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ABSTRACT

Calculations are presented of the

2p -7°P, forbidden M1
50 0%

El amplitude expected in the 6
transition in Tﬁ if parity is violated in fhe neutral
weak e-N interaction,as proposed in a number of gauge.
models,. including that of Weinberg and Salam. Valence:
electron wave-functions are generated as numerical so-
 lutions to the Dirac equation in a modified Tietz cen-
tral potential. These wave-functions are used to cal-
culate allowed El1 oscillator strengfhs,
hfs splittings, and Stark El transition
amplitudes. These results are compared with experi-
ment and the agreement is generally good. The rela-

tivistic 62P,/-72
2

P, Ml transition amplitude M is also

2
calculated and corrections due to interconfiguration
mixing, Breit interaction, and hfs mixing are included.

The result: M., = (-3.2 + 1.0) - 107> Jel® s in
Zmec

theo
agreement with the experimental value:
_ -5 |e|h .
= (-2.11 £ 0. . -
Juexpt (-2.1 0.30) 1Q el The parity

violating El1 amplitude &py is calculated and a value for
the circular dichroism

- ZIm(gPV,Theo)

Mexpt

is obtained. Parity violating effects in other Tp tran-

3

8 = -2.6 « 10

sitions are discussed.
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INTRODUCTION
" Discovery of strangeness-conserving neutral weak currénts in
neutrino-nucleon scattering experimentélhas'stimulated considerable
interest in the possible existence of a weak nedtral electron-nucleon

interaction. If such an interaction violates parity, as predicted by

several theoretical gauge models including that of Weinberg and Salam 2

(W-S), effects in heavy atoms such as optical rotation in allowed’Ml_:t
transitions, and circular dichroism (dependence of absorptiondon
photon helicity) in forbidden Ml transitions may be observable..

-Anfexperiment_to study the latter effect in the doubly forbidden

Ml transition 62P,/-72Pl (292.7 nm.) in atomic TR vapor has been pro-.

2 2

posed.3 The idea, originally suggested for the 6°S, -7°S, . transition
) . ) ¢ 2 -

4 is that a short range, parity violating,

neutral weak interaction Hy, mixes the 62P1/;72
2
2 2

states. Thus the transition 6 P, -7°P, , nominally Ml with amplitude
% % -

in Cs by Bouchiat and Bouchiat,

P, T¢ states with nZS1
4 %

g 2 S
M =<7 P, mJlM1|‘6 P, mp> : ‘ S (@

also contains a parity-violating electric dipole compenent with
amplitude'&pV —<72P,,mJ|Ell62P,, mJ> It can be shown that intefferehce
between M and &py Tesults in a dependence of the 6° P 72P absorptlon

rate W on rlght (R) or. left (L) handed photon he11c1ty
WR) - W(L) _ Im(&PV)‘AA 2. Im(gpv)

~ 0 R | ,(2)

PTRR TN T 7, 612 o

The "circular d1chr01sm" § can be detected by observ1ng the fluorescence

accompanying decay of the 72P,/2 state (see Fig. 1).’ The flrst—step in



that experiment was the determination of the Ml amplitude itself,
the result being:3
5

Mexpt = (-2:11 £ 0.30) - 107 yip | (3)

where up = |elhi/2m c. In that measurement and also in the experiment
proposed to detect §, use is made of the interference which occurs
betweeanand/or&pv and the Stark-induced electric dipole amplitude &S

for 62P,/—72
2

P% transitions in an external electric field.

In this paper we present results of calculations of
the atomic structure of TR which are necessary in order to make useful
comparisonslbetween these experiments and the predictions of models of
the neutral weak interaction. The thallium atom has 81 ¢1ectréns'with
a ground state electronic configuration: .152...Sd10 6526p. Our
approach is to assume that all singly-excited TRI states of

2 le

interest have the same inner electron configuration (1s”...5 2

6s”,
with total L=0, S=0) as that of the ground state, and differ only in
the valence electron orbital. .This approximation,'while not strictly
correct, is reasonable, since inner shell ionization energies

are at least several fimes larger than that of the 6p valence electron.
It also has the obvious virtue of simplicity, since within such an
approximation most properties of interest to us can be calculated from
the valence electron wave-function, which is obtained by so}ving the
Dirac equation numerically in a spherically symmetric botential, for

all states of interest. We have chosen the potential:



2

2.0 . oy
e T “
r

V(r) = -¢
r(l + nr) .

W1thout the exponentlal sh1e1d1ng factor e Y V(r) is the "Tletz"
potentlal,S which yields a good approximate solution to the Thomas-'

YT

Fermi equation. The factor e is inserted to account for the exponen-

tial decrease of electron density for large r. Parameters n and y are

chosen so that the calculated and observed 62 2

P% and 7 P% energies. agree .
We describe calculations of energy levels, allowed El oseillator
strengths, and P%, S% hyperfine structure splittings, all in good
agreement with observations (see Sec. 2). As is well known,.the.62_P3/2
hfs splitting is strongly affected by interconfiguration interaction,
and a correction for this must be applied in order to obtainhreasonable
}agreement w1th experlment (see Appendlx A). Our calculation of M
(Sec 3) includes the one- -electron relat1v1st1c contrlbutlon and
correctlons due to interconfiguration, hyperflne and Breit 1nteract10ns
the result is in agreement with the experimental value (Eq. 3). Our

calculation of the Stark transition amplitudes & _ yields two second-

S
~order matrix elements a,B for linearly polarized excitation light
parallel and perpendicular, respectively, to the applied statie field
E. The ratio B/a is in agreement w1th the experimental results of Chu,
Commlns and Cont1 (see Sec. 5).

The satlsfactory agreement between experiment and the calculations

descrlbed in the prev1ous paragraph prov1de confldence that our estl-

mate of the parlty violating amplitude & PV should be reliable enough



so that future expetimenfal determinations of circular dichroism may
yield useful tests of gauge models.. For purposes of the present

discussion we present the analysis in terms of the W-S model,2 which
describes low-energy stfangeness conserving neutral weak interactions

in terms of an effective Hamiltonian density:
x(x) = \g 3,60 - ) | )

where G is the Fermi coupling constant of weak interactions

G=13x 10-12 in units (h'= m,=c = 1) used throughéut. The
current Jx(x) has both hadronic and leptonic parts, the former being
expressible as:

A _ 2,0 2,0 _ . 2~ A,EM -
Jhad =V + A 2 sin ewg _ (6)

A,0

is the I, component of the strangeness-conserving hadronic

A,BM

wheré \Y 3

A,0

vector current, A is the neutral AS=0 hadronic axial current, J

is the EM current, andewis the so-called 'Weinberg' angle, which is

2

given by sin 8, =0.3. That portion of the neutral leptonic current

involving e  is:

lept,e 1 20y T L
Jxep € = - 5 [(1 - 4sin®0 ) ¥ v, Yo * ¥, v, Y5 We] (7)

where Y, is the electron field operator.
The first and second terms on RHS are respectively vector and axial-

vector currents. We are interested in those portions of ¥(x) which

are pseudoscalar, not scalar; thus we consider the product of the ‘axial

portion of Jiept,e and the vector portion of Jﬁad' (The other pseudo-

. lept,e”

scalar term corresponding to the product of the vector part of J5 and

the axial part of Jﬁad gives a much smaller contribution since it is
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.

_ﬁfoportional toltotai nuclear spin, and for a heavy nucleus, most
of the nucleon spins cancel in pairs.) Ignoring this latter portion,
we find:

2 X,EM

Wy Gy T AU |
i (x) s weYAYSWe_ v . 2sin qﬂ J ) . (8)

Taking matrix elements onKPY(x) for the static limit of the nucleus,

we obtain the matrix element of the effective Hamiltonian:

-G £ . .
A - R @ ©)
where »
Q, = (-4sin®e) Z - N o » .o

and ¢1(;)’ wz(z) are Dirac wave-functions corresponding to states of
‘opposite parity, and 'x=0" indicates the product is averaged over the nucleér
volume. " In fact only P,/2 and Sl/2 states yield non-negligible

métrix elements. Equation (9) is derived from the W-S model. However,

other gauge models with parity violation would iead to the same ex-

pression with only Qw of Eq. 10 being model dependent. In most cases

lelr& Z. In Sec. 4 we use Ed. (9) to calculate &py. Finally, Sec. 6
containé an estimate of parity violating effects for transitions in

2 2

T2 other than 6°P, -7°P, .
2 2

2. THALLIUM WAVE FUNCTIONS IN THE ONE ELECTRON
CENTRAL FIELD APPROXIMATION
2.1 Constructidn'of Wave Functions
The Dirac equafion is
[G-P +8-eVly=(1-E)w B (a1
where E_is ﬁhe valence electron ionization  energy Kl-EI) is the total

I
electron energy including rest mass], and q and 8 are the usual Dirac



matrices. We write

£(r) xs |
Y= T | : (12)

. M

1g(;) X

As usual, k = ¥ (j+;) for even(odd) parity states, the xEK are two-

. component angular momentum-spin functions6 given by:

-1
CCs, 2,5 3%,u-%, ) Yy 2(8,0)

x1(8,0) = (13)

. +15
Cls,2,357%,1%%,1) Yy 2(8,0)
the C's are Clebsch - Gordan coefficients, u = mj, £=|k+1/2| -1,
and the Y's are spherical harmonics. Equation.(lZ) reduces to the

two coupled radial equations:

- £ f+ 12 - E-V(DIg

&
"

14)
K

Sg v [B+ VOIS

Bt

Following the procedure used by Schwartz7 to calculate hyperfine
structure splittings in T& and other heavy atoms, we cthsé for V(r)
the modified Tietz potential of Eq. (4). Parameters N and y are chosen

2

so that calculated and observed 6 P, and 72P, energies agree.
: 4 5

The fitting procedure is as follows:



0 G Usg /70855
-9_
(1) For very small r (r < T, = .02 EEE'= .02) i.e. for r
. e , ,
within the nuclear radius T,, one of the following three potentials is
chosen: v
. A -Ze2 _ _
a) V(r) = - (Point nucleus)
_ _ _ZeZ v :
b)) V(r) = - (Constant potential)
0
Ze2 r2 -
c) V() = —/— (——7 - 3) (Constant nuclear charge density)
_2r0 T, ‘

The initial wave-function values for this region are generétéd'QSiné a
poWer series expansion to solve Eq; (14). -

(2) ‘For T > Ty Eqs,(14) for f(r), g(r) are integrated numefically step-
wise using a fourth order Runge-Kutta method.8 Approximateiy 5000
intervals of length increasing from .001 X to 2.0 X are used.

(3) The eigenvalue condition is that

lim f(r) = 0. The energy EI in Eqs. (14) is varied to insure
iﬁ:t this condition is satisfied.

The energy spectrum does not depend strongly on the choice of
potenfial in séép 1. Of.ail the quantitieé computed below, only the
weak electron-nucleus interaction depends significantly on this choice,
. and for that quantity the dependence is only ~ 10%. The number of
intervals‘can_be'reduced substantially without significaht loss of
precision exceptvfor calculation of the forbidden Ml transition (see

Sec. 3); however this reduction would provide no economic advantage on

the LBL CDC 7600 computer. The calculation procedure can be reversed by
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choosing an asymptotic.form for £ énd g at 1argé T, and integrating

step-wise toward r = 0. This yields the same states as the |

procedure actually used, but is less convenient for calculation of &PV'
The values of nand vy éhosen for most calculations ::1re.~

1 1

n 2.5937a0‘ = 355,43 X
" .2579a0‘1 = 35.34 %~

(15)
1

Numerical values of %-and %-VS r are given for several states in Table I. These

2P1 9 7 zpl,'
-2

2

values are chosen to yield agreement between calculated and observed 6
energy levels to within 0.1%. Other low lying S%, D%, P%, and P3/2
energy levels are calculated, and these all agree with observations to
within 2%. Table II includes a comparison of calculated and observed
energy levels.
>2.2 Hyperfine Structure

The one-electron central-field (OECF) wave functions described
above can be used to calculéte hyperfine structure splittings for
comparison with experimental values. This comparison provides a
reasonably sensitive tést of the accuracy of calculations of & py since
both the latter and the hfs'depend~on_va1ues of the wave-functions near

the origin. The perturbation Hamiltonian for hfs is

> > > >
_ m T >
Hps = e - A = eq - = em + — (16)
5 3 n 3
r’ r

where En = gnuﬁf is the nuclear magnetic moment operator, Wy is the

nuclear Bohr magneton, and I = %4 is the spin for both stable thallium

isotopes, 0°1¢ and 2010, A1s0 g (*%%1e) = 3.223, g (%me) = 3.255;°



in our calculations these are averaged to g = 3.24. It can then be

shown that the hfs energy splittings are given in first-order by:6
: 8. : : S
oW = eg 1 J+5% - > R 17
: o - 4-1 : R
where »
0 T .

Tabie IT includes a 1list of hfs splittings célculated for the various
enéfgy levels, together with experimental values where these are available.
The discrepaﬁcies are not due to major defeéts in the wave functions,

but rather to_interconfiguration interaction, which is known to have an
eépecially large effect on the 62P3/2 state. This is demonstrated in Appendix .
A which contains an estimate of interconfiguration interaction for 6p electron
states. Although the effect on the 62P3/2 hfs splitting is large it can

be shown that interconfigﬁration interaction corrections to &PV are negligible..

2.3 Fine Structure
Another test of the wave-function for small r is the fine structure

splitting AE = E(j = £ +%) - E(j =2 -1%) for £ # 0. Non-

relativistically,

AE = (2 + %) < nd %- g¥-| ng >

In a relativistic calculation such as ours, the fine structure is part
of the unperturbed Hamiltonian, and the calculated fine structufe is
simply the differencé between calculated (j = £ + %) and G=2-1%
energy levels. Comparison of these differences with observed energy

differences from Table II for P states yields discrepancies < 10%.
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2.4 Allowed Electric Dipole Transitions
We also calculate electric dipole radial integrals and transition
strengthélusing the OECF wave-functions. In the relativistic notation

10

of Berestetskii, Lifschitz, and Pitaevskii, the transition matrix

element is

_ 3> .U > L - -

Ve, = efd T jg (1) A‘J (r) (19)

where j%i (r) = ﬁf i wi is written in terms of the initial and final
Dirac wave- functions wi, Wf, Yu are the standard 4x4 matrices, and

AU (;) is the 4-vector potential. In the long-wavelength approximation

for an electric multipole field of order J,M we have:

A, D= (4, @, 0,0,0

3 2 - % > >

> a’k J+1l A4m ik-T

A @ = - S(IR| - w) Yi (=) -eX

0 /(zn)3 7 3 SUR Wy w

J+ ¥ v

SR PPN S W J}l 25" Yga (D 20)
(2J+1) !! T
For El radiation, this becomes:
> T )

Ao B = (D™ i DLARES e 1)



&
Q%

Combining Eqs. (19) and (21) we obtain:

Mo (1) 5 w32 2/2

Hl Y

Gty ® o 2y @ @

The spontaneous emission rate A is given by:

o 2
Rgg = 2m Vg
" where V%i 1s V%i summed over photon states and final electron states
(jf, mf), and averaged over initial electron states (ji’ mi). For

OECF wave-functions the angular integration is easily separated and we

find the following:

7 Transition | A-coefficient
Sy > Py Dyjp > Py : .4/9 el o <r>%i
5, Pz - 8/9 & <r>%i
D32 > Pz, 4/85 &% W <%,
D5/2 M P3/2 8/15 el o3 <r>%i

where w is the observed energy difference between initial and final
states and T = r(f £, + 8¢8; )dr. The signs of these radial
1ntegrals are fixed by the convention that f(r) > 0 as r - 0 for

every state. In Table III, thevradiel integrals <r>e and calculated
A-coefficients for nD - 6P and nS > 6P transitions are listed,

together with observed A coefficients for the same transitions as
determined by Gallagher and Lurio H The agreement between theory

‘and experiment is generally good, the dlscrepancy in the transition rates

typlcally,belng < 20%. This corresponds to a discrepancy in the
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radial integrals of < 10%, and,feveals that our wave functions are
reasonably accurate in the range r > 2A.

The oscillator strengths Ffi are defined by

27.+1\ A v
F.. = £ if | (23)

fi 23, + 1 26%

where Ji’ Jf are the initial and final total electronic angular momenta.
These quantities have previously been calculated

by Anderson et al%zby a method similar to ours (one-electron Dirac
wave-function and central potential). Table IiI includés a comparison
of their Calculafed oscillator strengths with ours for nD + 6P and

nS -+ 6P transitions. Table IV gives the same comparison for 7P -+ nS
and 7P » nD transitions, the radial integrals for which are needed in

evaluation of & and'&S (see Secs. 4 and 5). Our calculated oscillator

PV
strengths and those of Anderson et al. are nearly identical, which
suggests that the discrepancies (< 20%) between calculated and observed
values are due to a failure of the OECF approximation, rather than
merely to an inadequate central potential. Thus to obtain ﬁoré accurate
results it may be necessary to go beyond the simple OECF model.
3. MAGNETIC DIPOLE TRANSITION RATES
| 3.1 The Relativistic Contribution
- The relativisfic contribution to M arises from the transition

matrix element:10

, > * .
Ve =ie /Za_fdsr wf* @ & wi(?). T‘/i; TIm 'g‘l (kr) _ (24)



where gy (kr) = —2% 'J3 /2 (kr) is a spherical Bessel ifm;tion.- Using'

>

c 0

E; . i”/r)xllJ = -x‘_llb, and utilizing the anti-commutation of g - -f/r

>\
Eq. (12) for’wi, wf which are both P, states, employing o =< 0 O) and
. . 2 . .

43 -7 Ylm’ we obtain:

v, - - iefz'afdr 5 (k) (Fg; + fg) -

(25)
f rdoxt 1 ¥ Ylm X 11
We rewrite this as |
Ve, = (D)™ V275w w3/2 ey + & - (6
_ where £ q 1 the spherical unit vector:
= VOIS Tty ) | - (27)
and . |
Moy En = 'ef ar 81000 (g0, v g8y -
: (28)

HEx o Hi
_./-dQX_1 G-V "_zﬂerlmX-_l

for P,/ -> Pl/ transitions. The expression for ﬁf. . ém in the case of

S, - S tran51t10ns is the same except for a change in sign.

1
2

To flnd the transition rate

- —2_4 3 > . (2
A=om Ve | =5 0 |ug - & | » (29)

we sum over final and average over initial states to obtain:

gy (kr) |
A = 4’| _[ (feg; + g¢f;)dr | 2 (30)

w
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2 2

This formula was previously obtained by Johnson'> for the 2 S, - 1°S
A %

1
72

Ml transition in hydrogen. The result is also valid for allowed 4 - %

transitions. In this case ﬁfi of Eq. (28) approaches the famiiiar

> * e - 3 3
”fi‘.[“’f GLvu, g1y dr (31)
in the non-relativistic limit. This expression vanishes if the radial

parts of Wi and ¥_. are orthogonal.

f

We use our OECF radial wave-functions for 62PL, 72
2

Py states to
2

compute the result:

gy (kr) -5
MppL = -e./r_ —— (fyg¢ + gyfp)dr = -1.757 x 10 7w (32)
The extremely small size of this matrix element implies that relatively -
large corrections might occur due to interconfiguration mixing, hyper-
fine mixing, and the Breit interaction.
3.2 Interconfiguration Interaction Correction
Electrostatic interaction of the outer electron With excited core
states alone (as in Appendix A) does not directly effect the Ml tran-
sition rate, since it mixes'only those states having the same total
L and S (ZPI/2 in TY) }4Ikmuever, in second order, Spin-orbit
-coupling'allows an admixture of different L, S atomic states (e.g.
4P% in T2) and this admixture can give rise to a finite M1l amplitude
even in the non-relativistié limit.
A consistént fourth order‘treatment is necessary; the calculation

which follows is similar to that done by Phillips for corrections to

g;(Cs).} Since the ground configuration of T2 is (1s%.....5d %s%p),



we only consider the effects of 6s-electron excitation (the correction '

due to 5d excitation turns out to be smaller). The unperturbed

) /
states are .

Vg = w(62PL) = 6s”(!s,) 6p “p, -

3 ¢] (33)
¥, = (PP, = 6s('sy) Tp P,

2 ] 2

The first-order perturbation is the electrostatic interaction and the

perturbing states considered are:

o, = 6575(°S,) 6p P,

6 17 7

(34)

) =v657s(38 )'7 2P

7 °1) Py

Thus the perturbed states are

.'.-_.
Y6 = V6 * %% * 7% (35)

w; = w‘ + 66¢6 + 87¢7
where Ags G, 86, 87 are calculated by first order perturbatlon theory,

and ant15ymmetr1zat10n of the total wave function is taken into account.

For example:

. _775 G, (6s, 6p; 7s, 6p)
o = V372 71 T

where Gl(6s, 6p;b7s,‘6p) is the exchange electrostatic’integral, ’
AE = E(¢6) - E(w6), and E(®6) is a fictitious energy calculated for a
6s7s6p configuration in the potential of Eq. (4). Numerical compu-

tation .gives: | |

=.-.010,.0L7

o = +.023, B, = .094, B, - .006. | (36)



o -18-

The 6575(381) anPL states are now mixed with states
. 2 . . .
o' (*p,) = 6s7s(°s;) n'p p, | - (37)

1
2

by spin-orbit interaction. We employ the_perturbation Hamiltonian

-> > > >

1 8V
H'=2g - L; -8 =% (F 59; L * S _ : (38)
il 1. 1 »11‘ 1

and rewrite our wave functions as:

Vg = vg + aglog + acd ("B + a5 (P ) .
+ Bgle, + best (') + b0y ('R
and
. , 4 , A
by =y, + a7[®6 +C @6( P, ) + c7®7( P, )]
+ 8,10, + a0 ("B ) + don(R )

(40)

The coefficients a6,...d7 are calculated from the observed P-state
fine structure splitting. For example,

2 2
' - AE

I
6~ T3

(41)

where AE = E(¢6) - E(®6) We find:-a’6 = +,033, a, = +,0081, b, = +.012,

7 6

, b7 = +.0029, c, = +.061, c, = +.012, d6 = +.022, d7 = ,0043. The

6 7
interconfiguration interaction correction toM is now computed from

EQé. (39), (40) by means of the formula
My = <Yy ML ¥ > Mppp. (42)

In the evaluation of all the perturbing terms we use the non¥re1ativistic

form (31). We find:



hyp = Llogeg + B0 (gag + Bgbg) + (a7, + 8,4, (xgay + Beby] -
slg*®) - g®p1 - § = -1ox10C 0 @Y
Inclusion of higher s-state excitations (6s ns np) does not signifiéantly
change Eq. (43). HOwéver, since the electrostatic exchange integrals
‘are fairly sensitivé tp small changes in wave—fﬁnctions, the 4th order
result (43) might be in error by as much as a factor of 2.
| 3.3 Breit Interaction Corrections
The OECF approximation used up to now does not include a complete
descriptioh of electron-electron interactions, even if we assume a
spherically syﬁmetric core. To order vz/cz, the electron-electron
interaction contributes a term to the Hamiltonian:
A < 1;( %{ ] §3 ; o -G . (31';1k)(31§'¥ik) (44)
ik 1< Tk | T .

The first termm on RHS of (44) is in fact partially included in the

central potential (Eq. 4) but the second term is not, and must be
regarded ‘as an additional perturbation. This term may be reduced to

the following expression (Breit interaction)15

1 >
%[ Ty xp;l - &

iny . 3 1 > . g4 -+. IS =
f;( (f. By "Bt tog Gy (T3 Pi) - Pyl

NI(‘D

(45)
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In order to calculate the contribution of this interaction to the Ml

transition we replace 5 by 5 + eK (electron charge = -e), where

BxT
K= —Tr.

Thus we obtain:

| - 3 | . 3 X5
AH = e—‘ ; (6. -1— X A,) . g -g_ 1 +
B, eff 2 ¢ 115 i k 2 Z;l Tix :

> 'K' e
Tik M Tk Py

3 .
ik

(46)
T

This expression has been derived previously by Abragam and Van Vleck,16

and Schwartz.17 We now consider the special case of one elecfron_out-
.sidaavspherically symmetric electron distribution; it has been showﬁ
~ that only electrons outside of closed shells give non-vanishing
contributions.16
It can then be shown that the matrix element of the first term on
RHS of (46), called the 'Lamb" correction,18 18:
>

D RN L

> >
Irl rz!

- % o -
where p(T,) = E :lbk (r))¥ (1))
k#1
~For present purposes we choose wl’ wl' to be 6P, , 7P, wave functions,
: 2 2 ’
respectively; for p(?z) we insert the spherically symmetric density

obtained from our central potential, and we set Bl z. Then the amplitude

for the mJ'=_% + mp =% transition is reduced to a sum of radial integrals:
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2 2 |

e _4e € _ . '

JAL_TB[Z_S__<V>+ 5 <W>:l - (48)
where _— ] ' - .
w = [ ] [ ar, |F > ar; | 49
V2= | 5| [T elrp) dnp (F () 7y dn | (“9)
. o Ty 0
<W> =ﬁ(rl)[ o(r,) T,dr,] F'(rq) r12 dr, ' - (50)
0 T] : | o

and F, F' are the non-relativistic 6p, 7p radial wave-functions,

respectively. The resulting contribution toM is evaluated numerically

to be :

J\AL = -4 X 10—7 UB (51)
The second term on RHS of (46), called the "orbit-orbit" ¢orrection,16
gives the following matrix element: |

3 . SR
_ re > 1 4
Mog = ‘6‘.[“’1 (rp) [==5 frlr) 1pdry
T
1 0
% 3
. _[p(rz)_ r, dr) I, - By &) ary (52)
1
For ﬁ 2, m = P mj = 3, this becomes:
-e3B |
Mo = 5= [+ ) | o S
which yields fhe following numerical contribution to U .
W, = -1.20 x 107° ¢ | | (54)
“Mop T THeeV X 10 v
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3.4 Total Theoretical Ml Rate;
. | Corrections to gJCTQ, 62P%)
We collect the four Contributions to the M1 amplifude (Egqs. (32),
(43), (51) and (54): |

> (55)

M=Mppr + Mo+ M +vu0§ - -3.2 x 10 Mg
Our analysis of hyperfine structure indicates that the~ .
uncertainty of ~20% in the calculation of relativistic .relativ
In addition, JUII has an ‘independent unceftainty of JISM. T

The'combined theoretical uncertainty of M (Eq. 55) is est ‘o> be
5 _ '
UB' . .
The Zeeman energy shift in a constant magnetic field B is related

be V1.0 x 10~

to gy by:
AE = upgymyB - | - 60

In zeroth order

g = IO * LAA) - S(S4D) , o J(H)+S(SH) - L)
J 23 (J+1) S 23([+) |

where gg = 2.002319114. The corrections to gy are obtained in the

same manner as those described in Secs. 3.1 - 3.3, merely by computing

62P%-- 62P; diagonal matrix elements. The results of this calculation
2 .

- are displayed in Table 5 and compared with experiment.19 The agree-

ment is very good.



3.5 Hyperfine Mixing
Next, we calculate the additional contributions fo the M1 amplitude
arising from admixture to 6P, 7P wave-functions of 7P, 6P coﬁponents,
respectively, due to hyperfine interacfion. According to first order

perturbation theory,

| > )
— <7°P_,F |H, .| 62P, ,F> |
|6%P, ,F> = |62P, F> + —2 HMES ~ %' 192p g (57)
e 2 E, -E 2
: 6p p
2 | 2p weo .
5 . <6”P )F'I l 7 PI/QF'> '
|72p_,F'>= [7%P ,F'> + — % trs! 7 7 |6P E'> . (58)
7p . 76p

maemeL”>mﬁmwsaWHWMdﬁugaMHmyngbym.ﬂ&,
‘is diagonal in F, the total atomic angular momentum. This ‘contributes

to the Ml transition matrix element as follows:

3 2 . o ) -
<7°P,,F' M1] 6 P ,Foypg = (<7P,F |Hpg| 6P,F>-<6P,F' IHHFS|7P,F’>)

. 1

- <P ' M1| P, ,F> o (59)
B E : 2 2 . ’

6p E7p
where on the RHS we use the non-relativistic M1 operator, whose métrix
elements are independent of principal quantum number n. It is interesting
‘to note that the LHS.of.Eq. (59) vanishes for F = F'; thus this cbrrection,
unlike the pfevious ones, only affects F=0-+F =1andF=1~F" =0
transitions. The hyperfiné matrix eleménps on the RHS may be computed

—

‘by the methods of Sec. 2.3 with the following results:
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1,

For F = 0, F' =
F'=1,F=0 ' -6 ' '
<M1>HFS = +2.6x 10 up - . ‘ (60)
For F=1, F' =0,
F'=0,F=1 _ ., . -6 . /I |
ML> e = -2.6 x 10 ° f; _ , (61)

3.6 Other M1 Transitions
The methods outlined in Secs. 3.1 - 3.3, 3.5 may be used to cal-

culate other T2 M1 transitions, forbidden or allowed. These include

2 2

the 6°P, - 6 P3/2 transition (allowed) which has been suggested as an
2

interesting candidate for a neutral current experiment, and the 62PL -
2

72P3/2, 62P3/2 - 72P,/2 transitions which are not so strongly forbidden

as nP,_ - n'P and nP3/2 - n'PS/ cases, since for ¥ > 3/2 or 3/2 + %
7 . 2 :

2
the rédial wave fumctions are not fully orthogonal. In what follows
we ignore the small higher-order effects considered in Secs. 3.2, 3.3,
3.5, and consider only the one-eleCtron'amplitude of Eq. (28). For

nP3/2 - nP; transitions we find

1
3

2L 23 | sk 2
A3/2+1/2 = 2m lvfil =ew |]T (f3/2g,/2 + g3/2f1,2)! (62)
and similarly for 4»3/2 transitions. The results are tabulated in
Table 6. In the allowed cases, the Ml matrix elements are within 2%
of the non-relativistic value -v¥2/3 , while the forbidden (62PL - 72P
2
2 2

which corresponds to the expected magnitude of spin-orbit coupling

3/2°
P, ) matrix elements are about 10% of the allowed values,
2 .

effects.
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These transitions also have non-zero electric quadrupole (E2)

amplitudes. We obtain:: .
R [fffr £, erz - (63)

since the portion of the E2 amplitude which is proportional to
f 8¢ fz g; dr is quite ﬁegligible. Table 6 inéludes a tabulation of
the E2 radial integrals and resulting A coefficients. The coefficieht
AEz (62P3/2 > 62P%) has also been calculated by Garstaﬁg20 and his re-
sult (.11 sec'l) and ours are in agreement.
4. PARITY VIOLATING E1 AMPLITUDES -
4.1 6%p,_ > 7°P,_ Transition

As pfeviously discussed (Sec;'l) périty-violatidn in the electron-
nucleon weak neutral interaciion manifests itself in the matrix element:

%u:llﬂwlwzn :—2_—‘1 W B) v vy Oy | (64)

We write the perturbed 6P, 7P states as:

<nS,_ |Hy, 16 P> | |
6P > = 6P, > + Z E = |ns,> (65)
Egp - Ens |
| <nS, | HPV |7P > .
|'7'P’,/2 |7P > +Z | nS,> (66)
, - ‘2
| n- Egp - Eyg |
From (64) we obtain:
1
<nS, l byl n'P> = = T 52 [fhs(r) Erp) - £, () gns(rﬂ ‘
' . r .
5 , SR - =0
m_m ' : , (67)

SP
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This expression is averaged QVer,the'nucleus aesuming a coﬁstant‘

preton— and neutron—’deﬁSity. As an alternative, one may assume a point-
like nucleus, and evaluate <nS{Hp,|n'P> at the nuclear radius; this
increases the numerical value by 6%. The El matrix element is obtained

by evaluating:

' <7P, |E1l| nS><nS| Hy,| 6P >
, |EL| &P,> - E s LAt
: ns _ E6p’ EnS
. Z <P, |Hpy| nS><nS| E1 | 6P, > _ )

For the El matrix elements on RHS of Eq. (68) we have
» . Mg ., =~
<nS |E1| P> = e<nS| €-r |P,/2 > = eJ{}Srfp dr - X_i 3 -eI.Xg?

- %ffsrfpbdr, (mg = m, = -3) | (69)
Expression (68) is evaluated by two methods: |
1. A sumlis taken ever the lowest five states |6s2 ns>, n.> 6;
and the effect of the autoionizing |6s 6p 7p> state is also taken into
Vaccount by 1nc1ud1ng in the sum a term corresponding to the unphy51cal

state |65 6s>. (See Appendix B for this argument.)
2. The operators :;:: lﬂ§2§E§L are replaced by Dirac Green's

functions, described in detail in Appendix C. This calculation includes.

the contribution of all intermediate S-states including continuum .
and autoionizing states and is thus more reliable and complete than

method 1.



The results are summarized in Table 7. The Green's function

‘method yields the numerical value for &y = < 7P, |E1| 6P,> in Eq. (68):
: PV IR

N . -10
bpy = 1.931 - 10 Q, IuBI (70)
which corresponds to an A coefficient:

0-16 2 1

A=1.20-1 Q, sec ' ; . (71)

In the Weinberg model,
Q=2 (1-4sin"9) - NZ-140 (72)

for Ty, using sinzew = 0.3 as suggested by the experiment of Reines

22

et al. Thus we obtain from (70) and (72): .

. -8 .
&py = -2.70 1 - 10 l“BIx | : (73)

For the circular dichroism § it can be shown that one obtains:

§ = - R e : N _ _ (74)
Ll? + fe)? Bt -

Inserting (73) and the'experimentai value of _\l from Eq. (3) in 74 we
obtain: |

§=-2.6 +10°°

(75)
This result is to be compared with the calculation of Sushkov,

Flambaum. and Khripl_ovich,22 who obtain, alsousing
-3 '

AAexpt fronlEq.-(S),
§=-2.5 -10 (76)

To calculate & they use non-relativistic hydrogenic wave-functions with an

pv?

empirically determined correction factor. Their radial El integrals are ex-
tracted from experimental evidence where available, or from nﬁmerical
calculatiohs, and a finite sum over the five nearest levels is performed.
It can be seen from Table VII that our complete Green's function evalu-
ation differs from our finite sum by about 20%. The close agreement

of Egs. (75) and (76) is therefore somewhat fortuitous.
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4.2 Other Parity-Violating Transitions
For P, - P transitibns.we may ignore the effect of H,, on the
3 3/2- - , pv-—
P3/2>state-since J = 3/2 wave functions have extremely small amplitudes

at the nucleus. Thus,

~—

EE: P35 |E1| nS><nS |HPV|’P%>

ns Ep - Eg

1| P> = (77)

P3/2
These matrix elements were evaluated in the same way as described above

for &PV‘ The results are summarized in Table 8, where

©

_e/2 '
<Pz, |El] nS> = = ofP3/2 T fS% dr (77a)
5. STARK EFFECT -
2 2

5.1 6°P, - 7°P, Transitions
2 . 2

We now calculate the electric-fieldjinduced El transitions which

2

can occur between 62P1, 7°P, levels through Stark-mixing with 2S,,
* * %

2D3/2 states. The coordinate system is shown in Fig. 2. Action of the

. . > ->
perturbation H' = eE + T = eE y results in the perturbed states:

InS><nS| eE y |NP >
T e s+ B IS
nsS ENP1 - Eis

2

- InDg,,><nDy/, [€E Y| NP>

+ (78)
3 B, - B,
~  Thus an electric dipole transition stimulated by laser photons with
linear polarization |
£ = cos® § + sinb 2 , v ‘ (79)

‘has amplitude:



s‘? <7 Py |E1| 62 PLoStark =

<72P1 le€-§‘ln|><n[eE y1|62P, >
> 217

' no B - K
- 2
n = S’/z’.DS/Z states

< 72P,/| eE y|n><n|et -] 62P1/>
2 - 2

(80)

E E

n 7P, - n
*

The result of a calculation of this amplitude may be represented by a
2x2 matrix whose rows and columns are labelled by my (62P,/) and

m J(72P,/ ) respectively:
2

&s = e’E -
° 2
1/2 "1/2 = mJ(6 Pl/) . )
_ , 5
) (81)
mJ(7 P,/) = % jocos® -1iBsin® o
2
= -4 |-iRsin®@ acosO
Here : v
21 R R 1 1
=3 :E:: P,nS - YOS ,
9 4 7P,nS"6P,nS <E7 Eq E¢-E g
2 R R 1 o1
+ = 7P,nD “6p,nD - + = (82)

- and

1 z 1 1
= = 7P,nS 6P nS -
9 (E -E E7—Ens)

ns 6 S

R R 1 1
Z 7P,nD "6P,nD - (83)
' ’ o (E E6 EnD) -

E
nDsz

+ .
.LOID—*

7 "nD
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 where E, = E(6°P,), E, =_E(72P%), and R = <72P%|r|n28%>, etc.
2

7P ,nS _
The quantities a and B have been evaluated by summing over the nearest
S and D states, and also by use of the Green's function, Appendix C.
The results are summarized in Table 9.

Chu, Commins and Conti have measured B/a. T_heir;.result:3 |
B/a]expt= 0.84 (84)

is in good agreement with the Green's function value of Table 9. This
theoretical value B/a = 0.80 was employed by them to determine the ex-
perimentél value of \{, as described below.
| 5.2 Experimental Determination of M1 Amplitude
A finite 72P,/2 final state polarization can arise along the Z axis
of Fig. 5.1 through interference between_U and/or &PV*énd &S., Inter-

ference between M and &_ may then be utilized to measure M. Here the

S
effects of &PV’ which are in any case very small, are neglected. In

an extension of this experiment now underway, interference between

Epy and &S is utilized to determine &y itself.
In order to facilitate comparison with observations in which some
of the hfs components of the 62PL - 72P; transition are resolved, we
. 2 2

replaée'the matrix of Eq. (81) by one whose rows and colums are labelled
by F', me (for 72P%) and F, My (for 62P%), respectivéi&. Including
&Pv,,u and &g, the tofal dipole amplitude D is given in Table 10.

In the experimental detefmination ofvu,.the 62P,/2 hfs splitting,

but not that of 72PL, is resolved. Thus the 72P1 polarization is given
F] ¢

by the formula:
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2 e [DE MEr
: m ,m'F My
P(F) = —~ — 2 (85)
D M ' | |
ml':,mF F,mF

Neglecting LMIZ compared to |8S|2 (which is justifiable for the father
large E fields employed) Eq. (84) becomes the following for the four

indicated cases of interest:

a) F=1,F =1 e E (e=0) pei-dl

b) F=0;F =0 el E (e=0) P=0

c) F=1; F'=1,0 81 E (6=90°) P = -%xg (72P% hfsvunfesolved)
d) F=0;F =1 e 1 B (0=90°) P=-2J§A' |

We now apply the hfs mixing corréction of Eq. (60) to case d) (it also
applies to case c but this was not observed in detail). The resulting
fatio Pgor.r'/Pa is then iﬁ good agreement with experiment. From their
measurements of Pa and/or Pd Chu et a13‘0btaih the experimental value
of Mgiven in Eq.. (3).
5.3 Interference of & and &g
- When the incident light is circularly polarized, it becomes

possible to measure the interference between &, and &g, again by

PV
detecting the polarization of the 72P1 state (by means of circular
, | < |
polarization of its decay fluorescence). The formulae analogous to
Eq. -(85) are readily obtained from Table 10. We quote only the result.

for the F= 0+~ F' = 1 transition:
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w607 - w0’

= ~ = (86)
(ere) + u(B-D° + ££ 8 |
where f = M- ”&pv’ n =+ 1 for RHC (LHC) laser light, and the
approximation P = '%ﬁ- is valid for large electric fields (E>>1 V/cm).
6. PARITY VIOLATION IN P, - 2P3/2 TRANSITIONS
. 2
i 2 2 2, _ 52 20 __ 25
For the transitions 6 P%.- 6 p3/2’ 6 P,/2 7 PS/Z’ and 6 P:()/2 7 P%,
we include E2 as well as Ml contributions and write: _
<T>=<p3/2{ﬁ XX Et+tet-r+ie 1)E&D|P> (87)
s
where I = %%E- @ +3%), and =9 cosO + & sind .

The resulting transition matrix is given in Table 11. The poiarization

is calculated as in Eq. (86) with the result

- 2M Im (&) . '
P=_ PV _ (88)

2 2 2
WI + :7; I &2>|
The numerical results are summarized in Table 12.. —

The transition 62PL - 62
2

P3/2 has been discussed as a candidate for

optical rotation experiments to detect parity violation. We compare |

our value of the 62PL - 62P3/2 polarization 4.17.10-7, with that obtained
2 .
from the calculation of Henley and W’ilets:23
P =4.80 - 107, for sin®0, = 0.3 C®9)

The discrepancy of 15% is largely due to the <&2> amplifude which Henley & Wilets

ignored. Once this correction ismade, the two calculations agree within 2%.



Hénley and Wilets used a Green's funcfion techniqﬁe.with hybrid Dirac-
Schroedinger wave functions; that is, relativistic wave'functions are
calculated for very small r and matched to non-relativistic functions
at larger r. Empirical energies fafher than calculated energies
(which in their case differ by ~20%) are inserted, although it is
claimed that this does not change 8PV substantially. Since Henley
énd Wilets do not feport calculations of T% parameters other than

2

8PV (62PL—6 PS/Z) we cannot make an accurate comparison of their cal-
P : _

culation with ours or with experiments.

25,24 of the optical

_ZD

We note in passiné that in calculations

4

S 2

4
372" D3/ @nd 'Sz p- "Dy

transitions in bismth, the effect of <82> is ignored. In the cal-

rotation of the currently investigated D

culations. of Garstangzofor these transitions, the &2 amplitude in

4 2

S,,,-D is in fact negligible, but the large 82 amplitude cal-

3/2 73/2
4 2

culated for 'S;,,-D would reduce the optical rotation by ~30%.

3/2 75/2 _
A more precise calculation may alter this result substantially.

2 2 2, 2
P32 7 P12 O P12 a2

in optical rotation experiments, although the experimental diffi-

. The T% transitions 6 may also be considered

culties are formidable.
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Figure 2
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FIGURE CAPTIONS -

Low-1ying energy levels of the T% atom (not to scale). The

hyperfine structure splittings of 62 2

shown. Absorption of the 62P1/—72
2

P,/2 ;7 P%'stateé are

P, ML photon (292.7 mm) is
detected by observing fluorescence at 535 nm. accompanying
decay of the 72P,/2 state.

Coordinate system and orientation of electric field E,‘laser

béam, and detectors as described in this paper and utilized

in the experiment of Chu, Commins and Conti.
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APPENDIX A
Interconfiguration Interaction and Hyperfine'Structure'

of the 62P, ,. State

3/2

It is well known that the observed hfs of the 62

P3/2 state iq T1
differs markedly from that calculated in the OECF.approximation ﬁsing
the single 5&10 6sz6p3)2 configuration, because the actual atpmié stafe
contains admixtures of other cohfigurations,2 notably (..;65 7s 6?).
We write the unperturbed wave function (...6526p) as wo and form two
po§sib1é P3/2 (or P%) states from the 6s 7s 6p ;onfiguration. These are
w1‘(6s 7s (381)'6p 2PJ) with the 2 s eiectrons in a spin-ohe,state, |
and wz (6s 7s (150) 6p ZpJ) with the total s electron spin:equal to
'zéro. The states and notation are similar to thdse of Koster,2 who
performs a similar calculation for gallium. We write for the total
wéVé—functioﬁ;

Y ='d0w0'+ dlwli+ A | | | (A1)

The coefficients aq,0, are given in first order perturbation:theory by

<. |V]|v,>
o = (AZ)
‘ 01
and »
<P lvl¢ > :
2 0
a, = —5—— (A3)
2 EO-_E2 , L |

]

where V z: %r- and the matrix elements of V in A2, A3 are calculated
13 Tij
from the electrostatic integral:
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FO(6s, 6s; 6s, 7_s) ='f/¢65(;1)w65(§2) ?elzz"w6;(§i)w7s(§é) -dTlde .
and the similar and direct exchange ihtegrals F,(6s, 6p; 7s, 6p) and
G1 (6s, 6p; 6p, | 7s). We use the 6s wave-function (ionization energy =
2.3376 - -10'5) calculated frém Eq. (4). This is not sélf—consisf_cent,
since that central potential already includes the 652 charge distribution.
However, .this introduces an error es.timated at only 10 to 15% in the
ionization energy. 'i'he 7s and 6pJ states are calculated in the same
central _poﬁential, .a.nd the energy denominatbr is appi‘Bximated by thev
© 65-7S energy difference. Nomalizing with oc(z) + ai + a% = 1, we find:

6P, : = +,0097

1 % = .97 = +,23

%1 %

o : (A4)
6P3/2: oy = .97 o = .029 o, = .22

The large difference o (P /2) Ty (P,/z ) occurs because of a corresponding
difference in the exchange integral G1 (6s, 6p; 6p, 7s) between
6P3/2 and 6P,/2 states.

The hfs splitting is:

)

- 2 4 2 ..
Bzjy = Bg(67P3 ) + goy (Bgg * Ay

-4 2
— a0, (A, - A} - —— a,0,/A6s ATs
s 1% Bes ~ Brsd T oo .1 2
_— 2 2 2 2 . ~ (AS)
by = 8y(67P) + 5oy (B + By ) # = ay%y (Bgs = B7¢)
+ _._4_. ‘/A6 A7
3/6 S /S

where only the dominating s-electron perturbation is included.



In fofmulae (AS5) we use.the‘experiﬁental value of A,g, Eq. (A4),

~and the calculated value FA6S = 135 Ghz. The numerical results are
summarized in Table Al; They show ﬁhat the 62P3/2 hfs is strongly
affected by configuration mixing while the 62P%vhfs is not. Further,
similar corrections can be bbtained for 6sns6p configurations with
n>7. That of the 65856p and 6s9s6p configuratioﬁs is also included in
.09; while for

Table Al. We find for 6s8s6ps/y: o) = .012, a

1 2~
65956p3/2, a = .007, a, = .05.

Because of the uncertainties and lack of self-consistency inherent
in the present approach, there is no profit in attempting to include

contributions of configurations 6sns6p3/2 with n>9,



Table Al.

splitting

» Hfs
Unperturbed including (6s7s6p) Observed
Hfs splitting: correction: ‘ ) . Hfs
State AEO AE1 = AEO + §(6s7s6p) AE2 = AEl + §(6s8s6p) + 8(6s9s6p) splitting
6°p, 21.8 Ghz 22.1 . 221 21.33
2
2 _ ' :
6 P3/2 3.27 Ghz 1.37 .81 .518

_ZV»_



APPENDIX B
We demonstrate that the effect of the €sbp7p autoionizing state is
taken into account (approximately) by calculating the amplitude aPV if
a term corresponding to the uhphysical.()s2 6s stateiis iv_ncluded.‘~ The
term in quéstion ié: |

<6s6s7plé-r|6s6p7p><656p7le§V|65656p>

E6$6s6p ) E656p7p

<65657p|Hly, | 656p7p><655p7p|€ 1] 65656p>
L

. (B1)
Eeses7p ~ Eeseprp
Now: ‘
<65657p| &+ T|6s6p7p><6s6p7p [H" |6s656p> =
- <6sl€-?|6p><7p|H§V[6s> =
- <7p|Hyy | 6s><65 [€-F|6p>, o i (B2)
and | '
<65657p|Hyy | 6s6pTp><656p7p| & -F|6s656p> =
- <7p|e-*|6s><6s |Hyy | 6p> . (B3)
Furthermore E6s6s7p - E656p7p = —(E6p - E6S) | | (B4)
-and E6s_6s6p ) E6s'6p7p - -(E7p “Egs) (B5)
Inserting B2 - B5 in Bl we obtain:
<7p|&-T|6s><6s [Hly |6p> <7p|Hpy,[6s><6s|€-F|6p> -
: E6p - E E, - EGS

6s - ‘ 7

which is the desired result.
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-APPENDIX C

Construction and Use of the Dirac Green's Function

The construction of the Dirac Green's function has been deécribed
by Mohr, and Gyulassy, with emphasis on the case of a spherically
symmetric central potential. This function is a solution of the

differential equation:
- ‘ 3 .
(H(r)) - E) G(?1,¥2, E) = I8 (?2-?1) | - (1)
where H is the Dirac Hamiltonian with potential V(,) = V(I?j) and I

is the 4x4 identity matrix. Separation of radial and angular variables

is accomplished by writing

-+ t -+ o > T >
Gr' (ry,m,B) KGR B -6, (rp,r ENEG . @)

i 3
G(rzyrl,E) =

Ky U .
| T | + ‘

167 (ry, T BN GWp @) 6o (rpumy B, (e @),
(C2)
where the XK(g)'are the same functions as defined in Eq. (13). Eq. (CZ)

is justified by the completeness relation:

+ 1
u > u > )
¥ (e,)x (ey) =( ’6(¢ -¢,)6(cosb, - cosh,)
2;; K 7277 1 01 271 2 1

Only Gil 1contributes to &py (S, -states) while for 88 (Stark mixing),
=- %
ij A1 .
the terms Gkb_,:_l»(S,/2 states) and GK.=2 (DS/Z states) contribute. Eq. (C1)

reduces to a 2x2 radial equation:



o
L
i
)
o
N
<
@!’

1 A12
1+V(r2)—E - ?E _Gkb(rz,rl,E)
1 9 K
— (r)) +=—= 22
r2_§?;, 2’ T, G " (ry,1q,E)
1 0 8§ (r,-ry)
- 22 €3)
0 1 t271
‘ It_can be shown that the solution of C3 is:
Ky RK ke
| N FE(r)FS(,) F(r,))65(x))
G '(r s T ,E) e(r
kol JX(E) g K K K K
G<(r2)F>(r1) G<(r2)G>(r1)
K : K K ' K |
BS(r))FL (1)) R(r,)6 )\
+ e(rl-r2 : : (C4)
K K . K K
where JK(E) is the Wronskian:
K _ 2 K K K K
3® = * {CmFS - mELm)
and F*, G* are solutions of the equation:
_ ) 1d(r), «
1+V(r) E | (' -r- Ir + ;) F
=0 (C5)
130 5 AV (r)-E J
<F<) is the solution which is regular as 0, while(F>) is the solution
G/ . ' G .
V< >

regular as r~. These solutions are calculated in the same manner as the
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eigensolutions of Eq. (11), thaf’is, by numerical integration of ‘the
differential equation starting with the asymptotic solution either for

small r (for F_, G_ and using V(r) in (c) of Section 2.1 or for large r
5 , _

5’ .
(for F>, G>, using V(r) » % . We note that F, G of C5 correspond to
f/r, g/r of Eq. (13).

The parity v101at1ng amphtude 8 of Eq. (68) can be written as:

€py = //<w7 2p, (rl)les T G(rl,rZ,E ) Hpv"*'u (r2)>d T d3‘r’1

a > .3
‘f[%l;ép%(?l) !HPVG(;I’;Z’E7p)e€'rwggpli(?2)>d T,d _1:1_

(C6)

Because of the short range character of HPV the first term in C6 becomes:

=<}

| t
e/f7p rz(rva (r5,E¢))dr, ./‘X'l 1 ee. x3

0

icQ, 1 R o
W (x=-1) (k=-1)
c— *{ (RF (R,E; )8, (R) - (RG (R,E.))f (R)}
8n/Z J(Eg)R? { < 76 “"6p < 6°""¢p
RThuc
C7)
In practice this expression is averaged over the region R < Tuc where
T e is the nuclear radius. The second term in C6 becomes:
£ PO D B3y ar - XM g3 ™
epr1(T1F> T (rpEp)) dry o X0y EeelXy
(RF (R,E;)g, (R) - (RG R,E.)) £, (R)
gn/Z JERE L R ) e

(C8)



A similar calculation was performed for &S (Sec. 5). In this case only
"large" components (f,F) contribute significantly. For example, the

matrix element o of Eq. (82) is written:

fff (r,)1, (r<F(K' 1) (r<,56))(r>1=('<' D, Eir £, (r))drydr

| J(Eg)
) /j’ °°f7p(r2)r2(: PO D 8)) BT D (o, ) £ (e,
‘ J(E7)
- _g_ [same as above with « = +2] _ | ‘ - (C9)

- In all of the above expressions,

1 larger of T1:T,

Xil

< smaller of Ty,T5.

The expression for 8 “(Eq. 83) is obtained in the same way.

S



Table I. Dirac radial functions f/r, g/r for sclected states.
L ™5 L K3 w5,
R0 10 W {5 pumn 10} 10 0] [0 p 10 10 pum 1)
x) r r ) r r r r r r r T
02 2.383x10°3  5,085x10°  4.014x107% -4.454x10°% 8301107 2.107x1073  8.401x103 -z.090x10°3  1.582x10°7  1.320x107°
.12 1.678 3.970 2.004x10°% -3.04010°% 5,908 1.398 5.782 -1.91§ 1.330x10%  6.675x20°6
32 1,739 3,000 4.608 -7.035 6.122 1.056 4.146 -1.459 4.416 1.555x10"5
.62 1,920 2.300 7.678 -1.184010°¢  6.761 8.101x10°%  2.889 -1.111 1.088x10°5  2.643
1.42 277 1.329 1.272x10°3 -2.022 7.667 4.146 1.137 -6.23200°%  3.568 4.641
2.40 2.116 7.010x10°!  1.4010  -2.483 7.452 2:469 1.178x10°% -3.113 7.335 5.913
4.40 1.438 . 1.170 1212 . -2.831 5.492 4.119210°° -5.188 -3.300 1.a79x10°¢  6.307
6.40 6.498x10°% -7.624x10°%  7.541x107% -1.862 2.288 - -2.686 -4.468 4.905x10°5  1.988 5.373
8.40 3.484x10°° -1.181x10°% 2.579 -1.223 1.221x10°5 -4.159 -2.095 5.933 2.212 a.072
10.40 -3.545x10°% -1.029 1,120 -6.774x10"5 -1.209x10"% -3.623 8.735x10°% 4.549 2.192 2.812
12.40 -5.471 -7.000x10°° -3.412 -2.690 -1.928 -2.496 1.557x107% 2,674’ 1.999 1,748
14,40 -5.949 -3.882 -4.501 8.953x10°7 -2.045 -1.366 2.29 1.035 1.698 9.173x10°%
18.40 -4.428 6.076x10°% -4.693 1.802x10°%  -1.559 2.152x10°% 2,224 -9.230x10%  9.727x10°5  -1.202
24.00 -7.630x10"5  2.738x105 -1.759 2.833 2.673x10°5  9.650 7.174x10°% -1.448x10°5  s5.380x10°% -6.513
aa.00 2.924x10”!  s.932x1077  2.646 -a.910000°%  1.028x10°%  1.943x1077 -1.33tx07? 2.688x10°%  -8.549x1075  -2.090
64.00 -2.830x10°5 -7.414x10°®  4.584x10°° -6.436 -1.038x10°% -2.617x10°%  2.078x10°% 3.321 -2.523 1.021
84.00 -2.000x10"% -4.208 -1.308010° % -1.843 -7.059 -1.472 9.622 s.844x10”7  2.586 1.371
120.00 -1,161 4.658x10"7 -1.616 1.631 -5.575 1.881x1077  5.576 -1.004x10°6  5.549 7.503x10”7
220.00 1.172 1.125x10°%  6.475x10°5 s.257x1077  4.251 3.866 -6.797 -8.433x10°%  2.296 -3.148x1078
320,00 1.497 3.754x10°7  1.230x10°% -1.560 4.866 8.404x10°8  -4.468 2.076x10"7  -5.243x10°%  -1.241x1077
420.00 1.174 9.062x10°%  1.107 -2.489 2.984 -3.331 -5.083x10°% 1.712 -197x107% -1
620.00 5.470x10°> -4.168 6.172x10°5 -1.546 -5.002x10°% -7.184 3.60ax10"> 4.523x10°%  -3.048 -8.423x10°8
820,00 2,313 -2.2m 3.007 -7.456x10°8 -2.191x10°% -5.060 4121 -9.513x1077  -3.144 -5.262
1020.00 9.481x20°% 1,205 1.400 5061 ) -2.651 -2.763 3.375 -2.312000°%  -2.804 -3.074
1420.00 1.531 -2.44ax10"?  2.852x107° -6.770x10™Y -2.074 -3.184x10™Y  1.617 -1.735 -1.865 -8.203x10"Y
1820.00 2.402x10°7 -4.271x107!® 3.188x1077 -1.300 -1.203 2.811 6.387x10°% -7.867x10  -1.075 -7.861x10710
2600.00 6.195x10°% -1.224x10°1} 2.155x10°8 -4.915x10"1! -2.960x10° 1.777 8.224x10°7 -1.131 -2.933x10°% 9,307
3100.00 5.710x10°10 -1.210x10"12 3.197x10°% -4.917x10"1% -1.067 7.784x1010 2,025 -2.084x10°10 -1.160 5.451
3600.00 -3.634x10"7  2.984 4.788x10°% -6.975x10° 1! -4.377x10"7 " 2.520
4100.00 -1.189 1.058 1.109 -1.617 -1.593 1.051
4600.00 -3.77exi0°8 s.se3x107t 2.825x1070 -3.286x10717 5.638x1078  «.083a10°M!
$600.00 -3.316x1077  3.946x10"12 -6.630x10°°  s5:435x10712
6600.00 -7.359x10°10  6.509x10713
~
s~ »

'S?f
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Table II.
Fitted energy Valence- Observed
Spectroscopic level Spectroscopic electron hyperfine
level (ionization energy - hyperfine - splitting
designation _ energy, mec2=1) level? splitting (GHz) (GHz)
6p°P, 1.1930x107>  1.1953x10™°  21.8 21.3°
6p2P3/2 ©9.8745x107° - 1.0062x10 3.27 . . .528C
7P, 3.6756x10°0  s.eeesx106 271 2.8
7p2P3/2 3.3937x10°%  3.4219x107° 494 .62¢
8p°P, 1.9199x10°%  1.0158x107° 089 .79°
8p°Py,  L.BISSXI0T®  1.8254x1070 .187 268
7s%s, 5.4164x10°8  s5.5280x100 143 AETRLEN
8575, 2.5160x107% 2.5521x107° a2
9525%'- 1.4650x10°®  1.4796x10° 1.90
_10525% 9.594x1077  9.6260x1077 ~  1.01
11s%s 6.772x10"7 6.811x107/ 0.59

Ny

Table II References

a) C.E. Moore, Atomic Energy Levels Vol. III, Circular of Nat. B. of

Stand. 467 (1958).

b) A. Gallagher and A. Lurio, Phys. Rev. 136, A7 (1964).

c) 6. Gould, Phys. Rev. 101, 1828 (1956). o

d) A. Flusberg, T. Mossberg and S.R. Hartmann, Phys; Lett. 55A, 403
(1976).

“e) AN. Odintsov, Opt. i Spektr. 9, 75 (142), (1960).
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Ref. 12

Table III.
. Radial
A-coefficient A-cogfficient integral Oscillator Oscillator
(Gallagher & Lurio) (this work) <T>£5 strength strengt
| Tran51tion 107 sec” 107 sec- x) (this work) (A,A,ST)
7 s1 62P 6.25:0.31 '5.78 294.1 .124 .123
8 s1 62P 1.7840.16 1.75 91.5 .0175 L0172
9zs 62P .78£0.10 0.777 51.8 .00625 .00616
1025 6212 - 0.412 35.1 .00301 .00295
1128/ 6%, .31£0.06 0.244 26.0 .00170 . .00167
7%, 62P3/2 7.05£0. 32 8.30 422.1  .178 .162
8zsf 62P3/2 1.73+0.18 2.30 103.9 - .0180 .0172
9252 62P3/2 0.80£0.08 1.01 56.3 .00605 .0059
1028 -62P Py ) 0.57+0.06 534 37.5 .00285 .00286
62D3/2-62P 12.6 1.0 16.04 -307.7. .368 .40
72D3/2 62P% 4.4 £0 6.39 ~154.8 .109 121
8°D;,-6°P, .89£0.3 3.19 - 99.8 .0434 053
921)3/2 62P .98£0.22 1.82 - 71.9 .0257 .028
1021)3/2 6 p% .58+0.15 1.14 - 55.2 .0156 017
62D3/2 6%p Py 2.20£0.23 2.88 ~419.6 .0538 .052
,72D3/2 6P/, 0.76:0.08 1.01 -186.9 .0129 .0136
82D3/2 6§P 3/2 0.37:0.04 0.498 -117.5 00549 .0056
9 D3/2—6 p3/2 0.19+0.02 0.279 L 83.0 .00285 0029
62D5/2 32 12.4 1.5 16.3 -405.6 .489 .46
2D5/2-62P3/2 4.2 0. 6.06 -186.9 .116 .12
2 2
8°D; /-6 7 :0. 2.96 -116.9 .0489 .051
3Ref. 11
b
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0 u “4 7/ U 7
Table IV.
Radial
integral Oscillator OscillatoI

N <r>pi - strength strength 2
-Transition (x) (this work) (ALAGT)

2 2 |

7 s -7 P -1072.6 .315 .440

8 s, 72P 991.6 .241 .258
9282 72P, 219.5 .0234° .0219
'1025 72P 114.3 00784 00741
1125 72p 75.1 .00277 00342
725, - 72133/2 -1007.8 476 .440
82P 72p3/2 1240.2 .297 .294
9252 72P3/2 202.2. 0176 .0164
1025 -7%p, . 100.4 .00550 .00542

3/2 _
62D -7%p, 1321.4 .369 .340
3/2 ik " )

72D, ,_-7%p, - 489.2 .202 .248

2 3/2 5 %

8°Dy ,-7°P, - 254.2 .0733 .0850
92D 72P1 - 165.3 .0352 .0399
102D - 120.0 .0199 .0223

2 | .

c‘>21)3/2-721>3/2 1328.0 .0152 .0166

2D3/2-72p3/2 - 729.8 .0396 .0418

8 3/2-721{,,/2 - 331.0 .00937 .0116
92D, ,.-7%p - 204.9 .00495 .00506
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Table V. g- factor anomaly calculation and comparison with experiment.

Measured 6°P, g-factor 6656924 (18)2
0-order theory o  .6658936
g-factor anomaly ‘ V | - .0002012 (18)a

calculated anomaly

relativistic - .000107
configuration interaction < .000001

Lamb - .000006
‘orbit-orbit A - .000082

Total calculated anomaly - .000195

Apef. 19.



Table VI

o

8.706 + 10

3.60 -

.. -1 2 1
Transition M x 3//2 &u(sec ) ﬁfr f}dr, AEZ (sec )
: 0

| ' 0d)
202 5 -
62p, - 6%P +.9796  4.083 2.94 - 10 .158
o5, 3/2 . _
20 2 N ' 5
6%p, - 7%p,, - - .0902 3.31 1.27 - 10 55.2
R 3/2 _
72p, - 6%p,,. - .115  2.18 -3.00 - 10° 72.8
1/2 3/2 . . . .
2 2 + .9822 2.40 - 10° 1074
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-Table VII. Calculation of &PV

Method A: _ » _
_ Contributions to &g, E
<7P, |El|ns><ns |H,T6P, >  <7P,_[H |ns><ns|El|6P, >
Intermediate e V. % 5 PV 5
s-state E6 - En E7 - En.
| 6s> -10.197 210710 Qulugl +i 0,631« 120710 fuy]
| 7s> +i 5.08 . -i1.69
| 8s> -i1.77 - '+i 0.485 -
| 9s> - 0.232 | +i 0.093
|10s> -1 0.084 ~ +i0.037
Total i2.81 + 10710 q fugl -1 0.45 - 20710 Q lug|
| . 10 A |
=i 2,36 * 10 ijuBl
Method. B: i2.13 +10'0 Qg -1 0.20 - 10719 Q Jug]

=i1.93 - 100 Q. Iugl




/9

, } ..
Table VIII. &PV for n P,/2 nP3/2 transitions.

" Method 1:

‘ e<nP3/2~'|E1 _Ins><ns|HPV|n'Pl/2> .

g,
'Intermediate 2 2 2 2
s-state 6 P3/2-6 P,/2 : 7 P3/2-6 P,/2
| 6s> -i 4,22 x -i 0.65
-10, .
10777Q, ||
78> -i 2.83 . +i 6.76
|8s> -i 0.264 -i 3.13
| 9s> -i 0.041 -i 0.30
|10s> -i 0.041 -i 0.10
Total -1 7.45 x +i 2.58
-10, . .
107 77Q, lugl
“Method 2: ' -i 8.09 x +i 1.75 x
. -10,, -10, ..
107°°Q, lup| 1077°Q, lug|

-i

C+i

+i

+1

0.86

3.43
0.78
0.14
0.06

1.58

1.25 x
-10
10777Q, gl
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Table IX

- “Finite sum over
Quantity Summed 5 lowest energy levels

25 7112 e2p. - 102
| (725, - 11%5,, 62Dy, - 102D
R7p ns Rns, 6P o
— 378 - 10
6 ~ Ens
R7P,nS RnS;6P : 11
— -2.58 - 10
7 = Ens )
R2p,nD Rnp, 6P - 10
_ 3.50 - 10
Ee - Fnp
R7p,np Rnp, 6p "
I 8.00 - 10
7 - Enp -
e (in mits LB ) 2.43 + 107°
volts/cm : ,
e’s 1.78 - 107

8/0 ' ' .73

3/2)

Green'

S
function
method
3.64 - 1010
-2.71 - 1011
2.81 - 1010
7.01 - 10t
2,05 - 107°
1.64 - 1072
.80
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Table X. Dipole transition amplitudes D = <Ml> + <Elp> + <El

for 62

P, (F, mp) - 721>,/2 (F', mg,) tramsitions.

STARK™

F 0 1 1 1
6 P%’ My 0 -1 0 1
72PI/,F', mi:. 2 (Msin® -Mcos6 —i—-(JUlsine
2 vZ + &PV sin6 V2
00 -B'sin® | -~ +8'sind
1
a'cos8 +&PV cosf) +&PV cos6)
;3—(1Aﬂsin6 o 'cosb-Mcosot(Msing
V2 +6; sind 7 0
1 -1 -B'sinG +B'Sin9 A
-8pvcose) +&PV cosf)
~Ucos6 2 (MUsind a' cos8 "L (Usind
-B'singd +B'sin®
10 +&PV cos0) +&PV ;ose)
v—i—(-kMsine ‘—i—(JAsine o' cos8+ Mcoso
11 +B'sind -8 'sin®d ,
'8PV cosf) +8PV cos0)
- o2 _ 2
a' = e Eqp B! =e Eq8
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Table XI. P - P, transition émplitudes.
. 2 .

3/2

N 1
P3/2 | .

. & o '

3 (@.“M + 2 i sinb --/% &2 coshH

) 2 6/ :
+1i /3
7 8PV cosb

& .
1 ~Mcosbd + &'PV sin6 “é‘- - —=) i sin®
2 2 2 '

+i &

—-I;—V cos® E

-Mcosb + &PV sind -

Y
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Table XII. Amplitudes for PS/Z-P,»transitions.
%

Transition
amplitude . 6P3/2-6P1/2 - 7P:,)/2-7P1/2 6P3/2-7P%
M 98(%— -.092‘/% -.115"%
8, .22 -.434 .767
- -1 8.00x101% i 1.7sx10'1°% +i 1.26x10710
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~This report was done with support from the United States Energy Re-
search and Development Administration. Any conclusions or opinions
expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents of the University of California, the
Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration.
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