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ABSTRACT 

Calculations are presented of the 

El amplitude expected in the 62P1 -7
2P1 forbidden M1 

"2 "2 

transition in TQ if parity _is violated in the neutral 

weak e-N interaction,as proposed in a number of gauge 

models, including that of Weinberg and Salam. Valence 

electron wave-functions are generated as numerical so-

lutions to the Dirac equation in a modified Tietz cen­

tral potential. These wave-functions are used to cal-

culate allowed El oscillator strengths, 

hfs splittings, and Stark El transition 

amplitudes. These results are compared with experi­

ment and the agreement is generally good. The rela­

tivistic 62P1 -7
2P1 Ml transition arnplitudevU is also 

"2 "2 

calculated and corrections due to interconfiguration 

mixing, Breit interaction, and hfs mixing are included. 

The result: ..... Uth = (-3.2 ± 1.0) . 10- 5 
2
1elh is in 

eo m~ 

agreement with the experimental value: 

_;Uexpt = ( -2.11 ± 0. 30) • 10-5 !: I~ . The parity­
e 

violating El amplitude ~PV is calculated and a value for 

the circular dichroism 

o ~ 2Im(~PV,Theo) = -2.6 • 10-3 
vUexpt . 

is obtained. Parity violating effects in other '1'2 tran-

sitions are discussed. 

... -. 

- "' 
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INTRODUCTION 

Discovery of strangeness-conserving neutral weak currents in 

neutrino-nucleon scattering experimenti has stimulated considerable 

interest in the possible existence of a weak neutral electron-nucleon 

interaction. If such an interaction violates parity, as predicted by 

several theoretical gauge models including that of Weinberg and Salam 2 

(W-S), effects in heavy atoms such as optical rotation in allowe~ Ml 

transitions, and circular dichroism (dependence of absorption on 

photon helicity) in forbidden Ml transitions may be observable. 

An experiment to study the latter effect in the doubly forbidden 

Ml transition 62P1 -7
2P1 (292.7 nm~) in atomic TQ vapor has been pro-. 

"2 "2 

posed. 3 The idea, originally suggested for the 62S1 -7
2S1 ,transition 

"2 "2 . .. 

in Cs by Bouchiat and Bouchiat, 4 is that a short range, parity violating, 

neutral weak interaction HPV mixes the 62~ ,72~ TQ states with n2S1 "2 "2 "2 

states. Thus the transition 62P1 -72P1 , nominally Ml with amplitude 
"2 "2 

(1) 

also contains a parity-violating electric dipole component with 
. 2 2 . 

amplitudes....__ =<7 P1 ,mTIEll6 P1 , mT>. It can be shown that interference 
tJV "2 v "2 v 

between fi and &PV results in a dependence of the 62P1 -12P1 absorption 
"2 "2 

rate W on right (R) or left (L) handed photon helicity: 
6 = W(R) - W(L) :: 2 Im(&PV) ~ :::::: 2 Im(&PV) 

W(R) + W(L) ~UI2 + ltr,pyl2 fi 
(2) 

The "circular dichroism" 6 can be detected by observing the fluorescence 

accompanying decay of the 72P, state (see Fig. 1). The fi~st-step in 
"2 
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that experiment was the determination of the M1 amplitude itself, 

h 1 b 
. 3 t e resu t e1ng: 

-5 
JA expt = (- 2 .11 ± 0. 30) · 10 llB (3) 

where llB = I e !h/2mec. In that measurement and also in the experiment 

proposed to detect 6, use is made of the interference which occurs 

between JA and/ or & PV and the 

f 62p 72P . . . or 1 - 1 trans1 t1ons 1n 
'2 '2 

Stark-induced electric dipole amplitude &S 

an external electric field. 

In this paper we present results of calculations of 

the atomic structure of .T£ which are necessary in order to make useful 

comparisons between these experiments and the predictions of models of 

the neutral weak interaction. The thallium atom has 81 electrons with 

a ground state electronic configuration: 2 10 2 ls ... Sd 6s 6p. Our 

approach is to assume that all singly-excited T£I states of 

interest have the same inner electron configuration (ls2 •.. Sd106s2, 

with total L=O, S=O) a5 that of the ground state, and differ only in 

the valence electron orbital. .This approximation, while not strictly 

correct, is reasonable, since inner shell ionization energies 

are at least several times larger than that of the 6p valence electron. 

It also has the obvious virtue of simplicity, since within such an 

approximation most properties of interest to us can be calculated from 

the valence electron wave-function, which is obtained by solving the 

Dirac equation numerically in a spherically symmetric potential, for 

all states of interest. We have chosen the potential: 

- . 
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V(r) = _e2cz - 1) 
r(l + nr) 2 

e 
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-yr 
(4) 

r 

Without the exponential shielding factor e-yr, V(r) is the ''Tietz" 

potential, 5 which yields a good approximate solution to the Thomas­

Fermi equation. The factor e-yr is inserted to account for the exponen-

tial decrease of electron density for large r. 

chosen so that .the calculated and observed 62P1 
'2 

Parameters n and y are 

and 72P1 energies. agree . 
'2 . 

We describe calculations of energy levels, allowed El oscillator 

strengths, and P!<, S!< hyperfine structure splittings, 
2 2 

all in good 

agreement with observations (see Sec. 2). As is well 
. 2 

known, the 6 P312 
hfs splitting is strongly affected by interconfiguration interaction, 

and a correction for this nrust be applied in order to obtain' reasonable 

agreement with experiment (see Appendix A). Our calculation of JU 

(Sec. 3) includes the one-electron relativistic contribution and 

corrections due to interconfiguration, hyperfine, and Breit interactions; 

the result is in agreement with the experimental value (Eq. 3). Our 

calculation of the Stark transition amplitudes&
5 

yields two second~ 

order matrix elements a,B for linearly polarized excitation light 

parallel and perpendicular, respectively, to the applied static field 

E. The ratio 8/a is in agreement with the experimental results of Chu, 
. 3 

Commins, and Conti (see Sec. 5). 

The satisfactory agreement between experiment and the calculations 

described in the previous paragraph provide confidence that our esti­

mate of the parity violating amplitude &PV should be reliable enough 
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so that future experimental determinations of circular dichroism may 

yield useful tests of gauge models. For purposes of the present 

discussion we present the analysis in terms of thew-s model, 2 which 

describes low-energy strangeness conserving neutral weak interactions 

in terms of an effective Hamiltonian density: 

where G is the Fermi coupling constant of weak interactions 

G = 3 x 10-!2 in units (fl = m = c = 1) used throughout. The e 
'f. 

current J (x) has both hadronic and leptonic parts, the former being 

expressible as: 

(5) 

(6) 

where vf.,O is the r3 component of the strangeness-conserving hadronic 

vector current, A:\,O is the neutral ~S=O hadronic axial current, J\,EM 

is the EM current, and e is the so··called ''Weinberg" angle, which is 
w 

given by sin2ew;:: 0.3. That portion of the neutral leptonic current 

involving e is: 

3
1ept,e 
A = 

where ~ is the electron field operator. e 

The first and second terms on RHS are resuectively vector and axial-

vector currents. We are interested in those portions of ~(x) which 

(7) 

are pseudoscalar, not scalar; thus we consider the product of the 'axial 

portion of J~ept ,e- and the vector portion of J~ad. (The other pseudo-

lept e scalar term corresponding to the product of the vector part of J A ' and 

the axial part of J~ad gives a much smaller contribution since it is 

J -

.; 

-. 
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4' . ;;, ' 

proportional to total nuclear spin, and for a heavy nucleus, most 

of the nucleon spins cancel in pairs.) Ignoring this latter portion, 

we find: 

Q ¥ y y 'l' • (VA ,0 - 2sin28 J:\ ,EM) 
12 e:\Se . w 

(8) 

Taking matrix elements of JCPV (x) for the static limit of the nucleus, 

we obtain the matrix element of the effective Hamiltonian: 

(9) 

where 

Qw = (l-4sin2ew) Z - N (10) 

~ ~ 

and w1 (x), w2(x) are Dirac wave-ftmctions corresponding to states of 

opposite parity, and "x=O" indicates the product is averaged over the nuclear 

volume. In fact only P1 and S1 states yield non-negligible 
'2 '2 

matrix elements. Equation (9) is derived from the W-S model. However, 

other gauge models with parity violation would lead to the same ex­

pression with only Gw of Eq. 10 being model dependent. In most cases 

IGwl ~ Z. In Sec. 4 we use Eq. (9) to calculate &PV. · Finally, Sec. 6 

contains an estimate of parity violating effects for transitions in 

2 2 T£ other than 6 ~ -7 ~. 
'2 '2 

2. THALLIUM WAVE FUNCTIONS IN THE ONE ELECTRON 

CENTRAL FIELD APPROXIMATION 

2.1 Construction of Wave Functions 

The Dirac equation is 

[a · p + B - eV]ljJ = (1 - EI)ljJ (11) 

where Eiis the valence electron ionization· energy [(1-~) is the total 

electron energy including rest mass], and~ and Bare the usual Dirac 
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matrices. We write 

1jJ = 

As usual, K = +(j+~) for even(odd) parity states, the X~ 
_K 

1 . f . 6 . b . component angu ar momentum-sp1n unct1ons g1ven y: 

are two-

the C 1 s are Clebsch - Gordan coefficients, l..l = mj , R. = 1 K + 1/21 - 1, 

and the Y 1 s are spherical ha.rmonics. Equation (12) reduces to the 

two coupled radial equations: 

df K ar=- r f + [2 -ll:- V(r)]g 

K r g + [~+ V(r)lf 

(12) 

(13) 

(14) 

. . 7 
Following the procedure used by Schwartz to cal~ulate hyperfine 

structure splittings in T.R. and other heavy atoms, we choose for V(r) 

the modified Tietz potential of Eq. (4). Parameters nand yare chosen 
2 - 2 

so that calculated and observed 6 PI and 7 PI energies agree. 
'2 '2 

The fitting procedure is as follows: 
- "' 
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h For Very small r (r ~ r 0 = .02 m c = .02) 
e 

(1) i.e. for r 

within the nuclear radius r 0, one of the following three potentials is 

chosen: 

a) V(r) = 

b) V(r) = 

c) V(r) = 

2 -Ze - r 

-Ze 2 

ro 

ze2 
-
2r0 

(Point nucleus) 

(Constant potential) 

2 
(!__ 

2 
ro 

- 3) (Constant nuclear charge density) 

The initial wave-function values for this region are generated Using a 

power series expansion to solve Eq. (14). 

(2) For r ~ r 0 Eqs. (14) for f(r), g(r) are integrated numerically step­

wise using a fourth order Runge-Kutta method. 8 Approximately 5000 

intervals of length increasing from .001 ~ to 2.0 ~ are used. 

(3) The eigenvalue condition is that 

lim f(r) = 0. The energy E1 in Eqs. (14) is varied to insure 
r~ 

that this condition is satisfied. 

The energy spectrum does not depend strongly on the choice of 

potential in step (1). Of all the quantities computed below, only the 

weak electron-nucleus interaction depends significantly on this choice, 

and for that quantity the dependence is only~ 10%. The number of 

intervals can be reduced substantially without significant loss of 

precision except for calculation of the forbidden ~U transition (see 

Sec. 3); however this reduction would provide no economic advantage on 

the LBL CDC 7600 computer. The calculation procedure can be reversed by 
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choosing an asymptotic form for f and gat large r, and integrating 

step-wise toward r = 0. This yields the same states as the 

procedure actually used, but is less convenient for calculation of &PV. 

The values of n and y chosen for most calculations are -

(15) 
n = 2.5937a0-1 = 355.43 ~-l 

y = .2579a0-1 = 35.34 ~-l 

Numerical values of f and f vs r are given for several states in Table I. These 

values are chosen to yield agreement between calculated and observed 62P
1

, 72P 
'2 !2 

energy levels to within 0.1%. Other low lying S~, D~, P~, and P312 
energy levels are calculated, and these all agree with observations to 

within 2%. Table II includes a comparison of calculated and observed 

energy levels. 

2.2 Hyperfine Structure 

The one-electron central-field (OECF) wave functions described 

above can be used to calculate hyperfine structure splittings for 

comparison with experimental values. This comparison provides a 

reasonably sensitive test of the accuracy of calculations of &PV since 

both the latter and the hfs depend on values of the wave-functions near 

the origin. The perturbation H~iltonian for hfs is 
-+ -+ -+-+ m xt rxet n 

~s 
-+ ·A -+ -+ 

(16) = ea = ea = em 
r3 

n 
r3 

where ~n = ~Pn1 is the nuclear magnetic moment operator, pn is the 

nuclear Bohr magneton, and I = ~ is the spin for both stable thallium 

isotopes, 203T£ and 205Tt. Also &nC203rt) = 3.223, ~(205rt) = 3.255;9 

·~ 
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in our calculations these are averaged to ~ = 3.24. It can then be 

shown that the hfs energy splittings are given in first-order by: 6 

8K 

where 

6W = e~~n (J + ~) • 2 · R 
4K -1 

(17) 

(18) 

Table II includes a list of hfs splittings calculated for the various 

energy levels, together with experimental values where these are available. 

The discrepancies are not due to major defects in the wave functions, 

but rather tointerconfiguration interaction, which is known to have an 

especially large effect on the 62P312 state. This is demonstrated in Appendix 

A which contains an estimate of interconfiguration interaction for 6p electron 

states. Although the effect on the 62P312 hfs. splitting is large it can 

be shown that interconfiguration interaction corrections to &.PV are negligible .. 

2 • 3 · Fine Structure 

Another test of the wave-function for small r is the fine structure 

splitting 6E = E(j = ~ + ~) - E(j = ~ - ~) for ~ # 0. Non-

relativistically, 

6E = ( £ + ~) < n£ I .!. . ~ I n £ > 
r ar 

_ In a relativistic calculation such as ours, the fine structure is part 

of the tmperturbed Hamil toni an, and the calculated fine structure is 

simply the difference between calculated (j = ~ + ~) and (j = i - ~) 

energy levels. Comparison of these differences with observed energy 

differences from Table II for P states yields discrepancies ~ 10%. 
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2.4 Allowed Electric Dipole Transitions 

We also calculate electric dipole radial integrals and transition 

strengths using the OECF wave-functions. In ~he relativistic notation 

of Berestetskii, Lifschitz, and Pitaevskii, 10 the transition matrix 

element is 

/d3-+ . l-1 (-+r) * -+ vfi = e r Jfi All (r) (19) 

where j~i (r) = ijjf yl-1 l/Ji is written in terms of the initial and final 

Dirac wave-functions l/Ji, l/Jf, yl-1 are the standard 4x4 matrices, and 
-+ 

A (r) is the 4-vector potential. In the long-wavelength approximation 
)J 

for an electric multipole field of order J,M we have: 

A (t) = (A {r), 0, 0, 0) l-1 . 0 

k 
o c I 1t I - w) Yj c - ) 

-::: J ( l)M+l .J {J.;i 
- r - 1 V J 

(2J+l)!! 
Yj 

For El radiation, this becomes: 

A (~) = (-l)M+ 1 . i . r . 2/'I . 3/2 ~ 
0 -3- w 1 

r 
( - ) r 

r 
( - ) 

r 

w 

·7-+ IK·r •e 

(20) 

(21) 
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Combining Eqs. (19) and (21) we obtain: 

-+ 

Vlfl~M = (-1) i w3/2 . 2-12"3 fd3r-+ ,,,f* (-+r) _.M* ( r ) ,,, (-+) 
'I' r y-i r '~'i r (22) 

The spontaneous emission rate A is_given by: 

h V2 . v2 
w ere fi 1s . fi summed over photon states and final electron states 

(jf, mf), and averaged over initial electron states (ji, mi). For 

OECF wave-functions the angular integration is easily separated and we 

find the following: 

Transition 

D3/2 -+ p3/2 

D5/2 -+ p3/2 

A-coefficient 

4/9 e2 w 3 2 
<r>fi 

8/9 e 2 3 ' 2 w <r>fi 

2 3 2 4/45 e w <r>fi 

. 2 3 2 
8/15 e w <r> fi 

where w is the observed energy difference between initial and final 

states, and <r>fi = f r(fffi + gfgi)dr. The signs of these radial 

integrals are fixed by the convention that f(r) > 0 as r -+ 0 for 

every state. In Table III, the radial integrals <r>fi and calculated 

A-coefficients for nD -+ 6P and nS -+ 6P transitions are listed, 

together with observed A coefficients for the same transitions as 

determined by Gallagher and Lurio. 11 The agreement between theory 

and experiment is generally good, the discrepancy in the transition rates 

typically being :£ 20%. This corresponds to a discrepancy in the 



-14-

radial integrals of~ 10%, and .reveals that our wave functions are 

reasonably accurate in the range r ~ 2A. 

The oscillator strengths Ffi are defined by 

Ffi = c~:: ~) z)fwz (23) 

where J., Jf are the initial and final total electronic angular momenta. 
. 1 

These quantities have previously been calculated 

12 by Anderson et al. by a method similar to ours (one-electron Dirac 

wave-function and central potential). Table III includes a comparison 

of their calculated oscillator strengths with ours for nD + 6P and 

nS + 6P transitions. Table IV gives the same comparison for 7P + nS 

and 7P + nD transitions, the radial integrals for which are needed in 

evaluation of &PV and &S (see Sees. 4 and 5). Our calculated oscillator 

strengths and those of Anderson et al. are nearly identical, which 

suggests that the discrepancies ~ 20%) between calculated and observed 

values are due to a fa~lure of the OECF approximation, rather than 

merely to an inadequate central potential. Thus to obtain more accurate 

results it may be necessary to go beyond the simple OECF model. 

3. MAGNETIC DIPOLE TRANSITION RATES 

3.1 The Relativistic Contribution 

The relativistic contribution to M arises from the transition 

. 1 10 matr1x e ement: 

/
3 * 

Vfi = i e ~. d r ljlf (24) 
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where g1(kr) = ~ J
312 

(kr) is a spherical Bessel function. Using 

Eq. (12) for l/Ji, l/Jf which are both P1 states, employing ~ = ( 0 0.) and 
'2 ~ 0 

(a. r/r)xi = -x~l' and utilizing the anti-conunutation of~ . r/r 

and ~ · 9 Ylm' we obtain: 

·. (25) 

We rewrite this as 

m ~ 3/2 -+ vfi = (-1) iv2,3n w. llfi A • e: 
m (26) 

where £m is the spherical unit vector: 

(27) 

and 

(28) 

for P1 -+ P1 transitions. The expression for ~f. · £ in the case of 
'2 '2 _ 1 m 

S1 - S1 transitions is the same except for a change in sign. 
'2 '2. . . 

To find the transition rate 

(29) 

we sum over final and average over initial states to obtain: 

(30) 
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This formula was previously obtained by Johnson13 for the 22s1 - 12S 
'2 ~ 

Ml transition in hydrogen. The result is also valid for allowed ~ - ~ 

transitions. In this case ~fi of Eq. (28) approaches the familiar 

(31) 

. 
~ the non-relativistic limit. This expression vanishes if the radial 

parts of ~i and ~f are orthogonal. 

d f 2 72P We use our OECF ra ial wave-functions or 6 P1 , 1 states to 
'2 '2 

compute the result: 

(32) 

The extremely small size of this matrix element implies that relatively 

large corrections might occur due to interconfiguration mixing, hyper-

fine mixing, and the Breit interaction. ' 

3.2 Interconfiguration Interaction Correction 

Electrostatic interaction of the outer electron with excited core 

states alone (as in Appendix A) does not directly effect the M1 tran-

sition rate, since it mixes only those states having the same total 

L and S (2P1 in T£) ~4 However, in second order, Spin-orbit 
. '2 

coupling allows an admixture of different L, S atomic states (e.g. 
4P1_ in T£). and this admixture can give rise to a finite Ml amplitude 

'2 

even in the non-relativistic limit. 

A consistent fourth order treatment is necessary; the calculation 

which follows is similar to that done by Phillips for corrections to 

gJ(Cs). 14 Since the ground configuration ofT£ is (ls2 •..•. sd106s 26p), 
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we only consider the effects of 6s-electron excitation (the correction 

due to Sd excitation turns out to be smaller). The unperturbed 

states are 

~6 = ~(62P~) = 6s2(1So) 

~7 = ~ (72P~) = 6s2 (ISO) 2 7p pl 
~ 

(33) 

The first-order perturbation is the electrostatic interaction and the 

perturbing states considered are: 

Thus the perturbed states are 

~6 ~ ~6 + a6¢6 + a7¢7 

~7 = ~7 + 86¢6 + 87¢7 

(34) 

(35) 

where a6, a7, 86, 87 are calculated by first order pertur~ation theory, 

and antisynnnetrization of the total wave ftmction is taken into accotmt. 

For example: 

a
6 

= -~ G1 (6s, 6p; 7s, 6p) 
t.E 

where G1(6s, 6p; 7s, 6p) is the exchange electrostatic integral, 

t.E = E(¢6) - E(~6), and E(¢6) is a fictitious energy calculated for a 

6s7s6p configuration in the potential of Eq. (4). Nwnerical compu-

tation gives: 

a6 = -.010, a7 = +.023, s6 = .094, B7 = .006. (36) 
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The 6s7s(3s1) np2P~ states are now mixed with states 

~ri C4P~) = 6s7s c3s1) n 'p 4P~ 

by _spin-orbit interaction. We employ the perturbation Hamiltonian 

-+ -+ 1 av -+ -+ 

H' = r ~i · 1i .· 5i = ~ ~ Cr ar)i 1i · 5i 
i 1 

and rewrite our wave functions as: 

and 

~6 = ~6 + n6[~6 + a6~6(4P~) + a7~7C4P~)] 
+ B6[~7 + b6~6(4P~) + b7~7C4P~)l 

~7 = ~7 + n7[~6 + c6~6C4P~) 
+ B7[~7 + d6~6C4P~) 

+ c7~7C4P~)l 
+ d ~"(4P )] 7 7 ~ 

The coefficients a6, .•• d7 are calculated from the observed P-state 

fine structure splitting. For example, 

2 2 [E(6 P3; 2) - E(6 P~)] 

(37) 

(38) 

(39) 

(40) 

(41) 

where 6E = E(~6) - EC~6)· We find: a6 = +.033, a7 = +,0081, b6 = +.012, 

b7 = +.0029, c6 = +.061, c 7 = +.012, d6 = +.022, d
7 

= .0043. The 

interconfiguration inter~ction correction toJU is now computed from 

Eqs. (39), (40) by means of the formula 

(42) 

In the evaluation of all the perturbing terms we use the non-relativistic 

form (31). We find: 
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v!Un = [ (a7c6 + S7d6) (a6a6 + S6b6) + (a 7c7 + S7d7) (a6a7 + S6b7) J • 

~[g(4Pl) - g(2P, )] . ~2· = -1.9 X 10-6 l.lB (43} 
'2 '2 

Inclusion of higher s~state excitations (6s ns np) does not significantly 

change Eq. (43). However, since the electrostatic exchange integrals 

are fairly sensitive t9 small changes in wave-functions, the 4th order 

result (43) might be in error by as much as a factor of 2. 

3.3 Breit Interaction Corrections 

The OECF approximation used up to now does not include a complete 

description of electron-electron interactions, even if we assume a 

spherically syrrmetric core. To order v2;c2, the electron-electron 

interaction contributes a term to the Hamiltonian: 

·~ 2 .. e 
1< rik 

- e2 ) (~i-~ + (~i.-;ik)(~-rik)) 
2 f<t rik rik 

The first term on RHS of (44) is in fact partially included in the 

central potential (Eq. 4) but the second term is not, and must be 

(44) 

regarded as an additional perturbation. This term may be reduced to 

the following expression (Breit interaction) 15 : 

2 

~ (~. l X p. J fill=~ -+-. a 
B 2 1 rik 1 k 

(45) 
2 1 -+ +l -e 

~ 
~ -+- -+- -+ -+ 

2 r rik Pi 
. p (rik • (rik 'Pi) . pk)] k rik3 
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In order to calculate the contribution of this interaction to the Ml 

transition we replace p by p + eA (electron charge= -e), where 

-t = B__::_; 
A 2 • 

Thus we obtain: 

3 
-+ e • cr --

k 2 

(46) 

16 This expression has been derived previously by Abragam and Van Vleck, 

and Schwartz. 17 We now consider the special case of one electron out­

sidea spherically symmetric electron distribution; it has been shown 

that only electrons outside of closed shells give non-vanishing 

"b . 16 contr1 ut1ons. 

(4 7) 

For present purposes we choose w
1

, w1 ' to be 6P1 , 7P1 wave functions, 
"'2 "'2 

respectively; for p(r2) we insert the spherically symmetric density 

obtained from our central potential, and we set B II z. Then the amplitude 

for ~he mJ = ~-+ mJ,= ~transition is reduced to a sum of radial integrals: 
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vU = - B -~ < V > + ~ <W> e [ 4 2 2 ] 
L 2 45 9 

and 

f 6 I 

<W> = [p(r1)[ fp&2) r 2dr2] F' (r1) r/ dr
1 1o L 1;1 .. 

and F, F' are the non-relativistic 6p, 7p radial wave-functions, 

(48) 

(49) 

(SO) 

respectively. The resulting contribution toJU is evaluated numerically 

to be 
-7 

~L = -4 X 10 ~B (51) 

The second tenn on RHS of (46), called the "orbit-orbit" ~orrection, 16 

gives the following matrix element: 

_MOR = 
3 ri 

~e6 Jt4J1 * Crl) r~ fcr2) 
rl 0 

00 

+ .f:(rz) Tz drzl J':1 " J\,p1• (t1) 

ForB II z, m3 = ·~-+ m~ = ~' this becomes: 

3 
'-M OR = -e 9 B [ <W> + <V>] 

which yields the following mnnerical contribution to vU 

-5 
-.~UOR = -1.20 X 10 ~B 

(52) 

(53) 

(54) 
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3.4 Total Theoretical Ml Rate; 

Corrections to gJ (T£, 62P~) 

We collect the four contributions to the Ml amplitude (Eqs. (32), 

(43), (51) and (54): 

Our analysis of hyperfine structure indicates that thp-

uncertainty of ~20% in the calculation of relativistic 

In addition, _;UI I has an independent tmcertainty of 

The combined theoretical uncertainty of ....M (Eq. 55)· is est 
-5 be ~1.0 x 10 ~B. 

(55) 

.·.relativ 

be 

The Zeeman energy shift in a constant magnetic field B is related 

to gJ by: 

tJ: = ~BgJmJB (56) 

In zeroth order 

gJ = J(J+l) + L(L+l) - S(S+l) + g J(J+l) + S(S+l) - L(L+l) 
ZJ(J+l) S 2J(J+l) 

where g5 = 2.002319114. The corrections to gJ are obtained in the 

same·manner as those described in Sees. 3.1- 3.3, merely by computing 

62P1 ·- 62P1 diagonal matrix elements. The results of this calculation 
~ ~ 

are displayed in Table 5 and compared with experiment. 19 The agree-

ment is very good. 
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3. 5 Hyperfine Mixing 

Next, we calcul'ate the additional contributions to the M1 amplitude 

arising from admixture to 6P, 7P wave-functions of 7P, 6P components, 

respectively, due to hyperfine interaction. According to first order 

perturbation theory, 

2 2 j6 P1 ,F> = 16 Pt ,F> + 
'2 '2 

2 2 
<7 pl ,F IHHFS I 6 pl ,F> 

'2 '2 

E - E 6p 7p 
(57) 

(58) 

where the j ••• > indicates a perturbed state, and HHFS' given by Eq. (16), 

is diagonal in F, the total atomic angular momentum. This 'contributes 

to the Ml transition matrix element as follows: 

1 
--- • <nP1 ,F' !Mll nP1 ,F> 
E .E '2 '2 . 6p- 7p 

(59) 

where on the RHS we use the non-relativistic M1 operator, whose matrix 

elements are independent of principal quantum number n. It is interesting 

to note that the LHS of Eq. (59) vanishes for F = F'; thus this correction, 

unlike the previous ones, only affects F = 0 ~ F' =. 1 and F = 1 ~ F' = 0 

transitions. The hyperfine matrix elements on the RHS may be computed 

by the methods of Sec. 2.3 with the following results: 
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For F = 0, F' = 1, 

<Ml>F'=l,F=O = 
HFS 

-6 
+2.6xl0 llB 

For F = 1, F' = 0, 

3.6 Other Ml Transitions 

(60) 

(61) 

The methods outlined in Sees. 3.1 - 3.3, 3.5 may be used to cal-

culate other T£ Ml transitions, forbidden or allowed. These include 

2 2 the 6 P~ - 6 P312 transition (allowed) which has been suggested as an 

interesting candidate for a neutral current experiment, and the 6 2~ -
~ 

72P312 , 62P312 - 72P~ transitions which are not so strongly forbidden 

as nP~ - n'P~ and nP312 - n'P312cases, since for~+ 3/2 or 3/2 + ~ 

the radial wave functions are not fully orthogonal. In what follows 

we ignore the small higher-order effects considered in Sees. 3.2, 3.3, 

3.5, and consider only the one-electron. amplitude of Eq. (28). For 

nP312 - nP~ transitions we find 

- 2 2 3 J gl (kr) 
A3/2-+'-'2 = 2n IV fi I = e w I w (62) 

and similarly for ~3/2 transitions. The results are tabulated m 

Table 6. In the allowed cases, the M1 matrix elements are within 2% 

of the non-relativistic value -./2/3 , while the forbidden (62P~ - 72P312 , 
2 2 . . 

6 P312 - 7 P~) matrix elements are about 10% of the allow~d values, 

which corresponds to the expected magnitude of spin-orbit coupling 

effects. 
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These transitions also have non-zero electric quadrupole (E2) 

amplitudes. We obtain: 

1 25[(
00 

2 
AE2 ;: iS e w J/ f r . (63) 

since the portion of the E2 amplitude which is proportional to 

2 f gf r gi dr is quite negligible. Table 6 includes a tabulation of 

the E2 radial integrals and resulting A coefficients. The coefficient 

AEZ (62P312 ~ 6
2P~) has also been calculated by Garstani2° and his re­

sult (.11 sec-1) and ours are in agreement. 

4. PARITY VIOlATING El AMPLIIDDES 

4.1 62~ ~ 72~ Transition 
~ "'2 

As previously discussed (Sec. 1) parity-violation in the electron-

nucleon weak neutral interaction manifests itself in the matrix element: 

(64) 

We write the perturbed 6P, 7P states as: 

(65) 

·E<nS1 I H I7P1 > 
j7Pl > = I7Pl > + . ~ PV ~ 

~ ~ E F. . . n· 7P - inS 
(66) 

From (64) we obtain: 

IHPVI 
G ~ 1 n'P>=_!_ 

~ 4n T l2 r2 [fns (r) ~ 'p(r) - fn 'p(r) ~s Cr J . 
r=O 

(67) 
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This expression is averaged over. the nucleus asstuning a constant 

proton- and neutron- density. As an al temati ve, one may ass tune a point­

like nucleus, and evaluate <nSIHwln'P> at the nuclear radius; this 

increases the m.unerical value by 6%. The El matrix element is obtained 

by evaluating: 

=~ 
ns 

(68) 

For the El matrix elements on RHS of Eq. (68) we have 

<nS I Ell pl > = e<nS I €. r I pl . > = effsrfp dr . X ms £ • e X IIJ> 
~ ~ -1 r 1 

~ %Jf5rfp dr, Cms = mp = -~) (69) 

Expression (68) is evaluated by two methods: 

1. A sum is taken over the lowest five states l6s2 ns>, n > 6; 

and the effect of the autoionizing l6s 6p 7p> state is also taken into 

account by including in the sum a term corresponding to the unphysical 

state j6s2 6s>. (See Appendix B for this argtunent.) 
· lnS><nSI . 2. The operators . E _ E are replaced by D1rac Green's 

n'P nS 

functions, described in detail in Appendix C. This calculation includes 

the contribution of all intermediate S-states including continuum 

and autoionizing states and is thus more reliable and complete than 

method 1. 
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The results are slUIUTla.rized in Table 7. The Green's function 

method yields the mnnerical value for &PV = < 7P1 !Ell 6P1 > in Eq. (68): 
"2 "2 

. -10 
&PV = 1.93 1 . 10 Qw I~BI 

which corresponds to an A coefficient: 

A= 1.20 · l0- 16 Q2 sec-l 
w 

In the Weinberg model, 

Qw = Z (1 - 4 sin2ew) - N ~ -140 

forT~, using sin2ew = 0.3 as suggested by the experiment of Reines 
22 . 

et al. Thus we obtain from (70) and (72): 

For the circular dichroism 6 it can be shown that one obtains: 

Inserting (73) and the experimental value of~U from Eq. (3) in 74 we 

obtain: 

6 = -2.6 . 10- 3 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

This result is to be compared with the calculation of Sushkov, 

Flambaum., and Khriplovich, 22 who obtain, alsousing A.{ex:pt fromEq. (3), 

6 = -2.5 . 10- 3 (76) 

To calculate &PV' they use non-relativistic hydrogenic wave-functions with an 

empirically determined correction factor. Their radial Ei integrals· are ex-

tracted from experimental evidence where available, or from numerical 

calculations, and a finite sum over the five nearest levels is perfonned. 

It can be seen from Table VII that our complete Green's function evalu­

ation differs from our finite sum by about 20%. The close agreement 

of Eqs. (75) and (76) is therefore somewhat fortuitous. 
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4.2 Other Parity-Violating Transitions 

For P~ - P312 .transitions we may ignore the effect of HPV on the 

P312 state since J = 3/2 wave functions have extremely small amplitudes 

at the nucleus. Thus, 

=L 
ns 

<P312 jEll nS><nS IHpyl P~> 

Ep - E 
'!.: nS 

2 

(77) 

These matrix elements were evaluated in the same way as described above 

for &PV. The results are sununarized in Table 8, where 

00 

<P312 jEll nS> = e~ ffp r f~ dr 
Jo" 3/2 :-z 

(77a) 

5. STARK EFFECT 

5.1 62P1 - 72~ Transitions 
Yz Yz 

We now calculate the electric-field-induced El transitions which 

can occur between 62~ , 72~ levels through Stark-mixing with 2~ , 
Yz Yz Yz 

2 D312 states. The coordinate system is shown in Fig. 2. Action of the 
-+ -+ 

perturbation H' = eE · r = eE y results in the perturbed states: 

L: 
lnS><nSI eE y INP1 > 

INPl > = INPl > + 
. 0 Yz 

Yz Yz nS ~1 - E nS 
Yz 

L: lnD3/2><nD3/2 leEoyl NP1> 
+ Yz (78) 

nD3/2 . ~~ - EnD3/Z 

Thus an electric dipole transition stimulated by laser photons with 

linear polarization 

£ = cose y + sine z (79) 

has amplitude: 
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= 

n = S~, n312 states 

The result of a calculation of this amplitude may be represented by a 

2x2,matrix whose rows and columns are labelled by mJ(62P~) and 

2 mJ(7 P~) respectively: 

Here 

and 

2 
&s = e E · 

0 
!.: 2 

2 mJ(7 P~) = ~ acose -iBsine 
= -~ -iBsine acose 

R R ( 1 1 ) 7P,nD 6P,nD E -E - E -E 
7 nD 6 nD 

(81) 

(82) 

(83) 



-30- --. 

2 2 · 2 · I I 2 where E6 = E(6 PL
2
), E7 = E(7 P1 ), and R7P nS = <7 P1 r n 51 >, etc. 

~ ~ ' ~ ~ 

The quantities a and 8 have been evaluated by summing over the nearest 

Sand D states, and also by use of the Green's function, Appendix C. 

The results are summarized in Table 9. 

Chu, Commins and Conti have measured 8/a. 
. 3 

Their--result: 

(84) 

is in good agreement with the Green's function value of Table 9. This 

theoretical value 8/a = 0.80 was employed by them to determine the ex-

perimental value of_H, as described below. 

5.2 Experimental Determination of Ml Amplitude 

A finite 7 2~ final state polarization can arise along the z axis 
~ 

of Fig. 5.1 through interference between_U and/or &py-?.nd &5 . Inter­

ference betweenfi and &
5 

may then be utilized to measure....At Here the 

effects of &PV' which are in any case very small, are neglected. In 

an extension of this experiment now underway, interference between 

&PV and &5 is utilized to determine &PV itself. 

In order to facilitate·comparison with observations in which some 
. . 2 2 

of the hfs components of the 6 P1 - 7 ~ transition are resolved, we 
. Yz ~ 

replace-the matrix of Eq. (81) by one whose rows and columns are labelled 
2 2 -~ 

by F', mF' (for 7 P1 ) and F, mF (for 6 P1 ), respectively. Including 
~ ~ 

&PV,_U and &5, the total dipole amplitude Dis given in Table 10. 

In the experimental determination oLU, the 62P1 hfs splitting, 
~ 

but not that of 72P1 , is resolved. Thus the 72P1 polarization is given 
~ ~ 

by the fonnula: 
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P(F) = (85) 
\' F' 2 
~ ID ,mF'I 

mf:,mF F,mF 

Neglecting VUI 2 compared to !&5!2 (which is justifiable for the rather 

large E fields employed) Eq. (84) becomes the following for the four 

indicated cases of interest: 

a) F = 1, F' = 1 £ II £ (8=0) p = i ~~ 
3 a 

b) F = 0; F' = 0 £ II £ (8=0) p = 0 

c) F = 1; F' = 1,0 £ 1 £ (8=90°) p = -~~~ (72P hfs liDresolved) 
3 B Yz 

d) F = 0; F' = 1 e 1. £ (8=90°) p = -z---M 
B 

We now apply the hfs mixing correction of Eq. (60) to case d) (it also 

applies to case c but this was not observed in detail). The resulting 

. pcorr. /P . h . od . h . F h . rat1o d a 1s t en 1n go agreement w1t exper1ment. rom t e1r 

measurements of Pa and/or Pd Chu et a13 obtain the experimental value 

of vU given in Eq. (3). 

5.3 Interference of &PV and &5 

When the incident light is circularly polarized, it becomes 

possible to measure the interference between &PV and &5 , again by 

detecting the polarization of the 72P1 state (by means of circular 
. ~ . 

polarization of its decay fluorescence). The formulae analogous to 

Eq~ .(85) are readily obtained from Table 10. We quote only the result. 

for the F = 0 -+ F' = 1 transition: 
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~(S-f)2 - ~(S+f)2 
p = ----~~------=---~ 

~(S+f)2 + ~(S-f)2 + f2 
-2f 

~ 

B 
(86) 

where f = vU ~ n~PV, n = + 1 for RHC (UIC) laser light, and the 

approximation P ~ -~f is valid for large electric fields (E>>l V/cm). 

6. PARITY VIOLATION IN 2P~ - 2P312 TRANSITIONS 

For the transitions 62P~ - 62P312 , 62P~- 72P312 , and 62P31z- 7 2P~, 

we :include E2 as well as M1 contributions and write: 

<T> = <P3/21 ~.~X e+ e £. r + i e (~·r)(k·r)IP~> (87) 

where ~ = trnc ct + S)' and E = 9 case + 2 s:in0 . 

The result:ing transition matrix is given :in Table 11. The polarization 
I 

is calculated as in Eq. (86) with the result 

(88) 

The numerical results are summarized :in Table 12. 

The transition 62P~ - 62P312 has been discussed as a candidate for 

optical rotation experiments to detect parity violation. We compare 

our value of the 62P~- 62P312 polarization 4.17.10- 7, with that obtained 

from the calculation of Henley and Wilets: 23 

P = 4.80 · l0- 7,for sin2e = 0.3 (89) 
w 

The discrepancy of 15% is largely due to the <8. 2> amplitude which Henley & Wilets 

ignored. Once this correction is made, the two calculations agree within 2%. 
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Henley and Wilets used a Green's function technique with hybrid Dirac-

Schroedinger wave functions; that is, relativistic wave functions are . 
calculated for very small r and matched to non-relativistic functions 

at larger r. Empirical energies rather than calculated energies 

(which in their case differ by ~20%) are inserted, although it is 

claimed that this does not change ~PV substantially. Since Henley 

and Wilets do not report calculations of T~ parameters other than 

2 2 
~PV (6 P!

2 
-6 P312) we cannot make an accurate comparison of their cal-

culation with ours or with experiments. 

W . . -· h . 1 1 . 23 ' 24 f h . 1 e note 1n pass1ng t at 1n ca cu at1ons o t e opt1ca 

rotation of the currently investigated ~s312 - 2n312 and 4s312- 2n512 

transitions in bismuth, the effect of <~ 2> is ignored. In the cal-
. 20 

culations.of Garstang for these transitions, the ~ 2 amplitude 1n 

4 2 s312- n312 is in fact negligible, but the large ~ 2 amplitude cal-

culated for 4s312- 2n512 would reduce the optical rotation by ~30%. 

A more precise calculation may alter this result substantially. 

. 2 2 2 2 The T£ transitions 6 p
312

-7 p
112

, 6 P
112

-7 p312 may also be considered 

1n optical rotation experiments, although the experimental diffi-

culties are formidable. 
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FIGURE CAPTIONS 

Figure 1 Low-lying energy levels of the T~ atom (not to scale). The 

hyperfine structure splittings of 62P1 ,'7 2P1 states are 
'2 '2 

shown. Absorption of the 62P1 -7
2P1 Ml photon (292.7 run) is 

'2 '2 

detected by observing fluorescence at 535 nm. accompanying 

decay of the 72P1 state. 
'2 

Figure 2 Coordinate system and orientation of electric field E, laser 

beam, and detectors as described in this pap~r and utilized 

in the experiment of Chu, Corrunins and Conti. 
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APPENDIX A 

Interconfiguration Interaction and Hyperfine Structure 

2 of the 6 P312 State 

2 It is well known that the observed hfs of the 6 P312 state in Tl 

differs markedly from that calculated in the OECF approximation using 

h . 1 Sd'lO 6 26 f" . b h 1 . t e s1ng e s p312 con 1gurat1on, ecause t e actua atom1c state 

contains admixtures of other configurations, 2 notably ( •.. 6s 7 s 6p) . 

We write the unperturbed wave function ( ... 6s 26p) as ~O and form two 

possible P312 (or P~) states from the 6s 7s 6p configuration. These are 

~l (6s 7s (3S1) 6p 2P J) with the 2 s electrons in a spin-one state, 

and ~ 2 (6s 7s c1s0) 6p 2PJ) with the total s electron spin equal to 

zero. The states and notation are similar to those of Koster, 2 who 

performs a similar calculation for g.allitun. We write for the total 

wave-ftmction: 

. (Al) 

The coefficients a1 ,a2 are given in first order perturbation theory by 

a = 1 

and 

<~liVI~o> 

EO-El 

2 

(A2) 

(A3) 

where V = !:. ~. . and the matrix elements of V in A2, A3 are calculated 
1<J lJ 

from the electrostatic integral: 
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and the similar and direct exchange integrals F0(6s, 6p; 7s, 6p) and 

G1 (6s, 6p; 6p, 7s). We use the 6s wave-ftmction (ionization energy= 

2.3376 • 10-5) calculated from Eq. (4). This is not self-consistent, 

since that central potential already includes the 6s 2 charge distribution. 

However, .this introduces an error estimated at only 10 to 15% in the 

ionization energy. The 7s and 6p3 states are calculated in the same 

central potential, and the energy denominator is approximated by the 

6s 7s d .f£ N 1· . . h 2 2 2 1 f" d - energy 1 erence. orma 1z1ng W1t a 0 + a1 + a2 = , we - 1n : 

6P1 : a = .97 a.l = +.0097 a2 = +.23 
"2_ 0 

(A4) 

6P3/2: a = 0 .97 a = 1 .029 a = 2 .22 

The large difference a1 (P3; 2) - a1 (P~) occurs because of a corresponding 

difference in the exchange integral G1 (6s, 6p; 6p, 7s) between 

6P3; 2 and 6P~ states. 

The hfs splitting is: 

2 4 2 
~3/2 = ~oC6 p3/2) + 9 al c~6s + ~7s) 

- 4 2 
- ala.2 (~6s - ~7s) - - a.la.2..'~6s ~7s 
313 316 

2 22( ) 2 (- ) ~~ = ~oC6 P~) + 9 al ~6s + ~7s + 
3
1! ala2 ~6s - ~7s 

(AS) 

+ _4_ ~~ ~ 
316 6s 7s 

where only the dominating s-electron perturbation is included. 

.. 
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In fonnulae (AS) we use the experimental value of tJ. 75 , Eq. (A4), 

and the calculated value tJ.65 = 13S Ghz. The numerical results are 
. . 2 

swmnarized in Table AI. They show .that the 6 P 
312 

hfs is strongly 

affected by configuration mixing while the 62P1 hfs is not. Further, 
"2 

similar corrections can be obtained for 6sns6p configurations with 

n>7. That of the 6s8s6p and 6s9s6p configurations is also included in 

Table Al. We find for 6s8s6p312 : 

6s9s6p312 , a1 = .007, a2 = .OS. 

a1 = .012, a2 = .09; while for 

Because of the tmcertainties and lack of· self-consistency inherent 

in the present approach, there is no profit in attempting to include 

contributions of configurations 6sns6p312 with n>9. 



Table AI. 

Hfs splitting 
Unperturbed including (6s7s6p) Observed 

Hfs splitting: correction: Hfs 
State ~Eo ~E1 = ~Eo + 6(6s7s6p) ~E2 = ~l + o(6s8s6p) + o(6s9s6p) splitting 

62P 
~ 

21.8 Ghz 22.1 , 22.1 21.33 

2 3.27 Ghz 1. 37 .81 .518 6 p3/2 
J 
~ 
N 

I 

"' 
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APPENDIX B 

We demonstrate that the effect of the 6s6p7p autoionizing state is 

taken into account (approximately) by calculating the amplitude &PV if 

a term corresponding to the unphysical 6s2 6s state is included._ The 

term in question is: 

Now: 

and 

<6s6s7pl£·rl6s6p7p><6s6p7piH?vl6s6s6p> 
T = 

E6s6s6p - E6s6p7p 

<6s6s7piH:Pvl6s6p7p><6s6p7pj€·rl6s6s6p> 
+ ~-----------------------------

E - - E 6s6s7p 6s6p7p 

<6s6s7p I(· ;l6s6p7p><6s6p7p IH'I6s6s6p> = 

- <6slt·rl6p><7piH?vl6s> = 

<7piH:Pvl6s><6slt·;l6p>, 

<6s6s7piH:Pvl6s6p7p><6s6p7pl£·rl6s6s6p> = 

- <7pl£·rl6s><6siHivl6p> 

Furthermore E65657p- E656p?p ~ -CE6p- E65) 

and E6s6s6p - E6s.6p7p ~ - (E7p -E6s) 

Inserting B2 - BS in Bl we obtain: 

. , (Bl) 

(B2) 

(B3) 

(B4) 

(BS) 

<7p I£ ·r l6s><6s'IHpyl6p> <7p IHpyl6s><6s'l f·r l6p> 
T = + (B6) 

E6p - E6s · E7 - E6s 

which is the desired result. 
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.APPENDIX C 

Construction and Use of the Dirac Green's Function 

The construction of the Dirac Green's function has been described 

by Mohr,· and Gyulassy, with emphasis on the case of a spherically 

symmetric central potential. This function is a solution of the 

differential equation: 

(Cl) 

where H is the Dirac Hamiltonian with potential V(r2) = V(jrz!J and I 

is the 4x4 identity matrix. Separation of radial and angular variables 

is accomplished by writing 

(C2) 

where the XK (~) are the same functions as defined in Eq. (13). Eq. (C2) 

is justified by the completeness relation: 

~ -+ t -+ (1 J ~x~Ce2)x~ (e1) = · o(~2 -~1)o(cose2 - cose1) 
K, lJ 0 1 

Only G;~_ 1contributes to &PV (S~-states) while for &S (Stark mixing), 

the tenns G~~-l (S~ states) and G~~2 cn312 states) contribute. Eq. (Cl) 

reduces to a 2x2 radial equation: 

!) • 

... 
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:· 

•• 

(C3) 

It can be shown that the solution of C3 is: 

G (r2, r 1 ,E) = - 1- t 2-r1 K JK(E)l . 

(C4) 

where JK(E) is the Wronskian: 

and FK, GK are solutions of the equation: 

l+V(r)-E c- .!. dJP+ £) r ur r 
= 0 (CS) 

-l+V(r)-E 

( ~<)is the solution which is regular as r+O, while(F>) is the solution 
< ~ 

regular as r+oo. These solutions are calculated in the same manner as the 
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eigensolutions of Eq. (11), that is, by numerical integration of the 

differential equation starting with the asymptotic solution either for 
' (L • 

small r (for F~, G< and usin~ V(r) in (c) of Sect_~on 2.1 or for larger 
. -e . ·~ . 

(for F>, G>, using V(r) ~ -r- . We note that F, G of CS correspond to 

f/r, g/r of Eq. (13). 

The parity violating amplitude &PV of Eq. (68) can be written as: 

Because of the short range character of HPV the first term in C6 becomes: 
00 

1 (K=-1) -e f 7P r 2Cr2 F Cr2 ,E6))dr2 
0 1 m t ~ m 

• x. 1 f·e x 2 

1 r -1 

--1~ • . • (RF K-- (R,E )g (R) -iGQ1 ' 1 { ( - 1) 

8n/L J (E
6

)R2 < 6 6P 
(RG (K=-l) (R E ) ) f (R)} 

< ' 6 6p 

(C7) 

R<r nuc 

In-practice this expression is averaged over the region R ~ r c where nu , . . 

r is the nuclear radius. The second term in C6 becomes: nuc 

(RG~K=-1) (R,17))£
7

(R) } 

(C8) 



• 
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A similar calculation was perfonned for &5 (Sec. 5). In this case only 

"large" components (f,F) contribute significantly. For example, the 

matrix element a of Eq. (82) is written: 

. r roor 00 (K=-1) (K"=-1) 
a = _ i~J/7PCr2Jr2 (r<F< (r<,E6)) (r>F>. (r>,E6))r1£6p(r1)dr1dr2 

.. J(E6) 

+ Jl'f7p Cr2Jr2 (r<F£<=·
1

) (r<E7)) (r >p~<=- 1 ) (r>,Ei) )r1 £6P(r 1)dr1dr2 ] 

J(E7) 

. - } . [same aS above with K = +2] (C9) 

I~ all of the above expressions, 

r> = larger of r 1;r2 

r< = sma11er of rl'r2. 

The expression for B · (Eq. 83) is obtained in the same way. 

I 
; 
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Table I. Dirac radial fmctions f/r, g/r for selected states. 

It 3/2 It It 3/2 
r .llil &1!1.' !!!:1 &1!1 fJ!l &f!l fJ!l &!!1. fJ!l &!!1. 

(•) r r r r r r r r r r 

.02 2.383xto' 3 5. 985xl0 -:J 4.014x1o· 5 -4.454xto·6 8.39lxt0' 4 2.107xto' 3 8.49tx1o· 3 -2.090x1o· 3 1. 582xto' 7 1.329xlo'6 

.12 1.678 3.970 2.004x1o· 4 -3.040x1o· 5 5.908 I. 398 5. 782 ·1. 915 1. 339xt0'6 6.675xto·6 

• 32 l. 739 3.000 4.608 -7.035 6.122 1.056 4.146 -1.459 4.416 l.S5Sxl0- 5 

.62 1.920 2. 300 7.678 -l.l84x!0- 4 6. 761 8.10lxl0- 4 2.889 -1.111 1.088xi0· 5 2.643 

1.42 2.171 1.329 l.272x1o· 3 ·2.022 7.667 4.146 1.137 -6. 232xto' 4 3. 568 4.641 

2.40 2.116 7 .OIOxl0- 4 1.491 -2.483 7.452 2;469 I.l78x10- 4 -3.113 7.335 5.913 

4.40 1.438 1.170 1.272 -2.431 5.492 4.119x1o· 5 -5.188 -3.300 1. 479xlo' 4 6.307 

6.40 6. 498xto' 4 -7.624x1o' 5 7.S41x1o· 4 -1.862 2.288 -2.686 -4.468 4.905x1o· 5 1.988 5.373 

8.40 3.484xto· 5 ·l.181xi0'4 2.519 -1.223 1.221xlo· 5 -4.159 -2.095 5.933 2. 212 4.072 

10.40 -3.545xto' 4 -1.029 -1.120 -6. 774xto· 5 -1. 249x10- 4 -3.623 8, 735xlo·6 4.549 2.192 2.812 

12.40 -5.474 -7.o9oxto· 5 -3.412 -2.690 -1.928 -2.496 1. 557xlo· 4 2.674 1.999 1. 748 

14,40 -5.949 -3.882 -4.501 8.953xto' 7 -2.045 -1.366 2.296 1.035 1.698 9.173x10'6 

18.40 -4.428 6.076xl0-6 -4.693 1.80Zxl0- 5 -1.559 2.152xto' 6 2.224 -9. 239xlo·6 9. 727xto· 5 -1.242 

24.00 -7.630x1o· 5 2.738x1o· 5 -1.759 2.833 -2. 673x10- 5 9.650 7.174x1o· 5 -1.448x1o· 5 5.380x1o·6 -6.513 

44.00 2. 924x1o·4 5.932xl0- 7 2.646 -4.910xlo· 6 1.028x1o· 4 I. 943x1o' 7 -1. 331xto'4 2.688xl0- 6 -8.549x1o· 5 -2.090 

M.oo -2.830x1o· 5 -7.414xl0' 6 4.584x1o· 5 -6.436 -l.038x1o· 5 -2.617x1o· 6 2.078x1o· 5 3.321 -2.523 1.021 I 

84.00 -2.000x10·4 -4.208 -1.308x10- 4 -1.843 -7.059 -1.472 9.622 5.844x1o· 7 2.586 1.371 ~ 
00 

120.00 -1.161 4.658x1o' 7 -1.616 1.631 -5.575 1.881xl0-7 5.576 -1.094x10' 6 5.549 7.503xl0' 7 I 

220.00 1.172 1.12Sx1o'6 6.475x1o· 5 5.257xto' 7 4. 251 3.8f>6 -6.797 -8.433xlo'8 2.296 -3.148xl0'8 

320.00 1.497 3. 754x1o· 7 1. 230x1o' 4 -1.560 4.866 8.494x1o' 8 -4.468 2.076xto' 7 -5.243xlo· 6 -1.241x!0' 7 

420.00 1.174 9.062xto' 8 .1.107 -2.489 2.984 -3.331 -5.083x1o·6 1.112 -1.97txto· 5 -1.211 

620.00 5.470xto' 5 -4.168 6.172x1o· 5 -1.546 -5.002xlo' 6 -7.184 3.6o4xto· 5 4.52Jxto'8 -3.048 -8.423x1o·8 

820.00 2.313 -2.271 3.007 -7.456xl0- 8 -2.19lxlo· 5 -5.060 4.121 
-9 -9.513x10, -3.144 -5.262 

1020 .. 00 9. 48lx1o·6 -1.205 1.400 -5.061 l -2.651 -2.763 3.375 -2. 372xto' 8 -2.804 -3.074 

1420.00 1.531 -2.444xlo·Y 2. 852xto·b -6. 770x1o·Y -2.074 -3.184xto·Y 1.617 -1.735 -1.865 -8.203x10' 9 

1820.00 2.402x1o'7 -4.271x1o' 10 3.188x1o' 7 -1.300 -1.203 2.811 6.387xto'6 -7.867x1o·9 -1.075 -1 .861x1o- 10 

2600.00 6.195xl0-B -1. 224x1o' 11 2.155x1o· 8 -4.915xlo·ll -2.960x1o· 6 l. 7-77 8. 224x1o' 7 -1.131 -2.933xto' 6 9.397 
3100.00 5. 710x10- 10 -1. 219xlo' 12 3.197xto·9 -4. 917xl0- 12 -1.067 7.784x1o- 10 2.025 -2.884xlO·IO -1.160 5. 451 
3600.00 - 3.634x1o· 7 2.984 4. 788xlo·8 -6. 975x1o· 11 -4.377xlo· 7 2.529 
4100.00 -1.189 1.058 1.109 -1.617 -1.593 1.051 
4600.00 -3. 776xlo· 8 3.563xlo·ll 2.825x1o· 9 -l.256x1o·IZ -5.63Rxlo·8 C.083xl0-ll 
5600.00 -3. 316xto' 9 3. 946xto- 12 -6.639xto' 9 S;43Sx10-IZ 
6600.00 -7.359xlo·IO 6. 509xto· 13 

~ 

.. '. . .. 
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Table II. 

Fitted energy Valence- Observed 
Spectroscopic level Spectroscopic electron hyperfine 

level (ionization energy hyperfine splitting 
desigzation energy, JI1ec2=12 level a s~litting (GHz) (GHz) 

• • 6p pl 1.1939xlo-5 1.1953xlo-5 21.8 21.36 
'2 

2 6P p3/2 9.8745xl0-6 1. 0062xlO -5. 3.27 . .528c 

2 3.6756xl0-6 3. 6648xl,O- 6 2.71 2.13d 7p pl 
'2 

2 7P p3/2 3.3937xl0-6 3.4219xl0-6 .494 .62d 

2 1. 9199xl0 -6 1. 9158xl0-6 .989 .79e 8p pl 
'2 

2 8P p3/2 1. 8155xl0-6 1. 8254xl0-6 .187 .26e 

7s 2s Yz 5.4164xl0-6 5.5289xl0- 6 14.3 12.4b ' 

8s2s Yz 2.5169xl0-6 · 2.5521xl0-6 4.32 

9s2s 
~ 

1. 4650xl0- 6 1.4796xl0-6 1.90 

1os2s1 -7 9.6260xl0- 7 1.01 9.594x10 
'2 

ns2S1 -7 -7 0.59 6.772x10 6.8llx10 
'2 

Table II References 

a) C.E. Moore, Atomic Energy Levels Vol. III, Circular of Nat. B. of 

Stand. 467 (1958). 

b) A. Gallagher and A. Lurio, Phys. Rev. 136, A87 (1964). •;,, .· .. 

c) G. Gould, Phys. Rev. 101, 1828 (1956). 

d) A. Flus berg, T. Mossberg and S.R. Hartmann, Phys. Lett. 55A, 403 

• 
(1976) . 

e) A.N. Odintsov, Opt. i Spektr. 9, 75 (142), (1960). 
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Table III. 

Radial 
Arcoefficient a A-coefficient integral Oscillator Oscillator 

(Gallagher & Lurie) (this work) <r>r strength strengtg It -

Transition 107 sec-1 · .107 sec-1 ('=) 1 (this work) (A 2A,&T) 
. 72S, -62P

1 6.25±0.31 5.78 294.1 .124 .123 
'2 '2 

82S, -62P1 1.78±0.16 1. 75 91.5 .0175 .0172 
'2 '2 

92S -62P . 78±0.10 0. 777 51.8 .00625 .00616 !.,; !.,; 

1o2s -62P 0.412 35.1 .00301 .00295 
~ ~ 

u 2s -62P . 31±0. 06 0.244 26.0 .00170 .00167 
~ ~ ,·, 

2 2 7.05±0.32 8.30 422.1 .178 .162 72S~-62P3/2 
8 s, -6 p3/2 1. 73±0.18 2.30 103.9 . 0180 .0172 

2 '2 2 
0. 80±0. 08 1.01 56.3 .00605 .0059 9 sl -6 P312 2'2 2 
0. 57±0. 06 .534 37 .. -5 .00285 .00286 10 S~-6 P312 

2 . 2 
12.6 ±1.0 16.04 -307.7 .368 .40 6 D3/2-6 PI 

2 2 '2 
4.4 ±0.5 6.39 -154.8 .109 .121 7 n312-6 P1 

2 . 2 '2 
1. 89±0. 3 3.19 - 99.8 .0434 .053 8 D3/2-6 PI 

2 2 '2 
.98±0.22 1.82 - 71.9 .0257 .028 9 D3/2-6 PI 

2 2'2 
.58±0.15 1.14 - 55.2 .0156 .017 10 n312-6 P~ 

62n3/2-62P3/2 2.20±0.23 2.88 -419.6 .0538 .052 

. 72n3/2-62P 3/2 0.76±0.08 1.01 :-186.9 .0129 .0136 
2 2 0.37±0.04 0.498 -117.5 .00549 .0056 8 D3/2- 6 p3/2 2 . 2 

0.19±0.02 0.279 :. 83.0 .00285 .0029 9 D3/2- 6 p3/2 

62ns;z-62P3/2 12.4 ±1.5 16.3 -405.6 .489 .46 
2 2 4.2 ±0.5 6.06 -186.9 .116 .12 7 Ds/2- 6 P3/2 
2 2 1.7 ±0.2 2.96 -116.9 .0489 .051 8 Ds;2- 6 P3/2 

• 

~ef. 11 
b Ref. 12 
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Table IV. 

Radial 
integral Oscillator Oscillator2 

.. <r>pi strength strength 
Transition (X) (this work) (A,A & T) 

72S -7.2P -1072.6 .315 .440 
~ ~ 

825, -72P 991.6 .241 .258 
~ !.: 

92s -72P 2 219.5 . 0234- .0219 
!.: ~ 

102s -72P 114.3 .00784 .00741 
~ ~ 

n 2s -72P 75.1 • 00277 .00342 
~ ~ 

2 2 . 
-1007.8 .476 .440 7 sl -7 P312 2 ~ 2 .. 
1240.2 .297 .294 8 pl -7 p3/2 

2 ~ 2 . 202.2 .0176 .0164 9 sl -7 P312 2>2 . 2 
100.4 .00550 .00542 10 S~-7 P312 

62n312-72P1 1321.4 .369 .340 
2 2 '2 

- 489.2 .202 .248 7 D312-7 P1 
2 2 ~ 

- 254.2 .0733 .0850 8 n312-7 P1 
2 2 '2 

- 165.3 .0352 .0399 9 n312-7 ~~ 
102D312-7 P~ - 120.0 .0199 .0223 

62n3/2-72P3/2 1328.0 .0152 .0166 . 
2 2 - 729.8 .0396 .0418 7 p3/2- 7 p3/2 

82n3/2-72P3/2 - 331.0 .00937 .0116 
2 2 - 204.9 .00495 .00506 9 D3/2- 7 p3/2 

. . . 



-52-

Table V. g- factor anomaly calculation and comparison with experiment. 

Measured 62P1 g-factor 
;z 

0-order theory 

g-factor anomaly 

calculated anomaly 

relativistic 

configuration interaction 

lamb 

orbit-orbit 

Total calculated anomaly 

~ef. 19. 

.6656924 (18)a 

.6658936 

- . 0002012 (18) a 

_:_ . 000107 

< .000001 

- .000006 

- .000082 

- . 000195 

• • 



Table VI 

. ,.: 

. ,, Transition 

62P ~ 2 
' ~ 

6 p3/2 

62P - 2 
~ 

7 p3/2 

72P - 2 
~ 

6 p3/2 

72P - 2 
~ 

7 p3/2 

. " 

·- -···" 
t' ~{t~ 
;,.} • •j 7, t'.l a 1 
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7 8 

._;\A X 3//2 -1 
flfr

2
f.dr, ~(sec ) 

0 (~2) 

+ .9796 4.083 2.94 . 105 

- . 0902 3.31 -1.27 . 105 

- .115 2.18 -3.00 . 105 

+ .9822 8. 706 • 10-3 2.40 106 

-1 AE2(sec ) 

.158 

55.2 

72.8 

3.69 . 10-4 
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Table VII. Calculation of &PV 

Method A: 

Intermediate 
s-state 

6s > 

7s > 

8s > 

9s > 

I lOs> 

Total 

Method B: 

Contributions to &PV 
<7Pl IEllns><nsiHpyi6P1 > <7P1 IHpylns><nsiEli6P1 > 

"2 "2 "2 "2 

E - E E - E 6 n 7 n 

-lo I I -i 0.197 • 10 Qw lJB +i 0.631 • lo- 10~11-lBI 
-i 1.69 +i 5.08 

-i 1. 77 .+i 0.485 

-i 0.232 +i 0.093 

-i 0. 084 +i 0.037 

• 
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Table VIII. &PV for n'P~ - nP312 transitions • 

Method l: 

Intennediate 
s-state 

l6s> 

l7s> 

ISs> 

l9s> 

I lOs> 

Tot$.1 

Method· 2: 

2 2 
6 p3/2-6 p~ 

-i 4.22 X 

10-lO~~~BI 

-i 2.83 

-i 0.264 

-i 0.041 

-i 0.041 

-i 7.45 X 

10-lOQwi~BI . 

-i 8. 09 X 

10-lOOwi~BI 

-i 0.65 

+i 6.76 

-i 3.13 

-i 0.30 

-i 0.10 

+i 2.58 

+i 1. 75 X 

10-lO~~~BI 

-i 0.86 

+i 3.43 

-i 0.78 

-i 0.14 

-i 0.06 

+i 1.58 

+i 1.25 X 

10-lOOwi~BI 
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Table IX 

Fm1 te stun over 
QUantity Summed 5 lowest energy levels 

(72s~ - 11Zs~, 6Zn312 - 1oZn312) 

R7P,nS ~S,6P 

E6- ~s 

R7P ,nS RnS ·, 6P 

E7 - ~s 

R7p,nD ~,6P 

E6 - ~ 

2 e a. ( ~ . 1JB ) 
m unlts volts/em 

e2S 

S/a. 

3.78 . 1010 

-2.58 . 1011 

3.50 • 1010 

8.00 . 1011 

2. 43 . 10-s 

1. 78 . 10-s 

. 73 

Green's 
ftmction 
method 

3.64 . 1010 

-2.71 . 1011 

2.81 . 1010 

7.01 . 1011 

2.05 10-s 

1.64 10:.. 5 

.80 
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Table X. Dipole transition amplitudes D = <Ml> + <Elpy> + <ElSTARK> 

for 62P1 (F, mF) ~ 72P1 (F', mF,) transitions. 
'2 '2 

2 F 0 1 1 1 . 6 pl ' 
mF 0 -1 0 1 '2 

2 . .i..()A sine -Jkose .i..cv«sine 7 P1 ,F', mF' 
'2 v'Z" + &PV sine 12 

0 0 -B'sine +S'sine 
a'cose +&PV cose) +&PV cose) 

i .. a 'cose.JA.cose i (JA . -(-JUsme c--1 s1ne 
12 +&PV sine 12 

0 -B' sine +B'sine 1 -1 
-&Pv<:ose) +&PV cose) 

-""'Ucose .i..c.Usine a'cose -i -(,.,Usine 
7 7 

-B 'sine +B' sine 
1 0 +&PV cose) +&PV cose) 

.i..c vU-sine -4v«sine a' cose+ficose 
12 0 12 -&PV sine 

1 1 +B 'sine -B 'sine 
-&PV cose) +&PV cose) 



Table XI. 

3 
2 

1 
2 

3 
-2 
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p 
3/2 

- P1 transition amplitudes. 
"2 

1 
2 

(
13..»· &2) .. e - +- 1 sm 
2 16 

+ i 

& f- - ...l) i sine 
212 

+i &PV 
- 2- cose 

-A &
2 

cose 

1 
- 2 

- fi & cose 13 . 2 

i sine 

+i &PV 
- 2- cose 

l!vU + &2 c-· . -) i- sine 
2 10 

+i 13 &PV 
2 cos a 

' . 

.. '• 

. ., 
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Table XII. Amplitudes for P312 -P~ transitions. 

• '' 
Transition . {' amplitude. 6P312-6P~ 7P312-7P~ 6P312-7P~ 

vU .981 -.0921 -.1151 

~2 .22 -.434 .767 

~PV -i 8.09xlO-lO~ -10 +i 1. 75xl0 ~ +i 1.26xl0- 10~ 

PCQw=-140) 4,17 X 10 -7 1.67 X 10 -8 4,85 X 10 -9 

-12 f vU = -w . (£~ g3/2 + g~ £3/2) gl (wr) dr 

~ - E 
~ . n 
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