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The interaction of Clostridium perfringens enterotoxin with 
receptor claudins

Archana Shresthaa, Francisco A. Uzalb, and Bruce A. McClanea,*

aDepartment of Microbiology and Molecular Genetics, University of Pittsburgh School of 
Medicine, Pittsburgh, PA, USA

bCalifornia Animal Health and Food Safety Laboratory, San Bernadino Branch, School of 
Veterinary Medicine, University of California-Davis, USA

Abstract

Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its 

involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide 

toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-

terminal domain involved in oligomerization, membrane insertion and pore formation. The action 

of CPE starts with its binding to receptors, which include certain members of the claudin tight 

junction protein family; bound CPE then forms a series of complexes, one of which is a pore that 

causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE 

binding to claudin receptors involves interactions between the C-terminal CPE domain and both 

the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular 

importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal 

domain of the toxin. This increased understanding of CPE interactions with claudin receptors is 

now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal 

disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.
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1. Introduction: The medical importance of Clostridium perfringens 

enterotoxin (CPE)

The Gram-positive, spore-forming anaerobe Clostridium perfringens produces at least 18 

different toxins. However, considerable diversity exists between the toxin arsenals of 

different Clostridium perfringens strains. Those variations in toxin production are exploited 

by a historical classification scheme [1] that assigns C. perfringens isolates to one of five 

types (A–E), based upon their production of four (alpha, beta, epsilon and iota toxins) typing 

toxins [1]. Although not used for toxinotyping classification, C. perfringens enterotoxin 
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(CPE) is arguably the most medically important toxin made by this bacterium. CPE is 

known to be produced by all C. perfringens types except type B.

CPE-producing type A strains are responsible for the diarrhea and abdominal cramps of C. 
perfringens type A food poisoning, which is currently the 2nd most common bacterial 

foodborne disease in developed countries [2]. For example, nearly a million cases of C. 
perfringens type A food poisoning occur annually in the USA, with economic losses 

approaching half a billion dollars per year [3,4]. Substantial evidence supports the 

involvement of CPE in C. perfringens type A food poisoining. For example, lysates from 

sporulating, but not vegetative cultures, of CPE-producing food poisoning strains cause 

gastrointestinal (GI) pathology (intestinal histologic damage and fluid loss) in animal 

models [5], which is informative because CPE is only produced during sporulation [2]. 

Furthermore, sporulating lysates from a cpe null mutant of a food poisoning strain failed to 

cause any GI pathology in animal models and complementation reversed this attenuation [5]. 

In addition, physiologically-relevant concentrations, of highly purified CPE are sufficient to 

fully recapitulate, in animal models, the GI effects caused by sporulating culture lysates of 

CPE-producing type A food poisoning strains [5,6].

During the past decade, two exceptionally severe C. perfringens type A food poisoning 

outbreaks occurred in the USA, resulting in the deaths of several relatively young and 

healthy patients [7,8]. Both of those atypical outbreaks occurred in psychiatric hospitals, 

where (prior to developing food poisoning) the affected patients had been treated with 

psychotropic drugs that can induce fecal impaction or constipation side-effects. It is believed 

that these food poisoning cases became so severe because this preexisting fecal impaction/

constipation had interfered with development of the diarrhea typically associated with C. 
perfringens type A food poisoning. Impairment of diarrhea would limit the natural flushing 

of CPE (and perhaps other C. perfringens toxins) from the GI tract, thereby prolonging the 

presence of the toxin(s) in the intestines, which could promote absorption of toxin(s) from 

the intestines into the circulation and thereby lead to a deadly enterotoxemia. This 

hypothesis has received direct experimental support from a study [9] using mouse small 

intestinal ligated loops as an animal model of static GI tract conditions. That mouse study 

demonstrated lethal absorption of purified CPE from the small intestines into the circulation. 

The absorbed enterotoxin then bound to internal organs, including the liver and kidneys. 

Death of the mice correlated with the appearance of high potassium levels in their blood, an 

effect probably due to CPE effects on internal organs. This CPE-induced hyperpotassemia 

then likely induced death of the mice by cardiac arrest.

Recent studies [10] suggested that CPE may also contribute to some cases of enteritis 

necroticans, a food-borne human disease caused by C. perfringens type C strains. 

Historically, enteritis necroticans is most-often associated with the Papua New Guinea 

highlands, where it is known locally as pigbel [10]. Beta toxin is clearly important for 

enteritis necroticans [10,11]. However, many type C strains associated with enteritis 

necroticans produce CPE, as well as beta toxin [10]. Recent studies [10] using toxin knock-

out mutants and purified toxins showed that, when produced by type C strains, CPE can act 

synergistically with beta toxin [10]. The mechanism of this toxin synergism remains to be 

determined.
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In addition to its involvement in food-borne human disease, CPE–producing C. perfringens 
type A strains cause ~5–10% of all cases of human nonfoodborne GI infections, including 

antibiotic-associated diarrhea (AAD) [1]. CPE appears to be an important contributor to 

these infections since, i) sporulating, but not vegetative, culture lystates of a nonfoodborne 

GI disease strain caused histologic damage and fluid accumulation in animal models and ii) 

inactivating the cpe gene in that strain produced sporulating culture lysates that are unable to 

cause GI pathology in animal models and this attenuation was reversible by 

complementation [5]. CPE-associated nonfoodborne GI disease cases are usually longer in 

duration and more serious than a typical case of C. perfringens type A food poisoning 

[1,12]. Recent in vitro adherence studies [13] suggest that these disease differences may 

reflect variations in host cell adherence ability amongst CPE-producing type A strains, i.e., 

nonfoodborne GI disease isolates may be better intestinal colonizers than most food 

poisoning strains.

All CPE-associated human diseases are infections, not intoxications [1,2]. During these 

illnesses, CPE is produced when C. perfringens cells sporulate in the intestine. After 

synthesis of CPE during sporulation, the enterotoxin accumulates in the cytoplasm of the 

mother cell. At the completion of sporulation the mother cell lyses, causing concomitant 

release of both the mature spore and CPE into the intestinal lumen. The toxin then binds and 

exerts its action, as described below.

2. Overview of CPE action

While the interactions between CPE and its receptors are described in detail later, this topic 

will now be briefly introduced in the context of overviewing CPE-induced cytotoxicity (Fig. 

1). CPE action starts when this toxin binds to certain members of the claudin family of host 

proteins [14–18]. Claudins can form fibrils that modulate the structure and function of 

mammalian tight junctions [19–21]. However, some claudins are located on the cell surface 

outside of tight junctions [22] and it is those non-junctional claudins that are believed to be 

primarily important in CPE binding, at least initially [22].

Once bound to claudin receptors, CPE becomes localized in a series of complexes, starting 

with a small (~90 kDa) complex that contains, in addition to the enterotoxin, CPE receptor 

claudins and (possibly) claudins that are not CPE receptors [23,24]. On the surface of the 

host cell cytoplasmic membrane, approximately six of these small CPE complexes 

oligomerize to form a prepore [25,26]. β hairpin loops from the CPE molecules in this 

prepore then rapidly assemble into a β-barrel that inserts into the membrane, creating an 

active pore complex named CH-1. CH-1 is ~450 kDa in size and contains (at minimum) six 

CPE molecules, along with CPE receptor claudins and (possibly) claudins that are not 

receptors for the enterotoxin [25].

The CH-1 CPE pore is permeable to small molecules (<200 Da), including calcium [27]. 

Influx of calcium through this CPE pore activates calmodulin and calpain [27]. Activation of 

those host proteins then triggers cell death by oncosis (when host cells are exposed to high 

CPE treatment doses, where a massive calcium influx occurs) or classical caspase-3-

Shrestha et al. Page 3

Anaerobe. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mediated apoptosis (when host cells are exposed to lower CPE treatment doses, where the 

calcium influx is more modest).

Dying CPE-treated cells also develop morphologic damage, which exposes claudins located 

on the basolateral surface of either the dying cell or adjacent cells [28]. This exposure of 

basolateral surfaces permits more CPE binding, additional formation of CH-1 pores, and 

interaction of some receptor-bound CPE with occludin, another tight junction protein, to 

form an ~600 kDa CPE complex named CH-2 [25,29]. The contribution of CH-2 to CPE 

action is unclear, but it may help to explain why CPE induces occludin (and claudin) 

internalization into the cytoplasm of Caco-2 cells [25].

CPE-induced host cell death induces substantial damage in the intestines, including 

epithelial desquamation and severe villus blunting (Fig. 2). Several lines of evidence suggest 

that this damage triggers fluid and electrolyte loss (which manifest as diarrhea) in the small 

intestine and, perhaps, the colon. For example, in the CPE-treated rabbit small intestine, 

there is a close temporal correlation between the onset of fluid/electrolyte damage and the 

development of intestinal damage [30]. In addition, only those CPE doses capable of causing 

intestinal damage can produce fluid and electrolyte losses in the rabbit small intestine [31]. 

Last, an attenuated CPE variant that binds to intestinal receptors failed to cause either 

damage or fluid transport changes in rabbit small intestinal loops (Fig. 2).

3. The CPE protein

3.1. Introduction

CPE, a 319 amino acid (35.3 kDa) single polypeptide, has a unique primary amino acid 

sequence, except for some limited homology (of still unknown significance) with the 

Antp70/C1 protein of Clostridium botulinum [2,32,33]. The primary amino acid sequence of 

CPE is highly conserved amongst CPE-producing type A, C and D strains [34]. However, a 

few type E strains produce a CPE variant that has (relative to classical CPE) ten amino acid 

differences of unknown phenotypic consequence [35].

3.2. Mapping CPE functional regions

Early biochemical and recombinant DNA studies [36,37] demonstrated that the C-terminal 

half of CPE is non-cytotoxic, and does not damage the intestine (Fig. 2), yet possesses 

strong receptor binding activity. Follow-up recombinant DNA and synthetic peptide studies 

then determined that the extreme C-terminal region (amino acids 290–319) of the toxin is 

required for receptor binding [38]. Later site-directed mutagenesis work identified several 

residues (Y306, Y310, Y312 and L315) within this extreme CPE C-terminal receptor-

binding region that are key for receptor binding by the toxin [39]. Site-directed mutagenesis 

[40] studies also demonstrated the involvement of additional C-terminal CPE residues (e.g. 

L223, R227, and L254) in receptor binding [39].

Full-length CPE has cytotoxic activity for cultured cells. However, deletion mutagenesis 

studies showed that the first 45 amino acids of CPE are not important for this cytotoxicity, 

with removal of those N-terminal sequences actually increasing toxin activity by 2–3 fold 

[41,42]. This enhancement may have pathophysiologic relevance since purified trypsin and 
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chymotrypsin can induce a similar 2–3 fold-increase in CPE activity by removing the first 

25 or 37 N-terminal amino acids, respectively, from the enterotoxin [43,44]. Trypsin- and/or 

chymotrypsin-induced proteolytic activation of CPE, which could occur in the intestine 

during natural disease, is attributable to increased CH-1 pore formation by the N-terminal 

truncated CPE [45]. Specifically, residues 1–45 of CPE are thought to reduce cytotoxicity by 

sterically interfering with the CPE amino acid 45–53 region (see below) involved in 

oligomerization, a prerequisite for CH-1 pore formation [26,45].

Deleting amino acids beyond residue 45 from the N-terminus completely abrogates the 

cytotoxic activity of CPE [41]. Site-directed mutagenesis studies [42] explained this 

phenotype by identifying several amino acids located between amino acids D45 and G53 of 

the toxin as being critical for CPE oligomerization. Specifically, introduction of a D48A 

mutation into CPE completely blocked oligomerization and cytotoxicity, while a I53A CPE 

variant was highly attenuated for CH-1 formation.

An N-terminal region named TM1 spans from amino acids 80 to 106 of CPE and possesses 

the alternating hydrophilic and hydrophobic amino acid residues typical of a β-hairpin loop 

(Fig. 3). This characteristic of the TM1 region is informative for understanding CPE 

structure vs. function relationships because β-hairpin loops are known to assemble into a β-

barrel structure that inserts into host plasma membranes during pore formation by several 

other pore-forming toxins. When site-directed mutagenesis of the TM1 region was 

performed [46], several CPE variants were identified that showed wild-type toxin binding 

and oligomerization activity, yet were highly attenuated for cytotoxicity. Directly supporting 

the hypothesis that the TM1 region of CPE is a β-hairpin loop involved in beta barrel 

formation for insertion into membranes during CH-1 pore formation (Fig. 3), several of 

those TM1 site-directed variants were impaired for membrane insertion while other TM1 

variants inserted yet did not form a functional pore [46].

3.3. Structure of the CPE protein

Initial insights into CPE protein structure were provided when the C-terminal half of CPE 

(C-CPE, i.e., residues 194–319) was crystalized and its structure solved by x-ray diffraction 

[47]. This work revealed that the C-CPE domain is a nine-stranded, mostly antiparallel, β-

sandwich. Residues implicated, by site-directed mutagenesis [39], as being important for 

binding of CPE to its receptor were shown to line a pocket/groove located on the surface of 

C-CPE. This work also determined that the C-CPE domain shares some structural similarity 

with the receptor binding domains of several other toxins made by spore-forming bacteria, 

e.g., some members of the large Cry toxin family of Bacillus thuringiensis.

More recently, two research groups [48,49] independently solved the structure of the entire 

CPE protein by x-ray diffraction (Fig. 4). Those studies demonstrated that the enterotoxin 

consists of the C-terminal C-CPE receptor-binding domain and an N-terminal domain 

comprised of two halves. The first 34 residues of native CPE have no interpretable electron 

density, indicating they are likely disordered, which may explain why these extreme N-

terminal sequences have the ability to partially interfere with CPE oligomerization (see the 

preceding section). The D48-G53 sequences critical for CPE oligomerization mapped to the 

junction of the two halves of the N-terminal domain of the toxin. The TM1 region mediating 
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membrane insertion is largely contained within an alpha helix located in the N-terminal 

domain of the toxin. During CH-1 pore formation, this alpha helix presumably unfolds into a 

β-hairpin loop that assembles with similar loops from other CPE molecules present in the 

prepore to form a β-barrel for penetration into the membrane and pore formation.

Furthermore, solving the complete CPE structure revealed that this enterotoxin belongs 

structurally to the aerolysin pore-forming toxin family, which also includes (for example) C. 
perfringens epsilon toxin [48,49]. Specifically, the β-pore forming toxin members of this 

family share structurally similar domain(s) involved in oligomerization and membrane 

insertion/pore formation. However, CPE is a relatively unusual member of this family since, 

in the soluble monomer form, its eventual β-hairpin loop is apparently located in an alpha 

helix rather than the β-strand found in soluble toxin monomers of other members of this 

toxin family. The receptor binding domain(s) of the aerolysin toxin family members vary 

considerably, consistent with these toxins binding to different receptors [48,49].

4. Claudins: an introduction

The first claudins were discovered in 1998 by Tsukita’s research group [50]. Currently, 

humans are thought to produce 27 different members of the claudin family, which are single 

polypeptides that typically range in size from ~21 to 27 kDa [51]. Recent structural biology 

studies [52,53] confirmed computer-modeling predictions [54] that claudins are comprised 

of a four transmembrane domain bundle and two extracellular loops (referred to as ECL-1 

and ECL-2). Both ECL-1 and ECL-2 are thought to mediate intercellular interactions 

[55,56], while paracellular permeability gating (see next paragraph) is mainly attributed to 

ECL-1 [55,56]. Claudins also have a short (~7 amino acid) N-terminal sequence and a 

longer (20–60 amino acid) C-terminal tail, both located in the cytoplasm of host cells [56]. 

The C-terminal tail of most claudins fosters interactions with scaffolding proteins, like 

zonula occludens-1 (ZO-1), via its PDZ motif (Post-synaptic density 95, Discs large ZO-1) 

[55,56]. Considerable amino acid sequence diversity exists amongst the cytoplasmic tails of 

various claudins, so antibodies specific for a particular claudin are often raised against 

synthetic peptides containing the tail sequence of that claudin.

In epithelial and endothelial cells, claudins can form fibrils that are key components of tight 

junctions [55,57]. Claudins play a key role in the “fence” function of tight junctions by 

helping to form the barrier that modulates paracellular permeability and separates the apical 

and basolateral surfaces of polarized cells. However, some claudins are also important 

contributors to the “gate” properties of tight junctions as they regulate paracellular ion fluxes 

by forming ion-selective pores [55,56]. Expression of claudins varies considerably amongst 

different tissues and gradients of claudin expression even exist within tissues; for example, 

claudin expression patterns vary along the crypt to villus axis of the small intestine [58]. 

Last, individual epithelial or endothelial cells often produce multiple members of the claudin 

family.
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5. CPE interactions with claudins

5.1. Mapping CPE binding regions of claudins

Extensive early work demonstrated that CPE binds to protein receptors on sensitive host 

cells [59]. Key insights into the identity of the CPE receptor(s) were provided by the 

expression cloning studies of Katahira et al. [14,60]. Using transfected mouse L929 

fibroblasts, which are naturally insensitive to CPE because they cannot bind the toxin, 

Katahira et al. showed that expression of either of two ~20 kDa Vero cell proteins created 

transfectant cells that were highly sensitive to this toxin due to strong CPE binding [14,60].

This early work on CPE receptor identification had been performed concurrently with 

Tsukita’s discovery of claudins [50], so it soon became apparent that the two Vero cell CPE 

receptors identified by Katahira et al. were claudins-3 and -4. Additional studies, also 

employing fibroblast transfectant cells, then established that not all claudins are CPE 

receptors, e.g., transfectant cells expressing claudins-1 or -2 are CPE-insensitive because 

they are unable to bind the toxin [14,15,24,60]. To date, known CPE receptor claudins 

include claudins-3, -4, -6, -7, -8, -9 and -14 [61]. However, claudins-1, -2, -5, -10,-13, and 

20–24 are not CPE receptors, at least at physiologically-relevant toxin concentrations [61]. 

Amongst the claudin receptors, not all bind CPE with equal affinity. For example, claudins-3 

and -4 are high affinity CPE receptors, while claudins-8 and -14 bind CPE more weakly 

[18,54].

Studies then evaluated which portion(s) of a claudin receptor is essential for CPE binding. 

Using chimeric claudins expressed in fibroblast transfectant cells, it was shown that the C-

terminal half of claudins plays an essential role in CPE binding and action [15]. Specifically, 

fibroblast transfectant cells expressing a chimeric claudin consisting of the N-terminal half 

of claudin-1 (not a CPE receptor) and the C-terminal half of claudin-3 (a CPE receptor) were 

killed by CPE; however, this toxin had no effect on fibroblasts expressing the converse 

chimeric claudin consisting of the N-terminal half of claudin-3 and the C-terminal half of 

claudin-1. Additional studies using chimeric claudins then specifically mapped this CPE-

binding region in the C-terminal half of receptor claudins to the ECL-2 region [24].

Several synthetic peptide mapping and site-directed mutagenesis studies have now dissected 

which residues in the ECL-2 region of receptor claudins are important for CPE binding 

[18,24,54]. Peptide mapping approaches identified an ECL-2 motif (NPLVP) that plays a 

role in CPE binding to claudin-3 [54]. Bioinformatic analyses noted that the N residue in 

this ECL-2 CPE-binding motif is highly conserved amongst receptor claudins, while the 

equivalent residue is never N (it is usually a D or S) in claudins that are not CPE receptors 

[24]. Site-directed mutagenesis then demonstrated that this N residue is a critical yes/no 

determinant for CPE binding to claudins by showing that changing the natural D residue in 

claudin-1 to an N converts claudin-1 to a strong CPE binding receptor when expressed by 

fibroblast transfectant cells. Conversely, changing the natural N residue in claudin-4 to D 

destroyed the CPE binding ability of claudin-4 when expressed by fibroblast transfectant 

cells [24].
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There are also now insights into why some claudins (e.g., claudin-8 and -14) bind CPE but at 

relatively low affinity despite their possessing the ECL-2 N residue that is the yes/no 

determinant for CPE binding. Site-directed mutagenesis studies [18] showed that 

neighboring residues located near the critical ECL-2 N residue can modulate CPE binding 

affinity (Fig. 5). For example, a P residue is located next to the critical N in the claudin-4 

ECL-2 CPE binding motif, but the equivalent residue is an S in claudin-8. Changing that 

natural S residue in claudin-8 to P produced a claudin-8 variant that, when expressed by 

fibroblast transfectant cells, binds CPE at similar high affinity as wild-type claudin-4. The 

converse was also true, i.e., changing the natural P residue in the claudin-4 ECL-2 to S 

produced a claudin-4 variant that bound CPE much less strongly than natural claudin-4 

when expressed by fibroblast transfectant cells. Interestingly, claudin-14 also binds CPE 

relatively weakly even though it has both the critical N and the adjacent P residues in the 

ECL-2 CPE binding motif [18]. Site-directed mutagenesis studies [18] showed that the weak 

CPE binding of claudin-14 is attributable to the presence of an N residue, rather than the 

equivalent D residue of claudin-4, located near the CPE-binding motif. This finding 

establishes that some residues outside the classical ECL-2 binding motif can also impact 

CPE binding affinity.

5.2. Structural biology of CPE: claudin receptor interactions

Structural biology studies have now provided important direct insights into the binding of 

CPE to receptor claudins. The first such study [62] used a synthetic peptide corresponding to 

the ECL-2 sequences shown to be important for the binding of this enterotoxin (see 

preceding paragraph). When the structure of this peptide bound to CPE was solved by x-ray 

crystallography, it confirmed earlier computer predictions [55] by demonstrating that the 

CPE binding motif sequence present in the ECL-2 of a receptor claudin docks into the 

putative claudin-binding groove on the surface of the C-terminal domain of CPE (C-CPE).

Understanding CPE: receptor interaction was then further advanced by a recent x-ray 

diffraction study [52] that solved the structure of C-CPE bound to a claudin receptor. This 

structure (Fig. 6) supported the physiologic relevance of ECL-2 synthetic peptide/CPE 

findings described above by showing that, in the context of an intact claudin receptor, the 

ECL-2 binding motif also docks in a groove located on the surface of C-CPE. Interactions 

between C-CPE and ECL-2 were determined to involve a number of hydrophobic 

interactions. Solving the structure of C-CPE bound to a claudin receptor also provided an 

explanation for why the N residue of the ECL-2 binding motif is critical for CPE binding, 

i.e., this residue apparently hydrogen bonds with several CPE residues present in the binding 

pocket of receptor claudins.

Interestingly, the structural biology analysis [52] of C-CPE bound to a claudin receptor also 

detected interactions between C-CPE and the ECL-1 of claudins. Site-directed mutagenesis 

then showed that ECL-1 residues A39-I41 are important for C-CPE binding to claudin 

receptors. Therefore, it is now apparent that C-CPE (and presumably CPE) interacts with 

both ECL-1 and ECL-2 during receptor binding. However, the ECL-1 amino acid residues 

important for CPE binding are relatively conserved amongst most claudins, including 

claudins that are not CPE receptors, so ECL-2 is of predominant importance for determining 
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the ability of a claudin to bind CPE, with ECL-1 contributing to this binding by enlarging 

the hydrophobic contact area.

6. Applications from understanding CPE: claudin receptor interactions

Why study CPE interactions with claudin receptors? The rapid increase in understanding of 

CPE: receptor interactions is already suggesting several translational medical applications. 

For example, this information could lead to the development of potential therapeutics against 

CPE-mediated intestinal disease. Towards that goal, a synthetic peptide corresponding to the 

ECL-2 region of the CPE receptor claudin-4 was shown to inhibit CPE action, both on 

cultured cells and in rabbit small intestinal loops (6). This inhibition was specific since a 

synthetic peptide corresponding to the ECL-2 region of claudin-1 (not a CPE receptor) did 

not reduce CPE action in vitro or in vivo. These results suggest that claudin receptor-based 

ECL-2 peptides should be further investigated for their potential application as receptor 

decoy therapeutics against CPE-mediated disease, particularly for treating chronic and 

severe AAD cases.

Antigen delivery to mucosal-associated lymphoid tissue (MALT) is the requisite first step 

for induction of mucosal immunity by vaccines. Located in the mucosa, MALT contains 

several cell types, including M cells, which take up antigen and present it to underlying 

antigen presenting cells for processing. Given the critical role of M cells in mucosal 

immunity, targeting ligands to M cells is an attractive strategy for improving mucosal 

immunizations. Interestingly, M cells show significant expression of claudin-4, a strong CPE 

receptor [63]. While fusion proteins containing active CPE cannot be used for 

immunizations due to toxicity issues, the presence of claudin-4 on M cells suggested that a 

targeting strategy using nontoxic, but claudin binding-capable, CPE derivatives might be 

useful for preparing fusion proteins for use in improved mucosal vaccines. Several published 

studies now support this approach. For example, C-CPE has been fused with pneumococcal 

surface protein A (PspA), an important antigen for inducing protective immunity against 

Streptococcus pneumoniae infection [63]. When administered intranasally, this vaccine 

induced immune responses that were protective against infection by this important bacterial 

pathogen. To cite a second example using this approach, a peptide corresponding to the 

nontoxic C-terminal 30 amino acids of CPE was used as part of a conjugate vaccine to 

protect against coxsackie virus B3 infection in mice [64].

Although nontoxic, C-CPE can break apart tight junctions [65,66]. This ability has been 

exploited to increase intestinal drug absorption via increased paracellular transport. It has 

been reported [67] that C-CPE has 400-fold more drug absorption-enhancing potency than 

clinically-used enhancers. Efforts are currently underway [68] to modify C-CPE for stronger 

binding or more specificity, e.g., to target a C-CPE derivative to a single claudin. On a 

cautionary note, some hepatic toxicity has been noted in mice receiving an i.v. injection of 

C-CPE [69].

A final translational field where knowledge of CPE binding interactions is being exploited 

concerns cancer therapy and diagnosis [16,70]. Many fatal cancers are derived from 

epithelial tissues and claudins are often overexpressed in those cancers. For example, 
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overexpression of the CPE receptor claudin-4 is common in breast, prostate, pancreatic and 

ovarian cancers [70]. Tumor cells over-expressing claudin-4 are highly sensitive to CPE in 
vitro. Direct injection of CPE into tumors can reduce tumor volume significantly [16,71]. As 

an alternative approach, C-CPE has been coupled with other cytotoxic proteins to obtain 

potent killing properties against tumors expressing claudin receptors for CPE [16,70–72].

There are obvious safety concerns regarding the systemic use of CPE for treating non-solid 

tumors and metastatic cancers since many normal cells also produce claudin CPE receptors. 

One approach to overcome this limitation has involved use of C-CPE in combination with 

traditional anti-cancer agents [16,70]. For example, at relatively low doses, C-CPE sensitizes 

ovarian cancer cells to the killing effects of carboplatin, a traditional anticancer agent [73].

Besides employing claudin-directed CPE-based agents as cancer therapeutics, there is now 

considerable interest in utilizing labeled C-CPE as a diagnostic tool for tumor imaging 

[16,70]. These C-CPE-based imaging agents bind strongly to tumors consisting of cancer 

cells that overexpress claudin CPE receptors, such as claudin-4. For example, fluorescently-

labeled C-CPE has been used to visualize micrometastatic human ovarian cancer tumor 

implants in mice [74].

7. Concluding remarks

The binding of CPE to claudin receptors has become a paradigm for understanding 

interactions between a toxin and its receptors. Furthermore, knowledge of CPE: receptor 

interactions holds promise for developing improved therapeutics against CPE-mediated 

intestinal disorders. Last, illustrating the serendipity of science, improved understanding 

CPE: receptor interactions is leading to translational medical applications for cancer therapy/

diagnostics and drug delivery that could mature in the near future.
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Fig. 1. The action of C. perfringens enterotoxin
CPE first binds to claudin receptors on the exposed surface of host cells to form a small 

complex. Approximately 6 small complexes (which also contain nonreceptor claudins, not 

shown) oligomerize into a large prepore complex on the membrane surface, followed by 

formation of an active pore named CH-1. High CPE doses cause a massive calcium influx 

that strongly activates cytoplasmic calpain to induce cell death via oncosis. At lower CPE 

doses, there is less calcium influx and a milder cytoplasmic calpain activation, which causes 

a classical caspase-3 mediated apoptosis. Cell death produces morphologic damage that 

exposes the basolateral surface of the cell, allowing CPE access to additional receptors to 

form more CH-1. This also results in formation of a second large CPE complex named CH-1 

that contains occludin; this can trigger internalization of occludin and claudin into the 

cytoplasm. Modified with permission from Ref. [75].
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Fig. 2. Small intestinal effects of CPE or C-CPE
Left panel shows control rabbit small intestinal loops treated with Ringers solution. L is 

lumen; LP is lamina propria. Middle panel shows the effects of CPE on rabbit small 

intestinal loops. Note the epithelial desquamation and villus destruction. Right panel shows 

the effects of CPE168-319 (C-CPE) on rabbit small intestinal loops. Note the absence of 

damage. Final magnification of each photomicrograph is 400×. Used with permission from 

Ref. [76].
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Fig. 3. Model for CPE insertion into membranes
A) Model for the TM1 region sequence (CPE amino acids 90–106), depicting the TM1 

region as an unfolded β-hairpin with alternating hydrophobic and hydrophilic residues. The 

circled amino acids were shown to be important for CPE membrane insertion or pore 

formation by site-directed mutagenesis [46]. Used with permission from Ref. [46]. B) Model 

for CPE insertion and pore formation. β-hairpins extend from each of ~6 CPE proteins in the 

prepore to assemble a β-barrel that inserts into membranes to create an active pore.
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Fig. 4. Structure of the CPE protein
The N-terminal domain of CPE is responsible for oligomerization and contains the TM1 

region (localized around the central alpha helical region of the N-terminal domain) that 

unwinds into a β-hairpin to form a β-barrel for membrane insertion and pore formation. The 

C-terminal domain of CPE is responsible for receptor binding activity. Reproduced with 

permission from Ref. [49].
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Fig. 5. Claudin ECL-2 sequences that modulate CPE binding affinity and cytotoxic activity
Top, Comparison of claudin ECL-2 region sequences for claudins that bind CPE strongly, 

weakly or not at all (as indicated). The critical Asn residue that is a yes/no determinant for 

claudin binding to CPE is denoted by a single asterisk. Bottom, an illustrative example of 

how changing a single amino acid residue near this critical Asn in the ECL-2 region 

significantly affects CPE binding properties and cytotoxicity. In this example, changing the 

natural proline of claudin-4 (double asterisk in top panel) to the serine of claudin-8 greatly 

reduced CPE sensitivity of transfectants; this phenotype was due to decreased CPE binding 

(not shown). Conversely, changing the natural serine of claudin-8 to the proline of claudin-4 

greatly increased CPE sensitivity of transfectants and this phenotype was due to increased 

CPE binding (not shown). Modified with permission from Ref. [18].
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Fig. 6. Structure of the C-CPE binding domain bound to a claudin receptor
Shown is a claudin oriented in a host cell plasma membrane. The claudin consists of four 

alpha helixes and two extracellular loops (locations of the ECL-1 and ECL-2 loops are 

indicated). Not shown is the C-terminal cytoplasmic tail of claudins. Note that the C-CPE 

binding domain (beta sandwich at top of structure) interacts with both of the ECLs present in 

a receptor claudin. However, it is the interaction of a binding cavity on C-CPE with the 

ECL-2 loop that dictates whether a claudin is a CPE receptor. Reproduced with permission 

from Ref. [52].
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