure [19]. By
applying single-cell sequencing to the study of ozone
injury and combining this approach with computational
inferences of cell-cell communication, single-cell plat-
forms can reveal the cellular interplay that drives lung
pathology following ozone exposure.

With regards to neurotoxicology, Tukker and Bowman
cover several recent studies that have revealed the
intricate transcriptional responses in the central nervous
system to exposures such as lead, bisphenol AP, or
triphenyl phosphate in rodent models [20]. The article
also highlights how the combination of organoid-based
approaches and single-cell transcriptomics can accel-
erate mechanistic discoveries in neurotoxicology.
Sampson, Morgan et al. provide insights into the
rigorous use of single-cell methods to understand the

effects of exposure to the heavy metal lead throughout
the life course, from neurodevelopment to neuro-
degeneration [21]. They highlight the importance of
evaluating cellular heterogeneity in complex tissues,
like the brain, and provide recommendations for data
generation and analysis for future single-cell neuro-
toxicology studies.

Like neurotoxicity, immunotoxicity is also highly
dependent on cell type heterogeneity. In her submis-
sion, Dr. Britton Goodale uses an arsenic case study to
www.sciencedirect.com
highlight the strengths of scRNA -seq to identify cell-
type-specific responses not noted in tissue-level ana-
lyses and to identify pathology-relevant cell popula-
tions that may not be represented in in vitro model
systems [22]. Future opportunities in biomarker iden-
tification and retrospective sequencing data analysis
are suggested as ways to better understand the mech-
anisms of immunotoxicity. Dr. Peer Karmaus provides

insights into immunotoxicology and metabolism,
describing metabolic measures and the advantages of
various approaches for quantifying metabolic outcomes
at the single-cell level, ranging from FACS to emerging
single-cell metabolomic methods [23]. Importantly,
computational approaches for the quantification of
metabolic states at the single-cell level are discussed,
including a number of important case studies about the
importance of understanding cell type heterogeneity in
the content of immunometabolism and immunot-
oxicology.

By using current models of carcinogenesis such as the
Hallmarks of Cancer and the Key Characteristics of
Carcinogens frameworks, Aguilar and Colacino describe
the use of both scRNA-seq and spatial transcriptomics
in deciphering the cell-specific pathways involved in the
development of breast cancer in response to carcinogen
exposure [24].

Two articles consider how single-cell techniques can be
leveraged to better understand reproductive and

multigenerational toxicities. Using the zebrafish model
organism, Dr. Tracie Baker and colleagues describe how
reproductive tissue atlassing is being done to charac-
terize gene expression in minor cell populations during
development and reproductive organs [25]. Perchlorate
and TCDD are provided as example toxicants that cause
germ cell-specific gene expression changes revealed by
single-cell transcriptomics. Dr. Patrick Allard and col-
leagues provide further examples of how single-cell ap-
proaches inform alcohol and e-cigarette reproductive
toxicity using the C. elegans and mouse models, respec-
tively [26]. They highlight how the highly complex and

interactive aspects of reproduction and development are
especially well-suited for single-cell and single-nuclei
experimental designs so that the complex molecular
networks can be understood.
Technical challenges
The rapidly evolving field of single-cell ‘omics necessi-
tates the development of systems biology approaches to
interpret these complex data. Diamante, Ha et al. pre-

sent a comprehensive overview of existing single-cell
technologies and describe strategies for the analysis and
integration of these data in a systems biology framework,
with case studies highlighted from the toxicology liter-
ature [27].
Current Opinion in Toxicology 2024, 40:100503
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4 Single Cell Transcriptomics (2024)
As the field of single-cell RNA-seq is being applied more
frequently to toxicological questions, the need to iden-
tify and establish best practices for analysis becomes
increasingly apparent. Filipovic, Kana et al. tackle this
challenge, providing essential guidance for key steps in
the data analysis pipeline: data preprocessing, cell type
identification, data integration and batch correction,
clustering, differential cell abundance analysis, differ-

ential gene expression analysis, and quantification and
comparison of cellular trajectories [28].
Future directions
The field of single-cell ‘omics in toxicology is a rapidly

growing field. For example, the development of
multiomic and spatially informed single-cell measures
have the opportunity to provide deep mechanistic in-
sights into how chemical and biological agents impact
cells and tissues. However, there is still a need to ensure
that these methods are scalable to assess effects of
agents in the traditional toxicological framework e
considering the impacts across species, developmental
stages, and sexes. Moreover, this is a continuing need for
advancements in data analysis methods tailored for
toxicological single-cell analyses. The articles in this

issue provide a framework to apply single-cell ap-
proaches in toxicology from study conceptualization, to
data generation, to analysis. We anticipate that single-
cell approaches will have significant impacts across the
domains of the field, from mechanistic toxicology,
environmental/ecotoxicology, drug discovery, and risk
assessment.
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