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EVALUATIONS OF ANNULAR KHOVANOV–ROZANSKY HOMOLOGY

EUGENE GORSKY AND PAUL WEDRICH

Abstract. We describe the universal target of annular Khovanov–Rozansky link homology functors
as the homotopy category of a free symmetric monoidal category generated by one object and one
endomorphism. This categorifies the ring of symmetric functions and admits categorical analogues
of plethystic transformations, which we use to characterize the annular invariants of Coxeter braids.
Further, we prove the existence of symmetric group actions on the Khovanov–Rozansky invariants of
cabled tangles and we introduce spectral sequences that aid in computing the homologies of generalized
Hopf links. Finally, we conjecture a characterization of the horizontal traces of Rouquier complexes of
Coxeter braids in other types.
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1. Introduction

The positive part of the HOMFLY-PT skein algebra of the annulus is defined as a linear span of
annular closures of braids, modulo certain skein relations. A classical result of Turaev [Tur88] states that
this skein algebra is isomorphic to the algebra Λq of symmetric functions in infinitely many variables
over Z[q±1]. In particular, to any braid one can associate a symmetric function which is invariant under
conjugation of the braid.

Conversely, many interesting symmetric functions and relationships between them can be represented
in terms of (colored) braid closures. For example, if Schur functions correspond to the colored unknots,
then certain “plethystically transformed” skew Schur functions sλ/µ[X(q−q−1)] are represented by “Cox-
eter braids” (see Section 2 for precise definitions).

Furthermore, the skein of the annulus acts on the (relative) skein of the disk. In particular, after an
extension of scalars, there is a homomorphism of Λq to the Hecke algebra Hn for any n, and its image
coincides with the center of Hn.

(1) × L 7−→ L

· · ·

· · ·

The motivation for this paper is to study lifts of this homomorphism to the categorified level.

1.1. The annular category. In a series of recent papers [QR18, QRS18] Queffelec, Rose and Sartori
categorified the skein of the annulus using annular Khovanov-Rozansky homology. The target for this
annular link homology functor is a monoidal category whose objects are (complexes of) oriented webs in
the annulus, and the morphisms are given by annular foams. They prove that this category is generated
by collections of

∧
k-colored essential unknots, and provide an explicit algorithm of simplification of a

given web to this basis. The monoidal structure is given by placing one annulus inside another. We
reformulate their result and prove the following:

Theorem 1.1. The Karoubi completion (or bounded homotopy category) of the category of positive
annular webs and foams is equivalent to (the bounded homotopy category of) the free symmetric monoidal

graded Karoubian category P̂ generated by a single object E (corresponding to the uncolored essential
circle) with an endomorphism x ∈ End(E) (corresponding to a dotted cylinder on the circle) of degree
two. Under this equivalence, the

∧
k-colored unknot corresponds to the antisymmetric component in E⊗k.

In other words, the target of the annular Khovanov–Rozansky invariant can be thought of as a category
of complexes of Schur functors of E, which categorify the corresponding symmetric functions in Λq. We

will call the bounded homotopy category Kb(P̂) the annular category.

Remark 1.2. It is important to mention that we work in characteristic zero, where the representation
theory of Sn is semisimple, and Schur functors are well-defined. In finite characteristic, one may need to
use the formalism of strict polynomial functors [FS97, HY13b, HY13a, HTY14], but we do not pursue it
in this paper.

It is conjectured [QR18, Conjecture 5.4] that every annular web is actually isomorphic to a direct
sum of collections of

∧
k-colored essential unknots (that is, to a complex concentrated in one homological

degree). Here we prove that at least after Karoubi completion this is indeed the case:
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Theorem 1.3. Every positive annular web is isomorphic in the Karoubi completion of the positive annular
foam category to a direct sum of Schur functors of the uncolored essential circle E.

We prove this theorem as Corollary 4.20. As a consequence, any annular chain complex, in particular
the invariant of an annular braid closure, is isomorphic (and not just homotopy equivalent) to a complex
of such Schur functors. Two further consequences are the following.

Corollary 1.4. The symmetric function corresponding to any annular web in the skein of the annulus
is Schur positive.

Corollary 1.5. The Karoubi completion of the horizontal (i.e. monoidal) trace of the monoidal category
of Soergel bimodules of type An−1 is equivalent to C[Sn]⋉C[x1, . . . , xn]− pmod.

1.2. Spectral sequences. The annular simplification of Khovanov–Rozansky invariants is still possible
if the annular link appears as a cabling of a component of a framed link in R3. To make sense of this
claim, we first need to explain what Schur functors are in this framework. Let L be a framed link and K
a distinguished component and λ a partition of n. Consider the link L(Kn) given by the n-fold parallel
cabling of the component K in L (this uses the framing). By functoriality of the Khovanov–Rozansky
functor, the braid group Bn on n-strands acts on KhR(L(Kn)) by braiding parallel circles in the cabling
around each other through isotopy-cobordisms. Moreover, the braid group actions associated to cablings
of different components of L commute. In fact, these braid group actions factor through the symmetric
group. This generalizes a result of Grigsby–Licata–Wehrli [GLW18] for sl2 Khovanov homology.

Theorem 1.6. The action of Bn on KhR(L(Kn)) factors through the symmetric group Sn.

We can now define colorings by Young diagrams. For this, let L be a link with components K1, . . . ,Kl

and we denote by L(Kn1
1 , . . . ,Knl

l ) the result of ni-fold parallel cabling of the components Ki in L for
1 ≤ i ≤ l.

Definition 1.7. Let L be as above and λ1 . . . , λl Young diagrams with |λi| = ni. Let L(Kλ1
1 · · ·Kλl

l ) de-

note the link L with color label λi on the component Ki for 1 ≤ i ≤ l. Then we define KhR(L(Kλ1

1 · · ·Kλl

l ))
as the image of Young idempotents of shape λi in C[Sni

] on KhR(L(Kn1
1 · · ·Knl

l )).

Note that these colored link homologies are distinct from the colored homologies constructed by in-
serting categorified projectors into cables of knots. In particular, in the case of finite-rank Khovanov–
Rozansky homology, the colored homologies described here are finite-dimensional for all colors.

Next, we show how annular simplification can be used to approximate the homology of links L which
split into a Hopf pairing of sub links L1 and L2 via a spectral sequence.

Theorem 1.8. Let L be a link which is a satellite of a framed Hopf link H(L1, L2) where L1 and L2 are
annular links and L1 is a braid closure. Suppose that the annular invariant of L1 is isomorphic to a chain
complex C∗(L1) of Schur functors of E. Then the chain complex associated to H(L1, L2) is homotopy
equivalent to a filtered chain complex, whose associated graded is given by a direct sum of complexes
associated to H(Ci(L1), L2), where C

i(L1) is a direct sum of Schur-colored unknots as specified by the
chain groups of C∗(L1). Moreover, the differential of filtration degree one is induced by the differential
on C∗(L1).

The following is a direct consequence.

Corollary 1.9. For L = H(L1, L2) and the annular complex of Schur functors C∗(L1) as in the theo-
rem above, there exists a spectral sequence computing KhR(H(L1, L2)), whose E1 page has chain groups
KhR(H(Sλ, L2)) where the Schur functors Sλ range through the chain groups of C∗(L1), and the differ-
ential d1 is induced by the differential in C∗(L1).

Remark 1.10. An important caveat regarding Theorem 1.8 is that the annular chain complex of L1 may
in general not be assumed to be a minimal complex. Gaussian elimination on the annular complex of
L1 typically breaks the filtration which is the main point of the theorem. Thus we restrict to isomorphic
replacements by complexes of Schur functors.

1.3. Positive Coxeter braids. Next, we describe another natural generating set in the annular category,
which appears in the image of annular Khovanov–Rozansky functors, namely the images of closures of
Coxeter braids.

Theorem 1.11. Let C+
n denote the annular Khovanov–Rozansky invariant of the closure of the braid

σn−1 · · ·σ1 on n strands in Kb(P̂). Then

C+
n ≃

[

qn−1∧n(E)
✿✿✿✿✿

→ qn−3
S
2,1n−2

(E) → · · · → q3−n
S
n−1,1(E) → q1−nSn(E)

]

.
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We describe the differential in this complex explicitly. We also describe the spaces of morphisms
between various products of C−

n .

Theorem 1.12. We have

End(C+
n ) =

∧
(ξ1, . . . , ξn−1)⊗C[x],

where ξi are odd variables of homological degree −1 and q-degree 2i− 2 and x has q-degree 2.

Moreover, there are natural “merge” and “split maps”

Mm,n : C
+
m ⊗ C+

n → qC+
m+n[1], Sm,n : C

+
m+n → qC+

m ⊗ C+
n .

and we expect that all morphisms between tensor products of C+
n are generated by these and the action

of ξi and x.

1.4. Other Coxeter lifts. We also describe the annular homology of other lifts of the Coxeter element
sn−1 · · · s1 ∈ Sn to the braid group. Such lifts σǫ := σ

ǫn−1

n−1 · · ·σǫ1
1 are parametrized by binary sequences

ǫ ∈ {+1,−1}n−1. Given such a sequence ǫ, consider a ribbon ν(ǫ), a skew Young diagram obtained by
the following rule: we start from a box, move right if we see a +1 in ǫ and move down if we see a −1.
For example, for ǫ = (+1,+1,−1,+1,−1,−1,+1) we get the following shape (which represents the skew
shape 5443/332):

To such skew shape one can associate a skew Schur function sν(ǫ) [Mac95] which decomposes into usual
Schur functions with positive coefficients. For example, the shape above corresponds to

s5443/332 = s3,2,2,1 + s3,3,1,1 + 2s4,2,1,1 + s4,2,2 + s4,3,1 + s5,1,1,1 + s5,2,1.

More precisely (see Section 5.3 for details) for ribbon skew shapes there exists a canonical left ideal
Vǫ ⊂ C[Sn] with Frobenius character sν(ǫ), and C[Sn] ∼= ⊕ǫVǫ. We let pǫ ∈ C[Sn] denote the idempotent
projecting to Vǫ.

Theorem 1.13 (Theorem 5.25). Let Un = Span(xi − xi+1) be the (n − 1)-dimensional reflection rep-
resentation of Sn, there is a natural Sn-equivariant map D : Un ⊗ E⊗n → E⊗n. Consider the Koszul
complex

Cuben := (
∧•Un ⊗ En, D).

Then the annular Khovanov-Rozansky complex Cǫ of σǫ1
1 · · ·σ

ǫn−1

n−1 satisfies

Cǫ[|ǫ|+] ≃ pǫ · Cuben.

where |ǫ|+ denotes the number of entries +1 in ǫ.

Example 1.14. For ǫ = (+1, · · · ,+1) the skew shape ν(ǫ) has one row, so sν(ǫ) = sn, the corre-
sponding representation Vǫ is trivial, and the corresponding projector pǫ is the symmetrizer. Therefore
pǫ · Cuben = (Cuben)

Sn . In Lemma 3.19 we check that this indeed agrees, up to a homological shift,
with the description of the annular complex for the positive Coxeter lift in Theorem 1.11, and yields
immediately the differentials in it.

By a result of Solomon, the analogues of the projectors pǫ can be defined for all finite Coxeter groups.
We conjecture that Theorem 1.13 can be generalized too, see Conjecture 7.4.

1.5. Organization of the paper. In Section 2 we list various important results about the skein algebra
of the annulus, following Turaev [Tur88], Aiston and Morton [AM98, Mor01]. We identify this skein
with the algebra of symmetric functions in infinitely many variables, and identify certain closed braids
with explicit symmetric functions. In particular, we prove Theorem 2.20 which is a decategorified version
of Theorem 1.13. In Section 3 we use Schur functors in symmetric monoidal categories to describe an
explicit categorification of the algebra of symmetric functions and a plethystic transformation. In Section
4 we define and study the category of webs and foams and the corresponding Khovanov-Rozansky functor.
We prove Theorems 1.1 and 1.3.

In Section 5 we identify the annular complexes for all lifts of the Coxeter element to the braid group
and prove Theorems 1.11 and 1.13.
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In Section 6 we describe the operation of “wrapping” an annular link around a braid, and prove
Theorem 1.9. In Section 7 we briefly discuss a conjectural description of annular homology (or, rather,
a class in the horizontal trace) for Coxeter lifts outside of type A. Finally, in the appendix we list
some useful facts from homological algebra, in particular, on splitting of homotopy idempotents and
triangulated Karoubian categories.
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2. The classical story

In this section we recall the classical constructions related to the skein algebra of the annulus.

2.1. The skein of the annulus. Let A denote an annulus on the plane. The closure of a braid is a link
in A× [0, 1]. We define the positive part of the skein of the annulus Sk+(A) as the Z[q±1]-linear span of
all braid closures, considered up to regular isotopy, modulo the HOMFLY skein relation:

− = (q − q−1) .

This can be given an algebra structure by stacking (A× [0, 1])⊔ (A× [1, 2]) = A× [0, 2]. We will refer to
this operation as to skein product, which should not be confused with the product of braids. The skein
product of two braid closures is isotopic to the disjoint union of the two braid closures, considered as
living in two annuli, one outside of another. An Eckmann-Hilton argument then implies that Sk+(A) is
a commutative algebra with respect to the skein product.

Theorem 2.1. [Tur88] The skein algebra Sk+(A) is isomorphic to the algebra Λq of symmetric functions
in infinitely many variables over Z[q±1].

There are several versions of the isomorphism in Theorem 2.1 which differ by automorphisms of the
symmetric function ring, possibly after extending scalars. We outline one of them in the next section.

2.2. Universal Hecke trace and symmetric functions. The Hecke algebra Hn is defined as the
quotient of Z[q±1]Brn by the HOMFLY skein relation shown above. It is easy to see that Hn is spanned
by the images of positive permutation braids. Moreover, taking braid closures in the annulus defines a
linear map Tr : Hn → Sk+(A). Since the closures of conjugate braids represent the same link in the
annulus, we have Tr(ab) = Tr(ba). In fact, it is easy to see from the construction that

Sk+(A) ∼= Hn/[Hn, Hn].

In other words, any linear map f : Hn → V such that f(ab) = f(ba) factors through the map Tr : Hn →
Sk+(A).

The identification of Sk+(A) with Λq is also transparent in this construction. Indeed, the irreducible
representations Vλ of Hn are classified by Young diagrams λ with n boxes. Define the map

TrΛq
: Hn → Λq,TrΛq

(x) =
∑

λ

Tr(x, Vλ)sλ
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where sλ is the Schur function. Clearly, TrΛq
(ab) = TrΛq

(ba), so by the above TrΛq
factors through

Sk+(A):

(2) TrΛq
(x) = i(Tr(x)), i : Sk+(A) → Λq.

Theorem 2.1 states that i is an isomorphism.

Remark 2.2. The Hecke algebra can also be used to study invariants of oriented tangles with n inputs
and n outputs. More precisely, we consider the ring k := Z[q±1, a±1, (qk − q−k)−1] for all k > 1, and
the k-module Sk(n, n) spanned by all framed oriented tangles in an axis-parallel rectangle in R2, with n
inputs on the bottom boundary and n outputs on the top, modulo the HOMFLY skein relation and:

=
a− a−1

q − q−1
, = −a−1

It is known [AM98, MT90] that Sk(n, n) (with respect to composition) is isomorphic to the Hecke algebra
Hn ⊗ k with scalars extended to k. The extended trace is denote by TrΛa,q

: Sk(n, n) → Λq ⊗ k =: Λa,q.

The universal trace can be specialized to the Jones-Ocneanu trace on the Hecke algebra which yields
the HOMFLY-PT polynomial or slN Reshetikhin-Turaev invariants of links L ⊂ S3 presented as braid
closures.

Proposition 2.3. Let fL ∈ Λq correspond to a braid closure L in the thickened annulus under the
isomorphism (2). Then the slN Reshetikhin-Turaev invariants 〈L〉N and the HOMFLY-PT polynomial
〈L〉 can be computed as follows:

(a) 〈L〉N = fL(q
N−1, qN−3, . . . , q1−N )

(b) 〈L〉 = ε(fL), where ε : Λq → Λa,q is the ring homomorphism defined by

ε(pk) = (ak − a−k)/(qk − q−k).

Here pk denotes the k-th power sum symmetric function.

Proof. Part (a) is well-known. To obtain (b), observe that by (a)

〈pk〉N = pk(q
N−1, . . . , q−N−1) = qk(N−1) + . . .+ q−k(N−1) =

qkN − q−kN

qk − q−k
=
ak − a−k

qk − q−k a=qN .
�

2.3. Coxeter braids. In this section we compute the images of braid lifts of Coxeter elements in Λq. To
this end, we introduce a particular plethysm operation. Recall that the power sum symmetric functions
pn for n > 1 give an algebraically independent set of generators of Λq ⊗Z Q.

Lemma 2.4. There exists a unique Z[q±1]-algebra endomorphism of Λq which sends pk to pk(q
−k − qk)

for all k ≥ 1.

If f ∈ Λq is a symmetric function, we denote its image under this endomorphism by f [X(q−1 − q)].

Proof. After extending to scalars to Q[q±1], it is clear that there is a unique endomorphism with these
properties. The fact that it is well-defined over Z[q±1] follows from the following lemma, which can be
used to compute the images of the algebraically independent integral generators given by the elementary
(or complete) symmetric functions en (or hn) for n ≥ 0. �

Lemma 2.5. We have

1

q−1 − q
en[X(q−1 − q)] =

n−1∑

i=0

(−1)n−1−iqn−1−2isn−i,1i ,

(−1)n−1

q−1 − q
hn[X(q−1 − q)] =

n−1∑

i=0

(−1)i−n+1q2i−n+1sn−i,1i .

Proof. Consider the identity of generating functions

∞∑

k=0

ekz
k = exp

(
∞∑

k=1

pk(−z)
k

k

)

,
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which implies

(3)

∞∑

k=0

ek[X(q−1 − q)]zk = exp

(
∞∑

k=1

pk(q
−k − qk)(−z)k

k

)

=

exp
(
∑∞

j=1
pkq

−k(−z)k

k

)

exp
(
∑∞

j=1
pkqk(−z)k

k

) =

(
∞∑

k=0

ekq
−kzk

)(
∞∑

k=0

(−1)khkq
kzk

)

.

By taking the coefficient at zn, we get

en[X(q−1 − q)] =

n∑

i=0

(−1)n−iqn−2ieihn−i

= (−1)nqnhn +

n−1∑

i=1

(−1)n−iqn−2i(sn−i,1i + sn−i+1,1i−1) + q−nen

= (q−1 − q)

n−1∑

i=0

(−1)n−1−iqn−1−2isn−i,1i .

The other identity admits an analogous proof. �

The following proposition describes the trace of the positive Coxeter braid σn−1 · · ·σ1 in terms of the
plethysm operation introduced above.

Proposition 2.6. We have TrΛq
(σn−1 · · ·σ1) = (−1)n−1hn[X(q−1 − q)]/(q−1 − q).

Proof. The traces of σn−1 · · ·σ1 in various representations of the Hecke algebra can be found in [Jon87,
Section 9]. Such a trace in Vλ vanishes if λ is not a hook, and equals (−1)iqn−1−2i for the hook λi =
(n− i, 1i). It remains to apply Lemma 2.5. �

Remark 2.7. In [Mor01, Theorem 3.6] Morton obtained this result (in the form of equation (3)) by
purely skein-theoretic methods.

Remark 2.8. In [Tur88] Turaev identified the entire skein of the annulus Sk(A) with a polynomial algebra
in variables lk with k ∈ Z\{0}. These lk can be chosen to be the images of the closures of positive Coxeter
braids on |k| strands, winding positively or negatively around the annulus. The positive half has generators
lk for k ≥ 1 and is thus isomorphic to the ring of symmetric functions.

We can also describe the annular invariants for all lifts of the Coxeter element sn−1 · · · s1 ∈ Sn. Such
a lift has the form σ

ǫn−1

n−1 · · ·σǫ1
1 for some ǫi = ±1.

Definition 2.9. Consider the bijection between the set {±1}n and the set C(n) of compositions of n with
strictly positive parts, given as follows. To a sequence ǫ = (ǫ1, . . . , ǫn−1) we associate the composition
(a1, . . . , as) of n, which is determined by

ǫa1 = ǫa1+a2 = . . . = ǫa1+...+as−1 = −1,

and ǫi = +1 for all other i. Note that this implies as = n− (a1 + . . .+ as−1).

For example,

ǫ = (+1,+1,−1,+1,−1,−1,+1) ↔ a = (3, 2, 1, 2).

For a composition (a1, . . . , as) we define its length l(a) = s. We will use the partial order on C(n):
a � b if a refines b. In this order, (n) is the maximal element (it corresponds to a sequence of +1’s) and
(1, . . . , 1) is the minimal one (it corresponds to a sequence of −1’s).

Definition 2.10. Let a be a composition of n. We define a symmetric function

Ψ(a) =
∑

a�b∈C(n)

(−1)l(b)−l(a)hb1 · · ·hbl(b) ,

where hk are complete symmetric functions.

Example 2.11. In the above example a = (3, 2, 1, 2) we get

Ψ(a) = h3h2h1h2 − h5h1h2 − h3h3h2 − h3h2h3 + h6h2 + h3h5 + h5h3 − h8.
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Lemma 2.12. We have Ψ(a) = detM(a), where

Mij(a) =







hai+...+aj
if i ≤ j,

1 if i = j + 1,

0 otherwise.

Proof. Straightforward from the recursive formula

(4) Ψ(a1, . . . , as) = Ψ(a1, . . . , as−1)hs −Ψ(a1, . . . , as−2, as−1 + as).

�

Example 2.13. In our running example we get

Ψ(3, 2, 1, 2) =

∣
∣
∣
∣
∣
∣
∣
∣

h3 h5 h6 h8
1 h2 h3 h5
0 1 h1 h3
0 0 1 h2

∣
∣
∣
∣
∣
∣
∣
∣

Corollary 2.14. For ǫ = (+1, . . . ,+1
︸ ︷︷ ︸

k

,−1, . . . ,−1
︸ ︷︷ ︸

n−k−1

) we have a = (k+1, 1, . . . , 1
︸ ︷︷ ︸

n−k−1

) and Ψ(a) = sk+1,1n−k−1 .

Proof. Follows from the determinantal formula for Ψ(a) and the Jacobi-Trudy formula for sk+1,1n−k−1 . �

For general a, the Schur expansion for Ψ(a) is more complicated.

Example 2.15. One can check that

Ψ(3, 2, 1, 2) = s3,2,2,1 + s3,3,1,1 + 2s4,2,1,1 + s4,2,2 + s4,3,1 + s5,1,1,1 + s5,2,1.

In particular, Ψ(3, 2, 1, 2) expands as a non-negative linear combination of Schur functions. To see
that this is the case for any composition a = (a1, . . . , as), consider a pair of partitions

λ = (a1 + . . .+ as − s+ 1, a1 + . . .+ as−1 − s+ 2, . . . , a1 + a2 − 1, a1),

µ = (a1 + . . .+ as−1 − s+ 1, . . . , a1 + a2 − 2, a1 − 1).

It is easy to see that µ ⊂ λ and λ−µ is a connected n-ribbon with rows of size ai. Now, the determinantal
expression for Ψ(a) in Lemma 2.12 is precisely the Jacobi-Trudi formula defining the skew Schur function
sλ/µ [Mac95]:

sλ/µ = det(λi − µj − i+ j) = Ψ(a).

Example 2.16. In our running example for a = (3, 2, 1, 2) we get λ = (5, 4, 4, 3), µ = (3, 3, 2) (see Figure
1.4) and Ψ(a) = s5443/332.

Corollary 2.17. For all compositions a the coefficients of Ψ(a) in the Schur basis are nonnegative.

Proof. We have Ψ(a) = sλ/µ with λ and µ as described above. The lemma now follows since skew
Schur polynomials expand in Schur polynomials with nonnegative coefficients given by the Littlewood-
Richardson rule: (sλ/µ, sν) = (sλ, sµsν). �

Example 2.18. Let us determine the polynomials Ψ(a) for n = 4. We get the following table:

ǫ a λ µ Ψ(a) = sλ/µ
(+1,+1,+1) 4 4 ∅ s4
(+1,+1,−1) 31 33 2 s3,1
(+1,−1,+1) 22 32 1 s2,2 + s3,1
(−1,+1,+1) 13 31 ∅ s3,1
(+1,−1,−1) 211 222 11 s2,1,1
(−1,+1,−1) 121 221 1 s2,1,1 + s2,2
(−1,−1,+1) 112 211 ∅ s2,1,1
(−1,−1,−1) 1111 1111 ∅ s1,1,1,1

Lemma 2.19. We have
∑

a∈C(n) Ψ(a) = hn1 .

Proof. By definition, we have
∑

a∈C(n)

Ψ(a) =
∑

a∈C(n)

∑

a�b∈C(n)

(−1)l(b)−l(a)hb1 · · ·hbl(b) .

If one fixes b, it is easy to see that the sum over a with a � b vanishes unless all parts of b have size 1. �
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We are ready to connect these combinatorial results to knot theory.

Theorem 2.20. The annular invariant of the generalized Coxeter braid σǫ = σ
ǫn−1

n−1 · · ·σǫ1
1 equals

TrΛq
(σǫ) =

(−1)|ǫ|+

q−1 − q
Ψ(a)[X(q−1 − q)]

where the composition a corresponds to ǫ as in Definition 2.9 and |ǫ|+ is the number of +1 entries in ǫ.

In the following, we use the notation ca for the annular closure of σǫ and |a|+ := |ǫ|+.

Proof. Let us prove the statement by induction on the number of entries −1 in ǫ. If ǫ = (+1, · · · ,+1),
this follows from Proposition 2.6. Otherwise, let a = (a1, . . . , as) be the corresponding composition. The
rightmost negative crossing in σǫ is at position a1 + . . . + as−1. If we replace it by a positive one, we
get the composition a′ = (a1, . . . , as−2, as−1 + as). If we erase that crossing, we get a disjoint union of a
Coxeter braid for the composition a′′ = (a1, . . . , as−1) and a positive Coxeter braid on as strands. Now,
by the skein relation the we get

(−1)|a|+ TrΛq
(ca) = (q−1 − q)(−1)|a

′′|+ TrΛq
(ca′′ )(−1)as TrΛq

(cas
)− (−)|a

′|+ TrΛq
(ca′)

=
1

q−1 − q
Ψ(a′′)[X(q−1 − q)]has

[X(q−1 − q)]−
1

q−1 − q
Ψ(a′)[X(q−1 − q)]

=
1

q−1 − q

(
Ψ(a′′)[X(q−1 − q)]has

[X(q−1 − q)]−Ψ(a′)[X(q−1 − q)]
)

=
1

q−1 − q
Ψ(a)[X(q−1 − q)].

The last equation follows from the recursive formula (4). �

Corollary 2.21. For ǫ = (+1, . . . ,+1
︸ ︷︷ ︸

k

,−1, . . . ,−1
︸ ︷︷ ︸

n−k−1

) we get

TrΛq
(σǫ) =

(−1)k

q−1 − q
sk+1,1n−k−1 [X(q−1 − q)]

Proof. Follows from Theorem 2.20 and Corollary 2.14. �

Corollary 2.22. We have

n∑

k=0

(−1)k TrΛq
(σ1 · · ·σkσ

−1
k+1 · · ·σ

−1
n−1) = [n]pn

Proof. This follows from Corollary 2.21 and the equations

pn =
∑

k

(−1)ksk+1,1n−k−1 , pn[X(q−1 − q)] = pn(q
−n − qn).

�

Remark 2.23. This corollary was proved by Aiston [Ais97] by different methods, see also [Mor01].

2.4. From skein to the center of Hecke algebra. The skein of the annulus is closely related to the
center of the Hecke algebra, as exemplified by Morton [Mor01]. Recall that the Jucys-Murphy braids are
defined as Li = σi−1 · · ·σ1σ1 · · ·σi−1. It is easy to see that LiLj = LjLi for all 1 ≤ i, j ≤ n. Note that
L1 is a trivial braid. It is well known that the center of Hn is spanned by the symmetric polynomials in
L1, . . . ,Ln.

There is a natural homomorphism Tn from Sk+(A) to Hn ⊗ k ∼= Sk(n, n) given by wrapping annular
links L around the identity braid on n strands as in the following picture:

(5)

L

· · ·

· · ·

It is easy to see that for any annular link L the tangle Tn(L) is central in Sk(n, n) (and hence in Hn⊗k),
and Tn(L1 ⊔ L2) = Tn(L1)Tn(L2).
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Theorem 2.24. [Mor01, Theorem 3.9] Under the identification Sk+(A) ⊗ k ∼= Λa,q one has Tn(f) =
φn(f)(L1, . . . ,Ln), where f ∈ Λq and φ : Λa,q → Λa,q is an endomorphism defined by

(6) φn(pk) = −(qk − q−k)a−kpk + ε(pk),

where ε is the evaluation homomorphism defined in Proposition 2.3.1

It is sometimes helpful to rewrite (2.24) in terms of the eigenvalues of central elements Tn(f). Recall
that Li can be simultaneously diagonalized using Jones-Wenzl-type projectors. For each standard Young
tableau T there is an element pT ∈ Sk(n, n) such that Li · pT = q2ci(T )pT , where ci denotes the content
of the box labeled by i in T , see e.g. [Ram97, Equation (3.20)].

1

5

8

11

2

6

9

12

3

7

10

4 , 0

1

2

3

−1

0

1

2

−2

−1

0

−3

Figure 1. A standard Young tableau and the content filling for the Young diagram for
λ = (4, 3, 3, 2).

Lemma 2.25. Assume that λ has at most N parts. Given a symmetric function f ∈ Λq and a standard
tableau T of shape λ, one has

Tn(f) · pT |a=qN = f(q−2λ1+(1−N), q−2λ2+(3−N) . . . , q−2λN+(N−1)) · pT .

Proof. Since pT is an eigenvector for all Li, by Theorem 2.24 it is an eigenvector for Tn(f) for any f , so

Tn(f) · pT = µT (f) · pT

for some scalar µT (f). Clearly, the assignment f 7→ µT (f) is a ring homomorphism, so it is sufficient to
compute the image of power sums. We have

(Lk
1 + . . .+ Lk

n) · pT =

n∑

i=1

q2kci(T ) · pT ,

so the eigenvalue of (Lk
1 + . . .+ Lk

n) on pT equals

N∑

j=1

q2k(j−1)(1 + q−2k + . . .+ q−2k(λj−1)) =

N∑

j=1

q2k(j−1) q
−2kλj − 1

q−2k − 1
=

l(λ)
∑

j=1

q−2k(λj+1−j) − q−2k(1−j)

q−2k − 1

By applying (2.24) we get

Tn(pk)|a=qN = −(qk − q−k)q−kN (Lk
1 + . . .+ Lk

n) + (qk(N−1) + . . .+ q−k(N−1)),

and

µT (pk) = −(qk − q−k)q−kN
N∑

j=1

q−2k(λj+1−j) − q−2k(1−j)

q−2k − 1
+ (qk(N−1) + . . .+ q−k(N−1))

= qk−kN
N∑

j=1

(q−2k(λj+1−j) − q−2k(1−j)) + (qk(N−1) + . . .+ q−k(N−1))

=
N∑

j=1

q−2kλj+k(1−N+2(j−1)) −
N∑

j=1

qk(1−N+2(j−1)) +
N∑

j=1

qk(1−N+2(j−1))

= pk(q
−2λ1+(1−N), q−2λ2+(3−N), . . . , q−2λN+(N−1)).

�

1To compare with Morton’s conventions, note that his crossings are the negatives of ours, s = q−1, and v = a.
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2.5. Generalized Hopf links. We can use the above results to describe the polynomial invariants of
generalized Hopf links. Consider the standard genus one Heegaard decomposition of S3 with two annular
links L1, L2 in the two genus one handlebodies. Their union H(L1, L2) is a link in S3 which we call a
generalized Hopf link (indeed, the cores of the two solid tori yield a Hopf link). Note that it is naturally
framed by framings of L1 and L2. The following is clear from the definition:

Proposition 2.26. The slN polynomial 〈H(L1, L2)〉N depends only on classes of L1 and L2 in Sk+(A),
and it is bilinear in these classes.

To compute this invariant, it is then sufficient to choose a basis in Sk+(A) ≃ Λq and to compute the
bilinear form in this basis. Lemma 2.25 immediately implies the following:

Proposition 2.27. The invariants of the generalized Hopf links are completely determined by either of
the following:

(a) If both components are colored by Schur functions then

(7) 〈H(sλ, sµ)〉N = sλ(q
−(N−1), . . . , q(N−1))sµ(q

−2λ1−(N−1), . . . , q−2λN+(N−1)).

(b) If one component is colored by a Schur function sλ and the other by an arbitrary symmetric
function f then

(8) 〈H(sλ, f)〉N = sλ(q
−(N−1), . . . , q(N−1))f(q−2λ1−(N−1) . . . , q−2λN+(N−1)).

Remark 2.28. It follows that the right hand side of (7) is symmetric in λ and µ for all N .

3. General facts about symmetric monoidal categories

3.1. A free symmetric monoidal category. We start by defining a useful PROP— a graded, additive
version of a product and permutations category [Mac65, Chapter V, 2.4].

Definition 3.1. Let P denote the graded, strict symmetric monoidal C-linear additive category that
is freely generated by a single object E and a degree two endomorphism x. We will use the notation
P̂ = Kar(P) for its idempotent completion.

The objects of P are formal direct sums of grading shifts of tensor powers of E and we denote such
grading shifts by powers of q. The morphisms of P are matrices whose entries can be interpreted as C-
linear combinations of string diagrams built from identity endomorphisms of copies of E, the morphism
x : qkE → qk−2E and the basic braiding morphism σ : qkE ⊗ E → qkE ⊗ E. (We think of such string
diagrams as dotted permutations). Explicitly, we have:

(9) HomP(qkE⊗m, qlE⊗n) =

{

(C[x1, . . . , xn]⋊C[Sn])k−l if m = n,

0 otherwise.

Here, the subscript k − l indicates taking the degree k − l component of this algebra, which is graded by
putting all xi in degree two and all permutations in degree zero.

In the following K0(C) denotes the split Grothendieck group (ring) of an additive (monoidal) category
C and Λq is the Z[q±1]-algebra of symmetric functions in infinitely many variables.

Lemma 3.2. We have ring isomorphisms K0(P) ∼= Z[q±1, e] where [E] 7→ e, and K0(P̂) ∼= Λq where
[E] 7→ e1.

Proof. By definition, P is additively generated by qkE⊗n and there are no isomorphisms between distinct
such objects, so K0(P) ∼= Z[q±1, e] and [E⊗k] = ek.

To compute the Grothendieck group of P̂, we need to classify the idempotent endomorphisms of objects
of the form qkE⊗n in P. Since x has positive degree, (9) implies that idempotents appear only in C[Sn]
and they are exactly the Young idempotents eλ, which are parametrized (up to isomorphism) by Young

diagrams λ with |λ| = n. Then K0(P̂) has a basis given by the classes of such pairs (qkE⊗n, eλ). The
fact that this gives a ring homomorphism follows from the next section. �
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3.2. Schur functors and evaluation. Let C be a C-linear strict symmetric monoidal Karoubian cat-
egory, and let E be an object in C. For every n ≥ 1 there is an action of Sn on E⊗n given by the
permutation of the factors. In other words, we have a homomorphism φn : Sn → End(E⊗n). For every
partition λ of n we pick the primitive Young idempotent eλ ∈ C[Sn] corresponding to a fixed Young
tableau of shape λ. Its image φn(eλ) is an idempotent endomorphism of E⊗n. Since C is Karoubian, we
can define the Schur functor of E as the image of this idempotent:

S
λ(E) := φn(eλ)E

⊗n.

For more details on Schur functors see [Del02]. We will write
∧

n(E) = S(1
n)(E) and Sn(E) = S(n)(E).

Definition 3.3. We say that the object E has rank at most N , if
∧

N+1(E) ∼= 0.

For example, CN is of rank at most N in the symmetric monoidal category of complex vector spaces.

Proposition 3.4. If E is an object of rank at most N and λ is a partition with more than N parts then
Sλ(E) ∼= 0.

Proof. Follows from [Del02, Corollaire 1.7]. �

Proposition 3.5. Let C be a graded, strict symmetric monoidal C-linear additive category, and let E
be an object in C with an endomorphism X. Then there is a unique braided monoidal C-linear additive
functor P → C which sends E to E and x to X. If, in addition, C is Karoubian then this functor extends
to a functor P̂ → C.

Proof. By the assumptions, there is an action of C[X1, . . . , Xn] ⋊ C[Sn] on E⊗n, so we can define a
monoidal functor P → C sending E⊗n to E⊗n. It uniquely extends to the Karoubi completions. �

Remark 3.6. More generally, let C be a C-linear additive monoidal (but not necessary symmetric)
Karoubian category. We shall say that an object E ∈ C with an endomorphism X is self-commuting with

symmetry s : E ⊗ E → E ⊗ E if there is an additive monoidal functor P̂ → C sending E to E, σ to s, and
x to X.

3.3. Complexes. The constructions from the previous subsection directly extend to the categoryKom(C)
of complexes of objects in C and to the homotopy category of complexes Kb(C). We will frequently use
the following fact which is well-known to experts (e. g.[BS01]). For completeness, we prove it in the
appendix as Theorem A.10.

Theorem 3.7. The bounded homotopy category of a Karoubian category is Karoubian.

The category of complexes Kom(C) is symmetric monoidal if the original category C was so. To fix
the sign conventions, we define the differential on the tensor product by the equation

(10) dAi⊗Bj
= dAi

⊗ idBj
+ (−1)iidAi

⊗ dBj
.

The braiding Σ on Kom(C) differs from the braiding σ in C by sign placements.

(11) ΣAi,Bj
= (−1)ijσAi,Bj

This allows one to define arbitrary Schur functors for complexes. One can check that Schur functors of
homotopy equivalent complexes are homotopy equivalent, see e.g. Theorem A.5. We refer to the appendix
for more details on Schur functors for complexes. Also, we record the following fact which immediately
follows from the above discussion.

Proposition 3.8. Let C be a C-linear additive monoidal (but not necessary symmetric) Karoubian cat-

egory, assume E is a self-commuting complex in the bounded homotopy category Kb(C). Then the Schur
functors S

λ(E) are well defined.

The Schur functors interact non-trivially with the shift functor [1],for which we use the convention
A[1] = id[1]⊗A. First, note that for two complexes A and B the isomorphism s : A[1]⊗B[1] → (A⊗B)[2]
sends a⊗ b 7→ (−1)deg(a)−1a⊗ b. Indeed, in agreement with (10), the isomorphism

A[1]⊗B[1] = id[1]⊗A⊗ id[1]⊗B ∼= id[1]⊗ id[1]⊗A⊗B = (A⊗B)[2]

is given by the braiding c23.
Similarly, one can check that the chain of isomorphisms

A⊗B[2] ∼= A[1]⊗B[1] ∼= B[1]⊗A[1] ∼= B ⊗A[2]
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differs from the composition of the braiding A⊗B ∼= B⊗A and the shift [2] by a factor of −1. Therefore
the representations of Sk on (A⊗k)[k] and on (A[1])⊗k differ by sign, and

(12) S
λ(A[1]) = S

λt

(A)[|λ|].

This shows that the notion of the Schur functor of a complex is sensitive to the parity of homological
degrees of its terms.

Example 3.9. Let A = [E → F
✿

], where E is in homological degree 1 and F is in degree 0. Then:

∧k(A) = [Sk(E) → Sk−1(E)⊗F → · · · → E ⊗
∧k−1(F) →

∧k(F)
✿✿✿✿✿

],

where Sk(E) has homological degree k. However,
∧k(A[−1]) =

∧k[E
✿

→ F ] = [
∧k(E)
✿✿✿✿✿

→
∧k−1(E) ⊗F → · · · → E ⊗ Sk−1(F) → Sk(F)]

where Sk(F) has homological degree −k.

Example 3.10. Consider a two-term complex over the category C[t] of C[t]-modules

A = [C[t]
tk
−→ C[t]

✿✿✿

].

Since C[t] ⊗
C[t] C[t] = C[t], we have S2(C[t]) ∼= C[t] and

∧
2(C[t]) ∼= 0. Similarly, Sk(C[t]) = C[t] and

∧
k(C[t]) = 0 for k ≥ 2. Therefore

Sk(A) = [
∧k(C[t]) → · · · →

∧1(C[t]) ⊗
C[t] S

k−1(C[t]) → Sk(C[t])
✿✿✿✿✿✿✿

] ∼= [C[t]⊗
C[t] C[t] → C[t]

✿✿✿

] = A.

We will need the following result:

Theorem 3.11. Let P be the full tensor subcategory of P̂ generated by
∧

i(E). Then the bounded

homotopy categories of P and of P̂ are equivalent.

Proof. Since P is a full subcategory of P̂, the homotopy category of P is a full subcategory of the
homotopy category of P̂. Furthermore, Kb(P) is dense (in the sense of [Tho97]) in Kb(P̂) since every

complex in Kb(P̂) is even isomorphic to a direct summand in a complex in Kb(P), i.e. a complex built
out of several copies of E⊗n.

Every Schur functor of E is homotopy equivalent to a complex built out of
∧

i(E). Indeed, the Schur
functor Sλ(E) appears as a unique summand in

⊗

j

∧
λj (E) and all other summands are smaller than λ

in dominance order, so we can inductively resolve Sλ(E) by the products of
∧

i(E).

This means that K0(K
b(P)) ∼= K0(K

b(P̂)) and by Theorem A.1 we get Kb(P) ≃ Kb(P̂). �

3.4. Affine extensions and plethysms. Consider a symmetric monoidal Karoubian C-linear category
C. We define its affine extension C[t] as (the Karoubi completion of) the category with the objects E [t]
where E ranges over objects of C, and the hom spaces have the form

HomC[t](E [t],F [t]) = HomC(E ,F)⊗
C

C[t].

In particular, each object E [t] in C[t] has endomorphisms tk for k ≥ 0. The tensor product on C naturally
induces a tensor product in C[t]. We define pullback and pushforward functors

π∗ : C → C[t], E 7→ E [t]

π∗ : C[t] → C, E [t] 7→ E ⊗C[t] ∼= ⊕k≥0E

We assume that C is graded, and t has some nontrivial grading, so that the direct sum in the definition
of π∗(E) makes sense in an appropriate completion with respect to this grading (we allow infinite direct
sums which are finite in each grading).

Clearly, π∗ is monoidal, and left adjoint to π∗. These functors naturally extend to functors between
the homotopy categories of complexes of objects in C and C[t], respectively.

Example 3.12. If R is an algebra and C = R −mod, then C[t] ≃ R[t]−mod. The functors π∗ and π∗

are given by (derived) restriction and induction functors. In particular, if E is a free R-module then E [t]
is a free R[t]-module, and all free R[t]-modules appear this way. Furthermore, the restriction of E [t] to R
is isomorphic (as an R-module) to E ⊗C[t], and

HomR[t](E [t],F [t]) = HomR(E ,F)⊗C[t].
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We now use affine extensions to define functors which model certain plethystic transformations. We
define a two-term complex over P̂[t]:

K(E, x) := [π∗(E)
x−t
−−→ π∗(E)

✿✿✿✿✿

]

Observe that K(E, x) still has an action of x as an endomorphism of a complex. By Proposition 3.5,

we can define an evaluation functor from P̂ to Kb(P̂[t]) which sends an object F of P̂ to F (K(E, x)).

Definition 3.13. We define the functor Φ : P̂ → Kb(P̂) as the composite:

Φ: F 7→ F (K(E,X)) 7→ π∗(qF (K(E,X))).

Example 3.14. Recall that we have K0(P̂) ∼= Λq and the functor Φ induces the following map on the
level of Grothendieck rings:

Φ: f 7→ f [q−1 − q] 7→
f [q−1 − q]

q−1 − q
.

Note that the first map is a ring homomorphism (induced by a monoidal functor), but the second is not.

The “plethysm” functor Φ can be combined with the evaluation in the following way. Let E be an
object in a symmetric monoidal Karoubian category C with an endomorphism X . As above, this data
defines a braided monoidal functor P̂ → C which sends E to E and x to X , which can be extended to
a functor from Kb(P̂) to Kb(C). By the functoriality of affine extension, we can also construct functors

P̂[t] → C[t] and Kb(P̂[t]) → Kb(C[t]). It is easy to see that for any object F of P̂ these send

K(E, x) 7→ K(E , X) = [π∗(E)
X−t
−−−→ π∗(E)

✿✿✿✿

] in Kb(C[t]),

F (K(E, x)) 7→ F (K(E , X) ∈ Kb(C[t]) and Φ(F ) 7→ π∗(qF (K(E , X))) ∈ Kb(C).

3.5. Examples of plethysms. Let us compute the action of Φ on some objects and morphisms.

Example 3.15. We have

Φ(E) = π∗(qK(E, x)) =

[

q2E ⊗C[t]
x−t
−−→ E ⊗C[t]

✿✿✿✿✿✿✿

]

≃ E,

where the last homotopy equivalence follows from “infinite Gaussian elimination”.

Definition 3.16. Let U ≃ Cn−1 denote the reflection representation of Sn. Then we define the Koszul
complex

Cuben =
[

qn−1∧n−1(U)⊗ E⊗n → . . .→ q3−nU ⊗ E⊗n → q1−nE⊗n
✿✿✿

]

,

where the differential

dCuben : q
2i+1−n∧i(U)⊗ E⊗n → q2i−1−n∧i−1(U)⊗ E⊗n

is induced by the linear map U → End(E⊗n) which sends the i-th basis vector in U to xi − xi+1.

From the definition it is immediate that Cuben admits an action of Sn, which restricts to the symmetry-
induced action Sn → End(E⊗n) in homological degree zero.

Proposition 3.17. Φ(E⊗n) = π∗(qK(E, x)⊗n) = π∗(q[qE
x−t
−−→ q−1E

✿

]⊗n) ≃ Cuben

Proof. Note that [qE
✿

x−t
−−→ q−1E]⊗n is also a Koszul complex, and as such it can be recovered from its

last differential, which is the C-linear map

S : (q2−nE⊗n)⊕n (x1−t,...,xn−1−t,xn−t)
−−−−−−−−−−−−−−−→ q−nE⊗n,

by taking the exterior algebra on (E⊗n)⊕n and defining the differential as contraction with S. We can
obtain an isomorphic Koszul complex after a change of basis from:

S′ : (q2−nE⊗n)⊕n (x1−x2,...,xn−1−xn,xn−t)
−−−−−−−−−−−−−−−−−→ q−nE⊗n

Considering this as a complex of C[x1, . . . , xn]-modules, we can apply Gaussian elimination along the
component −t of the differential to obtain Cuben. �

Corollary 3.18. Let Cubeλn denote the chain complex obtained as the image of our chosen Young idem-
potent eλ of shape λ acting on Cuben. Then we have:

Φ(Sλ(E)) = π∗(qS
λ(K(E, x))) ∼= Cubeλn
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Proof. The functor π∗ commutes with the action of C[Sn], so

Φ(Sλ(E)) = π∗(qS
λ(K(E, x))) ∼= π∗(q eλK(E, x)⊗n) ∼= eλ(π∗(qK(E, x)⊗n) ∼= Cubeλn. �

We now describe a categorified version of the identity in Lemma 2.5.

Lemma 3.19. The Sn–invariant part of Cuben can be written as

CubeSn

n
∼= Φ(Sn(E)) ∼=

[

qn−1∧n(E) → . . .→ q3−n
S
n−1,1(E) → q1−nSn(E)

✿✿✿✿✿

]

.

Proof. It is well known that the exterior powers of U are irreducible representations of Sn labeled by the

hook Young diagrams. Then we have (
∧

iU ⊗ E⊗n)Sn ∼= HomSn
(
∧

iU,E⊗n) ∼= Sn−i,1i(E). �

Similarly, one can prove the following.

Lemma 3.20. The sign-isotypic component of Cuben can be written as

Cubesignn ≃ Φ(
∧n(E)) ≃

[

qn−1Sn(E) → . . .→ q3−n
S
2,1n−2

(E) → q1−n∧n(E)
✿✿✿✿✿

]

.

As we will see in Theorem 5.1, the complexes shown in the previous lemmas agrees (up to a homo-
logical shift) with the annular invariants of the (n− 1)-fold positively and negatively stabilized unknots
respectively.

Next, we consider particular evaluations of these complexes.

Example 3.21. Let C = Vect
C

. Consider an object E = C[X ]/Xk. Observe that C[t] ≃ C[t]−mod, and

K(E , X) = [π∗(E)
X−t
−−−→ π∗(E)

✿✿✿✿

] = [C[X, t]/Xk X−t
−−−→ C[X, t]/Xk

✿✿✿✿✿✿✿✿✿

] ≃C[t] [C[t]
tk
−→ C[t]

✿✿✿

].

The shown homotopy equivalence holds in the category of complexes of free C[t]-modules. We can write
C[X, t]/Xk as a direct sum of k copies of C[t] with the action of X shifting them by one. Then we get
the following complex of C[t]-modules:

C[t] C[t]

C[t] C[t]

· · · · · ·

C[t] C[t]
✿✿✿

Here the horizontal arrows are given by multiplication by t and the diagonal ones correspond to X and
hence are multiplications by (±1). Gaussian elimination cancels everything except the top left and bottom
right copies of C[t], which are then connected by tk.

Now by Example 3.10 we have

Sn(K(E , X)) ≃ K(E , X), π∗(S
n(K(E , X))) ≃ π∗(K(E , X)) ≃ E .

for all n ≥ 1.

Remark 3.22. The same proof applies to E = C[X ]/p(X) for an arbitrary polynomial p(X). Indeed,

Sn(K(E , X)) ≃ K(E , X) ≃ C[t]
p(t)
−−→ C[t]

✿✿✿

,

so

π∗(S
n(K(E , X))) ≃ π∗(K(E , X)) ≃ E .

Generalizing the previous example, let E be a vector space with the action of a nilpotent operator X

with Jordan blocks of size k1, . . . , kn. Then we can write E = ⊕iC[X ]/Xki, and K(E , X) ∼= ⊕i[C[t]
tki
−−→

C[t]
✿✿✿

]. Therefore

Sn(K(E , X)) ∼=
⊕

∑

ni=n

⊗

Sni [C[t]
tki
−−→ C[t]

✿✿✿

].

The effect of π∗ on the terms in the sum can be computed using the previous example.
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Example 3.23. Suppose that E is a vector space with an endomorphism X which has two Jordan blocks

of sizes k1 and k2. Then Sn(K(E , X)) has (n + 1) direct summands: Sn[C[t]
tk1
−−→ C[t]

✿✿✿

] ≃ C[t]/tk1 ,

Sn[C[t]
tk2
−−→ C[t]

✿✿✿

] ≃ C[t]/tk2 and (n− 1) more summands of the form

Sn1 [C[t]
tk1
−−→ C[t]

✿✿✿

]⊗ Sn2 [C[t]
tk2
−−→ C[t]

✿✿✿

] ≃ [C[t]
tk1
−−→ C[t]

✿✿✿

]⊗ [C[t]
tk2
−−→ C[t]

✿✿✿

], n1 + n2 = n, n1, n2 > 0.

After applying the forgetful functor π∗, the latter complexes are isomorphic to their homology which have
dimension min(k1, k2) both in homological degrees one and zero. Therefore

π∗S
nK(E , X) ≃ C[t]/tk1 ⊕C[t]/tk2 ⊕ (n− 1)C[t]/tmin(k1,k2) ⊕ (n− 1)C[t]/tmin(k1,k2)[1].

4. Khovanov–Rozansky theory

4.1. Webs. The Reshetikhin-Turaev invariants of knots, links and tangles are defined as certain inter-
twiners of representations of quantum groups. In type A, these intertwiners and the relations satisfied by
them can be described by a graphical calculus of webs, see [MOY98, CKM14]. The basic building blocks
in the cases of slN and glN are the fundamental representations

∧a
q C

N
q and their identity endomorphisms,

as well as two types of natural intertwiners
∧a

q C
N
q ⊗

∧b
qC

N
q →

∧a+b
q C

N
q and

∧a+b
q C

N
q →

∧a
q C

N
q ⊗

∧b
q C

N
q

which are called merge and split respectively:

a

,

a+b

a b

,
a+b

a b

Other intertwiners can be built by taking tensor products and composites of identities, merges and splits,
and such composites quickly become linearly dependent. Analogously, complicated webs can be built by
gluing together the shown basic pieces, which then satisfy corresponding linear relations. We illustrate a
few relations here and refer to [CKM14] for a complete list of web relations for slN and to [TVW17] for
the case of glN .

a

a−b b =

[
a

b

]

a

,

a

a+b b =

[
N − a

b

]

a

(13)

a b c = a b c ,

k

r

s

l

=
∑

t

[
k − l + r − s

t

]

k

s − t

r − t

l

Definition 4.1. Let NWeb denote the additive, C(q)-linear category with:

• Objects: finite sequences a := (a1, . . . , am) with ai ∈ {1, . . . , N}.
• Morphisms: HomWeb(a, b) is the C(q)-module of webs properly embedded in the horizontal strip
R × [0, 1], with upward pointing boundary points with labels a in R × {0} and b in R × {1},
considered modulo planar isotopy and the glN web relations from [TVW17].

• Composition: the C(q)-bilinear extension of stacking webs.

Theorem 4.2. NWeb is equivalent to the full subcategory of representations of Uq(glN ) whose objects
are the tensor products of exterior power representations

∧a
q C

N
q for 0 ≤ a ≤ N . The equivalence sends

the object a := (a1, . . . , am) to
∧a1

q C
N
q ⊗ · · · ⊗

∧am

q C

N
q .

Proof. This is a glN variant of the main result of [CKM14], see also [QS19, TVW17]. �

Now let S be an oriented surface of finite type, possibly with marked points on the boundary with
a labeling and a choice of inward or outward orientation. We denote by NWeb(S) the Z[q±1]-module
spanned by properly embedded webs in S, with boundary matching the data on the marked points,
modulo isotopy rel boundary and web relations supported in discs D2 ⊂ S.
NWeb(S) is a version of the glN skein module of the surface S. Oriented, framed links embedded

in S × [0, 1] can be evaluated in NWeb(S) by projecting to S (enforcing the blackboard framing) and
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resolving all crossings into alternating sums of webs according to the following rule.

k l

=
∑

s−r=k−l

(−q)s−k

k

r

s

l

(14)

Negative crossings are resolved using an analogous formula with q inverted.
The class in NWeb(S) represented by an embedded link is invariant under regular isotopy in S× [0, 1].

Framing changes and fork twists act by powers of q, but all fork slides hold on the nose:

a

= (−1)aq−a(N−a+1)

a

k l

= qkl

k l

,

k l

m

=

k l

m

(15)

4.2. Foams. We still let S denote an oriented surface of finite type. The Z[q±1]-module NWeb(S)
admits a graded, additive, C-linear categorification NFoam(S) that is closely related to the canopolis
NFoam of glN foams defined in [ETW18] using the closed foam evaluation formula of Robert–Wagner
[RW17]. Here we only describe the essential features of NFoam(S) and comment on the necessary
variations relative to NFoam.

Definition 4.3. NFoam(S) is the additive closure of the graded, additive, C-linear category determined
by the following data:

• The objects are formal q-grading shifts of webs qkW embedded in S, without allowing any isotopies.
• The morphisms are C-linear combinations of degree-preserving foams F : qlV → qkW embedded in
S× [0, 1], modulo isotopy relative to the boundary and modulo additional local relations supported
in embedded 3-balls B3 ⊂ S × [0, 1].

• The composition is given by the bilinear extension of the natural gluing of foams.

The foams making up the morphisms are decorated 2-dimensional CW-complexes, which are carefully
defined in [ETW18, Definition 2.7]. They are graded and their facets are allowed to carry decorations by
symmetric polynomials as explained in and just before [ETW18, Definition 2.11]2. The local foam relations
in embedded 3-balls B3 ⊂ S × [0, 1] are precisely the relations that hold in the canopolis Foam as defined
in [ETW18, Definition 2.14].

A direct consequence of the local foam relations in NFoam(S) is that we have explicit isomorphisms
between webs, which induce the web relations (13) after passing to the Grothendieck group.

Remark 4.4. The use of foams in the categorification of link and tangle invariants has a long history,
starting with Bar-Natan’s use of linearized cobordism categories in his description of Khovanov homology
[BN05]. Khovanov’s categorification of the sl3 link polynomial [Kho04] is the first one that uses foams with
singularities. The matrix factorization categories underlying Khovanov–Rozansky glN link homologies
were given a topological interpretation via foams in [KR07], which was used in a new construction of
glN link homologies by Mackaay–Stošić–Vaz [MSV09]. Blanchet demonstrated that gl2 foams support a
version of Khovanov homology that is functorial under link cobordisms [Bla10]. Better control over glN
foam categories was gained by Lauda–Queffelec–Rose through their connections to categorified quantum
groups [LQR15, QR16]. Finally, Robert–Wagner [RW17] found a mathematically rigorous and entirely
combinatorial construction of glN foams, which is the basis for the foam categories used here and in the
proof of the functoriality of Khovanov–Rozansky homologies under cobordisms in [ETW18].

4.3. Categorical invariants for links in a thickened surface. It is now a routine task to define a
categorical invariant of links (or tangles) in S × [0, 1] (with boundary in ∂(S)× {1/2}) that takes values
in Kb(NFoam(S)), the homotopy category of chain complexes over NFoam(S). Indeed, for a generic
tangle embedding, the natural projection S × [0, 1] → S gives a tangle diagram. The alternating sum
in the crossing formula (14) gets lifted to a chain complex and if several crossings occur, the alternating

2Note, however, that we use the opposite convention to denote grading shifts. E.g. a foam F of degree 2 maps from a
shifted web qkW to another shifted web qk−2V .
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multi-sums become tensor product chain complexes. In fact, there are two natural conventions for the
chain complexes that can be associated to a positive3 uncolored crossing:

s {
= q

2
→

✿✿✿✿✿

(16)

s {fr

=
2

✿✿✿✿✿

→ q−1(17)

In both cases the differential given by an unzip foam. For more details about these Khovanov–Rozansky
constructions using foams, see e.g. [ETW18, Section 3.1] and [QW18, Section 4].

Definition 4.5. Let TD be a tangle diagram in S, then we denote the chain complexes constructed based

on the local models (16) and (17) (and their colored versions) by JTDK and JTDKfr respectively. We shall

consider these complexes as objects in Kb(NFoam(S)).

The chain complex JTDK is invariant under all Reidemeister moves up to chain homotopy equivalence,

see e.g. [ETW18, Theorem 3.5]. The chain complex JTDKfr is invariant under framed Reidemeister moves

up to chain homotopy equivalence. While we favour the framed version JTDKfr in this paper, we also
introduce JTDK since it is known to admit a functorial assignment of chain maps to tangle cobordisms as
we describe next.

Definition 4.6. We denote by STan the category with objects given by tangles that are properly embedded
in S × [0, 1] and with morphisms given by isotopy classes of tangle cobordisms embedded in S × [0, 1]2.
For surfaces without specified boundary points, we also denote STan by SLink.

Theorem 4.7 ([ETW18, Theorem 4.5], [QW18, Theorem 4.4]). The Khovanov–Rozansky construction

extends to a functor STan → Kb(NFoam(S)), under which the image of a tangle T with diagram TD is
given by JTDK.

Since JTDKfr differs from JTDK only in grading shifts in tensor factors, this implies that J−Kfr can also
be equipped with functorial cobordism maps. However, we currently do not know whether there is a
unique (or at least a distinguished) way of lifting Theorem 4.7 to the framed setting. Another open
question is the following.

Conjecture 4.8 ([QW18, Conjecture 4.8]). The Khovanov–Rozansky functor extends to a functor from

the category of tangled webs and framed foams in four-dimensional space to Kb(NFoam(S)).

4.4. Annular links, webs, and foams. In this section we consider the case S = A := S1×[0, 1] without
marked points on the boundary, and fix an orientation of the core circle of A.

We define a monoidal structure on ALink as follows. Given two annular links L1 and L2 in A× [0, 1] =
S1 × [0, 1]× [0, 1], we relabel the copy in which L2 lives as S1 × [1, 2]× [0, 1]. The tensor product L1 ⊠L2

is defined by taking the disjoint union L1 ⊔ L2 in S1 × [0, 2]× [0, 1] and shrinking the second coordinate
back to S1 × [0, 1] × [0, 1]. The definition of ⊠ on morphisms is analogous. It is a simple exercise to
check that this defines a monoidal structure with unit given by the empty link and with unitors and
associators given by isotopies. In fact, the existence of “vertical” and “horizontal” isotopies give rise to
a (non-symmetric) braiding on ALink.

We say an annular link is consistently oriented if it is given as the closure of a braid with orientation
matching the orientation of the core circle. We then denote by ALink+ the subcategory of ALink given
by consistently oriented links and cobordisms whose time-slices are consistently oriented.

It is clear that two braids closures are isotopic in the annulus (and the corresponding objects in ALink+

are isomorphic) if and only if the braids are conjugate.
For consistently oriented annular links, there exists a universal categorified link invariant from which

all annular and planar Khovanov–Rozansky homologies can be recovered. In order to describe its target
category, we say a web W in A is consistently oriented if the tangent vectors project positively to the
core circle.

The subcategory NAFoam+ of NAFoam is cut out by requiring webs to be consistently oriented and
foams to have generic cross-sections that are isotopic to such consistently oriented webs.

3Sometimes the shown complexes are associated to negative crossings, but we strongly prefer the convention here. For
this convention, the triply-graded homology of positive torus knots satisfies a parity condition.
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We denote by AFoam+ the category obtained from NAFoam+ by stabilizing N → ∞. In other
words, AFoam+ is the category of consistently oriented annular webs and foams, without restriction on
the labeling set and with a free action of the dot on 1-labeled facets.

Theorem 4.9 ([QR18]). The annular Khovanov–Rozansky homologies factor through the functor

J−Kfr : ALink+ → Kb(AFoam+).

Furthermore, the annular disjoint union yields a natural monoidal structure on AFoam+ and its
homotopy category, which is respected by the Khovanov–Rozansky functor.

Proposition 4.10. The annular Khovanov–Rozansky functor ALink+ → Kb(AFoam+) is monoidal.

4.5. Reduction to essential circles.

Definition 4.11. We define AFoam+
S1

to be the full subcategory of AFoam+ whose objects are direct
sums of grading shifts of webs that are collections of essential concentric circles in the annulus.

The notation AFoam+
S1

is to suggest that the objects in this category are S1-equivariant. In fact, the
same is true for morphisms.

Theorem 4.12 ([QRS18, Theorem 3.2]). The morphism spaces in AFoam+
S1

are generated by by S1-
equivariant, decorated foams. In particular, they are non-negatively graded.

Queffelec–Rose conjecture that the inclusion AFoam+
S1

→֒ AFoam+ is an equivalence of categories
[QR18, Conjecture 5.4]. They prove a slightly weaker result.

Proposition 4.13 ([QR18, Proposition 5.1]). The inclusion AFoam+
S1

→֒ AFoam+ induces an equiva-

lence of categories Kb(AFoam+) ≃ Kb(AFoam+
S1
).

The main step in the proof of this result is that each annular web, considered as a complex concentrated
in homological degree zero, is isomorphic in Kb(AFoam+) to a chain complex built out of concentric circle
webs. In fact, this is true more generally, see Proposition 6.6. For now, we take note of the implication
that the categorical invariants of braid closures can be assumed to take values in Kb(AFoam+

S1
). In the

next session we will obtain an alternative description of this category.

4.6. Decorated webs. We can now take quotients of the webs and foams in AFoam+
S1

by their free

S1-symmetry. Under this dimensional reduction, collections of labeled concentric circles are mapped to
finite sequences of labeled points on a line R. Rotationally symmetric foams are mapped to isotopy
classes of webs in the strip R× [0, 1], whose edges inherit the decorations by symmetric functions of the
foam facts.

Definition 4.14. Let DecWeb denote the non-negatively graded, additive, C-linear category of decorated
webs in R× [0, 1] that is isomorphic to AFoam+

S1
via the functor

DecWeb
−×S1

−−−−→ AFoam+
S1

that takes boundary sequences to collections of concentric circles and decorated webs to decorated rotation-
ally symmetric foams.

Lemma 4.15. The degree zero part of DecWeb satisfies the first, third and fourth web relation from
(13) and isotopies relative to the boundary which preserve the upward-directedness of webs.

Proof. See [QRS18, Section 4.5]. �

Lemma 4.16. The following relations hold in DecWeb.

er

a+b

a b

=
∑

s+t=r
etes

a+b

a b

(18)

•
2

11

−
•

2

11

= •

11

− •

11

=
•
2

11

−

•
2

11

(19)



20 EUGENE GORSKY AND PAUL WEDRICH

Lemma 4.17. DecWeb admits a symmetric monoidal structure.

Proof. The tensor product is given by placing webs side by side. The symmetry is an isomorphism of
degree zero and given on objects of the form (k, l) by the q = 1 specialization of (14), with a

✿✿✿

sign

✿✿✿✿✿✿✿✿✿

correction:

k l

= (−1)kl
✿✿✿✿✿

∑

s−r=k−l

(−1)s−k

k

r

s

l

The symmetry on other pairs of objects is constructed from these basic crossings in a standard way. For
checking the naturality of the symmetry, note that vertices still slide through other strands as in (15)
despite the sign correction. It remains to verify that decorations migrate through such crossings. In
the case k = l = 1, this follows directly from (19). In the more general case, one first blows up both
strands into blisters of parallel 1-labeled strands via relation (13). These blisters fork-slide underneath
the crossing, decorations migrate onto the 1-labeled strands by (18) and then through all remaining
1-1-crossings. Then one reverses the process on the other side. �

In Theorem 4.19, we will get a more intrinsic characterisation of DecWeb. To prove this theorem, we
take a technical detour through modules for Schur quotients of current algebras. Let U̇(glm[t]) denote
Lusztig’s idempotent form of the universal enveloping algebra of the current algebra glm[t], which can be
considered as a category with objects given by glm-weights [a1, . . . , am]. The superscript ≥ 0 indicates
that we have taken the Schur quotient by morphisms which factor through an object with negative
entries. For every m′ ≥ m, there exists an embedding ι : U̇(glm[t])≥0 → U̇(glm′ [t])≥0 given on objects by
[a1, . . . , am] 7→ [a1, . . . , am, 0 . . . , 0].

Proposition 4.18. DecWeb is isomorphic to the direct limit U of U̇(glm[t])≥0 for m → ∞ with tran-
sition functors ι.

Proof. Queffelec–Rose–Sartori [QRS18, Diagram (4.6)], building on work of Beliakova–Habiro–Lauda-

Webster [BHLW17], proved that there is a system of functors vTr(Φ∞) : U̇(glm[t])≥0 → DecWeb com-
patible with the inclusions ι, which become eventually full and eventually faithful. Eventual fullness
means that for any morphism F in DecWeb we have F = vTr(Φ∞)(f) for a morphism f in U̇(glm[t])≥0

in a sufficiently large m ≥ 0. Eventual faithfulness means that for morphisms with coinciding images
vTr(Φ∞)(f) = vTr(Φ∞)(g), there exists an m ≥ 0 such that ι(f) = ι(g) in U̇(glm[t])≥0. This implies
that the system of functors vTr(Φ∞) defines an isomorphism as claimed. �

We denote this isomorphism from U to DecWeb again by vTr(Φ∞).

Theorem 4.19. DecWeb is isomorphic to a full subcategory of the symmetric monoidal Karoubian
C-linear category P̂, which is freely generated by a single object and an endomorphism of degree 2. More
specifically, it is isomorphic to the full subcategory P whose objects are tensor products of antisymmetric
Schur functors in the generating object.

The following proof is inspired by Cautis–Kamnitzer–Morrison’s use of skew Howe duality (a gener-
alisation of Schur-Weyl duality) to describe diagrammatic categories in [CKM14]. For an instance of
Schur-Weyl duality for current algebras, see [GKS18, Section 6].

Proof. There is an obvious full, essentially surjective functor Ψ from the said full subcategory P of

P̂ to DecWeb, but it remains to show that it is faithful. This will follow from the fact that there
is an isomorphism α : P → U such that Ψ = vTr(Φ∞) ◦ α. It suffices to prove this for P, the
free symmetric monoidal category on one object E and one endomorphism x (without insisting on
any partial idempotent-completeness), and U ′, the direct limit of idempotent truncations of the form

1[1,...,1,0,...0]U̇(glm[t])≥01[1,...,1,0,...,0].
We define a functor α : P → U ′ by sending:

• E⊗m to 1[1,...,1] in U̇(glm[t])≥0,

• an x on the i-th component of E⊗m to Em · · ·EiFi[t]Fi+1 · · ·Fm1[1,...,1,0] in U̇(glm+1[t])
≥0,

• the transposition σi on E
⊗m to 1[1,...,1] − EiFi1[1,...,1] in U̇(glm[t])≥0.

and then onward to U ′ via the component maps. With this definition of α, we have Ψ = vTr(Φ∞) ◦ α.
A standard argument shows that α is surjective. Namely, a spanning set for morphism spaces in U ′ is

given by the images of dotted permutations
⊔

m≥0{α(σx
n1
1 · · ·xnm

m )|σ ∈ Sm, ni ≥ 0}. It suffices to show
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that these remain linear independent. To this end, consider U(glm[t]) as an algebra and the U(glm[t])-
module

∧
a(Cm ⊗C[X ]), which decomposes into glm-weight spaces

∧
a1(C[X ])⊗ · · · ⊗

∧
am(C[X ]). For

the weight [1, . . . , 1] we simply get the weight space C[X1, . . . , Xm]. Since only non-negative weights
arise, this descends to a U(glm[t])≥0-module. It is straightforward to check that pre-composing with α,
we obtain the natural action of P where permutations act on indices and x on the i-th strand acts by
multiplication byXi. It is then clear that the α-images of dotted permutations act by linearly independent
operators, and are thus linearly independent. �

Corollary 4.20. There is an equivalence of graded C-linear tensor categories Kar(AFoam+) ≃ P̂.

Proof. We already know that there exists a fully faithful functor P̂ → Kar(DecWeb) → Kar(AFoam+)
and we shall show that it is essentially surjective. To this end, let W be an annular web. Proposition 4.13
allows us to expressW as a chain complex, whose chain groups are collections of concentric circles. After
proceeding to the Karoubi envelope, we can decompose these further into Schur functors of a single
circle. When considered as a chain complex concentrated in homological degree zero, W is homotopy

equivalent to an object C(W ) in Kb(P̂). We may assume this object to be represented by a minimal chain

complex. Since P̂ is non-negatively graded and semi-simple in degree zero, the homotopy equivalence
between W and C(W ) is an isomorphism of chain complexes, and thus C(W ) is concentrated in degree

zero. This shows that every object in AFoam+ is isomorphic to an object in P̂, and since the latter
is idempotent complete by definition, the same holds for every object in Kar(AFoam+). This verifies
essential surjectivity and finishes the proof. �

Remark 4.21. It might be helpful to give a more direct explanation why an arbitrary annular web is
isomorphic to an object in P̂, and not just in the homotopy category. Indeed, we can follow the annular
simplification algorithm from [QR18] and use bubble removal and square switch relations to reduce a
web to a collection of essential circles. At each step of the algorithm, one either replaces a web by an
isomorphic one, or presents it as a direct sum of simpler webs, or presents it as a direct summand in a
simpler web. Since P̂ is Karoubian, all these steps show that a web is isomorphic to an object in P̂, if
the simpler webs are.

Note that in [QR18] Queffelec and Rose used a slightly different algorithm where, if a web is presented as
a direct summand in a simpler web, it is expressed as a cone of the inclusion of complimentary summands.
This way [QR18] avoids Karoubi completion, but steps into the homotopy category. By Theorem 3.11 the

two algorithms actually agree in the homotopy category of the Karoubi completion P̂.

4.7. Braiding for annular webs. The category of annular links and cobordisms between them has a
natural braided monoidal structure. The annular Khovanov–Rozansky functor from this category to the
homotopy category of complexes of annular webs and foams preserves the monoidal structure, but a priori
it is not clear whether the latter has any braiding.

Proposition 4.22. Kb(AFoam+) has a symmetric braiding.

Proof. By Lemma 4.17, DecWeb and thus AFoam+
S1

have a symmetric braiding. This immediately

extends to Kb(AFoam+
S1
). Then we use the equivalence of Proposition 4.13 to transport this symmetric

braiding to Kb(AFoam+). �

Note that every object W in AFoam+ and thus Kb(AFoam+) has a grading [W ] ∈ N by weighted

winding number around the annulus. Besides the braiding σV,W : V ⊗W → W ⊗ V on Kb(AFoam+)
that was obtained in Proposition 4.22, we will also consider the sign-twisted braiding σ, which is defined
by σV,W = (−1)[V ][W ]σV,W . Transported back to DecWeb, this braiding is described by the q = 1
specialization of (14), i.e. the formula shown in Lemma 4.17 without

✿✿✿✿

sign
✿✿✿✿✿✿✿✿✿

correction.

For the following, let ALink+
S1

denote the full subcategory of ALink+ with objects being collections
of concentric colored circles.

Theorem 4.23. The restricted annular Khovanov–Rozansky functor J−K : ALink+
S1

→ Kb(AFoam+) is

braided with respect to the standard braiding on Kb(AFoam+). The framed version J−Kfr is braided with
respect to the sign-twisted braiding.

Proof. The braiding on ALink+ is given by braiding isotopies, i.e. certain cobordisms which braid annular
links radially past each other. Under the Khovanov–Rozansky functor J−K, such maps induce invertible

morphisms in Kb(AFoam+), and we shall check that these morphisms agree with the symmetric braiding

morphisms in Kb(AFoam+) that were defined in Proposition 4.22. (The case of J−Kfr is analogous and
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will be omitted.) It suffices to compare these braiding morphisms on pairs of monoidal generators, i.e.
two colored circles.

For two uncolored circles, the computation of the maps induced by the braiding cobordism and its
inverse is simple—both involve two Reidemeister II moves—and they agree with the braiding from Propo-
sition 4.22. A version of this argument (without foams) appears in Grigsby–Licata–Wehrli [GLW18]. We
show the details here for convenience. The braiding of two uncolored circles can be described as a movie
of annular link diagrams as follows:

(20)
RII
−−→

1 2 isotopy
−−−−→

2 1 RII
−−→

This is a composite of a Reidemeister II move, an isotopy of the positive crossing around the annulus,
and an inverse Reidemeister II move. In order to compute the composite chain map, we will recall the
Reidemeister II chain maps. Here and in the following, we borrow notation from Soergel bimodules for
the webs that appear:

R := , B :=
2

Consider the cube of resolutions chain complex for a Reidemeister II tangle:

=

s
1 2

{fr

q−1R⊗B

R⊗R

B ⊗B

qB ⊗R

−zip

unzip

unzip

zip

Here, the Koszul signs in the tensor product depend on an (arbitrary) ordering of the crossings of the
tangle, which is shown on the left. The Reidemeister II chain maps, which connect the complex R ⊗ R
of the trivial tangle to this complex (and vice versa), are given by identities on R ⊗ R, as well as the
negative of the following more complicated composite foam (and its reflection in a horizontal plane):

(21)

Similarly, the other variant of the Reidemeister II move relates the invariant of the tangle

=

s
2 1

{fr

q−1B ⊗R

R⊗R

B ⊗B

qR⊗B

−zip

unzip

unzip

zip

to the trivial tangle diagram. The corresponding chain maps are again assembled from the identities on
R ⊗ R, the negative of the foam in (21), or its reflection respectively. Here we have chosen an ordering
of the crossings which is compatible with previously chosen ordering under the isotopy in (20). The
composite of the chain maps in (20) thus is a difference of two terms, an identity foam over the two
concentric circles, as well as a foam built as a composition of (21), the foam realising the isotopy of one
copy of B around the annulus, and a reflected version of (21):

(22) −

This agrees with the braiding on AFoam+ defined in Proposition 4.22.
An analogous argument applies in the case of two colored circles—it uses an explicit description of the

chain maps associated to colored Reidemeister II moves—and shows that the braiding of such is given by
the rotation foam generated by the linear combination of webs shown in the proof of Lemma 4.17. �
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In fact, we expect that the annular Khovanov–Rozansky functors are braided on the entire annular
link category, but we do not know how to prove this without assuming a stronger functoriality property,
which has not been established yet.

Conjecture 4.24. The annular Khovanov–Rozansky functors ALink+ → Kb(AFoam+) are braided.

For later use, we also record the following observation, where we write σ for the linear combination of
foams shown in (22).

Lemma 4.25. In the Karoubi envelope of AFoam+ the image of the anti-symmetrizer in Q[Sk] under
J−K is isomorphic to the k-colored essential circle.

Proof. For k = 2, the anti-symmetrizer is (id− σ)/2. Note that this is exactly 1/2 times the foam shown
on the left-hand side of (22). Cutting this foam in half by a horizontal plane produces a merge foam M
and a splitter foam S. We have (id− σ)/2 = S ◦M/2 and M/2 ◦ S = id2. This implies that S and M/2
represent the desired mutually inverse isomorphisms in Kar(AFoam+).

The case k > 2 follows, since the anti-symmetrizers in C[Sk] and also the projections onto k-colored
essential circles in AFoam+ can be constructed from the k = 2 cases in the same way. �

Everything in this subsection works in the finite-rank case, i.e. for annular glN foam categories
NAFoam+. In this setting, essential circles of label N + 1 are isomorphic to the zero object, which
implies that the uncolored essential circle is of rank (at most) N in the sense of Definition 3.3.

Remark 4.26. An analogue of Lemma 4.25 shows that the framed Khovanov–Rozansky functors J−Kfr
send the symmetrizer in C[Sk] to the k-colored unknot. This is at odds with our interpretation of that
colored circle as corresponding to the exterior power

∧
k of the uncolored circle. The origin for this

discrepancy is the relative homological shift between the two conventions for crossings (16) and (17),
which translates into a sign-twist on the braiding.

4.8. Evaluation. Here we recall the evaluation of annular homology developed by Queffelec and Rose.
Let L be an annular link, then Khovanov-Rozansky functor sends it to a complex of webs, and by

Corollary 4.20 we can replace it by a complex of Schur functors of E in Kb(P̂). The object E appears as
the invariant of the essential planar unknot in the annulus and the endomorphism X encodes information
about the C[X ]-actions in link homologies that are typically associated with the choice of a base point
on the link. Proposition 3.5 now immediately implies the following:

Theorem 4.27. Let C be an arbitrary additive symmetric monoidal category, and let Kb(C) be the
corresponding homotopy category. Suppose that E is an object of C with an endomorphism X. Then there
is a unique functor

AKhR(E , X) : ALink+ → Kb(C)

which factors through the Khovanov-Rozansky functor, sends the essential planar unknot to E, the base
point action to X, and the braiding of two unknots to the symmetry on E ⊗ E.

The results of [QR18] can be then rephrased in the following way:

Theorem 4.28 ([QR18]). If C = grZVect, the category of Z-graded vector spaces (with the swap sym-
metry), E = C[X ]/XN , and X is the endomorphism given by multiplication by x, then the functor
AKhR(E , X) agrees with the glN Khovanov-Rozansky homology. If E = C[X ]/P (X) for a degree N
monic polynomial, then AKhR(E , X) agrees with the deformed Khovanov–Rozansky homology studied in
[Wu12, RW16]. If C = grZRep(U(glN )) and E = V = CN is the vector representation of U(glN ), then
the functor AKhR(E , 0) agrees with the annular Khovanov-Rozansky homology.

5. Coxeter braids, categorified

5.1. Positive Coxeter braids. The purpose of this section is to prove the following theorem.

Theorem 5.1. Let now C−
n and C+

n denote the annular complexes of the (n − 1)-fold negatively and
positively stabilized unknots. Then we have:

C−
n ≃ [qn−1Sn(E) → . . .→ q3−n

S
2,1n−2

(E) → q1−n∧n(E)
✿✿✿✿✿

] ∼= Cubesignn

C+
n [n− 1] ≃ [qn−1∧n(E) → . . .→ q3−n

S
n−1,1(E) → q1−nSn(E)

✿✿✿✿✿

] ∼= CubeSn

n

Lemma 5.2. Upon evaluation as in Theorem 4.28, these complexes compute the planar glN Khovanov–
Rozansky homologies of stabilized unknots.
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Proof. This follows from Example 3.21. �

To start the proof of Theorem 5.1, note that it suffices to prove one of the homotopy equivalences. The
other one follows by symmetry. We focus on the positive stabilization and consider the shifted complex

C
+

n := qn−1C+
n [n − 1], which has its terminal chain group in homological and q-degree zero. We also

define annular complexes Xn,l as in Figure 2. Clearly, Xn,0 = C
+

n .

Xn,l := qn−1+l

u
wwwwwwwwwwwv

σn−1 · · · σ1

l

. . . l + 1

×

}
�����������~

fr

[n− 1]

Figure 2.

Lemma 5.3. For l ≥ 0 and n > 1 we have

X1,l
∼= [l + 1]q

∧l+1(E), Xn,l ≃ [Xn−1,l+1 → C
+

n−1 ⊗
∧l+1(E)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

]

where [l + 1]q = (1 + q2 + . . .+ q2l) is an asymmetric quantum integer.

Proof. The isomorphism for X1,l is due to a bigon removal. To check the homotopy equivalence for Xn,l,
we resolve the right-most crossing σn−1 and simplify as follows.
















qn−1+l

u
wwwwwwwwwv

σn−2 · · · σ1

l. . .

l + 1

×

}
���������~

fr

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

→ qn−2+l

u
wwwwwwwwwv

σn−2 · · · σ1

l. . .

l + 1

×

}
���������~

fr















[n− 1]

∼=















qn−1+l

u
wwwwwwwwwv

σn−2 · · ·σ1

l. . .

l + 1

×

}
���������~

fr

[n− 2] → [l + 1]qC
+

n−1 ⊗
∧l+1(E)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿















∼=

[

Xn−1,l+1 ⊕ q2[l]qC
+

n−1 ⊗
∧l+1(E) → [l + 1]qC

+

n−1 ⊗
∧l+1(E)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

]

In the second step we have used the bigon relation, and in the last step the square-switch relation. The

degree zero components of the differential between the copies of C
+

n−1 ⊗
∧

l+1(E) are identities up to
non-zero scalars [Wu12, Direct Sum Decomposition (IV)], and after Gaussian elimination, we obtain the
claimed form. �

Corollary 5.4. There is a natural map a : C
+

n−1 ⊗ E → Xn,0 = C
+

n .

Corollary 5.5. One can write

(23) C
+

n ≃

[

[n]q
∧n(E)⊕

n−1⊕

i=1

C
+

i ⊗
∧n−i(E), D

]

,
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where [n]q
∧

n(E) :=
∧

n(E) ⊕ q2
∧

n(E) ⊕ · · · ⊕ q2n−2
∧

n(E). The differential D consists of the internal

differential in C
+

i , degree zero maps C
+

k−1 ⊗
∧

n−k+1(E) → C
+

k ⊗
∧

n−k(E) obtained as compositions

C
+

k−1 ⊗
∧n−k+1(E) → C

+

k−1 ⊗ E ⊗
∧n−k(E)

a
−→ C

+

k ⊗
∧n−k(E),

and some differentials out of [n]q
∧

n(E), as well as possibly some higher differentials.

Proof. We prove by induction the existence of a more general expression

Xn,l ≃

[

[n+ l]q
∧n+l(E)⊕

n−1⊕

i=1

C
+

i ⊗
∧n+l−i(E), D

]

,

where the differentials are described as above. Indeed, for n = 1 we get X1,l
∼= [l + 1]q

∧
l+1(E), and for

n > 1 we use the induction hypothesis and

Xn,l ≃ [Xn−1,l+1 → C
+

n−1 ⊗
∧l+1(E)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

].

Now, for l = 0 we get Xn,0 = C
+

n . �

Theorem 5.6. We have

(24) C
+

n ≃ [q2n−2∧n(E) → . . .→ q2 S
n−1,1(E) → Sn(E)

✿✿✿✿✿

].

Note that Theorem 5.1 follows from Theorem 5.6 by grading shifts and symmetry. We will prove
Theorem 5.6 by induction in n using the recursive description (23). To illustrate this, we first consider
the examples n = 2, 3.

Example 5.7. For n = 2 the complex (23) has the form C
+

2
∼= [(1 + q2)

∧
2(E) → E ⊗ E

✿✿✿✿✿

], and after

cancellation we get C
+

2 ≃ q2
∧

2(E) → S2(E)
✿✿✿✿✿

.

Example 5.8. For n = 3 the complex (23) has the form

C
+

3 ≃













E ⊗
∧

2(E) S2(E)⊗ E
✿✿✿✿✿✿✿✿✿

(1 + q2 + q4)
∧

3(E) q2
∧

2(E)⊗ E













The degree zero differentials are organized in three subquotient complexes:

[
∧3(E) → E ⊗

∧2(E) → S2(E)⊗ E
✿✿✿✿✿✿✿✿✿

] ≃ S3(E)
✿✿✿✿✿

,

[q2
∧3(E) → q2

∧2(E)⊗ E] ≃ q2S2,1(E),

and q4
∧

3(E). Here, in cancelling, we assume that the shown differentials are non-zero. Then we get

C
+

3 ≃ [q4
∧3(E) → q2S2,1(E) → S3(E)].

The case where some of the shown degree zero differentials are zero can be excluded, because then, in
specialization E = C[x]/xN , the homology would be larger than expected, contradicting Lemma 5.2.

Proof of Theorem 5.6. Assume that (24) holds for all k < n. The terms in (23) in homological degree

k are assembled from the terms in C
+

n−j ⊗
∧

j(E) in homological degree k + 1 − j. By the induction

hypothesis, the latter is homotopic to q2k+2−2jSn−k−1,1k+1−j

(E)⊗
∧

j(E). The differential decreases the

homological degree k by one, and acts between C
+

n−j ⊗
∧

j(E) → C
+

n−j′ ⊗
∧

j′(E) with j′ ≤ j. For
j′ < j − 1 we get k − j′ > k + 1 − j, and such a differential can be ruled out as it would have negative

q-degree. Therefore, in this presentation, the only surviving differentials are internal for C
+

n−j (that is,
j′ = j) of q-degree two, and between the neighbors j′ = j − 1, of q-degree zero. The example for n = 3
above illustrates this point.

This means that we have explicitly identified all differentials in (23) except for the ones connecting

the leftmost copies of
∧

n(E) to C
+

n−j ⊗
∧

j(E).
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To simplify this complex, we first consider the degree zero differentials. In q-degree 2t we get the
following complex (ignoring the leftmost term), terminating in homological degree t:

∧t+1(E)⊗
∧n−t−1(E) → S

2,1t ⊗
∧n−t−2(E) → · · · → S

n−1−t,1t ⊗ E

The differentials are induced by compositions

S
m,1t(E)⊗

∧n−t−m(E) → Sm(E)⊗
∧t(E)⊗

∧n−t−m(E) →

→ Sm−1(E)⊗
∧t(E)⊗

∧n−t−m+1(E) → S
m−1,1t(E)⊗

∧n−t−m+1(E),

and, in particular, they are non-trivial. One can check that these cancel almost everything, except for a

copy of q2t
∧

n(E) in homological degree (n− 2) and q2tSn−t,1t(E) in homological degree t.
We claim that the leftmost term [n]q

∧
n(E) cancels all q2j

∧
n(E) except for q2n−2

∧
n(E). Moreover,

the remaining differentials are all non-zero and, thus, determined up to scalars. Both claims hold because
otherwise, in specialization E = C[X ]/XN , the homology would be larger than expected, contradicting
Lemma 5.2. �

Remark 5.9. The annular sl2 homology of the stabilized unknot was computed by Grigsby, Licata and
Wehrli [GLW18]. It agrees with our computation up to conventions, as we shall now explain. Let Vn denote
the (n+ 1)-dimensional irreducible representation of sl2. Note that Sn(V1) ∼= Vn, S

n−1,1(V1) ∼= Vn−2 and

Sn−i,1i(V2) = 0 for i > 1. Thus, for E = V1 and x = 0 we evaluate C+
n+1 ≃ [0

✿

→ . . .→ 0 → q2−nVn−1
0
−→

q−nVn+1]. As in [GLW18, Section 9.2], the annular sl2 homology of the n-fold stabilized unknot consists
of the two irreducible sl2-representations Vn+1 and Vn−1 in adjacent homological degrees, with a difference
in q-degrees of 2.

5.2. Morphisms. We shall now describe the hom spaces between the annular complexes associated to
closures of Coxeter braids. We start by describing basic chain maps between complexes associated to
braids. In doing so, we again borrow notation from the theory of Soergel bimodules.

Definition 5.10. Consider the following chain map:

JσKfr

f
��

B
✿

//

id
��

q−1R

q
σ−1

yfr
qR // B

✿

The distinguished triangle JσKfr f
//
q
σ−1

yfr
// Cone(f) // JσKfr [1] is called the skein triangle.

Here we have

Cone(f) ≃ [ qR
x1−x2

// q−1R
✿

].

Note that the annular closure of Cone(f) is precisely Cube2. We have seen that Cube2 ∼= CubeS2
2 ⊕

Cubesign2 ≃ C+
2 [1]⊕ C−

2 . In other words, under annular closure, the skein triangle splits:

0 //
q
σ̂−1

yfr // Cone(f̂) //
oo❴ ❴ ❴ Jσ̂Kfr [1] //oo❴ ❴ ❴ 0

Here we want to emphasize that the dashed maps only appear in the annular closure.

Remark 5.11. There are also non-zero cobordism-induced maps R → q JσKfr [1] and q−1
q
σ−1

yfr
[−1] →

R, which can be interpreted as gluing in a twisted band that increases the writhe:

R

��

R
✿

id
��

q JσKfr [1] qB // R
✿

q−1
q
σ−1

yfr
[−1]

��

R
✿

//

id
��

q−1B

R R
✿

In the glN -evaluations, there also exist non-trivial maps R→ q1−2N
q
σ−1

yfr
[−1] and q2N−1 JσKfr [1] →

R associated to twisted bands that decrease the writhe.
In both cases, these cobordism-induced chain maps are unrelated to the maps in the skein triangle.
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Remark 5.12. Under glN -evaluation, we have a partially topological description of the chain map f in

the skein triangle. We start with JσKfr and follow the Reidemeister II chain map to
q
σ−1σσ

yfr
and then

a saddle cobordism map to q1−N
q
σ−1#H

yfr
where H denotes a positive Hopf link and the connect sum

is taken on the new over-strand. Finally, the projection to the top degree generator of the reduced Hopf

link homology (which is not cobordism-induced) induces an onward map to
q
σ−1

yfr
. The composition is

the chain map f .

Lemma 5.13. Let Un be the (n−1)-dimensional reflection representation of Sn. Let p1, . . . , pn be an alge-
braically independent generating set for C[x1, . . . , xn])

Sn , for example, power sum symmetric polynomials.
Then HomSn

(
∧

kUn,C[x1, . . . , xn]) is a free module over C[x1, . . . , xn])
Sn generated by the coefficients of

dpi1 ∧ · · · ∧ dpik for all 2 ≤ i1 < i2 < . . . < ik ≤ n.

Proof. Clearly, HomSn
(
∧

kUn,C[x1, . . . , xn]) is free over
∑
xi, so we can consider HomSn

(
∧

kUn,C[Un])
instead. It can be identified with the space of Sn–invariant differential forms on Un, which by a theorem
of Solomon [Sol63] is isomorphic to the space of differential forms on Un/Sn = Spec C[p2, . . . , pn]. �

Let Cuben, as before, denote the Koszul complex for xi − xi+1 acting on E⊗n. Then we have:

Theorem 5.14. The morphisms between the tensor products of Cuben can be described as follows:

• The endomorphism algebra of Cuben is:

End(Cuben) ∼=
∧•(Un)⊗C[x]⋊C[Sn],

where Un is the (n − 1)-dimensional reflection representation of Sn and Sn acts trivially on x.
Moreover, x is of q-degree 2 and Un is supported in homological degree −1 and q-degree −2.

• The spaces of morphisms between Cuben ⊗Cubem and Cuben+m are generated by the canonical
maps implicit in the description of

Cuben+m
∼= Cone(qCuben ⊗ Cubem

xn−xn+1
−−−−−−→ q−1Cuben ⊗ Cubem

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

).

The actions of x ∈ End(Cubei) on this space agree (up to homotopy) for i = n,m, n+m, and
the actions of exterior algebras are naturally identified under the induction and restriction maps
between Un ⊕ Um and Un+m.

• All other morphisms are induced by these.

Proof. Let us compute the endomorphism ring of Cuben. We have End(E⊗n) = C[x1, . . . , xn] ⋊ C[Sn],
so End(Cuben) is isomorphic to a complex built out of these. Since the differential does not involve the
action of Sn, we can ignore the C[Sn] factor for a while. Now

End(
∧•(Un)⊗ E⊗n) ∼=

∧•(Un)⊗
∧•(U∗

n)⊗ End(E⊗n) ∼=
∧•(Un)⊗

∧•(Un)⊗C[x1, . . . , xn]⋊C[Sn].

Here we have identified Un with its dual via the Sn–invariant nondegenerate bilinear form. This space of
maps carries the natural differential

(25) D(α⊗ β ⊗ f) = d(α) ⊗ β ⊗ f ± α⊗ d(β)⊗ f,

where d is the Koszul differential on
∧

•(Un)⊗C[x1, . . . , xn]. Since (x1 − x2, . . . , xn−1 − xn) is a regular
sequence in R = C[x1, . . . , xn], the homology of d is isomorphic to C[x].

Equation (25) presents D as a sum of two anticommuting differentials, which induces a spectral
sequence. The first differential has homology

∧
•(Un) ⊗ C[x] ⋊ C[Sn]. Now the second differential

vanishes, so the spectral sequence collapses at E2 page, and

End(Cuben) ∼=
∧•(Un)⊗C[x]⋊C[Sn].

Here x has q-degree 2 and homological degree 0 while the generators ǫ1, . . . , ǫn−1 of
∧

•(Un) have homo-
logical degree −1 and q-degree −2. See also Example 5.17 for an alternative computation of End(Cuben).

We can apply the same method in a more general situation. To compute Hom(⊗iCubeni
,⊗jCubemj

)
(with

∑
ni =

∑
mj = n), we first observe that both complexes consist of several copies of E⊗n. Now we

replace the Hom space between two such copies by End(E⊗n) = C[x1, . . . , xn] ⋊ C[Sn], and write two
sets of differentials. The first differential is given by multiplication by xi − xi+1 if i, i+1 are in the same
block of the partition n =

∑
ni, and the second is given by multiplication by xi − xi+1 if i, i + 1 are in

the same block of the partition n =
∑
mi.

Although the differentials do not involve C[Sn], we still need to keep track of its action. Let

Hompol(⊗iCubeni
,⊗jCubemj

)
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denote the space of polynomial maps, that is, the ones induced by the polynomial action on E⊗n. Any
endomorphism of E⊗n can be uniquely written as f =

∑

σ∈Sn
fσσ for some polynomials fσ. Similarly,

any morphism Hom(⊗iCubeni
,⊗jCubemj

) can be uniquely written as f =
∑

σ∈Sn
fσσ where fσ are

polynomial chain maps. The space of such fσ is isomorphic to Hompol(σ(⊗iCubeni
),⊗jCubemj

). To
sum up, to describe all morphisms between products of cubes it is sufficient to describe the polynomial
morphisms between products of cubes where the variables in one product are possibly relabeled. Note
that before we did not have this problem since Sn preserves Cuben.

After relabeling, we get two set partitions Π and Π′ with r blocks of size ni and s blocks of size mj

respectively. We will refer to the products of cubes as to CubeΠ and CubeΠ′ . Let Π′′ be the finest set par-
tition which is a coarsening of both Π and Π′. If Π′′ has more than one block then Hompol(CubeΠ,CubeΠ′)
factors over the blocks of Π′′ and we can proceed by induction.

From now on we will assume that Π′′ = {1, . . . , n}. Let us compute Hompol(CubeΠ,CubeΠ′) using
the spectral sequence as above. After applying the first differential we get a polynomial algebra with one
variable per block in Π. After applying the second differential we identify all these variables and obtain
an exterior algebra with generators ǫij for all i, j such that i, j are in the same block in both partitions
Π,Π′.

We can describe all these chain maps and their gradings more explicitly. Recall that

Cubea+b ≃ Cone(qCubea ⊗ Cubeb
xa−xa+1
−−−−−−→ q−1Cubea ⊗ Cubeb

✿✿✿✿✿✿✿✿✿✿✿✿✿

),

so there are natural chain maps

q−1Cubea ⊗ Cubeb → Cubea+b, Cubea+b → qCubea ⊗ Cubeb[1].

By combining these, we get maps

q1−rCubeΠ → Cuben, Cuben → qs−1CubeΠ′ [s− 1].

Every polynomial morphism from CubeΠ to CubeΠ′ can be obtained as a composition of these merge
and split maps with a polynomial endomorphism in Endpol(Cuben) =

∧
•(Un)⊗C[x]. In particular, the

identity on Cuben induces a chain map of q-degree s + r − 2 and homological degree s − 1. The odd
variable ǫij can be identified with ǫi + . . .+ ǫj−1 in Un dual to

xi − xj = (xi − xi+1) + . . .+ (xj−1 − xj).

which acts on Cuben. Note that if i and j are not in the same block for Π or Π′ then ǫij acts by 0. For
i, j, k in the same block for both partitions Π,Π′ the actions of ǫij , ǫjk and ǫik satisfy an obvious linear
relation. �

Corollary 5.15. dimq Hom(Cubeλn,Cube
µ
n) ∈ δλ,µ + q2N[q].

Example 5.16. Let us describe the endomorphisms of Cube2 = [qE⊗2 x1−x2−−−−→ q−1E⊗2]. In homological
degree zero we have C[x1, x2] ⋉ C[S2]. In homological degree −1 we have a chain map ǫ of q-degree −2
which sends the first copy of E⊗2 to the second one, and the right copy to zero:

qE⊗2 q−1E⊗2

qE⊗2 q−1E⊗2

ǫ

Note that in this case the projection to the first copy of E⊗2 yields the split map Cube2 → qE2[1] while
the inclusion of the second copy yields the merge q−1E2 → Cube2. The composition of split and merge
coincides with ǫ. There is also another map h of homological degree one:

qE⊗2 q−1E⊗2

qE⊗2 q−1E⊗2

h

This is not a chain map, but [d, h] = x1 − x2. Similarly, [d, hǫ] = (x1 − x2)ǫ = d. So the endomorphism
ring of Cube2 in the homotopy category is isomorphic to

C[x1, x2]⊗
∧
(ǫ)⋊C[S2]/(x1 − x2) ∼= C[x]⊗

∧
(ǫ)⋊C[S2].

Example 5.17. Similarly to Example 5.16, for Cuben we have chain maps ǫ1, . . . , ǫn−1 and homotopies
h1, . . . , hn−1, and [d, hi] = xi−xi+1, so End(Cuben) ∼= C[x]⊗

∧
(ǫ1, . . . , ǫn−1)⋊C[Sn]. As above, ǫi span

a copy of the reflection representation Un.
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Example 5.18. Let us illustrate the difference between polynomial morphisms (which were discussed in
the proof of Theorem 5.14) and all morphisms. For example, let us compute

Hompol(Cube1 ⊗ Cube2,Cube2 ⊗ Cube1).

We have the following diagram:

qE⊗3 q−1E⊗3

qE⊗3 q−1E⊗3

x2−x3

ǫ
α

h
β

x1−x2

Now [d, α] = (x1 − x2)ǫ, [d, β] = −(x2 − x3)ǫ, [d, h] = (x1 − x2)β − (x2 − x3)α, [d, ǫ] = 0. The homology
of (C[x1, x2, x3]〈α, β, h, ǫ〉, [d,−]) is isomorphic to

C[x1, x2, x3]

(x1 − x2, x2 − x3)
〈ǫ〉 ∼= C[x]〈ǫ〉

Here ǫ has q-degree −2 and homological degree −1.
Alternatively, ǫ can be obtained as a composition of the split and merge maps:

E⊗3 q−2E⊗3 q−1Cube1 ⊗ Cube2

q2E⊗3 E⊗3 ⊕ E⊗3 q−2E⊗3 Cube3

q2E⊗3 E⊗3 qCube2 ⊗ Cube1[1]

x2−x3

(x1−x2,x2−x3) (x2−x3,x1−x2)

x1−x2

Finally, observe that the transposition (1 3) ∈ S3 yields an obvious degree zero isomorphism between
Cube1⊗Cube2 and Cube2⊗Cube1. This isomorphism is not polynomial, in fact, the above computation
shows that there are no polynomial morphisms of degree zero.

Example 5.19. Let us use the description of End(Cube2) to describe End(C+
2 ). Recall that C+

2 [1] ≃
(Cube2)

S2 . The maps ǫ and h are not S2–invariant and vanish when symmetrized. However, ǫ(x1 − x2)
and h(x1 − x2) are S2–invariant. Since [d, h(x1 − x2)] ∼= (x1 − x2)

2, we get

End(C+
2 ) ∼= C[x1, x2]

S2 ⊗
∧
(ǫ(x1 − x2))/(x1 − x2)

2 ∼= C[x] ⊗
∧
(ξ),

where ξ = ǫ(x1 − x2) and x = x1 + x2. Note that ξ has q-degree zero and homological degree −1.

We can now describe End(C+
n ) in a similar fashion.

Theorem 5.20. We have End(C+
n ) ∼=

∧
(ξ1, . . . , ξn−1) ⊗C[x], where ξi have q-degree 2i − 2 and homo-

logical degree −1.

Proof. Observe that the hi and ǫi from Example 5.17 both span copies of the reflection representation
Un under the action of Sn. Therefore by Lemma 5.13 Sn–invariant chain endomorphisms of Cuben are
given by

(
∧
(ǫ1, . . . , ǫn−1)⊗C[x1, . . . , xn])

Sn ∼=
∧
(ξ1, . . . , ξn−1)⊗C[x1, . . . , xn]

Sn ,

where

ξi =
∑

j

ǫj
∂

∂(xj − xj+1)
pi+1.

Note that pi+1 has q-degree 2i + 2, so its partial derivatives have degree 2i and hence ξi have q-degree
2i− 2 and homological degree −1. Similarly, the Sn–invariant homotopies are built out of hi so that

(
∧
(h1, . . . , hn−1)⊗C[x1, . . . , xn])

Sn ∼=
∧
(H1, . . . , Hn−1)⊗C[x1, . . . , xn])

Sn .

By construction, [d, hi] = (xi − xi+1), so [d,Hi] = pi+1(x1, . . . , xn). Therefore we have

End(C+
n ) =

∧
(ξ1, . . . , ξn−1)⊗C[x1, . . . , xn]

Sn/(p2, . . . , pn) ∼=
∧
(ξ1, . . . , ξn−1)⊗C[x].

�
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Remark 5.21. It is easy to see that the split and merge maps between Cuben induce similar split and
merge maps between C+

n . Since ǫi can be obtained as a composition Cuben → qCubei ⊗ Cuben−i[1] →
q2Cuben[1], the seemingly mysterious endomorphisms ξk can be obtained as sums over all i of composi-
tions

Cuben → qCubei ⊗ Cuben−i[1]
φi,k(x)
−−−−→ q1−2kCubei ⊗ Cuben−i[1] → q2−2kCuben[1]

for some explicit polynomials φi,k(x) of degree k.
It is likely that all morphisms between various tensor products of C+

n are generated by splits, merges
and the action of polynomials. It would be interesting to describe all relations between these morphisms,
categorifying Turaev’s description of the skein of the annulus (Theorem 2.1). We plan to pursue this in
a future work.

Example 5.22. Let us describe the maps from C−
2 = [qS2E → q−1

∧
2E

✿✿✿✿

] to qC−
1 ⊗C−

1 [1] = [qE⊗E → 0
✿

].

Since C−
2 is a summand in Cube2, every such map factors through Cube2. Thus we have a map

qS2E q−1
∧

2E
✿✿✿✿

qE ⊗ E q−1E ⊗ E
✿✿✿✿✿

qE ⊗ E

Now we have Hom(Cube2,Cube
2
1) = C[x]⊗C[S2]. But C−

2 is the antisymmetric component of Cube2, so
we get Hom(C−

2 , qC
−
1 ⊗ C−

1 [1]) ∼= C[x]. A generator of minimal degree is given by the twisted band map
from Remark 5.11.

Let eλ ∈ Sn denote our chosen Young symmetrizer in C[Sn] of shape λ. As before, we denote by

Cubeλn = eλCuben the direct summand of Cuben cut out by the action of eλ. Then we have the following
corollary of Theorem 5.14.

Remark 5.23. The category Kb(P̂) has a t-structure, whose heart is given by the complexes whose chain

groups are q-shifted by twice the homological degree. Cuben as well as all Cubeλn are shifted perverse.

5.3. Other Coxeter braids. To categorify the formula from Theorem 2.20, we would like to give a
more categorical perspective on ribbon skew Schur functions, following Solomon [Sol68]. Given a binary
sequence ǫ of length n, we can define two parabolic subgroupsWǫ,W

′
ǫ of Sn generated by simple reflections

with positive (resp. negative) signs. Let sǫ and sǫ denote the symmetrizer for Wǫ and antisymmetrizer
for W ′

ǫ .

Theorem 5.24 ([Sol68]). The group algebra C[Sn] can be presented as a direct sum of left ideals:

(26) C[Sn] =
⊕

ǫ∈{±1}n

C[Sn]sǫsǫ

Furthermore, the character of the Sn–representation C[Sn]sǫsǫ equals the ribbon skew Schur function Ψ(a)
for the composition a corresponding to ǫ.

We denote by pǫ ∈ C[Sn] the idempotent projecting to C[Sn]sǫsǫ. Now we are ready to describe the
annular invariants of the Coxeter braids σǫ = σǫ1

1 · · ·σ
ǫn−1

n−1 .

Theorem 5.25. The annular complex Cǫ of the Coxeter braid σǫ is determined by

Cǫ[|ǫ|+] ≃ pǫCuben.

Proof. We induct on the length of ǫ and the number of minus signs in ǫ. Suppose there is just one minus
sign in the a-th place. Then the skein triangle gives us a homotopy equivalence:

(27) Cone(C+
n → Cǫ)[n− 2] ≃ Cone(qC+

a ⊗ C+
b

x−y
−−−→ q−1C+

a ⊗ C+
b )[(a− 1) + (b − 1)]

Now we use that the right-hand side is a direct summand in

Cone(qCubea ⊗ Cubeb
x−y
−−−→ q−1Cubea ⊗ Cubeb) ∼= Cuben,
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cut out by the idempotent pa ⊗ pb ∈ C[Sa−1 × Sb−1] ⊂ C[Sn−1]. We also know that C+
n [n − 1] is a

direct summand in Cuben cut out by the idempotent pn ∈ C[Sn−1]. The projection onto this summand
Cuben → C+

n [n − 1] factors through the right hand side of (27), so the skein triangle (27) splits and
C+

n [n−1] is a direct summand in the right hand side. Hence Cǫ[n−2] is also a direct summand in Cuben
defined by the difference of the two idempotents pn − pa ⊗ pb = pǫ.

A similar argument works for the induction step. Here we use the skein triangle to get:

Cone(Cǫ′ → Cǫ)[|ǫ|+] ≃ Cone(qCα ⊗ Cβ
x−y
−−−→ q−1Cα ⊗ C+

β )[|ǫ|+]

Then we use the induction hypothesis to find Cα ⊗Cβ [|ǫ|+] as a direct summand in Cubea⊗Cubeb, such
that the inclusion intertwines the operators x−y. If follows that the cones are direct summands of Cuben,
and so is Cǫ′ [|ǫ′|+] and hence Cǫ[|ǫ|+].

It remains to check that the projectors for all these summands agree with pǫ. Indeed, they can be
computed recursively by successively subtracting induced smaller projectors from the bigger ones (this
categorifies (4)). On the other hand, pǫ satisfy the same recursion by [Sol68, Theorem 3]. �

We are now in a position to prove a conjecture of Hunt–Keese–Licata–Morrison about the annular
Khovanov homology of Coxeter braids and the spectral sequence to planar Khovanov homology.

For this, we will use that the annular Khovanov homology can be computed via annular evaluation
along the functor AKhR(V1, 0) where V1 is considered as the vector representation of sl2 with graded
dimension qz + q−1z−1 and z encodes the weight space grading. The planar Khovanov homology can
similarly be obtained via AKhR(V1, e), with e ∈ End(V1) provided by the sl2 action. The spectral
sequence from annular to planar Khovanov homology arises by filtering AKhR(V1, e) along the weight
space grading.

Theorem 5.26 ([HKLM15, Conjecture 4.1]). The generators of the annular Khovanov homology of Cǫ

that survive to planar Khovanov homology have tri-degree (tq2z)n−1−2|ǫ|+(qz + q−1z−1).

Proof. We first use that the symmetric function (−1)|ǫ|+Ψ(a)[X(q−1 − q)]/(q−1 − q) evaluates on the
variables (q, q−1, 0, . . . ) to the Jones polynomial of Cǫ, namely (−q2)n−1−2|ǫ|+(q + q−1). Framing consid-
erations imply that the surviving generators are supported in homological degree tn−1−2|ǫ|+ . Since the
annular complex Cǫ becomes perverse after a shift by qn−1t|ǫ|+ , this implies that the surviving generators
live in the chain group with shift (tq)n−1−2|ǫ|+ . We also have the following bigraded dimension of the
sl2-evaluations dimq,z(S

n−i,i(V1)) = dimq,z(Vn−2i) = hn−2i(qz, q
−1z−1). In particular, the sl2-weight

shift inside these Schur functor evaluations is always equal the internal shift in q-grading. Thus, the
z = 1 and t = −1 specialization (−q2)n−1−2|ǫ|+(q + q−1) of the desired formula and the knowledge of
the chain group shift (tq)n−1−2|ǫ|+ determine the internal q-shift uniquely as qn−1−2|ǫ|+ , and thus also
zn−1−2|ǫ|+. �

6. Annuli in tangle diagrams

In this section we study applications of annular evaluation to Khovanov–Rozansky invariants of tangles
which contain a cabling of a framed unknot as a sublink. This includes tangles obtain by wrapping an
annular link around a tangle as in (5).

6.1. A symmetric group action on cables. The following theorem is due to Grigsby–Wehrli–Licata
in the context of Khovanov homology [GLW18]. The version here applies to all sufficiently functorial
Khovanov–Rozansky link homologies of type A.

Theorem 6.1. Let T be a link or a tangle, which has n parallel closed 1-colored components. Then T
carries an action of Brn by endo-cobordisms that braid these parallel components around each other. Let
KhR denote a Khovanov–Rozansky-type invariant, which is functorial under such cobordisms4. Then the
induced action of Brn on KhR(T ) factors through Sn.

Proof. It suffices to prove that the braiding is symmetric on two parallel components. We have already
seen this in the proof of Theorem 4.23 for the case when L has the two components as a disjoint split
factor. Now, we consider the general case, which can be modelled as follows.

(28)
RII
−−→

1 2 isotopy
−−−−→

2 1 RIIIs
−−−→

2 1 RII
−−→

4E.g. for the triply-graded homology, we require that L is represented as a partial braid closure
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Here, T is compressed into the small box shown, except for the two parallel components in question (if
the tangle is not a link, then some additional strands might connect this box to the boundary). The
braiding of the two circles starts with a Reidemeister II move, followed by isotoping the 1-labeled crossing
all the way through the rest of T , and then eliminating both crossings again by an inverse Reidemeister
II move. Contrary to the case treated in Theorem 4.23, we do not intend to compute this chain map σ
explicitly. We only need to show that it is equivalent to its inverse σ−1, which has a movie description
as in (28), except that the bottom strand passes over the top strand first, and it is a negative crossing
instead of a positive crossing that slides all the way through T . In the absence of other components, we
have seen that these chain maps are plainly equal, since the different Reidemeister II chain maps uses in
these variants agree (up to to cancelling signs).

In the present case, we additionally have to take into account moving the crossing labeled 1 through the
box, i.e. through the rest of T . There are three key observations which allow to compare the contributions
of this process to σ and σ−1.

First, isotoping the crossing through the rest of T is realized as a sequence of braid-like Reidemeister
III moves. A braid-like Reidemeister III move is one in which the relevant local tangle 6-ended tangle
has the following sequence of boundary orientations up to cyclic reordering: out-out-out-in-in-in. In
contrast, a star-like Reidemeister III tangle would have an alternating sequence of boundary orientations
out-in-out-in-out-in.

Second, the intermediate chain complexes in (28) can be seen as total complexes of double complexes,
with a horizontal differential contributed by the crossings in T , and a vertical differential contributed by
the extra crossings created by the initial Reidemeister II move. Note that the initial and the final chain
complex in this sequence are supported in the single vertical degree zero.

Third, the chain maps associated to the braid-like Reidemeister III moves are filtered with respect to
the vertical degree. This means that these chain maps are sums of components that preserve the vertical
degree, and components which, at most, increase the vertical degree, but never decrease it. Moreover, in
a pair of Reidemeister III moves, which differ only in the sign of the 1-labeled crossing which is pushed
under (or over) another strand in T , the filtration-preserving components agree. For 1-colored strands,
this is well-known to experts and can be read off from the explicit descriptions of Reidemeister III chain
maps for Rouquier complexes in [EK10]. The general case follows via the strategy of exploding strands
of higher color into 1-colored strands before sliding the crossing, see e.g. [Wu14, Section 14.1].

The chain maps obtained by isotoping a positive or a negative crossing through the rest of T are both
filtered, and their filtration-preserving components agree. Finally, σ and σ−1 are obtained from these
chain maps by pre- and postcomposing with Reidemeister II chain maps. Since the latter have non-zero
components only in vertical degree zero, these composite only depend on the filtration-preserving parts
of the intermediate Reidemeister III chain maps. As noted above, these agree. �

In particular, Theorem 6.1 holds for the the glN Khovanov–Rozansky invariants JT K and JT Kfr valued
in Kb(NFoam). In the following, we write T = T (E⊗n) for tangles as in the theorem.

Corollary 6.2. The Schur-colored invariants
q
T (Sλ(E))

y
and

q
T (Sλ(E))

yfr
are well defined in Kb(Kar(NFoam)).

Proof. By Theorem A.10, we have that Kb(Kar(NFoam)) is Karoubian. By Theorem 4.7 there is a braid

group action on JT (E⊗n)Kfr, which factors through the symmetric group. Hence by Proposition A.12 the
Schur functors are well defined up to homotopy equivalence. �

Corollary 6.3. For a tangle as in the theorem, JT (E⊗n)K and JT (E⊗n)Kfr have actions of C[x1, . . . , xn]⋊
C[Sn].

Proof. The C[Sn] part is obtained by linearising the symmetric group action from the theorem. In the
polynomial part, xi acts by a dot on the i-th component of the cable. The proof of the theorem and the
fact that dots slide through crossings up to homotopy implies that stated compatibility. �

We can summarize the two corollaries as follows.

Corollary 6.4. Each tangle as in Theorem 6.1 provides an additive functor from P̂ to Kb(Kar(NFoam)).

As before, we also get a version of Lemma 4.25 in the presence of other strands. For this, let T (En)
denote the tangle T with a n-colored component in place of the n parallel uncolored components.

Corollary 6.5. We have isomorphisms JT (∧n(E))K ∼= JT (En)K and JT (Sn(E))Kfr ∼= JT (En)Kfr in

Kb(Kar(NFoam)).
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Proof. The proof proceeds analogous to the one for Lemma 4.25 by identifying the chain map for the

k = 2 anti-symmetrizer on JT (E ⊗ E)Kfr with the projection onto JT (E2)Kfr. �

This implies that cobordism-induced braiding is also symmetric for colored circles, as proved for
uncolored circles in Theorem 6.1.

6.2. Annular simplification. If an annular link L appears as a sublink of a tangle T which is a cabling

of a framed unknot, then the associated Khovanov–Rozansky chain complex JT Kfr can be simplified to a
complex in which the annular link L is replaced by the a complex of

∧
-colored concentric circles or Schur

functors. Here we prove that this induces filtrations and spectral sequences as claimed in Theorem 1.8
and Corollary 1.9.

Proposition 6.6. Let L denote a link diagram in the thickened annulus, T a tangle diagram with a
blackboard-framed unknot component without self-crossings, and T (L) the tangle diagram obtained by

cabling this unknot component in T by L. Then the chain complex JT (L)Kfr is isomorphic in Kb(NFoam)

to a filtered chain complex C̃, whose associated graded is isomorphic to a formal direct sum of grading

shifts of chain complexes of the form JT (CC)Kfr where CC denotes the collections of concentric
∧
-colored

circles that appear in the annular simplification of L. Moreover, the component of the differential that
increases the filtration degree by one is induced by the corresponding annular differential.

Interesting examples of tangles T (L) are tangles obtained by wrapping as in (5) and cabled Hopf links
H(L,L2) as in the introduction.

Proof. We write C := JT (L)Kfr. The key idea of the proof is that annular simplification is still possible in
the presence of additional strands. Indeed, the annular simplification algorithm of Queffelec–Rose [QR18,
Proposition 5.1] utilizes two types of web isomorphisms, which both continue to hold in these settings:
namely certain local isomorphisms (rung combination and square switch) which hold on the nose, and
the global rung slide move, which uses fork-slide moves in the presence of additional strands.

The chain complex C can be viewed as a total complex of a tricomplex with one direction (horizontal)
corresponding to crossings internal to the annular link L1, the second direction (vertical) to crossings of
that annular link and the rest, and the third direction (depth) to crossings purely in the rest. Since the
third direction will not play an important role, we will suppress it and consider C as total complex of
a bicomplex C∗,∗. The columns C∗,i in such bicomplexes are complexes in their own right, which are
isomorphic to the invariants of the annular webs appearing in the cube of resolutions of L1, interacting
with other additional link and tangle components.

By annular simplification, each column C∗,i is homotopy equivalent to the total complex ˜C∗,i of a
bicomplex whose columns are of the form T (CC), where CC is a collection of concentric circles. Now we

substitute the columns in the bicomplex C∗,∗ by the homotopy equivalent complexes C̃∗,i. In doing so,
we collapse the two “horizontal” directions: the one already present in C∗,∗ and the additional direction
in each C̃∗,i. Because of the column substitutions, C̃∗,∗ will typically no longer be a bicomplex. Besides
the vertical differential d0 : C̃

∗,∗ → C̃∗+1,∗ and the horizontal component d1 : C̃
∗,∗ → C̃∗,∗+1, there are

now also higher components dk : C̃
∗,∗ → C̃∗+1−k,∗+k. In Figure 3, we illustrate the result of a single

column substitution.

Ci−1,j−1 Di−1,j Ci−1,j+1

Ci,j−1 Di,j Ci,j+1

Ci+1,j−1 Di+1,j Ci+1,j+1

f◦dh dh◦g

f◦dh

dh◦h◦dh

dh◦g

f◦dh

dh◦h◦dh

dh◦g

Figure 3. The result of substituting a single column (Ci,∗, dv) in a bicomplex by a
homotopy equivalent complex (Di,∗, d) along chain homotopy equivalences f and g with
g ◦ f + dv ◦ h+ h ◦ dv = 0.

The perturbed bicomplex ˜C∗,∗ still carries the horizontal filtration Fj =
⊕

j′≥j C̃
∗,j′ , whose associated

graded is isomorphic to the direct sum of the columns, with differential d0, which we identify with the
invariants of collections of colored circles interacting with the remaining strands. The filtration degree
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one component of the total differential is d1 and its components originate from crossings in the annular
link or the resolution of annular webs by concentric circles— in this sense, it is induced by the annular
differential computed by the annular simplification algorithm of Queffelec–Rose. �

Example 6.7. If we apply Proposition 6.6 in the case of the Hopf link cable H(L1, ∅), we obtain C̃∗,∗ =

C̃0,∗ and the only non-trivial component of the differential is d1.

Corollary 6.8. The complex C̃ from Proposition 6.6, considered as an object of Kb(Kar(NFoam)), can
be decomposed further into a filtered complex C′ with associated graded given by Schur-colored unknots
interacting with the remaining strands.

Proof. This follows from Proposition 6.6 and Corollary 6.5, which identifies colored circles with tensor
products of antisymmetric Schur functors, which we can then decompose further. �

This completes the proof of Theorem 1.8 and implies Corollary 1.9.

Remark 6.9. Corollary 6.8 can also be proved directly following the strategy of the proof of Proposi-
tion 6.6, but with the Queffelec–Rose annular evaluation algorithm replaced by the alternative annular
evaluation algorithm outlined in Remark 4.21.

6.3. Generalized Hopf links, categorified. Here we show how the above results can be used to
compute Khovanov-Rozansky homologies of generalized Hopf links. First, we consider annular links
wrapped around a single vertical strand colored by

∧
k. We reduce on this vertical strand, so that

the corresponding tangle has no non-trivial endomorphisms, and the invariants in question are valued in
complexes of graded vector spaces. For the definition of reduced colored Khovanov–Rozansky homologies,
we refer to [Wed16b].

Theorem 6.10. Let L be an annular link diagram and let T (
∧

i, L) be the tangle consisting of L wrapped
around the reduced vertical strand colored by

∧
i. Consider the following bigraded vector space with an

action of C[X ]:

E∧i = qN−1
C[X ]/XN−i ⊕ t−2q2i−3−N

C[X ]/X i.

Then there is a spectral sequence with the E2 page given by the evaluation of the annular complex of L at

E∧i and E∞ page isomorphic to
q
T (
∧

i, L)
yfr

.

Note that we have dimq,t E∧i = qi[N − i] + t−2qi−2−N [i], where [n] = qn−q−n

q−q−1 .

Proof. If L is a single
∧

j-colored unknot, then the invariant of T (
∧

i, L) was computed by second author
in [Wed16a, Proposition 4.15]. For j = 1, it agrees with E∧i as a bigraded vector space. The action of
the dot on L can be easily computed, and it agrees with the action of X above.

Suppose that now L is an arbitrary annular link. By Theorem 6.6 the Khovanov-Rozansky complex
of T (

∧
i, L) is filtered with associated graded given by the evaluation of the annular complex of L at

(E∧i , X). More precisely, the differential splits into two parts: the annular differential dann for L and
the additional differential dwrap responsible for the crossings between the webs in the resolution of L and
the vertical strand. We get a spectral sequence by first applying dwrap and then the induced differential
d∗ann. It converges to the homology of the total complex. By Proposition 6.6 the homology with respect
to dwrap is isomorphic to the evaluation of the annular complex for L at (E∧i , X) (with no differential).
On the next page of the spectral sequence we compute the homology with respect to d∗ann, which is just
the homology of the annular complex for L evaluated at (E∧i , X). �

Corollary 6.11. Let L be a
∧

i-colored unknot, and T (
∧

i,
∧

j) = T (
∧

i, L) as above. Then the Khovanov-
Rozansky homology of T (

∧
i,
∧

j) is isomorphic to
∧

j(E∧i) as above. In particular, its graded dimension
is

i∑

k=0

qij−k(2+N)t−2k

[
N − i

k

][
i

j − k

]

.

This agrees with [Wed16a, Proposition 4.15].

We expect that Theorem 6.10 can be generalized to other projectors, categorifying Lemma 2.25. Specif-
ically, Elias and Hogancamp recently constructed [EH17] a family of projectors Pλ in the homotopy cat-
egory of Soergel bimodules which categorify the projectors pλ from Section 2. These are idempotent
complexes which are bounded from above. Let 〈Pλ〉 be the smallest triangulated subcategory of the
homotopy category containing Pλ. After specialising to the glN theory, we expect the following.
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Conjecture 6.12. Let L be an annular link and let T (Pλ, L) denote the tangle consisting of L wrapped

around Pλ. Then JT (Pλ, L)Kfr is an object of the category 〈Pλ〉. If L is a single unknot then

(29) JT (Pλ, L)Kfr ≃
[
(q1−N (qt)−2λ1 + q3−N (qt)−2λ2 + . . .+ qN−1(qt)−2λN )Pλ, D

]

for some differential D.

Example 6.13. If λ = (1i) then (29) can be interpreted as saying thatL acts on Pλ with “eigenvalue”

q1−N (qt)−2 + . . .+ q2i−N−1(qt)−2 + q2i−N+1 + . . .+ qN−1 = qi[N − i] + t−2qi−2−N [i].

This agrees with Theorem 6.10.

Remark 6.14. At t = −1 equation (29) specializes to Lemma 2.25.

Remark 6.15. This conjecture gives a precise categorical context to the “refined S-matrix” defined by
Aganagic and Shakirov, see [AS15]. Specifically, they conjecture that (a) the projectors Pλ in certain
sense correspond to Macdonald polynomials Hλ(x; q, t), and (b) the “refined Chern-Simons invariant” of
the generalized Hopf link with components labeled by Pλ and Pµ equals

Hλ(q
1−N , . . . , qN−1)Hµ(q

1−N (qt)−2λ1 , q3−N(qt)−2λ2 , . . . , qN−1(qt)−2λN ).

While we are unable to comment on (a) at the moment, we can interpret (b) by cutting the component
with Pλ open. Then the invariant of the corresponding tangle equals

PλHµ(q
1−N (qt)−2λ1 , q3−N (qt)−2λ2 , . . . , qN−1(qt)−2λN ).

Since this is linear in Hµ, we can instead consider a tangle where one component is colored by Pλ and
the other is a closed circle colored by an arbitrary symmetric function f . The “refined Chern-Simons
invariant” of this tangle equals

Pλf(q
1−N (qt)−2λ1 , q3−N (qt)−2λ2 , . . . , qN−1(qt)−2λN ),

which agrees with a certain decategorification of (29).

We would like to comment on possible (but yet mostly conjectural) connections between the results of
this paper and the work of the first author, Negut, and Rasmussen [GNR16]. One of the main conjectures
of [GNR16] assumes the existence of a monoidal functor

ι∗ : Db Coh(Hilbn(C2)) → Kb(SBimn),

where Hilbn(C2) is the Hilbert scheme of n points on the plane and Db Coh denotes the derived category
of coherent sheaves. On the Hilbert scheme of points we have two important sheaves: T is the tautological
bundle of rank n while I is the tautological ideal sheaf (of infinite rank). The fibers of T and I over a
given ideal I ⊂ C[x, y] are equal to C[x, y]/I and to I, respectively. Both T and I enjoy the action of
two commuting endomorphisms X and Y .

Conjecture 6.16. The glN invariant of a single unknot wrapped around n vertical strands is isomorphic
to the glN reduction of the object ι∗(I/(Y,XN)I).

As explained in [GNR16], the projectors Pλ should correspond to the fixed points of the torus action
on Hilbn(C2), that is, to the monomial ideals Iλt

5. At such a monomial ideal, the fiber of I/(Y,XN)I has
a bigraded character which agrees with (29). This means that Conjectures 6.12 and 6.16 are compatible
with each other. See also [Nak14] for more detailed relation between the refined S-matrix and the
geometry of the Hilbert scheme of points.

Finally, we would like to comment on the relation between this work and [Eli18]. There, Elias con-
structed a family of objects Xλ (labeled by Young diagrams λ) in the Drinfeld center of the category of
(extended) affine Soergel bimodules. It is expected that Xλ descend to the homotopy category of Soergel
bimodules, and their images are filtered by the products of Jucys-Murphy braids Li according to the
weight decomposition of the irreducible representation Vλ of glN . For example, for λ = � the complex
X� is filtered by Li, each with multiplicity one.

We expect Xλ to be closely related, but not identical to our annular links wrapped around vertical
strands. In the notations of Conjecture 6.16 we expect

Xλ = ι∗(Sλ(T )),

in particular, X� = ι∗(T ). This relation is expected to categorify Lemma 2.24.

5Note that the diagram λ should be transposed
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6.4. A note on wrapping. The initial motivation for this paper was to categorify the wrapping opera-
tion (1). In HOMFLY-PT skein theory, the action of encircling braids by positive annular links descends
to an action of the cocenter of all Hecke algebras Hm of type A on the center of Hn ⊗ k. On the topo-
logical level, and with a view towards categorification, the encircling operation can be described as a
functor from ALink+, the 1-cocenter (horizontal trace) of the braided monoidal 2-category of braids and
their cobordisms, to the centralizer Z(Braidn) of the 2-category of braids (and their cobordisms) on n
coherently oriented strands inside the 2-category of tangles Tann with the same boundary data.

In this paper, we have described and studied the universal target for the currently available Khovanov–

Rozansky functors for positive annular links, namely the category Kb(P̂). The categorified analog of the

Hecke algebra Hn is the homotopy category of Soergel bimodules Kb(SBimn). A first approximation
to what a categorification of the wrapping operation could be is given in Figure 4, ignoring the second
column.

ALink+ AKhR
//

��

⊕

m HH∗(SBim
+
m) //

��

Kb(P̂)
K0

//

��
✤

✤

✤

⊕

mHm/[Hm, Hm]

��

Z(Braidn) //

��

HH∗(SBim+
n )

��

// Z(Kb(SBimn))
K0

//

��

Z[Hn]

��

Tann
KhR

// SBim+
n

// Kb(SBimn)
K0

// Hn

Figure 4.

Unfortunately, Kb(P̂) does not seem to be rich enough to admit a functor to the Drinfeld center

Z(Kb(SBimn)) that intertwines the Khovanov–Rozansky functors for annular links and partial braid
closures, as we will explain next.

Example 6.17. Let L be an annular link and T a tangle. Consider the cobordism that rotates L once

around the annulus. This cobordism induces the identity map on the annular invariant in Kb(P̂). How-
ever, after wrapping L around the tangle T , the cobordism that rotates L around T is not expected to
induce the identity map on the tangle invariant in Kb(SBimn).

To get a categorified wrapping operation, we thus need an upgraded annular Khovanov–Rozansky
functor with a target category that remembers such rotation cobordisms. A natural candidate for such a
category is a derived horizontal trace (Hochschild homology) of a dg-enriched category SBim+

n of Soergel
bimodules. This and a related notion of derived center feature in the second column of Figure 4 and will
be the focus of future work.

7. Traces outside of type A

7.1. Cubes and Coxeter braids in other types. Let (W,S) be a Coxeter system of rank r with
a realization ([EW16]) consisting of a R-linear representation h =

⊕

s∈S Rα
∨
s of W and simple roots

{αs | s ∈ S} ⊂ h∗ = Hom
R

(h,R) defined such that 〈α∨
t , αs〉 = −2 cos(π/mst) where mss = 1 and

π/∞ = 0. The Coxeter group W acts on h by reflections.

s(v) := v − 〈v, αs〉α
∨
s

for s ∈ S and v ∈ h. We let R := C[h] =
⊕

k≥0 Sym
k
C

(h∗ ⊗ C) denote the coordinate ring of the

representation, i.e. the polynomial ring generated by the simple roots. We let SBim (and SSBim) denote
the category of (singular) Soergel bimodules associated to (W,S) and the above realization.

Definition 7.1. Let CubeW denote the Koszul complex of C[W ]-modules determined by its degree one
differential h∗ ⊗

C

R→ R given by multiplication m : αs ⊗ x 7→ αsx. More explicitly

CubeW =
∧•

R(h
∗ ⊗R) =

[

qr
∧r(h∗)⊗R → qr−2∧r−1(h∗)⊗R → · · · → q2−rh∗ ⊗R→ q−rR

✿

]

with differentials induced by co-multiplication and multiplication

∧k(h∗)⊗R
∆k−1,1⊗id
−−−−−−−→

∧k−1(h∗)⊗ h∗ ⊗R
id⊗m
−−−→

∧k−1(h∗)⊗R
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Recall that R is the monoidal unit in SBim, and will think of CubeW as a complex in Kb(SBim),
and in particular, as a complex of R − R-bimodules. To this, we can apply the horizontal trace functor
term-wise. Here, the horizontal trace is nothing but HH0, i.e. the functor of tensoring with R over
R⊗R, which identifies the left- and right actions. We consider the resulting objects as R-modules. Since
CubeW is built from copies of R and hTr(R) = R, we could identify it with its image hTr(CubeW ) in

Kb(hTr(SBim)). Note that C[W ]⋉R acts on R and the differentials in hTr(CubeW ) are equivariant for
this action, so we will consider hTr(CubeW ) as a complex of C[W ]⋉R-modules.

Next we chose a total ordering on S and consider the corresponding Coxeter element sk · · · s1 ∈ W
as well as the Coxeter braids σǫ := σǫk

k · · ·σǫ1
1 for ǫ = (ǫ1, . . . , ǫk) ∈ {±1}k in the Artin–Tits group

corresponding to (W,S).

Definition 7.2. Let Cǫ denote the chain complex in Kb(hTr(SBim)) obtained from the (suitably normal-
ized6) Rouquier complex [Rou06] of σǫ by applying the horizontal trace functor term-wise.

Let ǫ ∈ {±1}k and partition the set S = S+ ⊔ S− according to the chosen order of simple roots.
We denote the corresponding parabolic subgroups by Wǫ and W ′

ǫ . Let sǫ ∈ C[W ] be the symmetrizer
corresponding to Wǫ, and sǫ ∈ C[W ] the anti-symmetrizer corresponding to W ′

ǫ . The following is a
generalization of Theorem 5.24.

Theorem 7.3 ([Sol68, Theorem 2]). The group algebra C[W ] can be presented as a direct sum of left
ideals:

(30) C[W ] =
⊕

ǫ∈{±1}r

C[W ]sǫsǫ

Let pǫ ∈ C[W ] denote the idempotent projecting onto the summand C[W ]sǫsǫ.

Conjecture 7.4. Cǫ[|ǫ|+] ≃ pǫ hTr(CubeW ) in Kb(hTr(SBim)).

In particular, we expect that C−1,··· ,−1 is homotopy equivalent to hTr(CubeW )sign and C+1,··· ,+1[r] is
homotopy equivalent to hTr(CubeW )W .

7.2. Conjectures on annular simplification in other types. In type An−1, we know (and have
made ample use of the fact) that Kar(hTr(SBim)) ∼= C[Sn] ⋉ R − pmod. In this section, we pursue an
analogous description for other finite Coxeter groups.

A key tool is Elias-Lauda’s computation [EL16] of the vertical trace decategorification of SBim. To
describe this, we consider SBim∗, the category whose objects are objects in SBim without grading shifts,
and hom spaces are graded by HomSBim∗(A,B) ∼=

⊕

m HomSBim(A, q
−mB). The vertical trace is the

quotient

vTr(SBim∗) =
⊕

A∈Ob(SBim∗)

EndSBim∗(A)

/

span{fg − gf}

where the span is taken over pairs of f ∈ HomSBim∗(A,B) and g ∈ HomSBim∗(B,A). Since SBim∗ is
graded and monoidal, vTr(SBim∗) has the structure of a graded algebra.

Theorem 7.5 ([EL16, Theorem 3.2]). There is an isomorphism φ : vTr(SBim∗) → C[W ]⋉R of graded
algebras.

Recall that the 2-category of singular Soergel bimodules SSBim for (W,S) is the closure under grading
shifts, taking direct sums and summands of the 2-category of bimodules generated by singular Bott-
Samelson bimodules RI ⊗RI∪J RJ for I, J ⊂ S. Here we denote by RI the ring of invariants for the
parabolic subgroup WI ⊂W generated by reflections in I.

We identify the objects of SSBim with subsets I ⊂ S and 1-morphisms from J to I are RI − RJ -
bimodules. The full 2-subcategory of SSBim generated by the object ∅ ⊂ S is canonically identified with
SBim. We can think of SSBim as a partial idempotent completion of SBim in the 1-morphism direction.

Lemma 7.6. Considering the vertical trace of the bicategory SSBim as an idempotented algebra, we have
an algebra isomorphism given on idempotent truncations by ψ : vTr(SSBim(I, J)) ∼= 1I(C[W ] ⋉ R)1J .
Here I and J denote subsets of S and 1I and 1J are the corresponding symmetrizers in C[W ].

6We use the following convention for Rouquier complexes: σs 7→ [Bs
✿✿

→ q−1R] for s ∈ S.
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Proof. All singular Soergel (RI , RJ)-bimodules B,B′ can be turned into ordinary Soergel bimodules by
tensoring on both sides with R, considered as an (R,RI)-bimodule or as an (RJ , R)-bimodule respectively.
For I ⊂ S we let rI denote the rank of RI ⊗ R ⊗ RI as a free RI -module (this is the size of the double

coset WI\W/WI). For morphisms B
f
−→ B′ g

−→ B, we now define

ψ([f ◦ g]) := r−1
I r−1

J φ([idR ⊗ (f ◦ g)⊗ idR]).

It is straightforward to check that this defines an algebra map and ψ agrees with φ on the traces
of endomorphisms of Soergel bimodules. Furthermore, the image of vTr(SSBim(I, J)) under ψ lands
in 1I(C[q

±1][W ] ⋉ R)1J since φ([idR⊗
RIR]) = rI1I ∈ C[W ]. An analogous argument shows that ψ is

injective and surjective. �

The following is straightforward:

Proposition 7.7. The natural functors vTr(SSBim) →֒ hTr(SBim) and Kb(vTr(SSBim)) →֒ Kb(hTr(SBim))
are fully faithful.

In type A, these functors yield a subcategory of the horizontal trace generated by collections of circles
colored by

∧
i, and by complexes thereof. Proposition 4.13 then implies that the latter functor is an

equivalence. As explained in Section 4, this is related to the fact that every representation of Sn can be
resolved by representations induced from the trivial representations of the parabolic subgroups.

Outside of type A, this is no longer true. For example, if W = In is a dihedral group of order 2n,
then it has four parabolic subgroups {e}, {s}, {t},W . The corresponding induced trivial representations
have dimensions 2n, n, n and 1 and it is easy to see that for n > 3 the irreducible two-dimensional
representation h cannot be resolved by these. On the other hand, by Conjecture 7.4 the horizontal trace
of the positive Coxeter braid corresponds to the complex

[∧2h → h → triv
]
,

where we identify an irreducible representation τ of W with HomW (τ, hTr(R)). Therefore we do not

expect the functor Kb(vTr(SSBim)) →֒ Kb(hTr(SBim)) to be essentially surjective.
We do, however, expect the following.

Conjecture 7.8. The natural fully faithful functor Kar(vTr(SBim)) →֒ Kar(hTr(SBim)) is essentially
surjective up to grading shifts.

Corollary 7.9 (following Conjecture 7.8). Kar(hTr(SBim)) ∼= C[W ]⋉R− pmod.

Appendix A. Some facts from homological algebra

A.1. Thomason’s theorem. Suppose that C is a full triangulated subcategory of a triangulated category
A. Following Thomason [Tho97], we say that C is dense in A if every object of A is a direct summand
of an object isomorphic to an object in C.

Theorem A.1 ([Tho97]). Let A be a triangulated category. There is a bijective correspondence between
full dense triangulated subcategories of A and the subgroups of the Grothendieck group K0(A).

Given a subgroup H ⊂ K0(A), the corresponding full subcategory CH consists of objects of A with
equivalence classes in H . The theorem states that CH is actually triangulated and dense in A, and all
full dense triangulated subcategories appear this way.

Corollary A.2. Suppose that C is a full dense triangulated subcategory of A and K0(C) = K0(A). Then
C = A.

A.2. Strict idempotents. Suppose now that C is Karoubian. Suppose that we are given an idempotent
endomorphism ǫ : X → X . Then ǫ = 1− ǫ is also an idempotent. There is a canonical splitting

(31) X = Xǫ ⊕Xǫ

such that ǫ = id on Xǫ and ǫ = 0 on Xǫ.

Lemma A.3. Suppose that a : X → Y is a morphism in C, and X,Y have idempotent endomorphisms ǫ
(which we will denote by the same letter) such that aǫ = ǫa. Then a preserves the splitting (31).

Proof. Since C is additive, a morphism between direct sums is determined by its components. It is easy
to see that the components Xǫ → Yǫ and Xǫ → Yǫ vanish. �
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Similarly, if A is a chain complex over C and ǫ : A → A is an idempotent chain endomorphism of A
then by Lemma A.3 we have a splitting A = Aǫ ⊕ Aǫ. If f : A → B is a chain map and A,B have two
idempotent endomorphisms ǫ : A→ A and ǫ : B → B then f preserves the splitting.

Remark A.4. Here we need to use that ǫ2 = id exactly, not up to a homotopy.

Suppose now that C is not only Karoubian, but also symmetric monoidal.

Theorem A.5. Suppose that A and B are two chain complexes over C, then the following are true:

(a) If f : A→ B is a chain map, then there is a chain map

S
λ(f) : Sλ(A) → S

λ(B).

(b) If f and g are homotopic then S
λ(f) and S

λ(g) are homotopic
(c) If A and B are homotopy equivalent, then so are Sλ(A) and Sλ(B).

Proof. For (a) observe that there is an Sn-equivariant morphism f⊗n : A⊗n → B⊗n. Since it is Sn-
equivariant, it commutes with all the idempotents in C[Sn], and hence defines a map between Schur
functors. For (b), observe that there is an Sn-equivariant homotopy between f⊗n and g⊗n, so it defines
a homotopy between Sλ(f) and Sλ(g). Finally, (c) is a straightforward consequence of (b). �

A.3. Homotopy idempotents. Recall that to any additive category K, one can associate another cate-
gory Kar(K) called its Karoubi completion. The objects of Kar(K) are pairs (A, e) where e : A→ A is an
idempotent. A morphism between (A, e) and (A′, e′) is a morphism f : A → A′ such that fe = e′f = f .
There is a natural functor i : K → Kar(K) which sends A to (A, idA).

The following is well known (e.g. [BS01, Proposition 1.3]).

Proposition A.6. Let K be an additive category, let Kar(K) denote the Karoubi completion of K. Then
Kar(K) is additive and Karoubian. The natural functor i : K → Kar(K) is additive and fully faithful.

The next theorem is the main result of [BS01].

Theorem A.7 ([BS01, Theorem 1.12]). Let K be a triangulated category. Then Kar(K) is also triangu-
lated, and the natural functor K → Kar(K) is triangulated.

Let C be an additive category, and let K be the bounded homotopy category of C.

Lemma A.8. Let A be an object in K with an idempotent endomorphism represented by a chain map
p : A→ A—in other words, p2 is homotopic to p. For all odd n ≥ 1 there exist objects Pn, Qn in K such
that Pn ⊕Qn ≃ A⊕A[n], where p acts as the identity on Pn and by zero on Qn.

Proof. We construct Pn and Qn inductively. For n = 1 let P1 := Cone(1 − p) and Q1 := Cone(p). It is
easy to see that they satisfy the desired properties.

Assume that we constructed Pn and Qn. We will construct Pn+2 and Qn+2 as cones Pn+2 =

Cone[P1[n]
fn
−→ Pn] and Qn+2 = Cone[Q1[n]

gn
−→ Qn] for certain chain maps fn and gn, which we

will also construct.
Let us embed K into its Karoubi completion Kar(K). By Theorem A.7 the latter is triangulated. Since

A has a homotopy idempotent p, we can split A ≃ P ′ ⊕Q′ for some objects P ′, Q′ in Kar(K) such that
p acts by 1 on P ′ and by 0 on Q′. Now

P1 = Cone[A
1−p
−−→ A] ≃Kar(K) Cone[P

′ ⊕Q′





0 0
0 1





−−−−−−→ P ′ ⊕Q′] ≃ P ′ ⊕ P ′[1].

Similarly, Q1 ≃ Q′ ⊕ Q[1]. Observe that in Kar(K) there is a chain map f1 : P1[1] → P1 such that
Cone(f1) ≃ P ′ ⊕ P ′[3]. Since the embedding K → Kar(K) is fully faithful, the map f1 is well defined in
K, and we can define P3 := Cone(f1). Similarly, if we already defined Pn ≃ P ′ ⊕ P ′[n] then in Kar(K)
there is a chain map fn : P1[n] → Pn such that

Pn+2 := Cone(fn) ≃ P ′ ⊕ P ′[n+ 2].

Again, since the embedding is fully faithful the map fn (and hence Pn+2) is well defined in K.
Analogously, one can define Qn such that Qn ≃ Q′ ⊕Q′[n] in Kar(K). Then Pn ⊕Qn ≃ A⊕A[n]. �

Remark A.9. One can write

Pn = [A
1−p
−−→ A

p
−→ A · · ·A

1−p
−−→ A],

Qn = [A
p
−→ A

1−p
−−→ A · · ·A

p
−→ A].
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Since p(1−p) vanishes up to homotopy, one can hope that the above sequences can be lifted to actual com-
plexes by adding higher differentials. It is proved in [BN93, Propositions 3.1 and 3.2] that this construction
is unobstructed.

Theorem A.10. The bounded homotopy category of a Karoubian category is Karoubian.

Proof. As above, let C be a Karoubian category and K its bounded homotopy category. Suppose that A
is a complex in K with a homotopy idempotent p, we need to prove that A splits.

Since A is bounded, we can pick a large enough odd positive integer n such that A and A[n] are
supported in non-overlapping homological degrees. By Lemma A.8, one can decompose A⊕A[n] ≃ P ⊕Q
where p is homotopic to identity on P and to 0 on Q. Let us pick some homological degree i such that
A is supported in degrees strictly smaller than i and A[n] is supported in degrees strictly bigger than i.
Then (A⊕A[n])i = 0.

Let h be a homotopy between p and identity on P . Since (A ⊕ A[n])i = 0 we get dhi + hi+1d = 1 as
endomorphisms of P i. Let q = dhi and q′ = hi+1d, then q + q′ = 1, q2 = dhidhi = (dhi + hi+1d)dhi =
dhi = q and similarly (q′)2 = q′. Therefore q and q′ are orthogonal idempotents acting on P i, so (since
C is Karoubian) we can rewrite P i = (P i)′ + (P i)′′.

Moreover, we can split P into two parts: P ′ = P<i → (P i)′, and P ′′ = (P i)′′ → P>i. The same
splitting works forQ. It is now easy to see that the map h<i induces a homotopy between (A⊕A[n])≤i = A
and P ′ ⊕Q′. �

Remark A.11. Similarly to [BS01], one can instead deduce Theorem A.10 from Theorem A.7 and
Theorem A.1. The proof presented here is slightly more explicit, following Proposition 1.5.6(iii) of [BV08].

A.4. Schur functors in homotopy categories.

Proposition A.12. Let C be a Karoubian monoidal category and let K be its homotopy category. Suppose
that (E, s) is self-commuting in the sense of Remark 3.6. Then the Schur functors Sλ(E) are well defined
up to homotopy equivalence.

Proof. By the assumption, there is an action of Sn on E⊗n. If eλ is an idempotent in C[Sn] then by
Theorem A.10 there exists a splitting E⊗n ≃ Sλ(E) ⊕ E′ where eλ acts by identity on Sλ(E) and by
0 on E′. This splitting is unique up to isomorphism in K. Since {eλ} form an orthogonal system of
idempotents, it is easy to see that E⊗n ≃

⊕

|λ|=n S
λ(E). �
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