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Abstract. We investigate the maximal size of an increasing subset among points randomly
sampled from certain probability densities. Kerov and Vershik’s celebrated result states
that the largest increasing subset among N uniformly random points on [0, 1]2 has size
asymptotically 2

√
N . More generally, the order Θ(

√
N) still holds if the sampling density

is continuous. In this paper we exhibit two sufficient conditions on the density to obtain a
growth rate equivalent to any given power of N greater than

√
N , up to logarithmic factors.

Our proofs use methods of slicing the unit square into appropriate grids, and investigating
sampled points appearing in each box.
Keywords. Random permutations, longest increasing subsequences, permutons
Mathematics Subject Classifications. 60C05, 05A05

1. Introduction

1.1. Random permutations sampled from a pre-permuton

We start by defining the model of random permutations studied in this paper. Consider points
X1, . . . , XN in the unit square [0, 1]2 whose x-coordinates and y-coordinates are all distinct.
One can then define a permutation σ of size N in the following way: for any i, j ∈ [[1, N ]],
let σ(i) = j whenever the point with i-th lowest x-coordinate has j-th lowest y-coordinate. We
denote by Perm(X1, . . . , XN) this permutation; see Figure 1.1 for an example. Now suppose µ
is a probability measure on [0, 1]2 and X1, . . . , XN are random i.i.d. points distributed under µ:
the random permutation Perm(X1, . . . , XN) is then denoted by SampleN(µ). To ensure this
permutation is well defined, we suppose that the marginals of µ have no atom so thatX1, . . . , XN

have almost surely distinct x-coordinates and y-coordinates. We call such a measure a pre-
permuton; see Section 2.4 for discussion around this name.

https://www.combinatorial-theory.org
mailto:victor.dubach@univ-lorraine.fr
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Figure 1.1: A family of points and its associated permutation, written in one-line notation
σ = σ(1)σ(2) . . . σ(N). Here we have σ(1) = 2 because the leftmost point is second from
the bottom; and so on.

Notice that permutations sampled from the uniform measure on [0, 1]2 are uniformly random.
The model of random permutations previously defined thus generalizes the uniform case while
allowing for new tools in a geometric framework, as illustrated in [AD95] (see also [Kiw06] for
a variant with uniform involutions). This observation motivates the study of such models, as
done for example in [DZ95] or [Sjö23].

In the present paper we are interested in pre-permutons that are absolutely continuous with
respect to Lebesgue measure on [0, 1]2, and denote by µρ the pre-permuton having density ρ.
Following [Sjö23] we call the permutations sampled under µρ locally uniform. This name is
easily understood when ρ is continuous, since the measure µρ can then locally be approximated
by a uniform measure.

1.2. Growth speed of the longest increasing subsequence

Let σ be a permutation of size N . An increasing subsequence of σ is a sequence of indi-
ces i1 < · · · < ik such that σ(i1) < · · · < σ(ik). The maximal length of such a sequence is
called (length of the) longest increasing subsequence of σ and denoted by LIS(σ). Ulam for-
mulated in the 60’s the following question: let us write (here and throughout this paper), for
all N ∈ N∗,

ℓN := E [LIS(σN)] where σN is a uniformly random permutation of size N, (1.1)

then what can we say about the asymptotic behavior of ℓN as N → ∞? The study of longest in-
creasing subsequences has since then been a surprisingly fertile research subject with unexpected
links to diverse areas of mathematics; see [Rom15] for a review. A solution to Ulam’s prob-
lem was found by Vershik and Kerov; using objects called Young diagrams through Robinson–
Schensted’s correspondence, they obtained the following:
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Theorem 1.1 ([VK77]). For each integer N , let σN be a uniform permutation of size N . Then:

1√
N
LIS(σN) −→

N→∞
2

in probability and L1-norm. In particular, writing ℓN := E[LIS(σN)]:

1√
N
ℓN −→

N→∞
2.

The asymptotic behavior of the longest increasing subsequence in the uniform case is now
well understood with concentration inequalities [Fri91, Tal95] and an elegant asymptotic devel-
opment [BDJ99]. Note that the concentration inequalities later recalled in Theorems 2.5 and 2.7
can be used to recover Theorem 1.1 from the first moment convergence.

It is then natural to try and generalize Theorem 1.1 to LIS
(
SampleN(µ)

)
for appropriate pre-

permutons µ. One of the first advances on this question was obtained by Deuschel and Zeitouni
who proved:

Theorem 1.2 ([DZ95], Theorem 2). If ρ is a C1
b , bounded below probability density on [0, 1]2

then:
1√
N
LIS

(
SampleN(µρ)

)
−→
N→∞

Kρ

in probability, for some positive constant Kρ defined by a variational problem.

This
√
N behavior holds more generally when the sampling density is continuous, as we

prove in Section 3:

Proposition 1.3. Let f be a continuous probability density on [0, 1]2. Then:

E
[
LIS

(
SampleN(µf )

)]
= Θ

N→∞

(√
N
)
.

These results, as well as most of the literature on the subject, are restricted to the case of
a pre-permuton with “regular”, bounded density. The goal of this paper is to investigate the
asymptotic behavior of LIS

(
SampleN(µρ)

)
when ρ is a probability density on [0, 1]2 satisfy-

ing certain types of divergence. We state in Section 2.2 sufficient conditions on ρ for the quan-
tity E

[
LIS

(
SampleN(µρ)

)]
to be equivalent to any given power ofN (betweenN1/2 andN ), up

to logarithmic factors. We then present in Section 2.3 a few concentration inequalities
for LIS

(
SampleN(µρ)

)
, explaining why we can focus on the asymptotic behavior of the mean.

Similar asymptotics of LIS can also be obtained under certain regimes of Mallows random
permutations, see [BP15, Theorem 1.2]. However such models are quite different from the model
of sampled permutations studied here: in the regime n(1 − qn) → +∞ of [BP15], Mallows
permutations converge to the permuton that puts uniform mass along the diagonal of the unit
square.

Lastly, it might be worth pointing out that growth rates found in this paper can be seen as
“intermediate” in the theory of pre-permutons. Indeed, we previously explained how the

√
N

behavior corresponds to a “regular” case. In a forthcoming paper we study under which condition
the sampled permutation’s longest increasing subsequence behaves linearly in N :
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Proposition 1.4 ([Dub23]). Let µ be a pre-permuton and define

L̃IS(µ) := max
A

µ(A)

where the maximum is taken over all increasing subsets of [0, 1]2, in the sense that any pair of
its points is ≺-ordered with the notation of Section 2.1. Then the function L̃IS is upper semi-
continuous on pre-permutons and satisfies

1

N
LIS

(
SampleN(µ)

)
−→
N→∞

L̃IS(µ) almost surely.

2. Our results

2.1. Some notation

Throughout the paper, the only order on the plane we consider is the partial order ≺ defined by:

for all (x1, y1), (x2, y2) ∈ R2, (x1, y1) ≺ (x2, y2) if and only if x1 < x2 and y1 < y2.

We also write dist for the L1-distance in the plane, namely:

for all (x1, y1), (x2, y2) ∈ R2, dist
(
(x1, y1), (x2, y2)

)
:= |x1 − x2|+ |y1 − y2|,

and we denote by ∆ the diagonal of the unit square [0, 1]2. We use the symbols N for the set of
non-negative integers and N∗ for the set of positive integers.

Consider pointsX1, . . . , XN in the unit square [0, 1]2 whose x-coordinates and y-coordinates
are all distinct. Then the quantity LIS

(
Perm(X1, . . . , XN)

)
is easily read on the visual rep-

resentation: it is the maximum size of an increasing subset of these points, i.e. the maximum
number of points forming an up-right path. For this reason and to simplify notation, we
write LIS(X1, . . . , XN) for this quantity.

If (an), (bn) are two sequences of positive real numbers, we write an ∼ bn when they are
asymptotically equivalent i.e. an/bn → 1. We use the symbols Õ, Θ̃, Ω̃ for asymptotic compar-
isons up to logarithmic factors: write an = Õ(bn) as n → ∞ when there exist constants c1 > 0
and c2 ∈ R such that for some integer n0:

for all n ⩾ n0, an ⩽ c1 log(n)
c2bn.

We also write an = Ω̃(bn) when bn = Õ(an), and an = Θ̃(bn) when simultaneously an = Õ(bn)

and an = Ω̃(bn). When these asymptotic comparisons hold with no logarithmic factor, we use
the symbols O,Θ,Ω.

2.2. First moment asymptotics of the longest increasing subsequence

Our main results are two conditions on the divergence of the pre-permuton density that imply
a large growth rate for the longest increasing subsequences in the sampled permutations. First
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Figure 2.1: Representation of the divergent densities studied in this paper. On the left, a repre-
sentation of the density appearing in Theorem 2.2 with β

β−1
= 3. Bright yellow indicates a high

value while dark blue indicates a low value. On the right, the 3D graph of a function satisfying
the hypothesis of Theorem 2.3 with α = −0.5.

we study densities diverging at a single point (see the left-hand side of Figure 2.1) and then we
study densities diverging along the diagonal (see the right-hand side of Figure 2.1).

The first natural type of divergence to consider is a divergence at a single point. Suppose
this happens at the north-east corner, in a radial way around this point. We show in this case
that longest increasing subsequences behave similarly to the continuous density case, up to a
logarithmic factor.

Theorem 2.1. Suppose the density ρ is continuous on [0, 1]2 \ {(1, 1)} and satisfies

ρ(x, y) = Θ (dα) as (x, y) → (1, 1)

where d := dist((x, y), (1, 1)), for some α > −2. Then:

E
[
LIS

(
SampleN(µρ)

)]
= Θ̃

N→∞

(√
N
)
.

Note that the condition α > −2 is necessary for integrability. In order to see long increasing
subsequences appear in the sampled permutations, we can “pinch” the density along the diagonal
when approaching the north-east corner. This will force sampled points to concentrate along
the diagonal, thus likely forming increasing subsequences, and allow for sharper divergence
exponents.

Theorem 2.2. Suppose the density ρ is continuous on [0, 1]2 \ {(1, 1)} and satisfies

ρ(x, y) = Θ
(
d

β
1−β exp

(
−c|x− y|d

β
1−β

))
as (x, y) → (1, 1)

where d := dist((x, y), (1, 1)), for some β ∈]1, 2[ and c > 0. Then:

E
[
LIS

(
SampleN(µρ)

)]
= Θ̃

N→∞

(
N1/β

)
.
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Note that when β varies between 1 and 2, the exponent β
1−β

varies between −∞ and −2.
Note also that such densities exist by integrability of the estimate.

Instead of a divergence at a single point, we may also study a type of divergence along an
increasing curve. This can be done with a power function and provides a different condition from
Theorem 2.2 to obtain a behavior equivalent to any given power of N (between N1/2 and N ),
up to a logarithmic factor.

Theorem 2.3. Suppose the density ρ is continuous on [0, 1]2 \∆ and satisfies

ρ(x, y) = Θ (|x− y|α) as |x− y| → 0

for some α ∈]− 1, 0[. Then:

E
[
LIS

(
SampleN(µρ)

)]
= Θ̃

N→∞

(
N1/(α+2)

)
.

While these previous assumptions are all quite intuitive to consider, Theorem 2.3 is of a
somewhat other nature than Theorems 2.1 and 2.2. As explained in Section 2.5, their proofs also
work differently and illustrate slightly distinct techniques which might have broader applications.

The study of densities in Theorems 2.1 and 2.2 relies on a family of reference pre-permutons
(permutons actually, see Section 2.4) that we now introduce. Fix two parameters β > 1
and γ ∈ R. Define for any positive integer k ⩾ 1:

uk :=
1

Zβ,γ

k−β log(k + 1)γ where Zβ,γ :=
∑
k⩾1

k−β log(k + 1)γ.

For all n ⩾ 0, set Sn :=
∑n

k=1 uk and consider the sequence of disjoint boxesCn := [Sn−1, Sn]
2,

n ∈ N∗, covering the diagonal in an increasing manner. We can then define a probability density
on the unit square by

ρ↗β,γ :=
∑
k⩾1

u−1
k 1Ck

and we write µ↗
β,γ for the (pre-)permuton having density ρ↗β,γ with respect to Lebesgue measure

on [0, 1]2. See Figure 2.2 for a representation.

Proposition 2.4. Let γ ⩾ 0. If β ∈]1, 2[ then:

E
[
LIS

(
SampleN

(
µ↗
β,γ

))]
= Θ̃

N→∞

(
N1/β

)
.

If β ⩾ 2 then:
E
[
LIS

(
SampleN

(
µ↗
β,γ

))]
= Θ̃

N→∞

(√
N
)
.

In Section 5 we use Proposition 2.4 to prove Theorems 2.1 and 2.2 by comparing the densities
involved. The parameter β allows ρ↗β,γ to have similar asymptotics to the density ρ in Theorem 2.1
or 2.2, while the parameter γ allows to slightly modify the size of the boxes so that they cover
the divergence of ρ adequately. When γ = 0, we drop this subscript and simply write ρ↗β .
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Figure 2.2: A representation of the permuton µ↗
β,γ . Bright yellow indicates a high value while

dark blue indicates a low value of the density.

2.3. Concentration around the mean

In this paper we only investigate the mean of LIS
(
SampleN(µ)

)
. The reason for this is that we

can easily deduce asymptotic knowledge of the random variable itself from well known concen-
tration inequalities. In our case it is sufficient to use what is usually referred to as Azuma’s or
McDiarmid’s inequality, found in [McD89, Lemma 1.2] and whose origin goes back to [Azu67].
One of its most common use is for the chromatic number of random graphs, but it is also well
adapted to the study of longest increasing subsequences as illustrated in [Fri91].

Theorem 2.5 (McDiarmid’s inequality). Let N ∈ N∗, X1, . . . , XN be independent random
variables with values in a common space X and f : XN → R be a function satisfying the
bounded differences property: for all i ∈ [[1, N ]] and x1, . . . , xN , yi ∈ X ,

|f(x1, . . . , xi, . . . , xN)− f(x1, . . . , yi, . . . , xN)| ⩽ c

for some constant c > 0. Then for any positive number λ > 0:

P
(∣∣f(X1, . . . , XN)− E [f(X1, . . . , XN)]

∣∣ > λ
)
⩽ 2 exp

(
−2λ2

Nc2

)
.

We can apply this to LIS(X1, . . . , XN) where X1, . . . , XN are i.i.d. points distributed un-
der µ, noticing that changing the value of a single point changes the size of the largest increasing
subset by at most 1.

Corollary 2.6. Let µ be a pre-permuton. Then for any N ∈ N∗ and λ > 0:

P
(∣∣LIS(SampleN(µ)

)
− E

[
LIS

(
SampleN(µ)

)] ∣∣ > λ
)
⩽ 2 exp

(
−2λ2

N

)
.

This concentration inequality is especially useful when E
[
LIS

(
SampleN(µ)

)]
is of order

greater than
√
N , which is for example the case in Theorem 2.2 when β ∈]1, 2[. Corollary 2.6

then implies that the variable is concentrated around its mean in the sense that

LIS
(
SampleN(µ)

)
E
[
LIS

(
SampleN(µ)

)] −→
N→∞

1
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in probability. Moreover LIS
(
SampleN(µ)

)
admits a median of order Θ̃

(
N1/β

)
, and an analo-

gous remark holds for Theorem 2.3. One could then apply the following sharper concentration
inequality:

Theorem 2.7 (Talagrand’s inequality for longest increasing subsequences). Let µ be a pre-
permuton. For any N ∈ N∗, denote by MN a median of LN := LIS

(
SampleN(µ)

)
. Then

for all λ > 0:

P (LN ⩾MN + λ) ⩽ 2 exp

(
−λ2

4(MN + λ)

)
and P (LN ⩽MN − λ) ⩽ 2 exp

(
−λ2

4MN

)
.

See [Tal95, Theorem 7.1.2] for the original reference in the case of uniform permutations.
The proof works the same for random permutations sampled from pre-permutons. See
also [Kiw06, Theorem 5] for a nice application to longest increasing subsequences in random
involutions.

2.4. Discussion

Improvements. Several hypotheses made in the theorems simplify the calculations but are not
crucial to the results. For instance Theorems 2.1 and 2.2 could be generalized by replacing the
north-east corner with any point in the unit square and the diagonal with any local increasing
curve passing through that point, under appropriate hypotheses. A similar remark holds for
Theorem 2.3. We could also state Proposition 2.4 for general γ ∈ R, but prefer restricting
ourselves to the case γ ⩾ 0 since this is all we need for the proofs of Theorems 2.1 and 2.2 and
it requires a bit less work.

The necessity of logarithmic factors in our estimates remains an open question. We believe
our results could be sharpened in this direction, but our techniques do not seem sufficient to this
aim.

Links to permuton and graphon theory. When µ is a probability measure on [0, 1]2 whose
marginals are uniform, we call it a permuton as in [GGKK15]. The theory of permutons was in-
troduced in [HKM+13] and is now widely studied [KP13, Muk16, BBF+18, BBF+22]. It serves
as a scaling limit for random permutations and is directly related to the study of pattern occur-
rences (see e.g. [HKM+13, Definition 1.5] or [BBF+20, Theorem 2.5]). One of its fundamental
results is that for any permuton µ, the sequence

(
SampleN(µ)

)
N∈N∗ almost surely converges in

some sense to µ.
Reading this paper does not require any prior knowledge about the literature on permutons:

it is merely part of our motivation for the study of models SampleN(µ). Notice however that
considering pre-permutons instead of permutons is nothing but a slight generalization. Indeed,
one can associate to any pre-permuton µ a unique permuton µ̂ such that random permutations
sampled from µ or µ̂ have the same law (see e.g. [BDMW23, Remark 1.2]).

This paper was partly motivated by [McK19], where an analogous problem is tackled for
graphons. The theory of graphons for the study of dense graph sequences is arguably the
main inspiration at the origin of permuton theory, and there exist numerous bridges between
them [GGKK15, BBD+22]. For instance the longest increasing subsequence of permutations
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corresponds to the clique number of graphs. In [DHM17] the authors exhibit a wide family of
graphons bounded away from 0 and 1 whose sampled graphs have logarithmic clique numbers,
thus generalizing this property of Erdős-Rényi random graphs. In some sense this is analogous
to Deuschel and Zeitouni’s result on permutations (Theorem 1.2 here). In [McK19] the author
studies graphons allowed to approach the value 1, and proves in several cases that clique numbers
behave as a power of N ; the results of the present paper are counterparts for permutations.

2.5. Proof method and organization of the paper

The proofs of Theorems 2.1 and 2.2 rely on bounding the density of interest on certain appro-
priate areas with other densities which are easier to study. This general technique is developed
in Section 3 where we prove two lemmas of possible independent interest.

Section 4 is devoted to our reference permutons, which are the main ingredient when bound-
ing general densities. The idea for the proof of Proposition 2.4 is that points sampled from µ↗

β,γ

are uniformly sampled on each box Cn. We can thus use Theorem 1.1 on each box containing
enough points, the latter property being studied through appropriate concentration inequalities
on binomial variables.

We then prove Theorems 2.1 and 2.2 in Section 5, using all the previously developed tools.
Finally, we prove Theorem 2.3 in Section 6. This proof does not use the previous techniques

and rather uses a grid on the unit square that gets thinner asN → ∞. The main idea is to bound
the number of points appearing in any increasing sequence of boxes. The sizes of the boxes are
chosen so that a bounded number of points appear in each box, and concentration inequalities
are used to make sure such approximations hold simultaneously on every box.

3. Bounds on LIS from bounds on the density

One of the main ideas for the proofs of Theorems 2.1 and 2.2 is to deduce bounds on the order
of LIS from bounds on the sampling density. We state here two useful lemmas to this aim.

Lemma 3.1. Suppose f, g are two probability densities on [0, 1]2 such that f ⩾ εg for
some ε > 0. Then:

E
[
LIS

(
SampleN(µf )

)]
= Ω

N→∞

(
E
[
LIS

(
Sample⌊εN⌋(µg)

)])
.

Likewise, if f ⩽Mg for some M > 0 then

E
[
LIS

(
SampleN(µf )

)]
= O

N→∞

(
E
[
LIS

(
Sample⌈MN⌉(µg)

)])
.

Proof. Let us deal with the first assertion of the lemma. We can write

f = εg + (1− ε)h

for some other probability density h on the unit square. The idea is to use a coupling between
those densities. Let N ∈ N∗ and B1, . . . , BN be i.i.d. Bernoulli variables of parameter ε,
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Y1, . . . , YN be i.i.d. random points distributed under density g, and Z1, . . . , ZN be i.i.d. random
points distributed under density h, all independent. Then define for all i between 1 and N :

Xi := YiBi + Zi(1−Bi).

It is clear that X1, . . . , XN are distributed as N i.i.d. points under density f . Let I be the set of
indices i for which Bi = 1. Then

LIS(X1, . . . , XN) ⩾ LIS(Yi, i ∈ I).

Hence, if SN denotes an independent binomial variable of parameter (N, ε):

E
[
LIS

(
SampleN(µf )

)]
⩾ E

[
LIS

(
SampleSN

(µg)
)]

⩾ E
[
LIS

(
Sample⌊ϵN⌋(µg)

)]
P(SN ⩾ ϵN)

where the latter is bounded away from 0. This concludes the proof of the first assertion. The
second one is a simple rewriting of it.

Lemma 3.2. Suppose f, g, h are probability densities on [0, 1]2 such that f ⩽ c1g + c2h for
some c1, c2 > 0. Then

E
[
LIS

(
SampleN(µf )

)]
= O

N→∞

(
E
[
LIS

(
Sample⌈MN⌉(µg)

)]
+ E

[
LIS

(
Sample⌈MN⌉(µh)

)])
for some constant M > 0.

Proof. First write c1g + c2h = M(λg + (1 − λ)h) with appropriate M > 0 and λ ∈]0, 1[.
Applying Lemma 3.1 gives us:

E
[
LIS

(
SampleN(µf )

)]
= O

N→∞

(
E
[
LIS

(
Sample⌈MN⌉

(
µλg+(1−λ)h

))])
.

We once again use a coupling argument. Let N ∈ N∗ and B1, . . . , B⌈MN⌉ be i.i.d. Bernoulli
variables of parameter λ, Y1, . . . , Y⌈MN⌉ be i.i.d. random points distributed under density g,
and Z1, . . . , Z⌈MN⌉ be i.i.d. random points distributed under density h, all independent. Then
define for all integer i between 1 and ⌈MN⌉:

Xi := YiBi + Zi(1−Bi).

It is clear thatX1, . . . , X⌈MN⌉ are distributed as ⌈MN⌉ i.i.d. points under density λg+(1−λ)h.
Moreover

LIS(X1, . . . , X⌈MN⌉) ⩽ LIS(Y1, . . . , Y⌈MN⌉) + LIS(Z1, . . . , Z⌈MN⌉)

whence

E
[
LIS

(
Sample⌈MN⌉

(
µλg+(1−λ)h

))]
⩽ E

[
LIS

(
Sample⌈MN⌉ (µg)

)]
+ E

[
LIS

(
Sample⌈MN⌉ (µh)

)]
.

This concludes the proof.
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Before moving on, we explain how to deduce Proposition 1.3 from Lemma 3.1.

Proof of Proposition 1.3. Since f is continuous on [0, 1]2, there existsM > 0 satisfying f ⩽M .
Using Theorem 1.1 and Lemma 3.1 we get:

E
[
LIS

(
SampleN(µf )

)]
= O

(
ℓ⌈MN⌉

)
= O

(√
N
)

as N → ∞, where ℓ is defined in (1.1). Then, f also being non-zero, there exists ε > 0 and a
square box C contained in [0, 1]2 such that f ⩾ ε on C. Since random points uniformly sampled
in C yield uniformly random permutations, Theorem 1.1 and Lemma 3.1 imply:

E
[
LIS

(
SampleN(µf )

)]
= Ω

(
E
[
LIS

(
Sample⌊εLeb(C)N⌋(LebC)

)])
= Ω

(
ℓ⌊εLeb(C)N⌋

)
= Ω

(√
N
)

asN → ∞, where Leb(C) denotes the Lebesgue measure ofC. We have thus proved the desired
estimate.

Similar techniques of coupling were already present at least in [DZ95, Lemma 7] for locally
uniform permutations, and in [MS11, Lemma 4.2, Corollary 4.3] for Mallows permutations. In
the context of these articles, comparison with a uniform density on small boxes was possible.
Here, to take into account the divergent behavior of our densities, we either use a global compar-
ison with the density ρ↗β,γ to prove Theorems 2.1 and 2.2, or make the size of the boxes depend
on the number of sampled points to prove Theorem 2.3.

4. Study of reference permutons

4.1. Preliminaries

The proof of Proposition 2.4 hinges on the estimation of binomial variables. We thus state a
concentration inequality usually referred to as Bernstein’s inequality. If Sn denotes a binomial
variable of parameter (n, p), then:

Lemma 4.1. For all t > 0:

P (|Sn − np| ⩾ t) ⩽ 2 exp

(
− −t2/2
np(1− p) + t/3

)
.

See [Ben62, Equation (8)] for an easy-to-find reference and discussion on improvements,
or [Ber27] for the original one.

Now let us recall some asymptotics related to the sequence (uk)k∈N∗ introduced in Sec-
tion 2.2. A short proof is included for completeness.

Lemma 4.2. For any β > 1 and γ ∈ R we have∑
k⩾n

k−β log(k + 1)γ ∼
n→∞

n1−β

β − 1
log(n)γ.
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Moreover for any β′ < 1:

n∑
k=1

k−β′
log(k + 1)γ ∼

n→∞

n1−β′

1− β′ log(n)
γ.

Proof. First use the integral comparison:∑
k⩾n

k−β log(k + 1)γ ∼
n→∞

∫ +∞

n

x−β log(x+ 1)γdx

and then an elementary integration by parts∫ +∞

n

x−β log(x+ 1)γdx =
n1−β

β − 1
log(n+ 1)γ −

∫ +∞

n

x1−β

1− β

γ

x+ 1
log(x+ 1)γ−1dx

=
n1−β

β − 1
log(n+ 1)γ +

γ

β − 1

∫ +∞

n

x1−β

x+ 1
log(x+ 1)γ−1dx.

However, the following holds:∫ +∞

n

x1−β

x+ 1
log(x+ 1)γ−1dx = o

(∫ +∞

n

x−β log(x+ 1)γdx

)
as n→ ∞.

This concludes the proof of the first assertion. The second one is completely similar.

4.2. Proof of Proposition 2.4

In this section we fix β > 1 and γ ⩾ 0 and prove Proposition 2.4. Consider N ∈ N∗ and write

LN := LIS
(
SampleN

(
µ↗
β,γ

))
.

Let X1, . . . , XN be i.i.d. random variables distributed under µ↗
β,γ . For each k ∈ N∗, define

XN,k := {X1, . . . , XN} ∩ Ck

and let Nk be the cardinal of XN,k, i.e. the number of points appearing in box Ck. Each Nk is a
binomial variable of parameter (N, uk), and almost surely∑

k⩾1

Nk = N.

Conditionally on Nk, the set XN,k consists of Nk uniformly random points in Ck. Moreover,
almost surely:

LIS (X1, . . . , XN) =
∑
k⩾1

LIS (XN,k)



combinatorial theory 3 (3) (2023), #1 13

thanks to the boxes being placed in an increasing fashion. Hence by taking expectation in the
previous line, one obtains

E [LN ] =
∑
k⩾1

E [ℓNk
]

with the notation of (1.1). For some integer kN to be determined, we will use the following
bounds:

kN∑
k=1

E [ℓNk
] ⩽ E [LN ] ⩽

kN∑
k=1

E [ℓNk
] +N

∑
k>kN

uk (4.1)

where the right hand side was obtained by simply bounding each ℓNk
for k > kN withNk. Using

Theorem 1.1, fix an integer n0 such that

for all n ⩾ n0,
√
n ⩽ ℓn ⩽ 3

√
n. (4.2)

The number kN appearing in Equation (4.1) must be chosen big enough for the bounds to be tight,
but also small enough for (4.2) to be used. By applying Bernstein’s inequality (Lemma 4.1) here
with an appropriate choice of parameter, we obtain for any N, k ∈ N∗:

P
(
|Nk −Nuk| ⩾ log(N)2

√
Nuk

)
⩽ 2 exp (−ψN,k)

where ψN,k :=
log(N)4Nuk/2

Nuk(1− uk) + log(N)2
√
Nuk/3

. (4.3)

We will investigate the term ψN,k later on, and obtain the simple upper bound (4.5) for adequate
values of k. To apply (4.2) and (4.3) we are looking, for each positive integerN , for kN satisfying

for any k ∈ [[1, kN ]], Nuk − log(N)2
√
Nuk ⩾ n0. (4.4)

Lemma 4.3. Condition (4.4) holds true for some kN = Θ
N→+∞

(
log(N)−4/βN1/β

)
.

From now on, we choose kN as in Lemma 4.3 (note that kN may be zero for small values
of N ). The proof of this lemma is postponed to the end of this section. Now, let us study the
probability error term in (4.3). For any positive integer k lower than or equal to kN , one of the
following holds:

• If Nuk(1− uk) ⩾ log(N)2
√
Nuk/3 then

ψN,k ⩾
log(N)4Nuk/2

2Nuk(1− uk)
⩾

log(N)4

4
.

• Otherwise

ψN,k ⩾
log(N)4Nuk/2

2 log(N)2
√
Nuk/3

=
3

4
log(N)2

√
Nuk ⩾

3

4
log(N)2

√
n0

where we used Equation (4.4) in the last inequality.
Hence there exists a constant δ > 0 such that, for all N ∈ N∗:

sup
1⩽k⩽kN

exp (−ψN,k) ⩽ exp
(
−δ log(N)2

)
. (4.5)

To study the bounds of (4.1), we distinguish between the cases β ∈]1, 2[ and β ⩾ 2.
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First suppose β ∈]1, 2[. Let us begin with the upper bound of (4.1). On the one hand:

N
∑
k>kN

uk = Θ
(
Nk1−β

N log(kN)
γ
)
= Θ

(
log(N)4−4/β+γN1/β

)
(4.6)

as N → +∞, using Lemmas 4.2 and 4.3. On the other hand for each k ∈ [[1, kN ]]:

E [ℓNk
] = E

[
ℓNk

1|Nk−Nuk|<log(N)2
√
Nuk

]
+ E

[
ℓNk

1|Nk−Nuk|⩾log(N)2
√
Nuk

]
⩽ 3

√
Nuk + log(N)2

√
Nuk + NP

(
|Nk −Nuk| ⩾ log(N)2

√
Nuk

)
⩽ 3

√
Nuk + 3 log(N)(Nuk)

1/4 + 2N exp
(
−δ log(N)2

)
where we used Equations (4.2) to (4.5), and the inequality

√
a+ b ⩽

√
a+

√
b for any a, b ⩾ 0.

Summing and using Lemmas 4.2 and 4.3, we get

kN∑
k=1

E [ℓNk
] ⩽ 3

√
N

kN∑
k=1

√
uk + 3 log(N)N1/4

kN∑
k=1

u
1/4
k + 2NkN exp

(
−δ log(N)2

)
(4.7)

= 3
√
NΘ

(
k
1−β/2
N log(kN)

γ/2
)
+ 3 log(N)N1/4Θ

(
k
1−β/4
N log(kN)

γ/4
)
+ o(1)

= Θ
(
log(N)2−4/β+γ/2N1/β

)
.

as N → +∞. This last upper bound along with (4.6) yields, in (4.1):

E [LN ] = O
(
log(N)4−4/β+γN1/β

)
as N → ∞. (4.8)

Now let us turn to the lower bound of (4.1), for which the calculations are simpler. For
any k ∈ [[1, kN ]]:

E[ℓNk
] ⩾ E

[
ℓNk

1|Nk−Nuk|<log(N)2
√
Nuk

]
⩾

√
n0 (1− 2 exp(−ψN,k))

using Equations (4.2) to (4.4). Then by summing and using Lemma 4.3 and Eq. (4.5):

E[LN ] ⩾ kN
√
n0

(
1− 2 exp

(
−δ log(N)2

))
= Ω

(
log(N)−4/βN1/β

)
as N → +∞. This lower bound, along with (4.8), concludes the proof of Proposition 2.4
when β ∈]1, 2[.

Now suppose β ⩾ 2. The upper bound is very similar to the case β ∈]1, 2[, but with the ap-
propriate asymptotics. Namely for any β′ ⩾ 1 and γ′ ⩾ 0 one has:

n∑
k=1

k−β′
log(k + 1)γ

′
= O

(
log(n)1+γ′

)
as n→ ∞. (4.9)

On the one hand (4.6) still holds and we can thus write

N
∑
k>kN

uk = Õ
(√

N
)

as N → ∞. (4.10)
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On the other hand the first line of (4.7) is still valid and we obtain, as N → ∞:
kN∑
k=1

E [ℓNk
] ⩽ 3

√
N

kN∑
k=1

√
uk + 3 log(N)N1/4

kN∑
k=1

u
1/4
k + 2NkN exp

(
−δ log(N)2

)
⩽

√
NO

(
log(N)1+γ/2

)
+ o(1)

+ log(N)N1/4max
(
O
(
log(N)1+γ/4

)
,Θ

(
k
1−β/4
N log(kN)

γ/4
))

= O
(
log(N)1+γ/2

√
N
)

+max
(
O
(
log(N)2+γ/4N1/4

)
,Θ

(
log(N)2−4/β+γ/4N1/β

))
= Õ

(√
N
)

using Lemma 4.3 and Eq. (4.9) and distinguishing between the cases β ⩾ 4 and β < 4 on the
second line. Along with (4.10), this yields the desired upper bound when injected in (4.1).

The lower bound, on the contrary, requires no calculation. Indeed, bound below ρ↗β,γ by u1f
where f denotes the uniform density on the square C1. Since permutations sampled from the
density f are uniform, we deduce from Theorem 1.1 and Lemma 3.1 that

E
[
LIS

(
SampleN

(
µ↗
β,γ

))]
= Ω

N→∞

(
ℓ⌊u1N⌋

)
= Ω

N→∞

(√
N
)
.

All that is left for the proof of Proposition 2.4 to be complete is the previously announced
lemma about kN .

Proof of Lemma 4.3. Let N ∈ N∗. For each integer k:

Nuk − log(N)2
√
Nuk ⩾ n0 ⇔

{
Nuk ⩾ n0;
Nuk − n0 ⩾ log(N)2

√
Nuk;

⇔
{
Nuk ⩾ n0;
N2u2k + n2

0 − 2Nukn0 ⩾ log(N)4Nuk;

⇔
{
uk ⩾ n0/N ;
N2u2k −N (2n0 + log(N)4)uk + n2

0 ⩾ 0.

This last polynomial in the variable uk has discriminant ∆N =N2 (log(N)8+4n0 log(N)4) ⩾ 0.
Let xN be its greatest root. Then

xN =
N (2n0 + log(N)4) +

√
∆N

2N2
∼

N→∞

log(N)4

N
.

A sufficient condition forNuk−log(N)2
√
Nuk ⩾ n0 to hold is uk ⩾ max (n0/N, xN). However

uk =
1

Zβ,γ

k−β log(k + 1)γ ⩾ c0k
−β

for c0 := log(2)γ/Zβ,γ , so a sufficient condition is

k ⩽ c
1/β
0 max (n0/N, xN)

−1/β .

Hence the announced estimate for kN .
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5. Study of densities diverging at a single point

5.1. Lower bound of Theorem 2.2

This bound is quite direct thanks to Lemma 3.1 and the previous study of µ↗
β . We will use

the notation of Section 2.2 with the same β as in Theorem 2.2 and γ = 0. Studying ρ on
the boxes (Cn)n∈N∗ will be enough to obtain the desired lower bound. Fix ε > 0 and some
rank m0 ∈ N∗ such that

for all n ⩾ m0 and (x, y) ∈ Cn, ρ(x, y) ⩾ εd
β

1−β exp
(
−c|x− y|d

β
1−β

)
.

Recall the notation d := dist((x, y), (1, 1)) for (x, y) ∈ [0, 1]2 and writeRn :=
∑

k>n uk for any
nonnegative integer n. Note that, for (x, y) ∈ Cn:

2Rn ⩽ d ⩽ 2Rn−1 where Rn−1, Rn = Θ
n→∞

(
n1−β

)
by Lemma 4.2, and

|x− y| ⩽ un = Θ
n→∞

(
n−β

)
.

As a consequence, for potentially different values of ε > 0 and m0 ∈ N∗ we get

for all n ⩾ m0 and (x, y) ∈ Cn, ρ(x, y) ⩾ ερ↗β (x, y).

Write g for the probability density on ∪n⩾m0Cn proportional to ρ↗β . Then by Lemma 3.1:

E
[
LIS

(
SampleN(µρ)

)]
= Ω

N→∞

(
E
[
LIS

(
Sample⌊εN⌋(µg)

)])
.

Moreover we can obtain

E
[
LIS

(
SampleN(µg)

)]
= Θ̃

N→∞

(
N1/β

)
with the same proof as for the reference permuton µ↗

β (start every index at m0 instead of 1).
Finally:

E
[
LIS

(
SampleN(µρ)

)]
= Ω̃

N→∞

(
N1/β

)
.

5.2. Upper bound of Theorem 2.2

This bound is more subtle than the previous one. Indeed, long increasing subsequences could
appear outside of the boxes used in Section 5.1. Our solution comes in two steps: first consider
slightly bigger boxes, and then add an overlapping second sequence of boxes to make sure a
whole neighborhood of the diagonal is covered.

We will mainly use the notation of Section 2.2 with the number β considered in Theorem 2.2
and any negative number γ < 1− β. In addition to the boxes (Cn)n∈N∗ , define for all n ∈ N∗:

Dn+1 :=
[
Sn −

un+1

2
, Sn +

un+1

2

]2
and En := [Sn−1, 1]

2 \
(
[Sn, 1]

2 ∪ Cn ∪Dn+1

)
,
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Figure 5.1: The several areas used to study density ρ in the upper bound of Theorem 2.2.

and their unions:

E :=
⋃
n⩾1

En , C :=
⋃
n⩾1

Cn , D :=
⋃
n⩾1

Dn+1.

See Figure 5.1 for a visual representation. Notice how these three areas cover the whole unit
square. Let us check that ρ is small outside the diagonal neighborhood C ∪D:

for all n ∈ N∗ and (x, y) ∈ En, |x− y| ⩾ un+1/2 and Rn ⩽ dist
(
(x, y), (1, 1)

)
⩽ 2Rn−1

where Rn :=
∑

k>n uk. Then using Lemma 4.2, we get as n→ ∞ uniformly in (x, y) ∈ En:

|x− y| = Ω
(
n−β log(n)γ

)
and dist

(
(x, y), (1, 1)

)
= Θ

(
n1−β log(n)γ

)
.

Our hypothesis on ρ now rewrites

ρ(x, y) = O

((
n1−β log(n)γ

) β
1−β exp

(
−Ω

(
n−β log(n)γ

(
n1−β log(n)γ

) β
1−β

)))
= O

(
nβ log(n)

γβ
1−β exp

(
−Ω

(
log(n)

γ
1−β

)))
= o(1)

since γ
1−β

> 1 by choice of γ. In particular ρ is bounded on E, and it remains to study it on
areas C and D. Using Lemma 4.2 and bounding the exponential term by 1, we get as n → ∞
uniformly in (x, y) ∈ Cn ∪Dn+1:

ρ(x, y) = O
(
nβ log(n)

γβ
1−β

)
.

Consequently∫
Cn

ρ(x, y)dxdy = O
(
n−2β log(n)2γnβ log(n)

γβ
1−β

)
= O

(
n−β log(n)γ(2−

β
β−1)

)
as n→ ∞
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and likewise ∫
Dn+1

ρ(x, y)dxdy = O
(
n−β log(n)γ(2−

β
β−1)

)
as n→ ∞.

Define γ′ := γ
(
2− β

β−1

)
> 0. The previous calculations show that we can find a bound

ρ ⩽M(f + g + h)

for some M > 0, f the uniform density on [0, 1]2, g a probability density on C attributing
uniform mass proportional to n−β log(n + 1)γ

′ to each Cn, and h a probability density on D
attributing uniform mass proportional to n−β log(n+ 1)γ

′ to each Dn+1. Thus by Lemma 3.2 it
suffices to bound the quantities

E
[
LIS

(
SampleN(µf )

)]
, E

[
LIS

(
SampleN(µg)

)]
, E

[
LIS

(
SampleN(µh)

)]
.

The first term is nothing but the uniform case, so it behaves as Θ
(√

N
)

. Let us turn to the
second term. Since the sampled permutations of our reference permutons only depend on the
masses attributed to each box and not the sizes of these boxes, sampled permutations from µg

have the same law as sampled permutations from µ↗
β,γ′ (see Section 2.4; µ↗

β,γ′ is the permuton
associated to the pre-permuton µg). Hence by Proposition 2.4, this term behaves as Θ̃

(
N1/β

)
.

The third term is handled in the same way. Finally:

E
[
LIS

(
SampleN(µρ)

)]
= Õ

N→∞

(
N1/β

)
.

5.3. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We thus consider α > −2 and suppose ρ
is as in the theorem. Since we want an upper bound on the longest increasing subsequences, we
need to find appropriate areas to bound ρ on. For this define β > 1 by

−α = 2− 1

β − 1
i.e. α(1− β) + 1− 2β = −2. (5.1)

We use the notation of Section 2.2 for this value of β and γ = 0. We shall bound ρ on the
boxes (Cn)n∈N∗ as well as on the adjacent rectangles:

for all n ∈ N∗, D(1)
n := [Sn−1, Sn]× [Sn, 1] and D(2)

n := [Sn, 1]× [Sn−1, Sn].

The sequences (Cn)n∈N∗ , (D
(1)
n )n∈N∗ , (D

(2)
n )n∈N∗ form a partition of the unit square. As in the

upper bound of Theorem 2.2, we need to compute the masses attributed by ρ to each of these
boxes. For this notice that

for all n ∈ N∗ and (x, y) ∈ Cn ∪D(1)
n ∪D(2)

n , Rn ⩽ dist((x, y), (1, 1)) ⩽ 2Rn−1
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where Rn :=
∑

k>n uk. Hence∫
Cn

ρ(x, y)dxdy = Θ
(
nα(1−β)n−2β

)
= Θ

(
n−3

)
as n→ ∞

and

for i = 1, 2,

∫
D

(i)
n

ρ(x, y)dxdy = Θ
(
nα(1−β)n−βn1−β

)
= Θ

(
n−2

)
as n→ ∞

by (5.1). Using Lemma 3.2, it suffices to bound the quantities

E
[
LIS

(
SampleN(µf )

)]
, E

[
LIS

(
SampleN(µg)

)]
, E

[
LIS

(
SampleN(µh)

)]
where f is the probability density on C attributing uniform mass proportional to n−3 to each Cn

and g (resp. h) is the probability density on D(1) (resp. D(2)) attributing uniform mass propor-
tional to n−2 to each D(1)

n (resp. D(2)
n ). Considering the reference permuton µ↗

3 of parame-
ter (3, 0), Proposition 2.4 tells us

E
[
LIS

(
SampleN(µ

↗
3 )

)]
= Θ̃

N→∞

(√
N
)
.

Since µ↗
3 attributes the same masses to the boxes of its support as density f attributes to its

own, sampled permutations from both pre-permutons have same law (the same remark as in the
upper bound of Theorem 2.2 holds; µ↗

3 is the permuton associated to the pre-permuton µf ).
Consequently:

E
[
LIS

(
SampleN(µ

↗
f )

)]
= Θ̃

N→∞

(√
N
)
.

The case of density g is similar but with a slight alteration. Indeed, considering the reference
permuton µ↗

2 of parameter (2, 0), Proposition 2.4 tells us

E
[
LIS

(
SampleN(µ

↗
2 )

)]
= Θ̃

N→∞

(√
N
)
. (5.2)

Note that µ↗
2 attributes the same masses to the boxes of its support as density g attributes to its

own. A key difference here is that the rectangle boxes D(1)
n are not placed increasingly inside

the unit square, so sampled permutations from permuton µ↗
2 and density g do not have the same

law. To work around this problem, we can use an appropriate coupling. Take random i.i.d. points
X1, . . . , XN distributed under density g. Consider, for each n ∈ N∗, the affine transformation an
mapping D(1)

n to Cn and assemble them into a function a from ∪n⩾1D
(1)
n to ∪n⩾1Cn. Then the

image points a(X1), . . . , a(XN) are i.i.d. under the measure µ↗
2 . Moreover, each increasing sub-

set of {X1, . . . , XN} is mapped to an increasing subset of {a(X1), . . . , a(XN)}. This coupling
argument shows that LIS

(
SampleN(µg)

)
is stochastically dominated by LIS

(
SampleN(µ

↗
2 )

)
,

and (5.2) then implies:

E
[
LIS

(
SampleN(µg)

)]
= Õ

N→∞

(√
N
)
.
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Density h is handled in the same way. Hence:

E
[
LIS

(
SampleN(µρ)

)]
= Õ

N→∞

(√
N
)
.

To conclude the proof of Theorem 2.1, the lower bound is obtained as a direct consequence of
Lemma 3.1 using the uniform case (see the proof of Proposition 1.3).

6. Study of densities diverging along the diagonal

6.1. Lower bound of Theorem 2.3

From now on we consider a density ρ satisfying the hypothesis of Theorem 2.3 for some expo-
nent α ∈]−1, 0[. As explained in Section 2.5, the idea is to slice the unit square into small boxes
and investigate the number of sampled points appearing in appropriate increasing sequences of
boxes. Let N ∈ N∗ and take random i.i.d. points X1, . . . , XN distributed under the density ρ.
Set

bN :=
⌊
N1/(α+2)

⌋
,

and define a family of b2N identical boxes by

for all (i, j) ∈ [[1, bN ]]
2, Ci,j :=

[
(i− 1)

bN
,
i

bN

]
×
[
(j − 1)

bN
,
j

bN

]
.

This covering of the unit square will be useful for the upper bound, while the lower bound aimed
for in this section only requires using the increasing sequence of boxes (Ck,k)k∈[[1,bN ]]. More
precisely, we make use of the inequality

LIS(X1, . . . , XN) ⩾
bN∑
k=1

1Nk⩾1 (6.1)

where eachNk denotes the number of points amongX1, . . . , XN in Ck,k. Thanks to the hypoth-
esis made on ρ, we can fix δ, ε > 0 such that

for all (x, y) ∈ [0, 1]2 satisfying |x− y| < δ, ρ(x, y) ⩾ ε|x− y|α.

Now suppose N is large enough to have b−1
N < δ and compute, for any k ∈ [[1, bN ]]:

mk :=

∫
Ck,k

ρ(x, y)dxdy ⩾
∫
Ck,k

ε|x− y|αdxdy = ε

∫ b−1
N

0

dx

∫ b−1
N −x

−x

dz|z|α

= ε

∫ b−1
N

0

dx

(
xα+1

α + 1
+

(b−1
N − x)α+1

α + 1

)
=

2ε

(α + 1)(α + 2)
b
−(α+2)
N = Ω

N→∞

(
1

N

)
.

Hence there exists η > 0 such that for all N ∈ N∗ and k ∈ [[1, bN ]], mk ⩾ η
N

. Since Nk follows
a binomial law of parameter (N,mk), we deduce:

P(Nk = 0) = (1−mk)
N ⩽ (1− η/N)N −→

N→∞
e−η < 1.



combinatorial theory 3 (3) (2023), #1 21

Consequently there exists p0 > 0 such that for any large enough N ∈ N∗ and all k ∈ [[1, bN ]],
P(Nk ⩾ 1) ⩾ p0. Hence for large enough N , using Equation (6.1) :

E
[
LIS

(
SampleN(µρ)

)]
⩾ E

[
bN∑
k=1

1Nk⩾1

]
⩾

bN∑
k=1

p0 = p0bN = Ω
N→∞

(
N1/(α+2)

)
.

6.2. Upper bound of Theorem 2.3

We use the same notation as in the previous section, but this time we investigate the whole
grid (Ci,j)i,j∈[[1,bN ]]. Say a sequence of distinct boxes C = (Ci1,j1 , . . . , Cin,jn) is increasing when-
ever

for all k ∈ [[1, n− 1]], ik ⩽ ik+1 and jk ⩽ jk+1.

When this happens, one has n < 2bN . Indeed, when browsing the sequence, each coordinate
increases at most bN − 1 times.

Write X := {X1, . . . , XN}. Then, for any box C, denote by XC the set of points in X
appearing in C and, for any increasing sequence of boxes C, denote by XC the set of points in X
appearing in some box of C. We aim to make use of the inequality

LIS(X ) ⩽ sup
C increasing sequence of boxes

|XC| (6.2)

since the family of boxes occupied by an increasing subset of points necessarily rearranges as
an increasing sequence of boxes. Now, thanks to the hypothesis made on ρ, let M > 0 be such
that

for all (x, y) ∈ [0, 1]2, ρ(x, y) ⩽M |x− y|α.
Since this latter function puts more mass on the diagonal boxes than the outside ones, we have
for any i, j ∈ [[1, bN ]]:∫

Ci,j

ρ(x, y)dxdy ⩽
∫
Ci,j

M |x− y|αdxdy ⩽M

∫ b−1
N

0

∫ b−1
N

0

|x− y|αdxdy

=
2M

(α + 1)(α + 2)
b
−(α+2)
N = O

N→∞
(1/N).

Thus there exists M ′ > 0 such that, for large enough N , each variable |XCi,j
| is stochastically

dominated by the law Bin(N,M ′/N). Additionally Lemma 4.1 gives, denoting by SN a random
variable of law Bin(N,M ′/N):

P
(
|SN −M ′| ⩾ log(N)2

√
M ′

)
⩽ 2 exp (−ψN)

where ψN =
log(N)4M ′/2

M ′(1−M ′/N) + log(N)2
√
M ′/3

= Θ
N→∞

(log(N)2).

This inequality, along with the aforementioned stochastic domination, implies that for large
enough N :

P
(
∀(i, j), |XCi,j

| ⩽M ′ + log(N)2
√
M ′

)
⩾ 1− 2b2N exp(−ψN).
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Hence, using the fact that an increasing sequence of boxes contains at most 2bN boxes:

P
(

for any increasing sequence of boxes C, |XC| ⩽ 2bN

(
M ′ + log(N)2

√
M ′

))
⩾ 1− 2b2N exp(−ψN)

and then, by Equation (6.2):

P
(
LIS(X ) ⩽ 2bN

(
M ′ + log(N)2

√
M ′

))
⩾ 1− 2b2N exp(−ψN).

To conclude the proof of Theorem 2.3, it suffices to write:

E
[
LIS

(
SampleN(µρ)

)]
⩽ 2bN

(
M ′ + log(N)2

√
M ′

)
+ 2b2NN exp(−ψN) = Õ

(
N1/(α+2)

)
.
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