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Johannes Kraft3,7, Nicolaus Andratschke3, Steve E. Braunstein8, Olivier Morin8†
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1 The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University,
Maastricht, Netherlands, 2 Department of Radiology and Nuclear Medicine, GROW – School for Oncology and Reproduction,
Maastricht University Medical Centre+, Maastricht, Netherlands, 3 Department of Radiation Oncology, University Hospital of
Zurich, University of Zurich, Zurich, Switzerland, 4 Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill
University, Montréal, QC, Canada, 5 Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada,
6 Department of Pulmonary Diseases, GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+,
Maastricht, Netherlands, 7 Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany, 8 Department
of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States

Introduction: There is a cumulative risk of 20–40% of developing brain metastases (BM)
in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal
doses of radiation to a volume and is often used for BM treatment. However, SRT can
cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause
irreversible damage to the brain. It is therefore of clinical interest to identify patients at a
high risk of developing ARE. We hypothesized that models trained with radiomics
features, deep learning (DL) features, and patient characteristics or their combination
can predict ARE risk in patients with BM before SRT.

Methods: Gadolinium-enhanced T1-weighted MRIs and characteristics from patients
treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a
validation cohort (N = 237) from a separate institute. From each lesion in the training set,
radiomics features were extracted and used to train an extreme gradient boosting
(XGBoost) model. A DL model was trained on the same cohort to make a separate
prediction and to extract the last layer of features. Different models using XGBoost were
built using only radiomics features, DL features, and patient characteristics or a
combination of them. Evaluation was performed using the area under the curve (AUC)
of the receiver operating characteristic curve on the external dataset. Predictions for
individual lesions and per patient developing ARE were investigated.

Results: The best-performing XGBoost model on a lesion level was trained on a
combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On
a patient level, a combination of radiomics features, DL features, and patient
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characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL
model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall
of 0.60 per patient.

Conclusion: Machine learning models built on radiomics features and DL features
extracted from BM combined with patient characteristics show potential to predict ARE
at the patient and lesion levels. These models could be used in clinical decision making,
informing patients on their risk of ARE and allowing physicians to opt for different
therapies.
Keywords: brain metastases (BMs), radiation necrosis (RN), deep learning - artificial neural network, radiomics,
MRI, adverse radiation effects
1 INTRODUCTION

Brain metastases (BM) are the most common intracranial
malignancies, accounting for more than 50% of all brain
tumors and occurring in 10 to over 40% of patients with solid
malignancies (1–3). BM occur most often in patients with lung
cancer, breast cancer, and melanoma, which have a cumulative
risk ranging from 20 to 40% of developing BM (4–7). BM can be
treated locally by surgery or radiotherapy or with systemic
anticancer therapy. Treatment depends on several factors, such
as patient performance status, number and volume of metastases,
presence of extracranial metastases, symptoms, and presumed
efficacy of available systemic therapy [“Systemic therapy for
brain metastases”, (8, 9). The radiotherapy of BM can be either
stereotactic radiotherapy (SRT) or whole brain radiotherapy
(WBRT), with SRT being the guideline-recommended
treatment for a limited number of BM. As WBRT is associated
with neurocognitive deterioration, SRT is increasingly used in
multiple BM as well (10–12). SRT is delivered either in a single
fraction, with stereotactic radiosurgery (SRS), or as fractionated
stereotactic radiotherapy (FSRT) and results in a high dose
within the target volume with a steep dose gradient to the
surrounding healthy tissue (13).

Even though most of the healthy brain is spared from high
doses of radiation, a major shortcoming of SRT is a chance of
high toxicity in the immediate surrounding tissues, which may
lead to adverse radiation effects (ARE) such as radiation necrosis
effects; AUC, area under the curve;
ll-curve; BM, brain metastasis; CI,
ited adaptive histogram equalization;
igital imaging and communications in
rnal beam radiotherapy; ECM, extra-
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(RN), subacute edema, structural changes in the white matter,
and vascular lesions (14). ARE are a relatively late reaction to
irradiation of healthy tissues where either reversible or
irreversible injury has occurred (15). The risk of ARE after
SRT and SRS is found to be similar and ranges from 5 to 10%
at patient level (16–19) or approximately 3% at lesion level (15).
Known predictors of ARE are tumor volume, isodose volume,
and previous SRT to the same lesion (15). ARE of the tumor area
and tumor progression (TP) as two different post-therapeutic
events require different treatment strategies: while steroids are
often indicated for the initial treatment of ARE, true progression
or relapse requires repeated radiotherapy, surgery, or effective
intracranial systemic therapy for tumor control. Being able to
differentiate between ARE and TP is therefore of utmost
clinical interest.

Unfortunately, the (neurological) symptoms of ARE and TP
are usually indistinguishable. Furthermore, the appearances of
ARE and TP are very difficult to discern through qualitative
radiological imaging, requiring multiple successive magnetic
resonance images (MRI), specialized MRI sequences such as
perfusion-weighted or MR spectroscopy, and trained experts to
evaluate the findings (19, 20). The clinical workflow is time- and
labor-intensive, and while it is unfeasible to perform for every
lesion, a definitive confirmation of the presence of ARE requires
tissue acquisition (19).

SRT requires routine pretreatment MRI for accurate target
volume delineation. This imaging provides a source of non-
invasively acquired information about BM and brain phenotypes
that could be investigated for their potential to determine before
treatment which patient has a high risk of developing ARE. The
early identification of these patients is an unmet clinical need
which may help in clinical decision making by informing the
patients of the risk of ARE, the early risk stratification of patients
that may develop ARE, and the consideration of ARE risk
mitigating strategies such as deferring radiotherapy for central
nervous system-penetrant systemic therapy.

Advanced quantitative medical image analysis methods such
as radiomics and deep learning (DL) extract large amounts of
imaging features and associate these with biological and/or
clinical outcomes using machine learning (ML) techniques
(21–26). Thus, radiological images from routine imaging
procedures could potentially be used to non-invasively
July 2022 | Volume 12 | Article 920393
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quantify the lesion phenotype, providing clinically necessary
information for patient management decisions. Several studies
have indicated that MRI radiomics analysis is able to differentiate
BM from glioblastoma (27, 28) to predict local recurrence (29,
30), to predict the origin of metastases (31, 32), and to predict
overall survival (33, 34). DL has also shown potential in
predicting treatment response on brain MRI (35). Moreover,
DL and radiomics can have a complementary value, potentially
establishing a more robust classifier (36).

We hypothesize that models trained with radiomics features,
DL features, and patient characteristics or a combination thereof
can predict the occurrence of ARE in patients with BM, both
lesion specific and patient specific.
2 MATERIALS AND METHODS

2.1 Patient Characteristics
All data from patients with BM treated with SRT between 1997
and 2017 for which imaging, outcome data, and patient data
were available were collected retrospectively from the University
of California—San Francisco (UCSF) medical center’s picture
archiving and communication system. Available imaging data,
outcome data, and patient data of all patients with BM treated
with SRS/SRT between 2014 and 2019 at the University Hospital
Zürich (USZ) were collected retrospectively. The data included
clinical and biological information for both the patient and the
lesion. The eligibility criteria included radical treatment for
metastatic brain cancer using Gamma Knife SRS for the UCSF
patients and SRS/FSRT for the USZ patients. The inclusion of
patients was regardless of the number of BM, but
pathohistological or imaging-based confirmation of ARE
during the fol low-up was required in addit ion to
pathohistological confirmation of the primary tumor. For the
USZ cohort, in case of imaging-based suspicion of RN, positron
emission tomography imaging was additionally used to exclude
TP. The effort obtained ethical approval for observational
research using anonymized linked care data for supporting
medical purposes that are in the interests of individuals and
the wider public. UCSF Institutional Review Board (https://irb.
ucsf.edu) and Cantonal Ethics Committee Zurich approval with
waiver of informed consent was obtained.

The UCSF dataset was divided randomly into sub-cohorts for
training (70%) and testing (30%) while maintaining the ratios of
events to non-events equal in both groups. The USZ dataset was
used as an independent external validation dataset, i.e., it was
entirely unseen by the models during the training and testing
phases. The binary outcome used in training and validation was
ARE per lesion, defined as either pathologically or imaging-based
confirmation of RN occurring at any time after treatment. For
both the USCF and USZ patients, ARE was confirmed by
histopathology when treated with open surgery. In all other
cases, ARE was confirmed either at routine re-staging 3 months
after radiotherapy for asymptomatic patients or at the onset of
new symptoms. When patients presented new symptoms,
imaging was performed usually after awaiting the effects of
Frontiers in Oncology | www.frontiersin.org 3
cortisone administration. As the time of BM formation is
unknown, the outcome was not defined as right-censored. As
every lesion is able to independently develop ARE after
treatment, every lesion was considered to be an independent
sample. The probability of ARE occurring for any lesion within a
patient as an outcome was also investigated, whereby each
patient was treated as an independent sample instead.

2.2 MR Acquisition Parameters and Lesion
Segmentation
All images were axial gadolinium-enhanced T1-weighted MRI
acquired prior to the treatment of BM. All included lesions were
three-dimensionally delineated for curative Gamma Knife SRS
treatment purposes for the UCSF cohort and for curative SRS/
FSRT purposes for the USZ cohort according to local protocols
by an experienced radiation oncologist. Figure 1 shows two T1-
weighted gadolinium-enhanced MRI with lesions delineated for
SRT purposes.

To perform segmentations of the brain and the ventricles on
the entire dataset, an atlas-based segmentation strategy was
chosen. To create the atlas in the MIM software package (MIM
v. 6.9.4, MIM Software Inc., Cleveland, OH, USA), 50 randomly
chosen MRI were manually segmented by an expert radiologist.

2.3 Pre-Processing of Brain MRI Data
Bias-field correction was performed in the MIM software
package using the N4 algorithm, which required brain
segmentations (37). A bias field is a low-frequency signal
distributed over an MR image, which is caused by
inhomogeneities in the magnetic field of the MRI scanner. This
causes shifts of intensity value ranges across the image (38). The
ventricle mask was subtracted from the brain mask to obtain a
white- and gray-matter segmentation. This segmentation was
used to determine and correct the bias field present in the image
using the N4 algorithm (37) using the MIM software package.

Following the bias correction, all remaining pre-processing,
feature extraction, model training, and evaluation were
performed in Python (version 3.7). The different Python
packages used during this study can be found in
Supplementary Table S1. Pre-processing of MRI is essential
for ML purposes, for reducing scanner dependence, and for
ensuring reproducibility (39–41). As there is, to date, no
consensus regarding the best way to pre-process MRI for our
purposes, three different pre-processing workflows were applied
and compared: “minimal is t” , s tandardizat ion, and
“harmonization”. The descriptions of these pre-processing
workflows can be found in the Supplementary Materials
(Section 1 and in Figure 2).

2.3.1 Pre-processing for radiomics and feature
extraction
Feature extraction was performed according to the Image
Biomarker Standardization Initiative (IBSI) guidelines (42–44)
on the three different sets of processed MRI scans using the BM
segmentations. All images were resampled to uniform 1 × 1 × 1-
mm3 voxels using the “sitkBSpline” interpolator to correct for
July 2022 | Volume 12 | Article 920393
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differences in pixel size and slice spacing. The choice for voxel
dimensions was made based on majority ruling, as it was found
that most patients had a pixel spacing of ~1 mm. To achieve
isotropic voxels, the choice for resampling in the z-direction was
also chosen as 1 mm. Pixel intensity values were resampled to a
fixed number of 64 bins, as the number of gray levels was found
to affect the interchangeability of MRI radiomics features, and a
fixed bin number of 64 has been found recommended in
previous studies (42–44).

A total of 106 IBSI features were extracted from each
segmentation. The features were extracted from the BM
segmentations of the pre-processed images and can be divided
into first-order intensity, histogram statistics, shape, and texture
features. A full list and a description of the features can be found
in the PyRadiomics documentation ([Radiomic Features—
PyRadiomics Documentation, (45)], and a description of the
feature groups can be found in the Supplementary Materials
(Section 2).
Frontiers in Oncology | www.frontiersin.org 4
2.3.2. Pre-processing for deep learning
To inform the DL model on the location and extension of the
lesions, lesion masks were used to highlight the ROI. A Gaussian
smoothing filter was applied to the image, gradually decreasing
the intensity values around the lesion from a factor of 1.0 to 0.2
to still include information of the voxels immediately around the
lesion masks.

Otsu thresholding was performed to create a mask containing
the brain and the skull. This mask was used to determine the
largest three-dimensional bounding box containing the brain
and the skull to crop the images. Anything outside this mask was
defined as the image background, for which all pixel values were
set at 0. For the “minimalist” and the “standardization” datasets,
the intensities were resampled in a range between 0 and 255.
Finally, the scans were rescaled at 256 × 256 × 64 with spline
interpolation order 3. As an example, the steps of the pre-
processing workflow for the “minimalist” normalization are
illustrated in Figure 3.
A B

FIGURE 1 | T1-weighted gadolinium-enhanced MRIs of the brain. Delineated in red (A) is a lesion that developed adverse radiation effects after stereotactic
radiotherapy and (B) a lesion that did not develop adverse radiation effects after stereotactic radiotherapy.
FIGURE 2 | Pre-processing strategies for the “minimalist”, “standardization”, and “harmonization” approaches.
July 2022 | Volume 12 | Article 920393
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2.4 Machine Learning Models
The mean and SD of each feature over the entire training
population were determined. These values were used to apply
z-score normalization to the features of the training, testing, and
external validation datasets (46). Next, features with low variance
(<0.01) were determined and excluded from the dataset. Lastly,
the correlation between features was determined using absolute
pairwise Spearman rank correlation. As highly correlated
features (>0.85) were assumed to contain overlapping
information about the outcome, the feature with the highest
mean absolute correlation with the rest of the features was
excluded. Lastly, supervised feature selection was performed
through recursive feature elimination (RFE). RFE uses a ML
algorithm to build a multivariate model and determine predictive
performance using the currently selected features. It recursively
drops and adds features, determining the optimal number of
features and the selection of most predictive features.
Frontiers in Oncology | www.frontiersin.org 5
An extreme gradient boosting (XGBoost) model was used for
RFE and ARE prediction. A description of the XGBoost
architecture and the methodology to determine the optimal
hyperparameters for the trained models can be found in the
supplementary materials (Section 3).

2.5 Deep Learning Model
An Xception three-dimensional model was trained and tested on
the same datasets as the handcrafted radiomics-based model.
Xception is the extreme version of an Inception model (47),
which uses depth-wise separable convolutions. The architecture
can be found in Supplementary Figure S1. Adam optimization was
used (48) with an initial learning rate of 10-5, which updated the
learning rate during training, and used for loss function binary
cross-entropy. This model produced a score ranging from 0 to 1,
indicating the estimated probability that a lesion develops ARE. The
area under the curve (AUC) of the receiver operating characteristic
A B

D E F

C

FIGURE 3 | Example of pre-processing strategy: deep learning on the “minimalist” approach. The different steps of preprocessing were (A) z-score normalization,
(B) shift to positive values only, (C) pixel attenuations with Gaussian smoothing filtering, (D) cropping around the largest bounding box and background set to 0,
(E) resizing at 256 × 256, and (F) rescaling the pixel value range to 0–255.
July 2022 | Volume 12 | Article 920393
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(ROC) was monitored on the test dataset. The ROC displays the
discriminative performance of a model expressed through the
sensitivity and specificity as the threshold for binary classification
is shifted. The AUC of the ROC is a metric from 0 to 1, where 1
means that the model has perfect predictive performance and 0.5 is
equivalent to guessing. To limit the imbalance of the outcomes to
affect the model training, the model was only trained on lesions for
those patients who had at least a single ARE and tested on the scans
of the patients who had ARE in the test dataset. To combine DL and
radiomics, the last fully connected layer consisting of 256 features
obtained after training the model was extracted. These features were
then used to train a ML model similarly to using radiomics features
and used in models combining radiomics features and
patient characteristics.

2.6 Clinical and Treatment-Related
Feature Model
As the training and testing datasets contained patient characteristics
not available in the external validation dataset, any feature not
overlapping between these datasets was dropped. The list of the
remaining features was as follows: primary tumor location, primary
tumor histology, primary tumor controlled, extra-cranial metastases
presence, patient age, patient sex, SRS to the same location, prior
external beam radiotherapy (EBRT), prior radiosurgery (RS),
neurological symptoms, headaches, seizures, hypertension,
diabetes, connective tissue disorder, Karnofsky performance score
(KPS) status, prescription dose, and isodose lines. For XGBoost to
be able to handle categorical variables, one-hot encoding was
performed on two categorical clinical features (primary tumor
location and primary tumor histology).

Missing values were imputed using MissForest. MissForest is
an imputation algorithm that uses RandomForest to train a
model on the non-missing data for each feature with missing
values to predict the missing values. In the first iteration, all
values are set to the mean value present for each variable (i.e.,
each column). Then, over multiple iterations, each data column
with missing values will be predicted using all the data except for
the rows containing the missing values in question. This process
is repeated over several iterations.

2.7 Metrics Used for Data Analysis
The patient and tumor characteristics in the UCSF and USZ
cohorts were assessed through a two-proportion z-test to test for
significant differences in categorical variables between the
cohorts or the unpaired two-sample t-test to test for significant
differences in numerical variables. For the latter, the assumptions
of the data having a normal distribution and possessing the same
variance in both cohorts were tested through Shapiro–Wilk’s test
and f-test, respectively. The significance level was set at 5%.

To determine which method ensured best performance for
the radiomics-based and DL models, models were trained on the
three different pre-processed datasets, and the best AUC of the
ROC on the testing set was used to determine the best pre-
processing methods for ML and DL separately. The 95%
confidence intervals (CI) displayed on the ROC curves were
obtained using bootstrapping (n = 2,000). For the radiomics-
based model, the results were reported on the full train dataset
Frontiers in Oncology | www.frontiersin.org 6
and the entire test dataset. For the DL model, the results were
reported on the balanced train dataset (which served to train the
different DL models) and the full test dataset.

Once the best models were selected, the models were
validated on the external dataset. The predictive performance
of each model was expressed through the ROC curve and its
AUC on the training, testing, and external data. By determining
an optimal threshold value using Youden’s J statistic (49) based
on the training dataset, a binary classification was performed on
the external dataset. From this binary classification, the balanced
accuracy, precision, recall, and F1-score were determined. The
confusion matrices were also derived from the binary
classification. To determine model performance and to
compare between models, the recall was investigated
specifically, which is the proportion of true positives of the
total number of true cases. As the number of events was
relatively low and not missing any patients at risk of ARE is
crucial, a high recall of the models was desirable. The CI obtained
for all metrics were obtained using bootstrapping, resampling the
results 2,000 times. Moreover, an analysis of the agreement
prediction between the DL model and the radiomics-based
model was performed. To give a prediction per patient, the
maximum prediction of ARE among the different lesion
predictions of the patient was selected. The ground truth to
which the prediction was compared with was the ARE status of
the patient, meaning that the patient had at least one ARE lesion.
An overview of the models tested can be found in Figure 4.

We evaluated on the external dataset for which cases the DL
model and the best radiomics classifier obtained the same
predictions and reported the number of cases for which those
models agreed on the label. The metrics based on the data for
which the models agreed was also reported.
3 RESULTS

3.1 Patient Characteristics
A total of 1,404 patients with 7,974 lesions from UCSF and 237
patients with 646 lesions from USZ were included. Table 1 shows
an overview of the patient characteristics of the UCSF and USZ
data. Significant differences between the proportion of male and
female patients between the datasets (P < 0.01), median age (P =
0.03), KPS status (P < 0.01), and the number of lesions per
patient at treatment (P < 0.01) were found. Furthermore, the
proportions of primary tumor (lung, melanoma, and breast)
were different between the datasets, and the data from USZ did
not have kidney, GI, sarcoma, or other types of primary locations
that were present in the UCSF dataset. For the histology of the
primary tumor, only the melanoma histology subtype was found
to be present in a significantly different proportion.

3.2 Radiomics-Based Model and DL Model
Results Based on the Three Different
Preprocessing Methods of the Dataset
The best AUC on the test dataset for the radiomics-based models
was found using the “harmonization” normalization, with an
July 2022 | Volume 12 | Article 920393
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FIGURE 4 | General workflow of the model training process: first, the MRI data was pre-processed using 3 pre-processing methods, the most suitable pre-
processed set of images was selected according to the radiomics-based model or the DL model performance on the internal test dataset, then the models were
ensembled or trained separately, and finally the performance of each model was computed on the external dataset.
TABLE 1 | Patient characteristics of University of California—San Francisco (UCSF) and University Hospital Zurich (USZ) datasets.

Patient/tumor characteristic Total UCSF data USZ data P
N = 1,404 N = 237

Sex (%) Male 571 (41) 128 (54) <0.01
Female 833 (59) 109 (46)

Median age ± SD 59 (13) 62 (12) 0.03
KPS (%) 80–100 1,053 (75) 198 (83) <0.01

40–80 351 (25) 37 (16) <0.01
10–40 0 (0) 2 (1) –

Primary tumor location (%) Lung 530 (38) 136 (58) <0.01
Breast 357 (25) 27 (11) <0.01
Melanoma 272 (19) 74 (31) <0.01
Kidney 91 (7) 0 (0) –

Gastrointestinal 57 (4) 0 (0) –

Gynecologic 27 (2) 0 (0) –

Sarcoma 20 (1) 0 (0) –

Other 50 (4) 0 (0) –

Histology primary tumor (%) Adenocarcinoma 802 (57) 124 (52) 0.17
Melanoma 272 (19) 74 (31) <0.01
Renal cell carcinoma 88 (6) 0 (0) –

Small cell carcinoma 44 (3) 0 (0) –

Squamous cell carcinoma 40 (3) 10 (4) 0.26
Sarcoma 18 (1) 0 (0) –

Large cell carcinoma 9 (0.6) 2 (1) 0.72
Bone carcinoma 8 (0.6) 0 (0) –

Adeno squamous carcinoma 6 (0.4) 0 (0) –

Broncho alveolar cell carcinoma 5 (0.4) 0 (0) –

Germ cell carcinoma 2 (0.1) 0 (0) –

Lymphoma 1 (0.1) 0 (0) –

Other/NOS 109 (8) 27 (11) 0.06
Primary controlled 974 (70) 149 (63) 0.05
ECM present 1,097 (78) 190 (80) 0.48
Number of lesions per patient at treatment Median ± SD 3 (7) 2 (3) <0.01
Symptoms Headaches 437 (31) 31 (13) <0.01

Hypertension 407 (29) 0 (0) < 0.01
Seizures 134 (10) 16 (7) 0.17
Diabetes 98 (7) 13 (6) 0.4
CTD 21 (2) 2 (1) 0.43

Number of lesions in total 7,974 646 –

Number of ARE cases (% of total lesions) 217 (2.7) 20 (3.1) 0.61
Number of patients with ARE (% of total patients) 155 (11) 19 (8) 0.16
Prescription dose ± SD (Gy) 18.5 (1.5) 20 (5.0) –
Frontiers in Oncology | www.frontiersin.org 7
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The P-value of two-proportion z-test or unpaired two-sample t-test for significant differences between datasets was reported for each characteristic if applicable.
SD, standard deviation; KPS, Karnofsky performance score (80–100, good performance; 50–70, medium performance; and 10–40 bad performance); ECM, extracranial metastasis; BM,
brain metastasis; CTD, connective tissue disorder; ARE, adverse radiation effect; Gy, gray.
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AUC of 0.76 (CI of 0.70–0.81), compared with 0.75 (CI of 0.70–
0.80) and 0.73 (CI of 0.67–0.79) for the “minimalist” and
“standardization” methods, respectively.

The best AUC on the test dataset for the DL models was
found using the “standardization” normalization, with an AUC
of 0.72 (CI of 0.66–0.78), compared with 0.63 (CI of 0.57–0.70)
and 0.65 (CI of 0.58–0.71) for the “minimalist” and
“harmonization” methods, respectively. Figure 5 shows the
ROC curves of the training and testing datasets for the three
different pre-processing methods for radiomics-based ML and
for DL.

3.3 Results of the Combined Best-
Performing Models
We calculated the AUC and CI for each model combination on
the external validation dataset. The DL model, built on images
pre-processed with the “standardization” method, achieved an
AUC of 0.64 (CI of 0.50–0.76). The model built on radiomics
features, extracted from the images pre-processed with the
“harmonization” method, achieved an AUC of 0.73 (CI of
0.63–0.83). The model was built on 20 features selected
through RFE. Supplementary Figure S2A provides an
overview of the selected features and the corresponding
importance in the XGBoost model. Supplementary Table S2
provides an overview of the hyperparameters determined
through grid search cross-validation. The model based on the
combination of the DL features extracted from the last layer and
radiomics features achieved an AUC of 0.71 (CI of 0.60–0.82).
The model was built on 10 features selected through RFE.
Supplementary Figure S2B provides an overview of the
selected features and the corresponding importance in the
XGBoost model. The model built on radiomics features,
extracted from images pre-processed with the “harmonization”
method, combined with patient characteristic features achieved
Frontiers in Oncology | www.frontiersin.org 8
an AUC of 0.70 (CI of 0.57–0.80). The model was built on 19
features selected through RFE. Supplementary Figure S2C
provides an overview of the selected features and the
corresponding importance in the XGBoost model. Finally, the
model built on radiomics features, extracted from images pre-
processed with the “harmonization” method, combined with DL
features, extracted from images pre-processed with the
“standardization” method, and patient characteristics achieved
an AUC of 0.69 (CI of 0.56–0.81). The model was built on 20
features selected through RFE. Supplementary Figure S2D
provides an overview of the selected features and the
corresponding importance in the XGBoost model. Figure 6
shows the ROC curves with CI of the training datasets, testing
datasets, and validation datasets for these models.

The combination of radiomics and DL features achieved the
highest combination of balanced accuracy and recall of 0.67 (CI
of 0.56–0.76) and 0.80 (CI of 0.62–0.96), respectively, of the
externally validated models for predictions per lesion. For a
patient-level prediction, the DL model achieved an AUC of 0.70
(CI of 0.56–0.80) and that of the radiomics model an AUC of
0.72 (CI of 0.60–0.83). A combination of radiomics and DL
achieved an AUC 0.71 (CI of 0.57–0.83), that of a combination of
radiomics and patient characteristics an AUC of 0.71 (CI of
0.59–0.81), and that of a combination of radiomics features, DL
features, and patient characteristics an AUC of 0.72 (CI of 0.58–
0.84). The model combining radiomics features, DL features, and
patient characteristics achieved the highest combination of
balanced accuracy and recall of 0.65 (CI of 0.55–0.74) and 0.84
(CI of 0.65–1.00), respectively, of the externally validated models
for predictions per patient. The DL model predictions and the
radiomics-based model predictions per lesion agreed for 32% of
the external dataset. For the per-patient classification, the DL
model predictions and the radiomics combined with clinical
feature-based model predictions agreed for 19% of the external
A

B

FIGURE 5 | Comparison of predictive performance through receiver operating characteristic curves for (A) radiomics-based machine learning and (B) deep learning
models using three different pre-processed image datasets. The shaded areas represent the 95% confidence intervals of the corresponding receiver operating
characteristic curves.
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dataset. Because the number of patients for which the models
agreed was low (47 patients, 6 with ARE), no CI could be derived.
Table 2 provides an overview of the AUC, balanced accuracy,
precision, recall, and F1 score metrics for all DL and ML models
on both lesion and patient levels and for the agreed labels on the
external validation. The corresponding confusion matrices are in
Supplementary Figures S3, S4, respectively. Supplementary
Tables S3, S4 contain the same metrics as that in Table 2 for
the training and testing datasets, respectively.
4 DISCUSSION

Patients with BM treated with SRT are at risk of developing ARE,
such as RN. Early identification of these patients can help in
clinical decision making. The MRIs required for SRT planning
provide an opportunity to identify these patients through
quantitative imaging methods. In this large-scale study, ML
models that can successfully predict ARE were trained on T1-
weighted MR imaging features from secondary brain tumors
treated with SRT. As no consensus to harmonize MR images
within and between centers exists, multiple methods were tested
for the DL and ML pipeline, resulting in two optimal pre-
processing methods (“harmonization” for the ML pipeline and
“standardization” for the DL pipeline). A ML model trained with
radiomics features combined with DL features yielded the
highest predictive performance, with a combination of ROC
AUC, balanced accuracy, and recall of 0.71, 0.67, and 0.80,
respectively. At the patient level, the best-performing ML
model was clearly a combination of radiomics, clinical (age at
treatment, prior RS, and sex), and DL features achieving the
highest predictive performance (AUC of 0.72), a balanced
accuracy of 0.65, and recall of 0.84.
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Performing an aggregate prediction (i.e., using only those
predictions that agreed on the outcome) did not improve
predictive performance for the lesion-level prediction (AUC of
0.67) nor the binary prediction (balanced accuracy of 0.65).
However, using this method, the highest recall of 0.90 was
achieved, making this method very robust in detecting true positives.

The models pave the way for clinical decision making of
patients at risk of ARE before treatment. The information on the
risk of an individual patient may be used by clinicians to inform
patients of the risk of ARE when SRT is used as treatment.
Furthermore, this information may be used to perform an early
stratification of those patients at high risk or may allow the
patient and clinician to pursue alternative therapy, such as
systemic therapy or alternate radiotherapy approaches (e.g.,
dose de-intensified SRT or WBRT), if the risk of ARE
outweighs the possible benefits of SRT (50).

To our knowledge, this is the first study that performs a pre-
treatment prediction of ARE using quantitative image analysis.
Several studies have investigated the possibility of differentiating
between tumor recurrence and RN after treatment, which is
nominally similar in purpose to identify those patients who may
have ARE. Zhang et al. (51) used radiomics features extracted
from four different MR sequences [T1, T1 post-contrast, T2, and
fluid-attenuated inversion recovery (FLAIR)] at two different
time-points during follow-up to differentiate RN from TP as
confirmed pathologically. A model was built on a dataset of 87
patients with 97 lesions using 5 delta-radiomics features from T1
and T2 sequences. The AUC and binary prediction accuracy of the
model were both 0.73. However, this result was obtained using
leave-one-out cross-validation, as no external validation was used.
Similarly, Peng et al. created a model on radiomics features
extracted from T1 and T2 FLAIR on 66 patients with 77 lesions
in total (52). The model was compared with a neuroradiologist’s
FIGURE 6 | Receiver operating characteristic curves of the training, testing, and external validation datasets for the different model combinations. The shaded areas
represent the 95% confidence intervals of the corresponding receiver operating characteristic curves.
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performance. No external validation was used, and instead a leave-
one-out cross-validation was performed, which gave an AUC of
0.81. The sensitivity and specificity of the neuroradiologist were
0.97 and 0.17, compared with 0.65 and 0.87 for the radiomics-
based model. In Park etal. (53), the study compared the results
obtained after training radiomics-based models using different
MRI sequences [T1, T2, and apparent diffusion coefficient
(ADC)]. The models were trained using the data from 86
patients and tested on an external dataset of 41 patients. The
best AUC was found on the ADC-based data with 0.80, while the
other sequences had AUCs of around 0.65. These results are
similar or higher than the results obtained with our model, though
within the range of the confidence intervals for the model based on
radiomics and DL, and the lack of an external dataset on two of the
studies makes the validity of these models difficult to determine
(52). Most other studies have a similar lack of external validation
and total number of included patients, further making the results
difficult to compare with the present study (54). These results
show that the model presented in this study is able to perform
similarly to or even outperform models that perform classification
(post-treatment) instead of prediction (pre-treatment) of ARE.

One of the strengths of the present study is the large number
of included patients and subsequent lesions, with 7,974 lesions
(2.7% ARE) of 1,404 patients in training and testing and 646
lesions (3.1% ARE) of 237 patients in the external validation.
This provides a large volume of data for our models to train on,
ensuring that it covers the wide variability found between
patients. In addition, the inclusion of an external validation is
another strength, especially seeing the general lack of one in most
other studies investigating ARE. This ensures that the reported
result is not too optimistic and shows that our model can be
generalizable to populations from a different hospital in a
different country and even with different treatments from the
training and testing sets. While the difference in treatment
between the training (exclusively SRS) and external validation
Frontiers in Oncology | www.frontiersin.org 10
(a mix of SRS and FSRT) may induce variability due to small
differences in treatment planning for these methods, literature
has shown that these methods carry the same risk of ARE and
were therefore considered interchangeable (16, 17, 19).

The large confidence interval on the external validation is partially
due to the low number of positive findings in this dataset (n = 20).
This is because of the large imbalance in outcomes for both ARE and
tumor failure. One of the major problems that may arise from this
imbalance is a skewed view of predictive performance. However, this
was addressed in the present study through multiple measures. The
DL model was trained on a balanced subset of the data that only
included patients that suffered at least 1 ARE. For ML, the XGBoost
model was trained while scaling the weights of positive and negative
classes and the respective proportion of the labels. Finally, through
analysis of the confusion matrix, precision recall curves, and recall
metric,weensured that theperformanceof themodelwasnotentirely
driven by labeling the data as the majority class.

While the models have been successfully validated on a
dataset from an external center, further validation on multiple
centers is required to ensure that the models are generalizable.
Future research could therefore focus on validating the present
model on other datasets, potentially with recalibration of the
model. At a later stage, a clinical trial to test the efficacy of
the model is needed to be able to incorporate the model in a
clinical setting. A model combining radiomics features, DL
features, and patient characteristics with a high accuracy could
help choose other treatment options such as surgery only,
systemic therapy, or palliative care (55) if the predicted risk of
developing ARE is high. The model could also predict if the
patient would be at a low risk of developing ARE, in which case
SRT could be preferred over other treatment options.

In the present study, only one sequence of the MRI scan was
used. Previous studies showed that a combination of radiomics
computed on T1 and T2 sequences performs best to differentiate
ARE and TP (51, 52), and ADC sequence seems to also show a
TABLE 2 | Area under the curve (AUC), balanced accuracy, precision, recall, and F1 metrics with CI on the external validation on patient and lesion levels.

Per-lesion classification Per-patient classification

Approaches AUC Balanced
accuracy

Precision Recall F1 score Approaches AUC Balanced
accuracy

Precision Recall F1 score

Best deep learning
model

0.64 CI
(0.50,
0.76)

0.57 CI
(0.48,
0.64)

0.04 CI
(0.02,
0.05)

0.85 CI
(0.67,
1.00)

0.07 CI
(0.04,
0.10)

Best deep learning
model

0.70 CI
(0.56,
0.83)

0.63 CI
(0.52,
0.73)

0.17 CI
(0.09,
0.25)

0.60 CI
(0.39,
0.78)

0.26 CI
(0.16,
0.37)

Best radiomics
model

0.73 CI
(0.63,
0.83)

0.62 CI
(0.51,
0.74)

0.07 CI
(0.03,
0.11)

0.45 CI
(0.23,
0.67)

0.12 CI
(0.05,
0.19)

Best radiomics
model

0.72 CI
(0.60,
0.83)

0.59 CI
(0.51,
0.69)

0.40 CI
(0.09,
0.75)

0.21 CI
(0.05,
0.43)

0.28 CI
(0.07,
0.48)

Radiomics and DL 0.71 CI
(0.60,
0.82)

0.67 CI
(0.56,
0.76)

0.05 CI
(0.03,
0.08)

0.80 CI
(0.62,
0.96)

0.10 CI
(0.06,
0.14)

Radiomics and DL 0.71 CI
(0.57,
0.83)

0.66 CI
(0.54,
0.77)

0.14 CI
(0.07,
0.22)

0.63 CI
(0.40,
0.84)

0.23 CI
(0.13,
0.34)

Radiomics and
patient
characteristics

0.70 CI
(0.57,
0.80)

0.62 CI
(0.51,
0.74)

0.06 CI
(0.03,
0.10)

0.50 CI
(0.28,
0.73)

0.11 CI
(0.05,
0.17)

Radiomics and
patient
characteristics

0.71 CI
(0.59,
0.81)

0.57 CI
(0.48,
0.68)

0.16 CI
(0.04,
0.30)

0.26 CI
(0.08,
0.47)

0.20 CI
(0.05,
0.35)

Radiomics, DL, and
patient
characteristics

0.69 CI
(0.56,
0.81)

0.64 CI
(0.53,
0.74)

0.05 CI
(0.03,
0.08)

0.70 CI
(0.48,
0.89)

0.09 CI
(0.05,
0.14)

Radiomics, DL, and
patient
characteristics

0.72 CI
(0.58,
0.84)

0.65 CI
(0.55,
0.74)

0.12 CI
(0.07,
0.17)

0.84 CI
(0.65,
1.00)

0.21 CI
(0.13,
0.29)

Agreed labels 0.67 CI
(0.53,
0.81)

0.65 CI
(0.53,
0.73)

0.07 CI
(0.03,
0.12)

0.90 CI
(0.67,
1.00)

0.13 CI
(0.06,
0.21)

Agreed labels NA NA NA NA NA
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higher performance (53). Investigating more sequences in a
future study may therefore improve the performance of the
imaging-based models.

Lastly, for ARE (and, to a lesser degree, TP), treatment is one
of the primary factors. In this study, multiple-dose-treatment-
related variables have been included, such as prior treatments to
the same patients as well as dose variables and the volumes
encompassing certain dose levels. However, a more thorough
“dosiomics” analysis would probably improve the prediction of
ARE. Liang et al. (56) described a method to extract the spatial
and texture radiomics features from dose maps (56). They found
several radiomics features which have a significant predictive
value of radiation pneumonitis. Using a similar method for ARE
in BMmay result in improved prediction results. Our predictions
could also be combined with models automatically classifying
tumors and RN on brain MRI, such as in Zhang et al. (51),
potentially strengthening the results of those studies.
5 CONCLUSION

Radiomics is able to predict lesions at a high risk of ARE,
especially when combined with DL features. When predicting
ARE on a patient level, the highest performance was found using
a combination of radiomics, DL, clinical, and treatment-related
features. These models could potentially be used to aid clinical
decision making for patients with BM treated with either gamma
knife or EBRT.
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