
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Topological Quantum Gravity of the Ricci Flow

Permalink
https://escholarship.org/uc/item/74q5j7d2

Author
Randall, Stephen

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74q5j7d2
https://escholarship.org
http://www.cdlib.org/


Topological Quantum Gravity of the Ricci Flow

by

Stephen Randall

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Petr Hořava, Chair
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Abstract

Topological Quantum Gravity of the Ricci Flow

by

Stephen Randall

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Petr Hořava, Chair

In this thesis we construct a family of topological quantum gravity theories

with the goal of finding a regime in which these theories’ localization equations are

Perelman’s celebrated Ricci flow equations. The natural setting for these theories

is a nonrelativistic N = 2 superspace in which the spacetime is foliated by leaves

of constant time. The basis for this construction is a “primitive” topological theory

involving the spatial metric and its corresponding spatial diffeomorphism invariance,

with N = 2 BRST symmetry. The algebra of the BRST charges is chosen so that

the localization equations derived from a BRST-invariant action are flow equations

and the couplings in the action are chosen so that these flow equations take the

exact form of Hamilton’s Ricci flow equations. Gauging spatial diffeomorphisms and

foliation-preserving time reparametrizations (initially in two separate steps, but later

in a single sweeping step) leads us to a set of geometric constraints that produce

three distinct classes of field content in the BRST multiplets involved. Notably, the

superpotential of the gauged theory is precisely Perelman’s F -functional and the role

of his dilaton is played by our nonrelativistic lapse function. Perelman’s Ricci flow

equations are then obtained as localization equations from the gauged theory in the

same way as Hamilton’s were obtained from the primitive theory (up to an interesting

reframing), satisfying our goal.
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Part I

Constructing the Theories
In this thesis, we bring together three distinct and previously rather unrelated

subjects: The geometry of the Ricci-type flows on Riemannian manifolds, topological

quantum field theory, and nonrelativistic Lifshitz-type quantum gravity.

The Ricci flow on Riemannian manifolds, governed by the Ricci flow equation

∂gij
∂t

= −2Rij, (0.1)

was introduced by Richard Hamilton in 1982 [1], as a potentially powerful tool for

addressing some of the deep open questions in differential geometry and topology

of low-dimensional manifolds. This program has been – and continues to be –

very successful, leading to Grisha Perelman’s celebrated proof [2–4] of the Poincaré

conjecture, the proof of Thurston’s geometrization conjecture for 3-manifolds, a

new independent proof of the uniformization theorem for 2-manifolds [5], and more

recently the proof of the generalized Smale conjecture [6–10]. One of the important

stepping-stones was Perelman’s addition of a “dilaton” field φ to the spatial metric,

and his formulation of the combined flow equations of gij and φ as a gradient flow for

the so-called F -functional,

F(gij, φ) = 2

∫
dDx e−φ

√
g
{
R + gij ∂iφ ∂jφ

}
. (0.2)

In the process of proving the consequences of this flow, a truly impressive wealth of

many geometric and topological results and insights has been accumulated in the

past two decades, with many intriguing questions still remaining open and vigorous

investigations being actively pursued. A comprehensive multi-volume introduction

to the mathematics of Ricci flow can be found in [11–15].1 Many excellent and

mutually complementary mathematical reviews and surveys exist: [16–25]. Many of

the foundational papers (including almost all of Hamilton’s papers on the subject

prior to 2002 and his influential 1995 survey [16]) are collected in [26].

1A comment about our list of references: Each of the three subjects that we connect in this thesis
has a hugely extensive literature. Hence, our list of references is inevitably far from exhaustive;
we focus on a relatively short list of papers and books that we find particularly relevant to our
construction, plus a longer list of various illuminating reviews.

1



0

(a) (c)

t

t

t
s

(b)

Figure 0.1: Simple illustrations of the typical behavior of the Ricci
flow (0.1) in 3 + 1 dimensions. (a): A Ricci-flat manifold stays constant
with time. (b): A manifold with positive sectional curvatures, such as
a slightly deformed sphere with bounded spatial inhomogeneities, will
round itself out with time and uniformly collapse into a singularity at
a finite instant ts. (c): A hyperbolic manifold, with negative sectional
curvatures, will expand forever.

Topological quantum field theories (of the “cohomological” type relevant for this

thesis) were introduced by Edward Witten in 1988: The first examples included

topological Yang-Mills gauge theory [27] in 3 + 1 dimensions, topological nonlinear

sigma models [28] in 1 + 1 dimensions which later became central in the construction

of topological string theory, and the first version of topological gravity [29]. The

central role in the construction is played by the BRST quantization and BRST

cohomology.2 An accessible introduction to the general concept of topological quantum

field theories of this cohomological type is in [31]. Roughly, for any “interesting”

differential equation, one can attempt to construct a topological quantum field theory

of the cohomological type, whose path integral is expected to localize to the moduli

space of the appropriate solutions of the equation. Ref. [31] provides if not an

algorithm, then at least an itinerary how to do this. In this way, topological Yang-

Mills theory is associated with the self-duality equation for the field strength of

the Yang-Mills connection, and the instanton moduli space. Physical observables

are related to Donaldson invariants of 4-manifolds. Similarly, the topological sigma

model is associated with Gromov’s pseudoholomorphic curve equation which describes

worldsheet instantons in string theory. Observables lead to Gromov-Witten invariants.

2For the general overview of BRST symmetry, see for example [30].
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In this thesis, our main goal is to to construct a topological quantum field theory

associated with a generalized family of Ricci flow equations. The proper setting for

this construction is in nonrelativistic quantum gravity, and its supersymmetric and

topological generalizations. Nonrelativistic quantum gravity with anisotropic scaling

(in the literature often referred to as Hořava-Lifshitz gravity; we will refer to it in this

thesis as Lifshitz-type gravity) was introduced in [32–34]. It has been broadly studied

as an example of quantum gravity with improved short-distance behavior, which

can explain the numerical lattice results of the Causal Dynamical Triangulations

approach to quantum gravity [35–37], and even be power-counting renormalizable

in appropriate dimensions; as a tool for nonrelativistic holography, where it leads to

a broader set of holographic duals of nonrelativistic systems than bulk relativistic

gravity; and for cosmology [38].

The mathematical theory of the Ricci flow has been previously connected to

s

t

t’

s

t

t

s

s

(a) (b)

−
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ε

Figure 0.2: (a): Another illustration of the Ricci flow (0.1) in 3 + 1
dimensions, now involving not only examples of the extinction singularity
of the positively curved regions, but also two examples of a generic
“neckpinch” singularity in finite time (here at ts and t′s). (b): The spatial
topology change caused by the neckpinch singularity is handled by the
geometrical technique of surgery on manifolds [39]. Zooming in on a small
vicinity of the singularity, we find the spatial topology of I × S2 at time
ts− ε. Surgery replaces it with the union of two 3-balls B3 ∪B3 at ts + ε,
and restarts the Ricci flow.
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physics in several ways. The relation to the renormalization group flow of nonlinear

sigma models in two relativistic dimensions was already stressed and utilized by

Perelman in [2]; for further developments of this connection, see [40]. Another useful

connection has been made to numerical general relativity [41]. In this thesis, we

find a new connection between Ricci flows and physics: We construct a topological

quantum field theory of the cohomological type, whose path integral localizes to the

solutions of a family of Ricci flow equations. This theory will inevitably take the

form of a topological norelativistic quantum gravity. That such a topological theory

of Lifshitz-type gravity associated with the evolution equations of the Ricci type

should exist was first conjectured during the work on [32], see also the discussion in

§1.3 of [42]. The purpose of this thesis is to fill this gap, and to present an explicit

construction which links the mathematical theory of the Ricci flow to the physics of

topological quantum field theory and quantum gravity.

This part of the thesis is organized as follows. We build our topological quantum

gravity of the Ricci flow in stages, introducing a simplest version of nonrelativistic

topological gravity first, and then bringing in additional steps and features needed to

make contact with the Perelman theory of the Ricci flow.

In Section 1, we construct a “primitive” theory of topological nonrelativistic

quantum gravity. The dynamical field in the primitive theory is the spatial metric

gij(t, x
k) on a D+ 1 dimensional spacetime, which carries a natural foliation structure

by D-dimensional leaves Σ of constant time t. It is true that D = 3 appears to

be the most immediately interesting case, both in physics and in mathematics, but

our construction is more general than that, so we present it in D dimensions. The

symmetries are all local topological deformations of gij . In addition to the topological

BRST charge, we require the existence of an anti-BRST supercharge Q, and construct

the gauge-fixed primitive theory in an appropriately defined N = 2 superspace. This

theory is particularly interesting when the dynamical exponent z (which is a measure

of the anisotropy between time and space) is equal to two: While it is well-known that

Hamilton’s Ricci flow equation (0.1) cannot be derived from a variational principle,

we find that (0.1) represents the locatization equation in our primitive theory, for

certain values of the coupling constants.

Much of modern theoretical physics is built around the concept of gauge sym-

metries. In the context of quantum gravity, it is natural to expect some form of

spacetime diffeomorphism symmetry. The primitive theory constructed in Section 1

has no spacetime gauge symmetries: It is only invariant under time-independent

spatial diffeomorphisms. In Section 2, we take the first step to remedy this, and

we gauge spatial diffeomorphisms. This is again done in N = 2 superspace, by
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introducing the shift vector ni(t, xj) and its superpartners. It is in this theory with

spatial diffeomorphisms promoted to a gauge symmetry where we find a natural

setting for an important Ricci-flow technique known in the mathematical literature as

the “DeTurck trick.” It simply appears via possible choices of gauge fixing conditions.

In Section 3, we extend the gauge symmetry to include time reparametrizations,

and thus promote the symmetries from spacetime-dependent spatial diffeomorphisms

of Section 2 to the full gauge symmetry generally expected in Lifshitz-type quantum

gravity: Foliation-preserving diffeomorphisms of spacetime. The gauging is accom-

plished by introducing the lapse function n and its N = 2 superpartners, which can

be either projectable (i.e., dependent only on time), or nonprojectable, n(t, xi). We

concentrate on the nonprojectable version of the theory, and reach two conclusions,

which represent the central results of this thesis: (1) the role of Perelman’s “dilaton”

is played in our theory by the lapse function (more precisely, φ = − log n), and (2)

Perelman’s F -functional arises simply as the N = 2 superpotential in our topological

gravity.

Our construction leads to a multi-parameter family of topological quantum grav-

ities, whose localization equations represent a multi-parameter generalization of

Perelman’s Ricci flow equations for the fields gij and φ, parametrized by the values of

general couplings in our topological gravity Lagrangian with z = 2 dynamical scaling.

We list some open questions and challenges in Section 4.

1 The primitive theory

In Lifshitz-type gravity, one can describe the dynamics of spacetime geometry

using the fields of the ADM formalism, first developed in the Hamiltonian description

of general relativity [43]. These ADM variables consist of the spatial metric gij,

the shift vector ni, and the lapse function n,3 and they were originally viewed as a

decomposition of the full relativistic spacetime metric. In Lifshitz-type gravity, these

fields define two distinct geometric length elements dτ and dσ on spacetime,

dτ = n dt, dσ2 = gij(dx
i + nidt)(dxj + njdt). (1.1)

A priori, these two elements are unrelated, and the distances they define are measured

in two different units: The spatial length scale L and the time scale T . In such a

3The lapse and shift variables are usually denoted in the literature by the capital letters N and
N i. In this thesis, we reserve N and N i to denote the superfields whose lowest components are the
lapse and shift n and ni.
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theory with two separate scales, the scaling properties of fields and their derivatives

undergo the appropriate refinement in comparison to their relativistic counterparts.

In the traditional way of assigning classical dimensions to the building blocks of

Lifshitz gravity, one assigns the coordinate element dxi the dimension of length,

[dxi] = L, and the time element the dimension of time, [dt] = T . Since the physical

distances dσ and dτ also have those same dimensions, [dσ] = L and [dτ ] = T , we see

from (1.1) that gij and n are both dimensionless, and that the dimension of the shift

vector is [ni] = L/T .

In general relativity, the speed of light c is a dimensionful constant of nature

which relates space and time distances to each other in a canonical way, and dτ and

dσ combine to form the unique spacetime metric, which transforms covariantly under

the symmetries of general relativity. We can naturally set c = 1 for convenience,

which canonically relates L = T , and the spacetime metric is then

ds2
GR = −dτ 2 + dσ2 = −(n2 − nini)dt2 + 2nidx

idt+ gijdx
idxj. (1.2)

The theory now has only one scale in which dimensions of fields and their derivatives

are measured.

In contrast, in nonrelativistic Lifshitz gravity no such canonical constant of nature

c is present, and the two length elements (1.1) and (1.2) cannot be canonically

combined into a unique spacetime element. A relation between the two scales L and

T is typically generated by the renormalization-group fixed point appropriate for the

system in a particular regime. Typically, the short-distance physics is dominated

by one fixed point, characterized by the relation T ∼ Lz, where z is the dynamical

critical exponent characterizing the short-distance anisotropy between time and space;

usually, we have z > 1. The long-distance physics is typically governed by another

fixed point, usually with z = 1, resulting from the natural renormalization-group

flow of the theory. Whether the theory is short-distance complete or at least power-

counting renormalizable is governed by the value of z at the short-distance fixed

point, and the spatial dimension D.

1.1 Preliminaries: the structure of spacetime

The main purpose of this thesis will be to construct an appropriately supersym-

metric version of nonrelativistic Lifshitz-type gravity on spacetime manifold M of

dimension D + 1, equipped with the further structure of a codimension-one foliation

MF by spatial slices Σ of dimension D, which can be thought of as slices of constant

6



time. There is a natural projection π from M to the time dimension R, by simply

forgetting the location along the leaf Σ. We will use coordinates (t, xi; i ∈ 1, . . . , D)

on M, naturally adapted to the foliation MF so that π : (t, xi) 7→ t.

Specific solutions of Ricci-type flow equations often develop interesting singularities,

with some simple examples illustrated in Fig. 0.1 and Fig. 0.2. Therefore, they may

only be defined – without surgery or some other prescription for continuing through

the singularities – on some open time interval I = (t0, t1) ⊂ R, where one or both

of t0 and t1 might be finite. Alternatively, one studies the initial-value problem,

on [t0, t1) with t0 being the initial time and t1 chosen such that no singularity is

encountered for t < t1 in this interval. In this thesis, we focus on constructing

the description of our quantum gravity theories on such a smooth patch, and leave

the fascinating question of the singularities (such as the exctinction singularities of

Fig. 0.1, or the topology-changing “neckpinch” singularities of Fig. 0.2) and their

physical interpretation for future study. Our time manifold M0 should therefore be

interpreted as either R when time extends for all eternity, or an open interval I ⊂ R,

or the intial-value problem interval [t0, t1), as appropriate.

For simplicity, in this thesis we focus on the case of compact Σ. We fully expect our

theory to describe the noncompact case as well (when Σ is a complete Riemannian

manifold), but the precise formulation would require a careful discussion of the

suitable behavior near the appropriately defined spacetime infinity (in the sense of

[44]), which goes beyond the scope of the work reported here.

In this section, we begin with a simpler task, and construct a more primitive

topological gravity theory for the special case when the spacetime manifold is canoni-

cally a direct product, M = Σ×M0, with the time manifold M0 ⊂ R as explained

above. This construction is simpler because the only dynamical field is the spatial

metric gij(t, x
k) and its superpartners implied by the topological symmetry. The

time dimension is assumed to carry a constant nondynamical metric, and there is

no secondary spacetime gauge invariance besides the topological symmetry. We will

refer to this theory as the “primitive” theory.

1.2 Fields and symmetries

The only dynamical field of the primitive theory will be the spacetime-dependent

spatial metric gij(t, x
k). (We will use Penrose’s “abstract index” notation throughout,

for all our fields.) The gauge symmetry will be the topological gauge symmetry, given

7



by all local deformations of the metric,

δgij(t, x
k) = ξij(t, x

k). (1.3)

We anticipate that due to this very large gauge symmetry, our theory will have no

propagating local degrees of freedom (such as gravitons), but it may still have a

nontrivial global structure.

The only action that is invariant under the topological gauge symetry (1.3) would

be a sum of topological invariants built from the spatial metric, and therefore does not

yet define a meaningful path integral. The path-integral representation of this theory

comes entirely from the “gauge-fixing” of (1.3) using the BRST method: One replaces

the local gauge symmetry with a global symmetry, generated by a supercharge Q

which squares to zero,

Q2 = 0. (1.4)

This BRST supercharge Q maps gij to a ghost field ψij(t, x
k) which is the section of

the same bundle as the gauge transformation parameter ξij, but carries the opposite

(i.e., fermionic) statistics. Thus, our first BRST multiplet is

Qgij = ψij, Qψij = 0. (1.5)

The next step is to choose a gauge fixing condition: a local functional F J of gij and

its derivatives, designed such that the path integral of the theory will localize to the

space of solutions to F J = 0. For judiciously chosen F J , the space of such solutions

is finite-dimensional, and typically of great geometric interest. In the process of

choosing F J , one chooses the bundle on spacetime, and F J will be a section of this

bundle. To implement the gauge fixing and to make sense of the path integral, one

then introduces a trivial BRST multiplet consisting of a fermion “antighost” χJ and

the bosonic auxiliary field BJ ,

QχJ = BJ , QBJ = 0. (1.6)

We assign a “ghost number” gh: the ghost and antighost are assigned gh(ψij) = 1

and gh(χJ) = −1, while gh(gij) = gh(BJ) = 0. Consequently, the supercharge Q has

gh(Q) = 1. Classically, one may start with the requirement that gh be conserved;

quantum mechanically, however, there are often anomalies in this global symmetry,

which play an important role in determining the dimensions of the moduli spaces to

which the path integral is localized, and what insertions of various observables may

8



be needed to make any correlation function non-vanishing.

With these fields, one then constructs an action

S =

∫
dt dDx {Q,Ψ}, (1.7)

where the “gauge-fixing fermion” Ψ is ∼ χJF J . We require that S preserve the ghost

number symmetry, therefore the gauge-fixing fermion must have gh(Ψ) = −1. States

and physical operators in this theory are defined as the cohomology classes of the

BRST charge Q on the spaces of all states and operators built from the available

fields.

1.3 Extended BRST superalgebra

In general, the antighost field does not have to be (and typically indeed is not)

the section of the same bundle as the ghost field. In our topological gravity, we wish

to choose as our gauge fixing condition a functional whose vanishing will imply the

Ricci-type flow of the metric gij,

F J ∼ ∂gij
∂t

+ 2Rij + . . . . (1.8)

Hence, in this case, we have J ≡ (ij), and the ghost and antighost fields are sections

of the same bundle.

Since the ghost and antighost fields are sections of the same bundle, it is possible

to demand that our theory has an additional symmetry, which exchanges the ghosts

with antighosts. Some early examples of topological field theories with this additional

ghost-antighost symmetry include the harmonic topological sigma models and the

topological rigid string [45, 46] (see also [47, 48]). The partition function in such

theories typically evaluates the appropriately defined Euler number of the moduli

space of solutions of the localization equation [49]. Topological field theories with the

ghost-antighost symmetry later became known as “balanced theories” [50]. We will

indeed take advantage of this possibility, and simply postulate that our theory has a

second real supercharge Q, which also squares to zero,

Q2 = 0, Q
2

= 0. (1.9)

We will refer to Q as the “anti-BRST charge.” It carries gh(Q) = −1. Note that

as a consequence of the symmetry between the ghosts and antighosts, the global
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symmetry associated with the ghost number gh will be non-anomalous.

In order to complete our superalgebra of supercharges Q and Q, we need to decide

what their anticommutator should be. One option would be to simply set it to zero.

Indeed, the anti-BRST charge and the extended BRST algebra was first discovered

in the context of gauge-fixing relativistic Yang-Mills gauge theories [51, 52], where

Q was found to anticommute with Q. For our purposes it will be crucial to choose

another, more interesting possibility consistent with (1.9), whereby the supercharges

anticommute up to a time translation generator,

{Q,Q} = ∂t. (1.10)

This algebra is a natural deformation of the extended BRST anti-BRST algebra found

originally in the relativistic setting of Yang-Mills theories [51, 52]. In the relativistic

case, there simply is no suitable candidate, consistent with Lorentz invariance, for a

bosonic symmetry generator that could appear on the right-hand side of (1.10). In

the nonrelativistic theory, the time translation generator can naturally appear, and

our topological gravity will take advantage of this possibility.4

Requiring the existence of the second supercharge Q and the extended superalgebra

is beneficial for two reasons: It not only allows us to make it easier to implement the

ghost-antighost symmetry but, more importantly, it will also guarantee that the flow

equations on which the path integral localizes are gradient flow equations.

1.4 N = 2 superspace extension of time

In order to proceed in the most efficient way, it is very natural to organize all

component fields into superfields. Thus, we extend the spacetime manifold into a

supermanifold M of dimension D + 1|2, with coordinates (t, xi, θ, θ), where θ and θ

are two real anticommuting coordinates.5 On this supermanifold, we combine the

spatial metric, and its ghost, antighost and bosonic auxilary field into the spatial

metric superfield

Gij = gij + θψij + θχij + θθBij. (1.11)

4The supersymmetric structure bears formal similarity to the supersymmetric treatment of
stochastic quantization. The analogy between Lifshitz-type gravities satisfying the detailed balance
condition, and stochastic quantization of a gravity theory in one lower dimension, was pointed out
in [32,33]; see also [53] and [54].

5We stress that in this thesis, we utilize the oft-used physics convention, in which the bar on top
of θ etc. is simply an additional index, and never a (complex) conjugation operation. Thus, θ and θ
denote two real Grassmannian variables, Q and Q are two independent real supercharges, and so on.
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Our construction of topological gravity theory involves supersymmetry with two

supercharges Q and Q. It will be convenient to formulate the theory directly in the

language of superfields and other geometric objects and operations on M , instead

of using the cumbersome component field formulation. The superspace M inherits

a natural foliation MF , again by leaves of the bosonic space Σ, and therefore is a

codimension-(1|2) foliation. Thus, our bosonic time dimension M0 ⊂ R is promoted

to a supermanifold M0 of dimension (1|2), with coordinates (t, θ, θ), which we will

naturally refer to as “supersymmetric time”, or “supertime” for short. The projection

from M to the supertime M0 is given in coordinates by π : (t, θ, θ, xi) 7→ (t, θ, θ). We

will sometimes refer to the coordinates (t, θ, θ) on supertime collectively as τM , with

the coordinate index M ∈ {t, θ, θ}.
Note that the dimensions θ and θ are two real Grassmannian coordinates, and

they supersymmetrize only the time dimension; the bosonic spatial coordinates xi

parametrize the leaves of the foliation, and can often be viewed as spectators from the

perspective of the supersymmetrized time. In what follows, we will use interchangeably

∂t and ˙ to denote the time derivative ∂/∂t.

The theories we will be interested in will exhibit N = 2 supersymmetry,6 with

supercharges realized on M as differential operators

Q =
∂

∂θ
, Q =

∂

∂θ
+ θ∂t, (1.12)

and satisfying the superalgebra

{Q,Q} = ∂t, Q2 = Q
2

= 0. (1.13)

In this N = 2 superalgebra, we intend to identify Q to be our BRST charge. Thus,

physical states and operators in our topological gravity theory will be determined

from the cohomology of Q. However, for the time being we suspend this underlying

BRST interpretation, and simply construct our theory as a supersymmetric theory

with the rigid N = 2 superalgebra (1.13).

The superderivatives that anticommute appropriately with the supercharges are:

D =
∂

∂θ
− θ∂t, D =

∂

∂θ
; (1.14)

6In our conventions, N counts the number of individual real supercharges.
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they satisfy

{D,D} = −∂t, D2 = D
2

= 0, (1.15)

and

{D, Q} = {D, Q} = {D, Q} = {D, Q} = 0, (1.16)

and of course D and D both commute with the spatial derivative ∂i ≡ ∂/∂xi.

1.5 The action

Our primitive theory is a topological theory of the component fields contained in

the spatial metric superfield Gij . It will have no gauge symmetries, and it will respect

the N = 2 supersymmetry algebra described above. In addition, we will require that

the theory be invariant under time-independent spatial diffeomorphisms of the spatial

slices Σ. Since this symmetry does not depend on time, it is better not to interpret it

as a gauge symmetry, despite its dependence on the location along Σ. In the present

setting, Diff(Σ) essentially represents an infinite-dimensional global symmetry.

Under these symmetry assumptions, we now write the superspace action as a sum

of two terms,

S =
1

κ2
(SK − SW) . (1.17)

The kinetic term SK is a sum of all the invariants that contain at least one supertime

derivative, while the potential term SW contains all the invariants with only spatial

derivatives but no supertime derivatives. In the component form, this decomposition

will translate into SK containing at least one time derivative, and SW including all

the terms without time derivatives. Extending the customary physics terminology to

this case, we will refer to SW as the “superpotential.” Both SK and SW are integrals

of a local Lagrangian density over all of superspace,7

SK =

∫
dt dDx d2θLK , SW =

∫
dt dDx d2θLW . (1.18)

We will require that they preserve the ghost number symmetry, gh(SK) = gh(SW) = 0.

Note that for future convenience, we have factored out one overall coupling constant,

κ2, in front of the entire action.

The terms that can appear in SK and SW can be usefully organized by their

increasing classical scaling dimensions. Until or unless we commit to a particular

7As usual, we define the measure d2θ and the Berezin integral over the anticommuning coordinates
by linearity together with

∫
d2θ θθ = 1 and

∫
d2θ θ =

∫
d2θ θ =

∫
d2θ 1 = 0.
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value of the dynamical scaling exponent z, time and space scaling is unrelated (as

we reviewed briefly at the beginning of Section 1), and we assign classical scaling

dimensions to the ingredients appearing in the action as follows: [∂i] = L−1, [∂t] =

T−1, [Gij] = 0. The superalgebra implies that [D] + [D] = T−1.8 The terms in SK of

the lowest scaling dimension (i.e., with the lowest number of derivatives) will be of

dimension T−1L0. The first obvious candidate would be
∫ √

GGijĠij, but that term

is a total derivative,
∫
∂t(2
√
G), and hence gives no local dynamics. A nontrivial

leading-order kinetic term of this dimension can indeed be constructed; it contains

two superderivatives,

SK =

∫
dt d2θ dDx

√
G
{(
λ⊥G

ikGj` − λGijGk`
)

DGij DGk` + . . .
}

(1.19)

(The “. . .” stand as a reminder that there may be terms of higher scaling dimension

that one may wish to include.) This kinetic term depends on two coupling constants

λ and λ⊥, which we take to be of scaling dimension zero: L0T 0. This in turn implies

that the scaling dimension of κ2 is [κ2] = LDT−1. Clearly, λ⊥ is redundant, and

one usually sets λ⊥ = 1. We will do so from now on, but we wish to point out that

the implicit assumption leading to this step is that λ⊥ is positive, while in some

circumstances these types of theories can also be studied in the regime where λ⊥ ≤ 0.

The superpotential terms can be similarly organized by the number of increasing

spatial derivatives. Focusing on the terms with up to two derivatives, we find two

terms respecting all our global symmetries: the Ricci scalar of Gij and the cosmological

constant term,

SW =

∫
dt d2θ dDx

√
G
{
. . .+ αRR

(G) + αΛ

}
. (1.20)

We will always refer to the various couplings in the superpotential as α, with an

appropriate subscript indicating the term each particular coupling is associated with.

Thus, here αR is the coupling associated with the spatial Einstein-Hilbert term in

superspace, and αΛ is the superspace cosmological constant. We organized the terms

8Sometimes, in various dynamical regimes, it is convenient to choose a specific value of the
dynamical exponent z, which relates the scaling of time and space, so that T scales as T ∼ Lz. In
that case it is then conventional to assign the classical “scaling dimension” ∆ to any object O if
O scales as T−∆, i.e., to measure the scaling dimension in the units of energy. Also, since in this
thesis we are focusing on the basic set-up of the path integral representation of the theory, and do
not calculate any quantum corrections to classical scaling dimensions, all our scaling dimensions will
be classical. We will follow these conventions throughout.
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in the order of their increasing scaling dimension from the right to the left, with the

“. . .” on the left standing for all terms with more than two derivatives. We of course

assume the perspective and logic of effective quantum field theory here, implying that

all terms consistent with the underlying symmetries are in principle present. In some

cases, only a finite number of terms up to a certain “critical” dimension is sufficient

to make the theory perturbatively renormalizable, or perhaps even short-distance

complete, without the need for higher-derivative terms. The analysis of possible

short-distance completeness of the topological gravity theories presented in this thesis

is a fascinating open question for future research.9

Now we are ready to see the relation between our primitive supersymmetric theory

and the Ricci flow equations. We perform the d2θ integral in SK and SW to obtain

the action in component form. In components, the action (1.17) with SK given in

(1.19) and with a general superpotential term SW given by (1.18) takes the following

form,

S =
1

κ2

∫
dt dDx

{
√
g(gikgj` − λgijgk`)Bij (ġk` −Bk`)−Bij

δF
δgij

+ fermions

}
.

(1.21)

Here we defined F to be the (bosonic) spacetime integral of the lowest component

LF of the LW superfield in the θ, θ expansion:

LW = LF + higher orders in θ, θ, (1.22)

F =

∫
dt dDxLF . (1.23)

The auxiliary field Bij can be integrated out, and the bosonic part of the action then

becomes

Sbose =
1

4κ2

∫
dt dDx

√
g(gikgj` − λgijgk`)

[
ġij −

1
√
g

(gimgjn − λ̃gijgmn)
δF
δgmn

]
(1.24)

×
[
ġk` −

1
√
g

(gkrg`s − λ̃gk`grs)
δF
δgrs

]
, (1.25)

9The naive scaling properties of free-field fixed points suggest that in 3 + 1 dimensions, power-
counting renormalizability requires z = 3, implying in turn that all terms up to three derivatives
would need to be included in the superpotential. This would include the gravitational Chern-Simons
3-form built out of the Levi-Cività connection of Gij , and would lead to a generalization of the Ricci
flow involving the Cotton tensor [33,55,56]. In 2 + 1 dimensions, only terms up to two derivatives
are sufficent for power-counting renormalizability.
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where λ̃ is given, as usual in Lifshitz gravity [32], by

λ̃ =
λ

Dλ− 1
. (1.26)

Clearly, for values of λ ≤ 1/D, this action is bounded from below by zero, and this

bound is saturated when the metric satisfies the appropriate flow equation, of first

order in time derivatives.

The fermionic component contributions to (1.21) are straightforward to determine,

but they look a little cumbersome and we suppress them for the ease of the presentation,

as is often done in supergravity theories. Perhaps the most important thing to

remember about the fermions is that they also have a non-degenerate kinetic term,

χij(g
ikgj` − λgijgk`)ψ̇k` + . . . , (1.27)

and therefore our entire theory can be treated in a perturbative expansion using

standard Feynman diagram techniques.

The quantum theory of our primitive topological gravity is formally defined via

the path integral as a sum over all appropriate histories,

Z =

∫
Dµ[Gij] exp

{
− 1

~κ2
(SK − SW)

}
. (1.28)

Here Dµ[Gij ] is the N = 2 supersymmetric measure on the space of the metric fields.

A few comments about some salient features of this path integral seem in order.

Many of them will be relevant also to the more sophisticated cousins of the primitive

theory, which we will develop below.

• In order to become well-defined even by the physics standard of rigor, this

path integral requires that appropriate boundary conditions be specified at the

boundaries of spacetime, even in the absence of singularities. What is the correct

question to ask must be guided by physics principles: We must first decide

what is the appropriate set of probability amplitudes and observables that are

meaningful in this context of time-dependent quantum gravity and cosmology.

We might be interested in choosing the initial surface Σ and calculating the

Hartle-Hawking-type wavefunction of the Universe. Or perhaps one might

wish to evaluate the transition amplitudes between physical states at an initial

and finite time. Besides calculating the partition function Z or transition

amplitudes with such boundary conditions, one can define correlation functions
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of BRST-invariant local operators, or of observables associated with extended

submanifolds in spacetime. This question of observables is beyond the scope

of the present thesis, but represents an intriguing opportunity to find a new

window into quantum gravity and quantum cosmology far from equilibrium, at

least in the topological setting.

• Standard arguments of topological quantum field theory apply [27, 31], at

least formally: The overall coupling κ2 plays the role of ~. The semiclassical

approximation at small κ is “exact” at one loop, and the path integral localizes

to the space of solutions of the localization equation, which in our case is a

Ricci-type flow equation for gij. A similar argument implies that the physical

observables (such as the partition function) are independent of the small changes

in the coupling constants; here “small” means roughly those changes which do

not lead to degeneracies in the action.

• Note that our theory is formally defined in “imaginary time”. One might also

be interested instead in the “real-time” path integral, which would have the

integrand exp(iS) instead of the exp(−S) appearing in (1.28). This possibility is

already interesting for the primitive theory, but will become even more relevant

for the more sophisticated versions of topological quantum gravity constructed

below, which have some form of spacetime diffeomorphism invariance. We will

further comment on this possibility of continuing to real time in Section 3.4.3.

• Already this simplest “primitive” theory depends on several coupling constants:

λ, αR and αΛ (and perhaps more, if we choose to add higher-derivative terms),

and the classical localization equations thus represent a multi-parameter gen-

eralization of the standard Ricci flow. It will be important to subject this

“landscape” of topological gravity theories to a closer study, to see what limits

on the values of the coupling constants naturally emerge from requiring that

the formal path integral satisfy various physical consistency conditions. In par-

ticular, not for all values of the couplings will the solutions of the localization

equations be as well-behaved as those of Hamilton’s Ricci flow, putting bounds

on the range of the couplings. Of course, this broader family of generalized flow

equations has been much less studied in the mathematical literature, and much

less is known exactly.

16



1.6 Localization and Hamilton’s Ricci flow

To see that Hamilton’s original Ricci flow indeed appears in the landscape of our

theory, let us take a closer look at the localization equation, obtained from (1.21):

∂gij
∂t

=
1
√
g

(gikgj` − λ̃gijgk`)
δF
δgk`

, (1.29)

With the specific form of the superpotential given in (1.20), this becomes

∂gij
∂t

= −αRRij +
αR
2

[
1− λ̃(D − 2)

]
gijR +

αΛ

2
gij. (1.30)

We observe that setting

αR = 2, αΛ = 0, λ =
1

2
(1.31)

in the action of the primitive theory reduces the localization equation (1.30) to

∂gij
∂t

= −2Rij. (1.32)

Thus, for the values of the couplings given in (1.31), the original Ricci flow equation

(0.1) of Hamilton’s appears as the localization equation in our theory of topological

quantum gravity, despite the fact that it is not a gradient flow equation.

Interestingly, the value λ = 1/2 that leads to Hamilton’s Ricci flow is not in

the range of λ in which the action is positive definite. The proper treatment of the

path integral would require a rather subtle analytic continuation. If we wanted to

make sense of this continuation, we would be facing a situation very analogous to

relativistic Euclidean quantum gravity [57], in which the Euclidean action is also not

bounded from below, due to the contributions from the spacetime scale factor of the

metric. In the nonrelativistic context relevant here, the culprit is the scale factor of

the spatial metric gij.

2 The gauge theory: Gauging spatial diffeomorphisms

In the next step, we wish to incorporate some of the gauge symmetries expected

of quantum gravity into our topological theory. We begin by gauging the time-

independent symmetries of spatial diffeomorphisms Diff(Σ) exhibited by the primitive
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theory.

The basic field of the primitive theory was the spatial metric gij(t, x
k). Under an

infinitesimal time-dependent spatial diffeomorphism ξi(t, xj), the metric tensor would

transform as

δgij = ξk∂kgij + gkj∂iξ
k + gik∂jξ

k. (2.1)

Note that in this relation, the time coordinate plays the role of a spectator: not only

the time-independent but also the time-dependent spatial diffeomophisms act via

(2.1) leaf-by-leaf, at each fixed t, as ordinary spatial diffeomorphisms.

In the primitive theory, we supersymmetrized the spatial metric by promoting

gij(t, x
k) to an unconstrained N = 2 superfield Gij(t, θ, θ, x

k), whose component

expansion we recall here,

Gij = gij + θψij + θχij + θθBij. (2.2)

In order to gauge the spatial diffeomorphisms consistently with the N = 2 supersym-

metry, we follow the strategy familiar from supersymmetric Yang-Mills theories in

superspace: We promote the diffeomorphism generator ξi into a superfield,

Ξi = ξi + θζ i + θηi + θθαi. (2.3)

(Later on, we will impose various chirality constraints on Ξi, but for now we will treat

it as unconstrained.) Under the spatial superdiffeomorphisms, the metric superfield

Gij transforms in a straightforward generalization of (2.1), as

δGij = Ξk∂kGij +Gkj∂iΞ
k +Gik∂jΞ

k. (2.4)

Note that in this transformation rule, both t and θ, θ again play the role of spectators,

and (2.4) acts at each fixed value of the specator supercoordinates (defining an

individual leaf of the foliation) as a spatial superdiffeomorphism of the metric superfield

along the leaf.

2.1 ABCs of supersymmetrizations of the Diff(Σ) symmetry

We begin with the primitive theory, and Gij as the only superfield. In order to

promote the transformations of the spatial Diff(Σ) symmetries into a gauge symmetry,

one must introduce the appropriate gauge fields which allow us to covariantize the

time derivatives of the spatial metric.

Let us first recall how this works in bosonic gravity. The role of such gauge fields
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is played by the famous “shift vector” ni (in the terminology of the ADM formalism),

which transforms as

δni = ξ̇i + ξk∂kn
i − nk∂kξi. (2.5)

The interpretation of the three terms in (2.5) is very clear: The first term, viewed for

each fixed value of the spatial index i is exactly the transformation of an Abelian

gauge field under a time-dependent gauge transformation with parameter ξi, with one

such Abelian symmetry for each spatial dimension. And the second plus third term

are a nonlinear correction to this leading gauge transformation, which ensure that ξi

are not independent Abelian symmetries but represent the nonlinear transformations

of spatial diffeomorphisms. These two terms make sure that ni transform correctly as

components of a spatial one-vector under time-independent spatial diffeomorphisms.

Using the shift vector ni, one can now covariantize ġij to

∇tgij ≡ ġij − nk∂kgij − gkj∂ink − gik∂jnk, (2.6)

and show that this covariantization transforms correctly, as a spatial two-tensor,

under time-dependent spatial diffeomorphisms ξi(t, xk):

δ(∇tgij) = ξk∂k(∇tgij) + (∇tgkj)∂iξ
k + (∇tgik)∂jξ

k. (2.7)

The supersymmetrization of the covariant time derivative is straightforward: We

promote the shift vector ni into a superfield

N i = ni + θψi + θχi + θθBi, (2.8)

and postulate that N i transform under superdiffeomorphisms Ξi as

δN i = Ξ̇i + Ξk∂kN
i −Nk∂kΞ

i. (2.9)

For now, we treat N i as an unconstrained superfield, but will see below that it might

be consistent with various chirality constraints. We extend the definition of the

covarantized time derivative ∇t to the superfield Gij,

∇tGij ≡ Ġij −Nk∂kGij −Gkj∂iN
k −Gik∂jN

k, (2.10)

and observe that the superfield ∇tGij transforms under Ξi as a spatial two-tensor,

δ(∇tGij) = ξk∂k(∇tGij) + (∇tGkj)∂iξ
k + (∇tGik)∂jξ

k. (2.11)
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Indeed, this is a simple consequence of (2.5) together with the fact that θ, θ play the

role of spectators in our construction of the covariant time derivative.

Having covariantized the time derivative of Gij, we must now covariantize the

superderivatives DGij and DGij. We first introduce gauge superfields Si and S
i
,

of the opposite statistics to N i, and such that they transform under the gauge

supertransformations Ξi as

δSi = DΞi + Ξk∂kS
i − Sk∂kΞi, (2.12)

δS
i

= DΞi + Ξk∂kS
i − Sk∂kΞi. (2.13)

With such superconnections, we now define the covariantized superderivatives of Gij,

DGij ≡ DGij − Sk∂kGij −Gkj∂iS
k −Gik∂jS

k, (2.14)

DGij ≡ DGij − S
k
∂kGij −Gkj∂iS

k −Gik∂jS
k
, (2.15)

and see that they transform correctly under Ξi(t, θ, θ, xk), as spatial two-tensors.

2.1.1 Type C: The chiral theory

Before studying in more detail this general case, we first observe that one can

consistently restrict Ξi to be chiral superfields,

DΞi = 0. (2.16)

This will define what we will refer to as “Type C theory” (here “C” naturally stands

for “chiral”). In Type C theory, the ordinary superderivative D is already covariant,

and no S
i

superconnection is needed. Only Si must be introduced, to covariantize D

into D. Still, having both N i and Si without any relation between them would lead

to too many gauge field components (for example, both N i and Si contain a bosonic

component that transforms as the bosonic shift vector ni). In order to find a suitable

constraint that relates them, note first that −DSi transforms as N i. This leads us to

expect that in Type C theory,

N i = −DSi. (2.17)

In fact, this constraint has a very clear geometric origin, closely reminiscent of similar

constraints in supersymmetric Yang-Mills gauge theories: It simply states that the

action of the anticommutator of the covariantized superderivatives {D,D} on Gij (or,

indeed, on any symmetric 2-tensor Tij) in Type C theory reproduces the action of
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−∇t on Gij (or Tij). Here we must be careful of the order of terms when evaluating

D of an odd two-tensor; the correct formula that works regardless of the statistics of

Tij is

DTij ≡ DTij − ∂iSkTkj − ∂jSkTik − Sk∂kTij. (2.18)

Note that since N i in Type C theory is D of something, it is automatically chiral:

DN i = 0. (2.19)

This is pleasing, since such a chiral N i (for each fixed i) contains one real bosonic

component ni and one real fermionic component, which matches the number of

independent component gauge transformation contained in a chiral Ξi. We can

thus plan on eliminating the fermionic component of N i by going to the analog of

Wess-Zumino gauge [58].

We would similarly expect that Si should have only two independent components

in the θ, θ expansion. However, we clearly cannot impose the antichirality condition

and simply set DSi to be zero: This would be inconsistent with the fact that under

a chiral Ξi, the transformation δSi is not antichiral (even though it would be so

at the linearized level). So, either Si is unconstrained, and therefore contains four

independent components two of which would have to be gauge invariant (which would

be unpleasant), or there is another constraint that can be consistently imposed on Si.

The correct constraint turns out to be nonlinear,

DSi = Sk∂kS
i, (2.20)

and it represents a covariant version of the antichirality condition. We will return to

its precise geometric interpretation in Section 2.2.

2.1.2 Type A: The antichiral theory

Instead of postulating that the spacetime superdiffeomorphisms Ξi are chiral as

in Type C theory, we could start with the antichirality condition,

DΞi = 0. (2.21)

The entire construction will go through in the same way as in Type C theory, with

all chiralities and antichiralities reversed at all the relevant steps. We will refer to

this construction as “Type A theory” (with “A” standing for “antichiral”). Since

the theory enjoys N = 2 supersymmetry, Type A theory might naively seem like
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another construction of the same Type C theory in disguise, up to a simple change of

coordinates. However, recall that when we introduced our supercharges, we selected

once and for all Q (and not Q, or any other linear superposition of them) to be our

BRST charge of topological symmetry. This selection lifts the N = 2 democracy

between the two chiralities, and makes Type A theory a priori distinct from Type C.

In more detail, in Type A theory we covariantize the time derivative using gauge

superfield N i, which transforms according to (2.9), now with an antichiral Ξi. And we

covariantize the superderivative D to D by introducing the odd gauge superfield S
i
.

The other superderivative D is already covariant, and no Si superfield is introduced

or needed. The relation between N i and S
i

in Type A theory is

N i = −DS
i
, (2.22)

which makes N i automatically antichiral. This relation is again an expression of a

covariant constraint, which ensures that

{D,D}Tij = −∇tTij, (2.23)

on any symmetric 2-tensor Tij.

Note that S
i
, if further unconstrained, would have two gauge-invariant components,

for which we have no use. A constraint should again be imposed to eliminate them,

but it cannot be simply the chirality condition on S
i
, which is inconsistent with the

transformations of S
i

under antichiral superdiffeomorphisms. The correct constraint

takes the form of a nonlinear improvement of the naive antichirality constraint,

DS
i

= S
k
∂kS

i
. (2.24)

2.1.3 Type B: The balanced theory

While Theories C and A appear to be the minimal theories with N = 2 super-

symmetry and gauge superdiffeomorphism symmetry, they each break the symmetry

between ghosts and antighosts, due to the (anti)chirality condition on the superdiffeo-

morphism parameters Ξi. Now we will construct a theory with Ξi fully unconstrained,

which will restore the ghost-antighost symmetry. In the literature, topological theories

with such a ghost-antighost symmetry are sometimes referred to as “balanced” [50].

We will adopt this terminology for our case here as well, and will call this theory

“Type B” (with “B” naturally standing for “balanced”).

In order to allow for unconstrained Ξi supergauge transformations, we must
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covariantize the time derivative and both superderivatives D, D, by introducing gauge

superfields N i, Si and S
i
, which transform according to (2.9), (2.12) and (2.13).

They correctly covariantize all our derivatives, but carry way too many independent

components and must therefore be subjected to a series of natural constraints. First of

all, N i can be algebraically expressed in terms of Sj , S
j

and their various derivatives,

by imposing {
D,D

}
Tij = −∇tTij (2.25)

on symmetric two-tensors. This condition gives

N i = −DSi −DS
i
+ Sk∂kS

i
+ S

k
∂kS

i. (2.26)

Note several interesting facts about this formula: First of all, in the absence of

S
k

(or Sk), it reduces to the expressions for N i in Type C (or Type A) theory,

respectively. Secondly, in the Type B theory, the expression for N i also contains

important nonlinear cross-terms between Si and S
k
, which had no analog in Type C

and Type A theories.

Our relation (2.26) uniquely expresses N i in terms of Si and S
i
. Thus, we expect

that Wess-Zumino gauge exists, in which we keep only the leading component ni and

the bosonic diffeomorphisms ξi as symmetries, using the remaining three components

of Ξi (for each i) to eliminate the remaining three components of N i. However, this

still leaves us with too many components of the a priori unrelated Si and S
i
, a

problem which we already noticed in Type C and Type A theories. We therefore

return to the geometric interpretation of all our constraints, in the “umbrella” case

of Type B theory.

2.2 Geometric interpretation I: Superconnections, constraints and flat-

ness

To find suitable constraints that should be imposed on Si and S
i
, we can cal-

culate the appropriate graded commutators of our covariant derivatives, and define

“supercovariant field strengths” W i
MN , M,N ∈ {t, θ, θ}, in a way reminiscent of more

traditional supersymmetric gauge theories (such as super Yang-Mills), as obstructions

against the closure of the algebra of derivatives isomorphic to the algebra of D,D

and ∂t. Evaluating the graded commutators of D,D and ∇t on our spatial metric
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superfield Gij gives:

{D,D}Gij = −∂iW k
θθGkj − ∂jW k

θθGik −W k
θθ∂kGij, (2.27)

{D,D}Gij = −∂iW k
θθ
Gkj − ∂jW k

θθ
Gik −W k

θθ
∂kGij, (2.28)

{D,D}Gij = −∇tGij − ∂iW k
θθ
Gkj − ∂jW k

θθ
Gik −W k

θθ
∂kGij, (2.29)

[∇t,D]Gij = −∂iW k
tθGkj − ∂jW k

tθGik −W k
tθ∂kGij, (2.30)[

∇t,D
]
Gij = −∂iW k

tθ
Gkj − ∂jW k

tθ
Gik −W k

tθ
∂kGij, (2.31)

where

W i
θθ = 2(DSi − Sk∂kSi), (2.32)

W i
θθ

= 2(DS
i − Sk∂kS

i
), (2.33)

W i
θθ

= N i + DSi + DS
i − Sk∂kSi − Sk∂kS

i
, (2.34)

W i
tθ = Ṡi −Nk∂kS

i −DN i + Sk∂kN
i, (2.35)

W i
tθ

= Ṡ
i

−Nk∂kS
i −DN i + S

k
∂kN

i. (2.36)

Note that our constraint (2.26) is simply indicating the vanishing of the field strength

W i
θθ

= 0. (2.37)

This suggests that we impose the rest of the “flatness conditions” on supertime,

W i
θθ = 0, W i

θθ
= 0, (2.38)

which requires

DSi = Sk∂kS
i, DS

i
= S

k
∂kS

i
. (2.39)

In fact, our set of constraints (2.26) and (A.2) is the minimal set that implies the

vanishing of all the field strengths W i
MN by Bianchi identities.

In our construction of Type C and A theories, we pointed out that Si and S
i
should

each satisfy a chirality-like constraint, but showed the inconsistency of constraining

Si and S
i

by the naive linear (anti)chirality conditions. The two constraints (A.2) are

the required consistent nonlinear extensions of the naive (anti)chirality constraints.

Note that these two conditions remain nonlinear in Si (or S
i
) when reduced to Type

C (or Type A) theory.

Any potential worry that the nonlinear nature of the constraints (A.2) could lead
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to over-constraining is eliminated by finding the explicit solutions of the constraints

in components. Constraints (A.2) are solved by

Si = σi + θσk∂kσ
i + θY i + θθ(σ̇i + Y k∂kσ

i − σk∂kY i), (2.40)

S
i

= σi + θX i + θσk∂kσ
i + θθ(σk∂kX

i −Xk∂kσ
i). (2.41)

Then (2.26) is solved by setting

Y i = −ni −X i + σk∂kσ
i + σk∂kσ

i, (2.42)

and expressing the three remaining components in the N i superfield (2.8) as follows,

ψi = σ̇i + σk∂kn
i − ∂kσink, (2.43)

χi = σ̇
i
+ σk∂kn

i − ∂kσink, (2.44)

Bi = −Ẋ i + nk∂kX
i −Xk∂kn

i + σ̇k∂kσ
i + σj∂jn

k∂kσ
i − nj∂jσk∂kσi

+ σk∂kσ̇
i + σk∂kσ

j∂jn
i + σkσj∂k∂jn

i − σk∂knj∂jσi − σknj∂k∂jσi.(2.45)

All the constraints have been solved, and the shift superfields are all expressed in

terms of the bosonic component fields ni, X i, and the fermionic components σi and

σi.

This concludes our construction of the self-consistent covariantization under

unconstrained diffeomorphisms Ξi. To summarize, imposing the flatness conditions

(2.37) and (2.38) leads to the set of constraints (2.26) and (A.2) on N i, Si and S
i
.

This reduces the number of independent components in the gauge superfields so that

we can eliminate all the components besides ni by an analog of the Wess-Zumino

gauge.

2.3 Geometric interpretation II: Supersymmetric Diff(Σ) Yang-Mills the-

ory

The set of constraints that we just identified in terms of the superfield strengths

has another intriguing geometric interpretation, which sheds some additional light on

our covariantization construction, and which can also be of independent interest.

In this new interpretation, we take a different perspective on the structure of

spacetime: We view the theory as a supersymmetric gauge theory on supertime M0,

i.e., a theory in (1|2) dimensions. The spatial slices Σ will be interpreted as an

internal space, not as dimensions of spacetime. Thus, a field such as N i(t, θ, θ, xj)
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is interpreted as a field on (t, θ, θ), with (i, xi) interpreted as a continuous internal

(multi)index.

Recall that for any (typically compact, and finite-dimensional) internal Yang-

Mills symmetry group G, there are standard rules for constructing the corresponding

supersymmetric Yang-Mills theory in a superspace of dimension (d|d′): One postulates

the existence of superconnections ΓαM on superspace, where the index M goes over all

d+ d′ values, and α indicates the adjoint representation of the bosonic gauge group G.

The derivatives on superspace have thus been covariantized to DM . Next one defines

the supersymmetric field strengths Wα
MN via

[DM , DN} = TMN
PDP +WMN , Wα

MNTα, (2.46)

with TMN
P the torsion of the flat superspace, and Tα the generators of G. Finally,

one imposes a set of constraints sometimes referred to as “conventional” , [59,60]:

Wα
MN = 0, whenever both indices M,N are odd. (2.47)

The rest of the constraints is implied by the Bianchi identities.

With the full list of constraints identified, one can then construct various candidate

Lagrangians in superspace, typically by invoking an invariant metric gαβ on the Lie

algebra of G in order to contract the pairs of internal indices on expressions quadratic

in Wα. This is the standard way in which supersymmetric Yang-Mills gauge theories

in various spacetime dimensions are constructed in superspace [59,60].

Note the remarkable fact that our construction of the shift-vector sector in our

topological gravity theory in Section 2.2 in terms of the fields N i, Si and S
I
, their

superfield strengths W , and the corresponding constraints, takes precisely the form

of the just reviewed standard supersymmetric Yang-Mills theory construction, with

the following identifications:

• The underlying spacetime is the supertime, of dimension (1|2), with coordinates

(t, θ, θ).

• The connections ΓαM are N i for M = t, Si for M = θ, and S
i

for M = θ, and

with the adjoint index α being the multi-index (i, xk). More precisely, in a

language independent of the choice of coordinates on Σ, the Lie algebra G is the

infinite-dimensional algebra of vector fields on Σ. Thus, the Lie algebra of this

Yang-Mills theory is the Lie algebra of spatial diffeomorphisms G = Diff(Σ)!

• One can check directly that the definitions of superfield strengthsW (2.32–2.36)
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indeed correspond precisely to the Yang-Mills field strength definition in (2.46).

We recognize the structure constants of G = Diff(Σ) in the expressions for W ’s,

and we also see that the first term in (2.29) is the torsion term anticipated in

(2.46).

• Our collection of constraints (2.37) and (2.38) is equivalent to the “conventional

constraints” (2.47) of the standard superspace construction of supersymmetric

Yang-Mills gauge theory.

Thus we reach a perhaps surprising conclusion: The construction of the shift

superfield sector in our topological quantum gravity on the superspace M of dimension

(D + 1|2) is precisely equivalent to the construction of supersymmetric Yang-Mills

gauge theory on supertime of dimension (1|2), and with the internal Lie algebra of

gauge symmetries being the algebra of spatial diffeomorphisms Diff(Σ) of the spatial

slices Σ!

This intimate connection between conventional supersymmetric Yang-Mills theory

with an internal symmetry G on one hand, and the gauging of spatial diffeomorphisms

in gravity on the other, can potentially be of some broader interest. One is reminded

of the BCJ color-kinematics duality [61–63], which relates amplitudes in Yang-Mills

theories to amplitudes in gravity by replacing internal symmetry factors with kinematic

factors. It has been quite mysterious so far what kind of algebraic structure can

underlie this procedure on the kinematic side. Perhaps our relation between gravity

and Yang-Mills may be useful in identifying the hidden algebraic structure on the side

of kinematics, at the cost of singling out the role of time and making the description

not manifestly relativistic.

While the parallel between our shift superfield sector and supersymmetric Yang-

Mills is quite precise, there is one instance where the similarity stops: Unlike compact

finite Lie algebras G, our Lie algebra of spatial diffeomorphisms Diff(Σ) does not have

a constant invariant metric, and therefore one cannot construct standard quadratic

kinetic terms for the action. This is of course consistent with the prior knowledge that

no such kinetic terms for the shift vector should exist. In one wishes to construct an

invariant metric on the Lie algebra of Diff(Σ), it can only be done in a field-dependent

way, by invoking a spatial metric gij(x). For two generators ξi(x) and ζ i(x) of Diff(Σ),

we define their inner product by

(ξ, ζ) =

∫
dDx
√
g gij ξ

iζj. (2.48)

This metric on Diff(Σ) is thus field-dependent, and cannot be used to construct
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kinetic terms for the superfield strengths of the shift sector.

2.4 The action

Using the covariant derivatives ∇tGij,DGij and DGij constructed in the previous

paragraphs, the action for Type B theory can be easily constructed in the manifestly

supersymmetric form in our N = 2 superspace.

The kinetic term is covariantized to

SK =

∫
dt d2θ dDx

√
G
{(
λ⊥G

ikGj` − λGijGk`
)
DGij DGk` + . . .

}
. (2.49)

(This kinetic term is valid in Type B theory; the corresponding kinetic terms in Type

A and C cases are simply obtained by reducing D or D to D or D as appropriate.)

The superpotential stays the same as in our primitive theory, (1.20).

The path integral for this theory is, in superspace language,10

Z =

∫
Dµ[Gij, N

i, Si, S
i
] exp

{
− 1

~κ2
(SK − SW)

}
. (2.50)

This path integral requires further gauge fixing of the newly introduced spacetime

Diff(Σ) gauge symmetry, which we will discuss briefly in Section 2.5. In addition,

the same points that we presented in our brief discussion of the path integral of the

primitive theory in Section 1.5 apply here as well.

The main improvement compared to the primitive theory is that the flow equations

for the metric gij are now covariant under time-dependent spatial diffeomorphisms,

with the path integral localizing to the solutions of

∇tgij = −αRRij +
αR
2

[
1− λ̃(D − 2)

]
gijR +

αΛ

2
gij. (2.51)

The possibility of modifying the Ricci flow by the time-dependent spatial diffeomor-

phism generated by ni has been very useful in the mathematical theory, where it is

known as “DeTurck’s trick”. We are now in a position to see how these techniques

10In the construction of the path-integral measure Dµ, one must keep in mind that N i, Si and S
i

are not independent, but related to each other by our constraints (A.2) and (2.26). At this stage, it
might be better to switch from the superspace to the component formulation, in which the definition
of the N = 2 supersymmetric measure for the component fields is more straightforward. Alternatively,
Appendix B solves the constraints and expresses our superfields in terms of unconstrained prepotential
superfields.
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emerge in our quantum gravity, as a part of the process of gauge fixing the spatial

diffeomorphism symmetry.

2.5 Wess-Zumino gauge

In order to construct a theory with spatial diffeomorphism gauge symmetry

generated by bosonic generators ξi(t, xk) in a way manifestly consistent with N = 2

global supersymmetry of supertime, we first promoted ξi to a superfield of symmetry

generators Ξi, and used superspace techniques to find a theory invariant under the

much larger symmetry generated by Ξi. Now we need to decide how to interpret – or

eliminate – the additional gauge symmetries contained in Ξi of (2.3), i.e., symmetries

generated by

ζ i, ηi, and αi, (2.52)

so that we reduce the gauge group back to the desired Diff(Σ). Until this point, our

strategy for the gauging process has closely parelleled the construction of supersym-

metric relativistic gauge theories (see, e.g., [59] for a review and introduction), which

also offers a natural way of reducing the gauge symmetries to the bosonic ones, known

as Wess-Zumino gauge [58]: One simply sets all the higher components of the gauge

superfield, in our case the shift superfield N i, to zero. This is algebraically possible,

leads to no additional constraints, and leaves only the bosonic ξi symmetry unfixed.

We will adopt this Wess-Zumino gauge for the spatial diffeomorphism symmetry

in our theory. Thus, the action that appears in (2.50) in Wess-Zumino gauge remains

gauge invariant only under the bosonic Diff(Σ) symmetry, but still in a way consistent

with the N = 2 supersymmetry. The path-integral measure is also correspondingly

reduced in Wess-Zumino gauge.

Having disposed of the higher gauge symmetries (2.52), we must next decide how

to treat the remaining bosonic gauge symmetries Diff(Σ). There are several useful

options. First, we can leave the theory in its manifestly Diff(Σ) invariant form for

as long as possible, and introduce its gauge fixing by the standard Faddeev-Popov

ghosts when necessary (for example, for developing Feynman diagrams around a

given background). This “equivariant” approach is the strategy often preferred

in topological field theories. It is followed for example for relativistic topological

Yang-Mills, where the Yang-Mills gauge symmetry is typically left unfixed.

Altenatively, there might be reasons why one may want to fix, fully or partially,

the Diff(Σ) symmetry. For the topological gravity of the Ricci flow, this option turns

out to be very useful for the comparison to the mathematical literature. In fact, we

will see three different natural gauge choices, each corresponding to an operation
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performed in the mathematical theory of the Ricci flow. We refer to them as “DeTurck

gauge,” “Perelman gauge”, and “Hamilton gauge”.

• Perelman gauge: In this gauge, one simply sets the shift vector to zero,

ni(t, xj) = 0. (2.53)

In the context of gravity and spatial diffeomorphism symmetry, this is the

analog of temporal gauge. Adopting this gauge choice, the covariant time

derivative ∇tgij in the localization equation (2.51) is reduced to the ordinary

time derivative ġij , as in the original form (0.1) of Hamilton’s Ricci flow (which

was not invariant under time-dependent spatial diffeomorphisms).

• Hamilton gauge: If the theory contains another field h(t, xi), which transforms

as a scalar under spatial diffeomorphisms, one can replace (2.53) with

ni(t, xj) = gik∂kh. (2.54)

We do not have any such scalars in the theory yet, but will see that this type of

gauge will be useful when we extend the gauge symmetries to foliation-preserving

diffeomorphisms of spacetime. The gauge-fixing condition (2.54) played an

important role in Perelman’s original approach to Ricci flow, in particular in

re-establishing the relation to the original Hamilton-Ricci flow (0.1); the role of

h was played by Perelman’s dilaton field φ.

• DeTurck gauge: This is the context in which the original DeTurck trick first

appeared [64]. To define this gauge, one first chooses a fixed fiducial metric g̃ij
on Σ, and sets

ni = gjk
(

Γijk − Γ̃ijk

)
, (2.55)

where Γijk and Γ̃ijk are the Christoffel symbols representing the torsion-free

Levi-Cività connections of gij and g̃ij respectively (see, e.g., Ch. 3.3 of [11]

or Ch. 2.6 of [23] for additional mathematical context and motivation). This

choice obviously breaks spatial diffeomorphism invariance. The usefulness of

this gauge choice stems from the fact that the Ricci flow equation in this gauge

is found to be manifestly parabolic, a property not obvious in other gauges, and

definitely untrue for the gauge-unfixed flow equation (0.1) (which is parabolic

only modulo spatial diffeomorphisms, or “weakly” parabolic). In turn, this

manifest parabolicity leads to a simple proof of the existence and uniqueness
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theorem, stating that a solution of the initial value problem for the flow equation

exists for some amount of time ε > 0, and that on that time interval the solution

is unique.

The first two of these gauge choices are going to be particularly useful once

we extend the gauge symmetries to foliation-preserving spacetime diffeomorphisms,

especially in the theory with the nonprojectable lapse.

3 The gauge theory: Gauging time translations

Next, we wish to gauge time translations, or at least those that preserve the

preferred foliation of spacetime. In the bosonic theory, such foliation-preserving time

diffeomorphisms are generated by

δt = f(t). (3.1)

To promote them to a gauge symmetry, we introduce a new field, the lapse function

n(t), which transforms as

δn = fṅ+ ḟn. (3.2)

Multiplying the covariant time derivative ∇tgij with the inverse lapse function, we

obtain (1/n)∇tgij, which transforms as a scalar under time diffeomorphisms. Such

scalars can then be used to build invariant Lagrangians, which take the form of the

covariant spacetime volume element

dV(g, n) ≡ dDx dt n
√
g, (3.3)

mutliplied by any scalar function made out of the available ingredients.

We will now generalize this gauging procedure to our supersymmetric case. In

order to make f(t) consistent with supersymmetry, it must first be promoted into a

superfield,

F (t, θ, θ) = f(t) + θϕ(t) + θϕ(t) + θθγ(t). (3.4)

In addition, we may choose this superfield to be further constrained, for example by a

chirality condition. Note that the superfield of time reparametrizations is independent

of xi, reflecting the fact that our gauge symmetries preserve the structure of the

spacetime foliation MF by spatial manifolds Σ of constant t, θ, θ.
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3.1 The projectable case

In this section, we will construct the minimal theory consistent with the gauge

symmetries of (3.4). This theory will have a projectable lapse n(t), promoted to a

superfield N(t). As in the case of spatial diffeomorphisms, there are three versions of

the theory, depending on whether we impose a chirality or antichirality condition on

N , or keep the superfield unconstrained.

3.1.1 Type C theory

We begin with our chiral Type C theory of Section 2.1.1, and we extend the gauge

symmetry of the chiral spatial diffeomorphisms Ξi(t, θ) to also include the chiral

version of time reparametrization symmetry generated by F which satisfies DF = 0.

The gauge transformations of the previously introduced superfields Gij, N
i and

Si are:

δGij = FĠij + Ξk∂kGij + ∂iΞ
kGkj + ∂jΞ

kGik, (3.5)

δN i = FṄ i − ḞN i + Ξ̇i + Ξk∂kN
i − ∂kΞiNk, (3.6)

δSi = FṠi −DFDSi + DΞi + Ξk∂kS
i − ∂kΞiSk. (3.7)

The first two of these rules follow straightforwardly from the requirement that the

bosonic component fields gij and ni transform under f(t) as in the bosonic theory.

The third rule follows from the requirement that the constraint (2.17) that relates N i

to Si be preserved under the time reparametrizations.

In order to construct the theory with F gauge symmetry, we could introduce a

supervielbein on (t, θ, θ) (which would be a 3× 3 matrix of superfields) and impose

enough constraints on it so that we reduce the number of independent component

fields to the bosonic lapse function and its superpartner under Q. Here we will

follow a much more straightforward “bottom-up” strategy, and will return to the

supervielbein interpretation below once our construction is complete.

Consider the derivatives ∇tGij, DGij and DGij, which serve as ingredients for

building our Lagrangian in superspace. Under F , some of these derivatives do not

transform as scalars. The task is to modify them minimally so that the modified

derivatives do transform as scalars under F , and can then be again used as simple

ingredients for constructing gauge invariant Lagrangians.

Start with the time derivative ∇t. In the bosonic theory, its covariantization under

f(t) is simply accomplished by multiplying it with the inverse lapse function 1/n. In
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the supersymmetric case, we introduce superfield E(t, θ, θ) whose lowest component

is 1/n, and observe that E∇tGij transforms as a scalar under F ,

δ(E∇tGij) = F∂t(E∇tGij), (3.8)

if we postulate that E transform as

δE = FĖ − ḞE. (3.9)

Our next step is to covariantize similarly the remaining derivatives DGij and DGij .

Since in Theory C, DGij does not contain a gauge field, it transforms as a scalar under

F . On the other hand, DGij contains Si terms and does not transform as a scalar,

and therefore requires a modification. As in the case of the time derivative, the first

step is to introduce a new superfield E(t, θ, θ) and replace DGij with EDGij. This

by itself is not sufficient, since the transformation of DGij under F will also contain

terms proportional to ∇tGij. One must introduce one additional, odd superfield Θ,

and shift EDGij by an additive term Θ∇tGij. Postulating the transformation rules

δE = F Ė , (3.10)

δΘ = −E DF + F Θ̇− ḞΘ (3.11)

then ensures that

E DGij + Θ∇tGij (3.12)

transforms as a scalar under F .

Thus, the covariantization of the derivatives consistently with supersymmetry

requires the introduction of three superfields E,Θ and E , which play the role which

in the bosonic theory was played by the (inverse) lapse function. Clearly, these three

superfields must be further constrained, so that they do not lead to a proliferation of

gauge-invariant component fields for which we have no interpretation or desire.

The first such constraint is easy to propose: Since E transforms under F covariantly

as a scalar, it is consistent to set

E = 1. (3.13)

Then there must be a constraint that relates E to Θ. A closer examination of the

transformation properties reveals that 1−DΘ transforms the same way as E, and

we therefore impose the constraint

E = 1−DΘ. (3.14)
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Note that this constraint implies that E is chiral, and therefore only contains two

components, as it should: The inverse lapse function and its superpartner under Q.

Finally, Θ also must satisfy a constraint which reduces its components to two.

Much like the gauge field Si already present in Type C theory, Θ should satisfy some

covariantized version of the antichirality constraint; the unique combination that

transforms correctly is

DΘ = −ΘΘ̇. (3.15)

This completes our construction of the projectable version of Theory C with chiral

F (t, θ) and Ξi(t, θ) gauge symmetries.

3.1.2 Geometric interpretation of constraints: Flatness of supertime

Before considering the lift to the nonprojectable case, we make one additional

observation, which will be useful in the more complicated cases below. The constraints

postulated on E and Θ above have a very natural geometric interpretation – they

simply state that the vielbein geometry of supertime is flat! Indeed, it is natural to

consider the graded commutators of the covariantized derivatives

Dt ≡ E∇t, Dθ ≡ ED + Θ∇t, Dθ ≡ D (3.16)

acting on Gij. The (super)curvature of the geometry on supertime represented

by our superfielbein fields E, E and Θ is then defined as the deviation of such

graded commutators from the standard graded commutation relations satisfied before

the gauging of time translations by ∇t, D and D. (Recall that the latter three

operators already represent a flat Yang-Mills connection of Diff(Σ), as we found out

in Section 2.1.3.)

A straightforward evaluation of all the graded commutators of (3.16) shows that

our constraints (3.14), (3.15) (together with (3.13)) imply the vanishing of all the

curvature terms.

3.2 The nonprojectable case

In bosonic nonrelativistic gravity of the Lifshitz type, the more interesting and

useful theory is obtained when the lapse function is allowed to be nonprojectable,

n(t, xi). It is then natural to ask whether the vielbein superfields E, E and Θ can be
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promoted into spacetime fields, i.e., allowed to depend on xi.11 Note that the gauge

symmetries will stay the same foliation-preserving diffeomorphisms of spacetime as in

our previous construction with the projectable lapse superfields; in particular, the

generator of time reparametrizations F is only a function of t and/or θ, θ.

3.2.1 Type C theory

In this section, we will show that such a nonprojectable version of our theory does

indeed exist, first in the Type C case.

When our lapse-sector superfields E, E and Θ are extended to be nonprojectable

superfields on spacetime, they transform as scalars under Ξi. Thus, their full trans-

formation rules are

δE = FĖ − ḞE + Ξk∂kE, (3.17)

δΘ = −E DF + F Θ̇− ḞΘ + Ξk∂kΘ, (3.18)

δE = F Ė + Ξk∂kE . (3.19)

What is the nonprojectable version of the constraints? Consider first the superfield

E . Since it transforms as a scalar under both F and Ξi, it is again consistent to set

it equal to a constant, which we choose without any loss of generality to be E = 1.

We will impose this constraint from now on, and return to the more general case of

arbitrary E later, in Section 3.2.3.

The constraint relating Θ and E stays the same as in the projectable case,

E = 1−DΘ, (3.20)

but the constraint on Θ is modified to

DΘ− Sk∂kΘ = −Θ(Θ̇−Nk∂kΘ). (3.21)

The easiest way to derive these constraints is to evaluate again all the conditions for

the vanishing of the supertime curvatures of the nonprojectable fields E and Θ, as

we discussed in the projectable version above.

11In the geometry of foliations, and in the literature on the bosonic version of nonrelativistic
gravity, such fields are commonly referred to as “nonprojectable”, in contrast to the “projectable”
fields which are functions of only the leaves of the foliation, and whose lift to all of spacetime is
simply via the pull-back by the natural projection of the foliation.
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3.2.2 Type B theory

Now we extend the gauging of time translations to our balanced Type B theory,

in which F is an unconstrained superfield. We jump directly to the nonprojectable

case; the projectable one results by simply restricting the lapse superfields to be

independent of xi. Similarly, the gauging of time translations in the antichiral Type

A theory will follow by restricting F to be antichiral, and the lapse superfields

correspondingly constrained as well; see Section 3.2.4.

The gauge parameter F (t, θ, θ) is of course independent of xi, but otherwise un-

constrained. We introduce superfields E, E , E ,Θ and Θ to covariantize all derivatives.

The transformation rules of all fields under the spacetime gauge symmetries are:

δGij = FĠij + Ξk∂kGij + ∂iΞ
kGkj + ∂jΞ

kGik,

δN i = FṄ i − ḞN i + Ξ̇i + Ξk∂kN
i − ∂kΞiNk,

δSi = FṠi + DF N i + DΞi + Ξk∂kS
i − ∂kΞiSk,

δS
i

= FṠ
i

+ DF N i + DΞi + Ξk∂kS
i − ∂kΞiS

k
,

δE = FĖ − ḞE + Ξk∂kE, (3.22)

δΘ = −E DF + F Θ̇− ḞΘ + Ξk∂kΘ,

δΘ = −E DF + F Θ̇− ḞΘ + Ξk∂kΘ,

δE = F Ė + Ξk∂kE ,
δE = F Ė + Ξk∂kE .

With these rules, the following derivatives transform as scalars:

DtGij ≡ E∇tGij, DθGij ≡ EDGij + Θ∇tGij, DθGij ≡ EDGij + Θ∇tGij.

(3.23)

As in the simpler Type C case, the supervielbein fields E, E , E ,Θ and Θ must satisfy

a number of constraints. First, we will follow our strategy from Type C theory and

set

E = 1, E = 1. (3.24)

E is then constrained to be expressed in terms of Θ and Θ and their derivatives,

E = 1−DΘ + Sk∂kΘ−DΘ + S
k
∂kΘ−Θ(Θ̇−Nk∂kΘ)−Θ(Θ̇−Nk∂kΘ). (3.25)
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Finally, Θ and Θ are constrained to satisfy

DΘ− Sk∂kΘ = −Θ(Θ̇−Nk∂kΘ), (3.26)

DΘ− Sk∂kΘ = −Θ(Θ̇−Nk∂kΘ). (3.27)

These constraints again leave the desired number of four independent component

fields: the inverse lapse function and its superpartners under Q and Q.

3.2.3 Constraints as the flatness of supertime

It is instructive to check the geometric origin of our constraints in the nonpro-

jectable Type B theory, which we will again interpret simply as the statement of the

flatness of our supervielbein fields on supertime. We also take this opportunity to

address our earlier somewhat ad hoc step of setting E = E = 1, and will allow these

superfields now to be unconstrained. Thus, our covariant derivatives are those we

constructed in (3.23), before imposing any ad hoc constraints.

Now we evaluate their graded commutators to evaluate the conditions for flatness.

We begin by evaluating

{Dθ,Dθ}Gij = 2(ED + Θ∇t)
2Gij = 2

[
E(DE − Sk∂kE) + Θ(Ė −Nk∂kE)

]
DGij(3.28)

+ 2
[
E(DΘ− Sk∂kΘ) + Θ(Θ̇−Nk∂kΘ)

]
∇tGij.(3.29)

The vanishing of the corresponding curvature requres that the right-hand side be

zero, which implies the constraints

E(DE − Sk∂kE) + Θ(Ė −Nk∂kE) = 0, (3.30)

E(DΘ− Sk∂kΘ) + Θ(Θ̇−Nk∂kΘ) = 0. (3.31)

Similarly, the anticommutator {Dθ,Dθ}Gij gives the analogous condition for the

barred quantities,

E(DE − Sk∂kE) + Θ(Ė −Nk∂kE) = 0, (3.32)

E(DΘ− Sk∂kΘ) + Θ(Θ̇−Nk∂kΘ) = 0. (3.33)
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Next, we evaluate the anticommutator

{Dθ,Dθ}Gij =
[
E(DE − Sk∂kE) + Θ(Ė −Nk∂kE)

]
DGij (3.34)

+
[
E(DE − Sk∂kE) + Θ(Ė −Nk∂kE)

]
DGij

+
[
−EE + E(DΘ− Sk∂kΘ) + E(DΘ− Sk∂kΘ) + Θ(Θ̇−Nk∂kΘ) + Θ(Θ̇−Nk∂kΘ)

]
∇tGij.

The flatness condition then requires that this anticommutator be equal to −E∇tGij,

implying the following constraints:

E(DE − Sk∂kE) + Θ(Ė −Nk∂kE) = 0, (3.35)

E(DE − Sk∂kE) + Θ(Ė −Nk∂kE) = 0, (3.36)

E = EE − E(DΘ− Sk∂kΘ)− E(DΘ− Sk∂kΘ) − Θ(Θ̇−Nk∂kΘ)−Θ(Θ̇−Nk∂kΘ).(3.37)

Finally, the commutators of the odd superderivatives with E∇t imply that the

remaining conditions of vanishing curvature are

E(Ė −Nk∂kE) = 0, (3.38)

E(Θ̇−Nk∂kΘ) = E(DE − Sk∂kE) + Θ(Ė −Nk∂kE), (3.39)

and

E(Ė −Nk∂kE) = 0, (3.40)

E(Θ̇−Nk∂kΘ) = E(DE − Sk∂kE) + Θ(Ė −Nk∂kE). (3.41)

Note that in the projectable case, assuming that E, E and E are invertible, the

constraints imply that E and E are constants, which in retrospect justifies our choice

of setting them equal to 1 from the outset. In the nonprojectable case, the constraints

are solved by E and E whose covariant time derivative is zero.

It is easy to check that our constraints (3.24–3.27) represent the minimal set of

constraints which imply all the other conditions of flatness of supertime by Bianchi

identities. The constraints can be solved explicitly by finding the component expres-

sions for the lapse-sector superfields, repeating the steps we took in Section 2.2 when

we solved the analogous constraints in the shift sector.
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3.2.4 Type A theory

The antichiral Type A theory results by restricting F and Ξi to be antichiral:

DF = 0, DΞi = 0, (3.42)

and by setting

E = 1, Θ = 0, and Si = 0 (3.43)

in the rules specified in the “umbrella” theory of Type B presented above. We will

not require any further details about this Type A theory in the rest of this thesis.

3.3 The supervielbein approach

Now we are ready to compare our approach to the top-down construction using

supervielbeins. (We present the construction only for Type B theory, and for simplicity

for its projectable version, with the projectable Type A and C cases following by a

simple reduction.)

In the supervielbein approach, one postulates the existence of a 3×3 supervielbein

matrix of superfields

eM
A, M ∈ {t, θ, θ}, A ∈ {0, ϑ, ϑ}, (3.44)

where M is the coordinate index and A is the internal tangent-space index on

supertime, and find enough constraints on eM
A to reduce them drastically to just

four component fields: the lapse function and its superpartners.

Here we will establish the connection between our bottom-up construction involving

superfields E, E , E ,Θ and Θ, and the full top-down supervielbein construction. It

will be more convenient for us to work with the inverse supervielbein eA
M , which is

simply defined to interpolate between the coordinate basis ∂M in the tangent space

to supertime, and the moving-frame basis DA whose three elements are labeled by

the internal index A:

DA = eA
M∂M . (3.45)

On the rigid supertime before the introduction of E, we have DA = (∂t,D,D), and
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the standard flat (inverse) supervielbein is given by

e
(0)
A

M =


1 0 0

−θ 1 0

0 0 1

 . (3.46)

Once we gauge time translations, the DA’s are given by the covariantized deriva-

tives E∂t, ED + Θ∂t and ED + Θ∂t, and the inverse supervielbein becomes

eA
M =


E 0 0

Θ− θE E 0

Θ 0 E

 . (3.47)

Consider the generic superdiffeomorphism of supertime, generated in our coordinates

τM ≡ (t, θ, θ) by some

δτM = FM(τN). (3.48)

Under this superdiffeomorphism, the supervielbein transforms geometrically, as

δeM
A = FN∂NeM

A + ∂MF
NeN

A, (3.49)

and analogously for the inverse supervielbein eA
M .

Our gauge symmetry of gauged time translations is a specific subalgebra of this,

consisting only of supertime-dependent time reparametrizations: F t = F (t, θ, θ), and

F θ = F θ = 0. Therefore, we should verify that our constrained supervielbein (3.47)

which we derived in our bottom-up approach indeed transforms under F according

to (3.49). It is a pleasing check that with our transformation rules for E,Θ,Θ, E and

E established above, the vielbein indeed transforms geometrically as anticipated. For

example, the variation δeϑ
t implied by (3.49) should be

δeϑ
t = F ėϑ

t − Ḟ eϑt − eϑθ∂θF. (3.50)

Substituting from (3.47), this predicts

δ(Θ− θE) = F (Θ̇− θĖ)− Ḟ (Θ− θE)− E∂θF
= F (Θ̇− θĖ)− ḞΘ− E DF, (3.51)
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which exactly matches the result obtained directly by using the projectable version

of the transformation rules (3.22).

We note that geometrically, the gauge symmetries that we have implemented on

our system are those of spacetime diffeomorphisms that preserve the structure of a

nested double foliation of the spacetime supermanifold,

M →M 1|2
0 →M 0|2

0 . (3.52)

In particular, the supertime M 1|2
0 itself is naturally foliated by leaves of constant

(θ, θ), with the leaves parametrized by t.

3.4 The action

The covariant volume element on M is now

dV(G,E) = dt d2θ dDx

√
G

E
. (3.53)

In the projectable theory, the lowest-dimension kinetic term invariant under our full

spacetime gauge symmetry is given by

SK =

∫
dt d2θ dDx

√
G

E

{
(λ⊥G

ikGj` − λGijGk`)DθGij DθGk` + . . .
}

; (3.54)

as in the primitive theory, we again set λ⊥ = 1 for simplicity. On the other hand, the

superpotential now allows for a more refined structure.

3.4.1 The superpotential and Perelman’s F-functional

In the bosonic nonprojectable gravity of the Lifshitz type, it is well appreciated

that new ingredients appear and can be used to construct new terms in the action.

In particular, the spatial derivatives ∂in of the nonprojectable lapse transform as

a spatial one-form, and it can give rise to new invariant Lagrangian terms. In our

N = 2 supersymmetric theory, we similarly find new ingredients, which give rise to

new invariants that can appear in the superpotential. In particular,

Ai ≡
∂iE

E
(3.55)
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transforms as a spatial one-form and a time scalar,

δAi = FȦi + Ξk∂kAi + ∂iΞ
kAk. (3.56)

We can form new invariants in the action, made of the appropriate contractions of Ai.

In terms of the superfield Φ defined via

Φ ≡ logE, (3.57)

we simply have Ai = ∂iΦ. The superpotential part of the action is now

SW =

∫
dt d2θ dDx e−Φ

√
G
{
αRR

(G) + αΦ G
ij∂iΦ∂jΦ + αΛ

}
, (3.58)

for some coupling constants αR, αΦ and αΛ. We recognize SW as a superfield version

of Perelman’s F-functional (0.2), simply generalized to include the cosmological

constant term! Note that the role of Perelman’s “dilaton” is played in our theory by

the logarithm of the nonprojectable lapse function. These two results are the central

results of the present thesis.

3.4.2 Localization equations and generalizations of Perelman’s Ricci flow

This picture can be fleshed out even more by switching to the component formu-

lation. As in Section 1.6, we will again suppress all the fermionic terms which are

uniquely determined from supersymmetry, and focus only on the bosonic fields. In

addition, for reasons of simplicity, we present the results only for Type C or Type A

theory.

The bosonic component action corresponding to the superspace action (3.54) and

(3.58) is:

Sbose = − 1

κ2

∫
dt dDx

√
gn
(
gikgj` − λgijgk`

)
BijBk`

+
1

κ2

∫
dt dDx

√
g
(
gikgj` − λgijgk`

)
Bij∇tgk`

− 1

κ2

∫
dt dDx

√
gnBij

{
αR

(
1

2
Rgij −Rij

)
+

(
1

2
αΦ − αR

)
gij(∂φ)2

+ αR g
ij ∆φ+ (αR − αΦ)gik gj` ∂kφ ∂`φ− αR gik gj`∇k∂`φ+

1

2
αΛg

ij

}
.(3.59)
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The saddle points of the action correspond to the spatial metric gij satisfying the

appropriate flow equation, governed by the variation of a functional which is a direct

generalization of Perelman’s F -functional. Integrating out the bosonic auxiliary field

Bij we obtain the localization equations, in the form of a flow equation covariantized

with respect to foliation-preserving spacetime diffeomorphisms,

1

n
(ġij −∇inj −∇jni) = −αRRij +

αR
2

[
1− λ̃(D − 2)

]
gijR

+ (αR − αΦ)∂iφ∂jφ−
[(
αR −

αΦ

2

)
(1− λ̃D) + (αR − αΦ)λ̃

]
gij(∂φ)2

+ αR

[
1− λ̃(D − 1)

]
gij∆φ− αR∇j∂jφ+

1

2
αΛ gij. (3.60)

This is a multi-parameter family of generalized Ricci-type flow equations for the

spatial metric gij.

In contrast to gij, the lapse field n = exp(−φ) does not yet receive any nontrivial

time evolution from localization. In Type A or Type C theory, this is because the

chirality condition on N eliminates the auxiliary field associated with n, and the

topological symmetries of the theory are not yet fully gauge-fixed. Even in Type

B theory, however, the required lowest-dimension kinetic term for n (or φ) cannot

appear. This is simply because our spacetime foliation-preserving gauge invariance,

which has so far been unfixed, prevents such terms from being gauge invariant. This

is as far as the gauge-invariant theory can take us, and to make a closer contact with

the exact form of Perelman’s flow, additional gauge fixing steps will be necessary.

3.4.3 Physical versus topological theory

We return to the possibility of analytically continuing the topological theory from

imaginary time to real time, raised briefly in our comments on the path integral (1.28)

of the primitive theory.

In the case of relativistic quantum field theories, such a direct continuation of

a topological field theory to real time would have little sense: In real time, the

fermions would violate the spin-statistics theorem, and the field theory could not be

interpreted as a unitary theory of propagating degrees of freedom, at least not without

some additional difficult “untwisting” steps. In contrast, in the case of topological

nonrelativistic gravity, one can at least entertain the possibility of continuing the

theory to real time and interpreting it as a theory with propagating degrees of freedom.

This would require an analytic continuation of our superspace, such that θ and θ would
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now be complex, and conjugates of each other. This is needed so that the component

fields could have physically sensible dispersion relations at least in some portions of

the space of the coupling constants λ and α, and their quanta could be interpreted

as physical particles. Since in nonrelativistic field theory, there is no spin-statistics

theorem, this continuation could in principle lead to a consistent nonrelativistic

gravity with gravitons and their superpartners with N = 2 supersymmetry. The

absence of the spin-statistics theorem in nonrelativistic systems makes the boundary

between Faddeev-Popov ghosts and propagating physical fields interestingly fuzzy,

and the appealing direct relation between a topological and a physical theory possible

in principle.

However, before making sense of this rotation to real time and a nonrelativistic

gravity with propagating degrees of freedom, another serious obstacle would have

to be addressed. The process of Wick rotation between real and imaginary time is

relatively well controlled in theories with a static, eternal vacuum (such as the vacuum

of a relativistic field theory). In theories far from equilibrium, where the “vacuum”

may not be eternal and static, the continuation would be much more subtle. In the

topological gravity of the Ricci flow, the saddle-point solutions to which the path

integral localizes are the “vacua” of the theory, and they are often cosmologies with

substantial time dependence, and even with singularities (recall Figs. 0.1 and 0.2).

They inherently represent systems very far from equilibrium, and one therefore would

not expect that a simple analytic continuation interpolates between the real- and

imaginary-time versions of the theory. The full machinery of the Schwinger-Keldysh

formalism for quantum systems far from equilibrium12 may be needed in order to

settle this intriguing question.

4 Summary

In this part, we have established contact between the mathematics of Ricci flow

and topological quantum field theory. It takes the form of a nonrelativistic topological

quantum gravity, of the Lifshitz type.

Even though this theory would perhaps be most interesting in 3+1 dimensions, for

most of this part we presented our results in an arbitrary spatial dimension D. This

was possible primarily because we spent most of our work on constructing the action

of the classical theory, with the correct gauge symmetries and BRST supersymmetry

12For a recent discussion of the Schwinger-Keldysh formalism in the context of string theory, and
for extensive references on the formalism, see [65].

44



structure. We expect the quantum properties of the theory to be more sensitive to D.

Note that the special case of D = 2 would require some additional treatment already

at the classical level, because of the well-known degeneracies that occur in Riemannian

geometry in two spatial dimensions. On the mathematical side, the D = 2 analog of

the Ricci flow is well-covered in the literature [66] (see also Ch. 5 of [11]), and leads

to a novel proof of the uniformization theorem for Riemann surfaces. It should be

possible to adjust the details of our construction to accommodate the special features

of 2 + 1 spacetime dimensions, which also happens to be the critical dimension in

which quantum gravity of the Ricci flow is power-counting renormalizable.

With the identification of Perelman’s dilaton as our nonprojectable lapse function,

and his F -functional as our superpotential, the localization equations in our topological

quantum gravity represent a multi-parameter family of cousins to Perelman’s original

Ricci flow, parametrized by several coupling constants. Yet, it might be difficult

to see, in this forest of the many couplings in (3.60), where exactly the original

Perelman Ricci flow equations are precisely reproduced. In fact, since the localization

equations (3.60) of the theory constructed in Section 3 are by design gauge invariant

under foliation-preserving time reparametrizations – a symmetry not shared by

Perelman’s equations – they cannot reduce precisely to Perelman’s flow equations

for any values of the couplings. The precise embedding of Perelman’s original flow

into our theory requires a few additional steps, including a partial gauge fixing of our

gauge symmetries, and will be presented in Part III.

One natural generalization that is accessible by our methods, but has not been

discussed in the present part, is the construction of topological gravity associated

with the Kähler-Ricci flows, on spacetimes whose spatial slices Σ carry a complex

structure and whose dynamical spatial metric is Kähler. This is an active area of

current mathematical research, in particular in dimension 4 + 1 (see [67] or Ch. 2 of

[12]). It would be very interesting to see what novel features the complex structure

on space induces on the quantum gravity path integral, and the physical structure of

the theory.

Another intriguing connection, not explored in this thesis, is the possible relation

to quantum information theory. In the mathematical context, Perelman’s theory

of the Ricci flow contains various quantities deservedly referred to as entropy. In

particular, the F -functional (and its close cousins theW- andW+-functionals) belong

to this category, and exhibit precise monotonicity properties, crucial for the proofs of

various theorems about the behavior of the flow. Their proper interpretation in the

context of our topological quantum gravity is likely to be intimately connected to

concepts of quantum information theory [68,69], which have started playing a more
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dominant role in quantum field theory and quantum gravity in recent years.

We fully expect that further study of topological quantum gravity associated with

the Ricci flow should be beneficial both for physics and for mathematics: The wealth

of mathematical results, generated especially in the past two decades, can teach us new

lessons about quantum gravity, at least in the topological setting. In turn, the methods

of topological quantum field theory, which have proven so instrumental in influencing

modern geometry in the past few decades, can now be extended to topological

quantum gravity, and applied to the original mathematical theory of the Ricci flow.

In this context, it will be particularly interesting to study topological observables of

the quantum theory. While the BRST cohomology of our supermultiplets appears

quite simple, and the “moduli spaces” of solutions are often elementary, it will be

natural to probe the Ricci-flow spacetimes by extended topological observables, such

as topological strings and topological membranes. Much of the mathematical ground

for such observables has already been prepared, since extended spacetime probes of

Perelman’s flow have been studied extensively. The mathematical results reviewed

in [25] appear particularly promising, and suggest strongly that the topological

quantum gravity introduced in this thesis should naturally couple to topological brane

excitations.

Part II

BRST Refinement
Recall that in Part I, a “primitive” topological gravity – whose only dynamical

field is the spatial metric gij – was constructed, using the standard BRST techniques.

The existence of an extended N = 2 BRST supersymmetry algebra was required,

and there was no secondary gauge symmetry besides the topological deformations

of gij. The most convenient formulation of this theory is in terms of superfields on

the appropriate N = 2 superspace, and with global supercharges Q and Q. In the

next stage, the foliation-preserving spacetime diffeomorphisms were gauged, leading

to new ingredients that bring the theory closer to the form that can accommodate

the mathematical structure of Perelman’s Ricci flow [2–4].

We chose such a two-stage construction of the theory in N = 2 superspace

because of its efficiency in identifying a suitable Lagrangian that serves our needs

and makes contact with the Ricci flow. However, this construction may also have

left the reader somewhat mystified about several points. First, the theory proposed
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has both topological gauge symmetries and spacetime gauge symmetries; yet, the

two-stage construction uses a strange hybrid between a BRST gauge-fixed topological

symmetry, and an unfixed gauge symmetry of foliation-preserving diffeomorphisms

of spacetime. It may be natural to seek a one-step construction, in which all the

gauge symmetries are handled uniformly, by BRST quantization. Second of all, if the

topological theory has a secondary gauge symmetry of spacetime diffeomorphisms,

why were there no ghost-for-ghost fields required? Such secondary ghost-for-ghosts

are well-known to be essential in making sense of gauge theories with redundant

gauge symmetries [30]. And finally, another puzzling feature emerges in the lapse

sector: The lapse superfields were introduced in the process of making the theory

invariant under foliation-preserving time reparametrizations, and they were chosen

to be nonprojectable superfields. This nonprojectability was in turn important for

making contact with Perelman’s theory of the Ricci flow, since the role of the Perelman

dilaton was found to be played by our nonprojectable lapse. One might then question

the number of local propagating degrees of freedom in such a theory: The projectable

time reparametrizations are not sufficient to remove the propagating polarization in

the lapse, so is this theory even properly topological?

The purpose of the present part is to provide clarifying answers to all of these

questions. In particular, we show how the theory constructed in Part I can be

consistently interpreted as a one-stage BRST gauge fixing of a topological theory

whose original Lagrangian is zero. In the process, we will be led to study in more

detail the possible symmetries acting on the time dimension in the foliated spacetime,

and on its N = 2 supersymmetric extension to “supertime.” We will also clarify

the notion of scaling dimensions in quantum gravity in situations when one cannot

rely on a preferred, highly symmetric, background reference geometry. Some of the

lessons learned here may be of more general interest in relativistic and nonrelativistic

quantum gravity, beyond the scope of the topological theory that we focus on in this

thesis.

At the center of our investigations in this thesis will be the symmetries of time,

and their interplay with the geometry and symmetries of the D-dimensional spatial

slices of the D + 1 dimensional spacetime. Perhaps the more appropriate label

for the topics studied here would be the “chronometry of time and supertime”.

Indeed, already more than six decades ago [70], one of the pioneers of the modern

geometric approach to general relativity J.L. Synge advocated convincingly that

measurements of space in general relativity are all secondary to the measurements of
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time, suggesting that spacetime “geometry”13 should be more properly referred to

as spacetime “chronometry”14 (see also [71]). This suggestion appears particularly

suitable in the context of nonrelativistic gravity [32, 33], where time indeed plays

a privileged role, quite different from that of spatial dimensions. Moreover, in the

context of topological quantum gravity associated with the nonrelativistic Ricci flow

on Riemannian manifolds, time is far from being simply a real parameter t taking

values in R. In this nonrelativistic gravity, the “geometry” associated with time

can be quite sophisticated, including a supersymmetrization of time – but not of

space – to a supermanifold M0 of dimension (1|2), which we will naturally refer to

as “supertime.” In this thesis, we will find further geometric structure associated

with time in nonrelativistic topological gravity, in particular a rather unusual form of

local time reparametrization gauge symmetry that turns out to underlie the theory

presented in Part I. One can thus say that the present part represents an investigation

into this geometry of time, or “chronometry,” in topological quantum gravity of the

Ricci flow.

5 Gauge symmetries in topological quantum gravity of the

Ricci flow

As we pointed out above, the superspace construction of the theory with gauged

Diff(Σ) in Part I leaves a few questions and loose ends. It is a hybrid construction,

in which the topological symmetry appears to have already been gauge fixed, but

the secondary spatial diffeomorphism symmetry does not. Thus, on one hand Q

is interpreted as the BRST charge for the topological symmetry, but from the

perspective of Diff(Σ) gauge symmetry, it appears to be treated as a supercharge

of rigid supersymmetry. It would be sensible to ask for a one-step interpretation

of the resulting theory as a BRST gauge fixing of a clear list of gauge symmetries

specified at the outset. If such a one-step interpretation of our theory is possible, is

the supercharge Q the full BRST charge after the gauging of spatial diffeomorphisms?

What are the underlying gauge symmetries that are being gauged? Do they exhibit a

redundancy, and if so, why did the procedure of Part I not require the presence of

secondary ghost-for-ghosts?

To clarify these important questions, let us review how the standard process of

constructing a topological field theory of the cohomological type, in the traditional

13Geometry: From the Greek γεωµετρία, “measurement of earth or land”.
14Chronometry: From the Greek χρóνoς, “time”; thus “measurement of time”.
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component-field formulation [31], would work for nonrelativistic gravity.

5.1 Spatial diffeomorphisms and the shift vector ni

In the standard process of constructing a gauge theory, we first specify the fields,

and then the gauge symmetries acting on those fields. Then we apply the algorithm

of BRST gauge fixing, which requires additional choices of gauge-fixing conditions.

In this section, we choose our fields to be the spatial metric gij and the shift vector

ni. We postpone the addition of the lapse function n and time-reparametrization

symmetries until Section 7 below, and focus first on clarifying the gauging of the

spatial diffeomorphisms Diff(Σ).

In order to combine the topological gauge symmetries with the spatial diffeomor-

phisms, one could naturally start with a redundant system of symmetries,

δni = f i(t, xj) + ξ̇i + ξk∂kn
i − ∂kξink, (5.1)

δgij = fij(t, x
k) + ξk∂kgij + ∂iξ

kgkj + ∂jξ
kgik. (5.2)

Here fij is the topological gauge symmetry acting by arbitrary local deformations

of gij, f
i generates a similar topological symmetry on the shift vector ni, and ξi is

the standard generator of Diff(Σ). These symmetries are indeed redundant: A given

diffeomorphism transformation ξ can be compensated by the choice of fij and f i

so that the combined transformation is zero. In such cases, it is well-known that

the proper BRST gauge fixing requires not only the fermionic ghosts Ψij, Ψi and

ci associated with the gauge symmetries generated by fij, f
i and ξi (all of ghost

number one), but also a bosonic ghost-for-ghost φi of ghost number two [30,31], which

accounts for the redundancy of the original gauge symmetries (5.1) and (5.2). These

fields form a BRST multiplet of the BRST charge QB (with QB
2 = 0),

QB n
i = Ψi + ċi + ck∂kn

i − ∂kcink,
QB gij = Ψij + ck∂kgij + ∂ic

kgkj + ∂jc
kgik,

QB c
i = ck∂kc

i + φi, (5.3)

QB Ψi = −φ̇i + nk∂kφ
i − φk∂kni + ck∂kΨ

i + Ψk∂kc
i,

QB Ψij = −φk∂kgij − ∂iφkgjk − ∂jφkgik + ck∂kΨij + ∂ic
kΨjk + ∂jc

kΨik,

QB φ
i = φk∂kc

i − ck∂kφi.

In contrast, in the hybrid two-step construction of Part I, no such ghost-for-ghost

fields φi of ghost number two appeared to be necessary, and we wish to understand
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why.

To clarify this, we note first that this redundancy between topological and space-

time symmetries is almost inevitable in relativistic theories, especially in higher than

the lowest few dimensions, if one wishes to maintain their relativistic symmetries. In

the case of our nonrelativistic gravity, however, there is a more elementary theory,

which does not require ghost-for-ghosts. The reasoning is reminiscent of the effects

observed in the context of relativistic topological gravity in two dimensions in [72].

Our non-redundant gauge symmetries will be

δni = ξ̇i + ξk∂kn
i − ∂kξink, (5.4)

δgij = fij + ξk∂kgij + ∂iξ
kgkj + ∂jξ

kgik. (5.5)

We have simply left out from (5.1) the topological gauge symmetry generated by f i

and acting on ni. Indeed, these symmetries are now non-redundant: While the action

of the spatial diffeomorphism ξi on the spatial metric can be compensated for by a

shift in the topological symmetry fij, no such compensation is possible in the action

on ni, and the two symmetries generated by fij and ξi are mutually independent.

Yet, clearly, these symmetries are powerful enough to eliminate all local propagating

degrees of freedom, and the resulting theory will therefore still be “topological” in

this sense. The BRST charge acts as in (5.3), but with the fields Ψi and φi omitted:

QB n
i = ċi + ck∂kn

i − ∂kcink,
QB gij = Ψij + ck∂kgij + ∂ic

kgkj + ∂jc
kgik,

QB c
i = ck∂kc

i, (5.6)

QB Ψij = ck∂kΨij + ∂ic
kΨjk + ∂jc

kΨik.

Note one additional useful fact: The symmetries are not only non-redundant, their

Lie algebra decomposes into a direct sum of a symmetry acting solely on the shift ni,

and a topological symmetry acting only on gij. This follows from a simple change of

basis in the symmetry algebra, from ξi and fij to ξi and f̂ij, with

f̂ij ≡ fij + ξk∂kgij + ∂iξ
kgkj + ∂jξ

kgik. (5.7)

This is a change of coordinates on the symmetry algebra, whose Jacobian is equal to

one. Calling by ψij the ghost associated with the shifted topological symmetry f̂ij,
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the BRST transformations now simplify to

QB n
i = ċi + ck∂kn

i − ∂kcink,
QB c

i = ck∂kc
i,

QB gij = ψij, (5.8)

QB ψij = 0.

The fact that such a shift exists, and that in the new basis the Diff(Σ) symmetry

acts trivially on gij, is important: The supermultiplets of Q introduced in Part I in

the process of gauging Diff(Σ) exhibit the same type of decoupling between the two

symmetries. It is this form (5.8) of the BRST transformations that will be best suited

for the comparison against our topological gravity constructed in Section 3 of Part I.

We claim that the N = 2 supersymmetry multiplets found in Section 3 of Part I

are indeed equivalent to the standard multiplets associated with the BRST gauge

fixing of (5.4) and (5.5), and that the supercharge Q is simply the standard BRST

charge of this one-step construction. This will be best seen when we rewrite the

theory developed in Part I in the component formalism. In order to determine the

independent component fields and their properties, we must first solve the constraints

relating N i, Si and S
i
:

DSi = Sk∂kS
i, (5.9)

DS
i

= S
k
∂kS

i
, (5.10)

N i = −DSi −DS
i
+ Sk∂kS

i
+ S

k
∂kS

i. (5.11)

Since the constraints (5.9) and (5.10) involve only Si and S
i

respectively, they

can be solved first, yielding

Si = σi + θσk∂kσ
i + θY i + θθ(σ̇i + Y k∂kσ

i − σk∂kY i), (5.12)

S
i

= σi + θX i + θσk∂kσ
i + θθ(σk∂kX

i −Xk∂kσ
i). (5.13)

Thus, the independent components of Si and S
i

have been reduced to σi, σi, X i and
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Y i, transforming as follows under Q:

Qσi = σk∂kσ
i, (5.14)

QY i = −σ̇i − Y k∂kσ
i + σk∂kY

i, (5.15)

Qσi = X i, (5.16)

QX i = 0. (5.17)

These are not yet the appropriate component fields of our desired supersymmetry

multiplets, as we still need to solve the constraint (5.11) that expresses the components

of N i in terms of the independent components in Si and S
i
. First, solving (5.11) at

the lowest component gives

ni = −Y i −X i + σk∂kσ
i + σk∂kσ

i. (5.18)

Note that because X i is Q invariant, it is our candidate for the auxiliary field in

a trivial BRST multiplet, paired up with σi which will play the role of the antighost.

This means that the correct way of reading (5.18) is to interpret Y i as a composite

field, determined by this equation in terms of the four independent component fields

ni, X i, σi and σi,

Y i = −ni −X i + σk∂kσ
i + σk∂kσ

i. (5.19)

This is the sense in which Y i should be understood as a composite field when it

appears in expressions such as (5.12).

The remaining components of N i can now be determined in terms of the indepen-

dent fields ni, X i, σi and σi by evaluating the higher-order terms in (5.18). They are

found to be

ψi = σ̇i + σk∂kn
i − ∂kσink, (5.20)

χi = σ̇
i
+ σk∂kn

i − ∂kσink, (5.21)

Bi = −Ẋ i + nk∂kX
i −Xk∂kn

i + σ̇k∂kσ
i + σj∂jn

k∂kσ
i − nj∂jσk∂kσi

+ σk∂kσ̇
i + σk∂kσ

j∂jn
i + σkσj∂k∂jn

i − σk∂knj∂jσi − σknj∂k∂jσi.(5.22)

Thus, the entire sector of superfields N i, Si and S
i

reduces in components to four

independent fields, belonging to two BRST multiplets of the BRST charge Q, with
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BRST transformations

Qni = σ̇i + σk∂kn
i − nk∂kσi, (5.23)

Qσi = σk∂kσ
i, (5.24)

and

Qσi = X i, (5.25)

QX i = 0. (5.26)

Clearly, σi is the ghost of the spatial diffeomorphism symmetry, and should be

identified with ci in (5.3), while σi and X i form the trivial BRST multiplet consisting

of an antighost and an auxiliary field. In addition to these two BRST multiplets, the

theory that was constructed in Section 3 of Part I by gauging spatial diffeomorphisms

of the primitive topological gravity contains also the two BRST multiplets in the

metric superfield of (??),

Qgij = ψij, Qψij = 0, (5.27)

Qχij = −Bij, QBij = 0. (5.28)

We see that these component supermultiplets (5.23), (5.24) and (5.27) of Q match

exactly the multiplets (5.8) of QB, which we obtained by the one-step BRST gauge

fixing of the non-redundant gauge symmetries (5.4) and (5.5). And the remaining

multiplets of Q, listed in (5.25), (5.26) and (5.28), are the standard antighost-auxiliary

BRST multiplets ready for the implementation of our gauge fixing choice. In this way,

the two-step construction in Section 3 of Part I can indeed be consistently interpreted

as the standard one-step gauge fixing of a gauge theory with non-redundant gauge

symmetries, with Q identified as the BRST charge.

5.2 Time reparametrizations and the lapse function n

In Section 4 of Part I, the theory was further extended by gauging foliation-

preserving time reparametrizations, and adding the appropriate N = 2 supersym-

metrization of the lapse function n. In order to clarify whether this extended theory

can also be interpreted as a one-step BRST gauge fixing of appropriate non-redundant

gauge symmetries, we need to overcome additional challenges which were absent

in the theory with Diff(Σ) gauge symmetry discussed above. We begin by briefly
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reviewing the symmetries and fields introduced in Part I.

The gauge symmetries of spacetime-dependent spatial diffeomorphisms Diff(Σ)

are extended to all foliation-preserving diffeomorphisms of the D + 1 dimensional

spacetime MF . Besides the generators ξi(t, xk) that were considered in the previous

paragraph, this extended symmetry also contains time-dependent time reparametriza-

tions, generated by f(t):

δn = ḟn+ fṅ,

δni = ḟni + fṅi, (5.29)

δgij = fġij.

Here we have introduced besides the spatial metric gij and the shift vector ni also

the lapse function n, which plays the role of the gauge field associated with time

reparametrizations: More precisely, it is log n that transforms as a gauge field:

δ log n = ḟ + . . .. While it is mathematically consistent in nonrelativistic gravity

to declare the field n to be a projectable field n(t), it is physically more interesting

to allow the lapse to be a nonprojectable field n(t, xi), i.e., to promoting it to a

spacetime-dependent field. Allowing the lapse to be nonprojectable was indeed crucial

for us in establishing contact with Perelman’s theory of the Ricci flow, since we found

that the role of Perelman’s “dilaton” field is played by the nonprojectable lapse field.

In Section 4 of Part I, we constructed a nonrelativistic gravity theory which

is gauge invariant under f(t) and consistent with our requirement of rigid N = 2

supersymmetry of supertime, using the standard techniques for gauging symmetries

in superspace. We promoted n(t, xi) to a nonchirial, nonprojectable superfield, whose

lowest component is the nonprojectable lapse, N = n + . . .. In fact, in Part I we

found it convenient to introduce the inverse lapse superfield, E = 1/N , whose lowest

component is the nonprojectable field e ≡ 1/n,

E = e+ θψ + θχ+ θθB. (5.30)

This E superfield then covariantizes the time derivative under (the supersymmetric

extensions of) the f(t) symmetries, in the way explained in detail in Part I.

Since the odd derivatives also need to be covariantized, two more superfields Θ

and Θ had to be introduced in addition to E; they are also nonprojectable, nonchiral,
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but odd, and we introduce the following notation for their components:15

Θ = −ν − θw − θz − θθρ, (5.31)

Θ = −ν − θw − θz − θθρ. (5.32)

As in the case of spatial diffeomorphisms discussed in the previous section of the present

part, this proliferation of component fields is reduced to the minimal independent set

by suitable constraints, which now involve both the shift sector and the lapse sector

superfields:

DΘ− Sk∂kΘ = −Θ(Θ̇−Nk∂kΘ), (5.33)

DΘ− Sk∂kΘ = −Θ(Θ̇−Nk∂kΘ), (5.34)

and

E = 1−DΘ + Sk∂kΘ−DΘ + S
k
∂kΘ−Θ(Θ̇−Nk∂kΘ)−Θ(Θ̇−Nk∂kΘ). (5.35)

In addition to these mixed constraints, the shift sector superfields Si, S
i

and N i still

satisfy constraints (5.9), (5.10) and (5.11). These constraints appear somewhat more

involved than in the case of the shift sector alone, and we postpone solving them

until Section 7.1.

Once the nonprojectable lapse sector has been introduced, the pattern that we

uncovered in the case with Diff(Σ) gauge symmetry will continue to be valid if

the BRST multiplets in the lapse sector can be interpreted as having originated in

BRST gauge fixing of a hidden symmetry associated with time. Note that since

the lapse sector contains only nonprojectable fields, this hidden symmetry cannot

be simply the projectable time reparametrizations generated by f(t). This hidden

symmetry will have to be nonprojectable, generated by some space and time dependent

parameter ζ(t, xi). Is there such a hidden symmetry, and if so, what is its geometric

interpretation?

The first guess might be that ζ(t, xi) should perhaps be some kind of nonprojectable

time reparametrization symmetry, which would extend the symmetry of spatial

diffeomorphisms generated by ξi(t, xk). This symmetry would have to satisfy several

stringent requirements. For example, it would have to act on ni (and also on gij)

15The minus signs introduced here in the process of naming the component fields will simplify
some future component formulas below, and they also make the parallel between the odd superfields

Θ,Θ of the lapse sector and the odd superfields Si, S
i

of the shift sector more explicit.
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trivially, or more accurately, in a way which can be absorbed into a redefinition

of the spatial diffeomorphisms ξi (and the topological gauge transformations f̂ij).

This phenomenon is analogous to what happened above, when we found the basis

of symmetry generators in which ξi acts trivially on gij, and therefore QB gij is

independent of ci (see (5.8)). Is it possible to construct such a symmetry ζ? We could

try to read off the rules directly from the transformation properties of the component

fields under Q, assuming that they will conform to the interpretation as having come

from the BRST fixing of a symmetry, with Q being the BRST charge. However,

we find it more instructive to look first for available symmetries in the context of

previously studied symmetries of spacetime, which we will do in the next section.

In the process, we will learn a few surprising facts which might be of more general

interest for quantum gravity, beyond the applications to the main subject of this

thesis. The reader who is solely interested in our topological nonrelativistic gravity

construction can proceed directly to Section 7.

6 Spacetime diffeomorphisms in relativistic and nonrelativis-

tic gravity

Consider the spacetime diffeomorphism generated by ξµ, which we decompose

into ζ(t, xi) ≡ ξ0 and ξi(t, xk). On the ADM decomposition [43] of the relativistic

spacetime metric into the spatial metric plus the lapse and shift, the relativistic

spacetime diffeomorphisms act via

δn = ξk∂kn+ ζṅ+ ζ̇n, (6.1)

δni = ξ̇i + ξk∂kn
i − ∂kξink + ζṅi + ζ̇ni − ∂kζnkni − ∂kζgikn2, (6.2)

δgij = ξk∂kgij + ∂iξ
kgkj + ∂jξ

kgik + ζġij + (∂iζgjk + ∂jgik)n
k. (6.3)

Can the standard action of the time diffeomorphism ζ(t, xi) on ni be absorbed into

the spatial diffeomorphism ξi? Almost: If the last term in (6.2), proportional to gijn2,

weren’t there, it would be possible to absorb the action of ζ into that of the spatial

diffeomorphism by changing the basis in the Lie algebra by first shifting ξi = ξ̂i− ζni
and then using ξ̂i and ζ̂ ≡ ζ as the new basis in the space of symmetry generators.

Note that this is again a change of variables whose Jacobian is equal to one. The

resulting algebra would then satisfy the three stringent requirements necessary for

the possible matching with the superspace construction of our nonrelativistic gravity

from Section 4 of Part I:
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• The shifted time reparametrization generators ζ̂ should act trivially on ni;

• The shifted spatial diffeomorphism generators ξ̂i should form the gauge algebra

of Diff(Σ);

• The commutator of a shifted spatial diffeomorphism ξ̂i and a shifted time

reparametrization ζ̂ should yield another shifted time reparametrization, and

therefore act trivially on ni.

In the standard spacetime diffeomorphism symmetry algebra, the last term on the

right-hand side of (6.2) represents an obstruction to these three requirements. In order

to clarify the status of this obstruction term, and to see under what circumstances it

can be set to zero, we will revisit the nonrelativistic decomposition of the spacetime

diffeomorphism symmetries, and their nonrelativistic limits.

6.1 Scales and scaling dimensions

In order to discuss the nonrelativistic decomposition of a relativistic spacetime,

we wish to re-introduce the measurement of time and space in unrelated units: L and

T . First, we recall a few elementary facts about scaling and dimensions in quantum

field theory, and propose a simple refinement to the case when the system contains a

dynamical spacetime metric.

In quantum field theory in a Minkowski spacetime, scaling dimensions of various

objects (quantum fields, spacetime derivatives, composite operators built out of them)

play a central role, controlled by the concept of the renormalization group (RG).

In relativistic field theories, it is natural to set the speed of light c = 1, and all

dimensions are then expressed in terms of one dimensionful scale. By convention,

largely for historical reasons, in particle physics this scale is typically selected to be

the momentum scale, or equivalently the inverse length scale when one sets ~ = 1. In

momentum units, Cartesian spacetime coordinates xµ of the Minkowski spacetime are

of dimension −1, and the derivatives ∂µ are of dimension 1. Dimensions of quantum

fields and various composite operators then depend on the type of theory in question,

typically controlled by an RG fixed point. Sometimes, however, there is a strong

geometric reason to assign a given field a particular scaling dimension. For example,

in general relativity, the components gij of the spacetime metric relate the proper

length element ds to the coordinate length elements dxi via ds2 = gijdx
idxj . It is only

sensible to consider ds2 to be of dimension −2 in momentum units, hence implying the

often-quoted fact that for the purposes of power counting, the components gij of the
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metric are dimensionless. This picture is of course well-known, and almost universally

accepted, but as we explain below, in need of a slight conceptual modification in

theories with dynamical inhomogeneous geometries.

Nonrelativistic gravity of the Lifshitz type [32,33], and its topological counterpart

studied here, belong to the class of quantum field theories with two distinct, a priori

unrelated scales: a length scale L, and a time scale T , or their inverses: an energy

scale E = 1/T and a momentum scale M = 1/L (having again set ~ = 1). The

relativistic strategy of assigning dimensions needs to be refined: We can declare

that the time coordinate carries dimension T ≡ E−1, and the spatial coordinates

xi are of dimension L ≡M−1. (This was also the convention we used for assigning

classical scaling dimensions to various objects in topological gravity of the Ricci flow

in Section 2 of Part I.) In addition, one simplifying convention seems appropriate:

Instead of writing the dimension [O] of an object O multiplicatively in terms of

powers of T and L (or E and M), we will simply write [O] = (n,m) when O is of

dimension EnMm in energy and momentum units. With this convention we have, for

instance,

[∂/∂t] = (1, 0), [∂i] = (0, 1). (6.4)

Applying this analysis to the fields of nonrelativistic gravity, we thus obtain the

“standard” dimension assignments:

[gij] = (0, 0), [n] = (0, 0), [ni] = (1,−1). (6.5)

They simply follow from the fact that in nonrelativistic gravity, the geometry of

spacetime is characterized by an invariant line element dσ of spatial distance, defined

via

dσ2 = gij(dx
i − nidt)(dxj − njdt), (6.6)

which should naturally be of dimension [dσ] = (0,−1), and an independent invariant

element of time,

dτ = n dt, (6.7)

naturally of dimension (−1, 0).

In theories with two (or more) a priori unrelated scales, the “one-scale” physics

of the renormalization group scaling emerges in the vicinity of an RG fixed point,

where the two scales become locked together by a scaling relation

E = M z, (6.8)
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involving the so-called dynamical critical exponent z. This exponent is characteristic

of the specific RG fixed point, not of the theory itself – it is indeed possible to have a

theory with more than one RG fixed points, with distinct values of z. In the vicinity

of a given fixed point, one is then free to use (6.8) to express the RG scaling properties

of the system in terms of just one independent scale (say E).

In the present context of topological gravity of the Ricci flow, and more generally in

nonrelativistic gravity with a dynamical metric, it has become increasingly apparent

that a slightly modified strategy for assigning dimensions would be more logical.

There are several reasons for that. In the flat Minkowski spacetime, or in a theory

with a preferred and highly symmetric background, it may be natural to continue

with the picture developed in quantum field theory, and see the spacetime coordinates

xµ or the derivatives ∂µ as the carriers of a scaling dimension: After all, the idea of

scaling is often phrased as a study of the properties of the system under the rescalings

xµ 7→ bxµ for constant b. However, this intuition is increasingly problematic in a

theory whose background geometries are often highly inhomogeneous, such as our

topological theory of the Ricci flow, whose path integral localizes to the solutions of

generalized Ricci flow equations with arbitrarily inhomogeneous initial conditions. On

such backgrounds, there is no analog of a “preferred coordinate system” xµ = (t, xi).

Instead, we prefer to treat all coordinate systems equally; this will make sense only if

we assign the scaling dimension (0, 0) to both t, xi and the derivatives ∂t, ∂i. Only

then the elementary covariance of our rules will be restored, and the concept of scaling

dimensions will not have to rely on the existence of a preferred system of coordinates

associated with a maximally symmetric ground-state geometry.

In this modified picture, the dimensions are now carried by the physical spatial

length element dσ2 and time element dτ ,

[dσ2]′ = (0,−2), [dτ ]′ = (−1, 0), (6.9)

just as we declared above. However, since now dxi and dt are declared dimensionless,

this implies that the old-fashioned rules (6.4) and (6.5) are modified to

[gij]
′ = (0,−2), [n]′ = (−1, 0), [ni]′ = (0, 0), (6.10)

and

[∂/∂t]′ = (0, 0), [∂i]
′ = (0, 0). (6.11)

We have denoted the dimension in the modified counting system by [ ]′, to distinguish

it from the dimension [ ] in the old-fashioned system.
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One can see that both systems of assigning dimensions are for all physical purposes

equivalent to each other, for instance they lead to the same dimension counting rules

for the terms that can appear in the action. However, the modified system in which the

underlying spacetime coordinates are naturally dimensionless is mathematically more

accurate and conceptually cleaner that the old-fashioned one, since it is manifestly

consistent with nonlinear changes of coordinates, and does not lead to apparent

violations of the additivity properties of the classical scaling dimensions during such

nonlinear coordinate transformations.

After this detour, we can now return to the study of the relativistic diffeomorphism

symmetry in the ADM decomposition, in a theory with two scales L and T . Restoring

the dimensions of various objects in the symmetry algebra (6.1), (6.2) and (6.3), we

see that the last term on the right-hand side of (6.2) is the only one whose dimension

does not match the rest of the terms, and therefore a dimensionful constant is needed

to provide the conversion. This constant is of course the speed of light c, of dimension

[c] = [c]′ = (1,−1), which was set equal to one in the relativistic theory. Restoring c,

the algebra is now

δn = ξk∂kn+ ζṅ+ ζ̇n,

δni = ξ̇i + ξk∂kn
i − ∂kξink + ζṅi + ζ̇ni − ∂kζnkni − c2∂kζg

ikn2, (6.12)

δgij = ξk∂kgij + ∂iξ
kgkj + ∂jξ

kgik + ζġij + (∂iζgjk + ∂jgik)n
k.

It is an elementary but valuable exercise to verify why this insertion of c2 makes the

dimensions right in both of our dimension-counting systems.

Now we can return to our quest for a symmetry that would match the ingredients

required by the topological nonrelativistic gravity of Part I. As we saw at the beginning

of Section 2 above, it is precisely this c2 term that represents an obstruction against

what we need. This term can be simply eliminated by taking the c → 0 limit,

well-known in the literature [73,74] (see also [42] for the nonrelativistic context) as the

“ultralocal” limit of the relativistic diffeomorphism symmetries of general relativity.

6.2 The c→ 0 limit

Taking c → 0 in (6.12) will allow us to follow the strategy outlined at the

beginning of Section 6, and to make the time transformation generated by ζ act

trivially on the shift vector ni. Before taking these steps, let us take a closer look at

this “ultralocal” limit of c→ 0, especially in the light of our improved prescription

for assigning scaling dimensions. According to this prescription, our coordinates xi, t
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are dimensionless, and therefore the generators ξi, ζ of the corresponding spacetime

symmetries are dimensionless as well. Yet, the algebra defined by the transformation

rules (6.12) clearly depends on c. Indeed, we are planning to take the contraction

of the symmetries by sending c→ 0. One might therefore think that the structure

constants of this symmetry algebra, which one could obtain from the commutation

relations of the transformations in (6.12), will depend on c. However, that clearly

represents a puzzle: If the generators ξi and ζ, and all the derivatives ∂t and ∂i
that can appear in the commutation relations are all dimensionless, how could the

commutator of two such transformations possibly depend on a dimensionful constant

such as c?

The resolution is simple, yet perhaps a little surprising. A direct calculation reveals

that regardless of the value of c, the commutation relations of the transformations in

(6.12) are independent of c: The commutator of a transformation δ1 generated by ξi1
and ζ1 with the transformation generated by ξi2 and ζ2,

[δ1, δ2] = δ3, (6.13)

is the transformation δ3 generated by the following ξi3 and ζ3,

ζ3 = ζ1ζ̇2 − ζ2ζ̇1 + ξk1∂kζ2 − ξk2∂kζ1, (6.14)

ξi3 = ξk1∂kξ
i
2 − ξk1∂kξi2 + ζ1ξ̇

i
2 − ζ2ξ̇

i
1. (6.15)

These are indeed the commutation relations of the general spacetime diffeomorphisms,

familiar from the relativistic theory of gravity.

Consider now the theory of bosonic gravity which would be invariant under the

c → 0 limit of the symmetries specified in (6.12). This is of course the theory

known in the literature as the “ultralocal” theory of gravity [73, 74], proposed

originally as a possible strong-coupling limit of general relativity. Do the relativistic

commutation relations of the symmetry generators mean that this theory is somehow

relativistic? Not in the standard sense of full relativistic general covariance: While

the commutation relations appear relativistic, the realization of the symmetries on

the ADM decomposition of the metric does depend on c. Consequently, Lagrangians

that are invariant under this realization of the symmetries will be contractions of

the standard Lagrangians of general relativity. In particular, the lowest-derivative
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Lagrangian invariant under these symmetries,

S =
1

κ2

∫
dt dDx

{√
g

n

(
gikgj` − gijgk`

)
(ġij −∇inj −∇jni) (ġk` −∇kn` −∇`nk)− 2n

√
gΛ

}
,

(6.16)

contains the standard kinetic term for the spatial metric with two time derivatives,

but no spatial-derivative term consistent with it. This of course is the standard result

known from [73, 74]. It is intriguing, however, that the dependence of this theory

on the preferred foliation by constant time slices appears here at the level of the

dynamical metric fields, and not at the level of the underlying symmetries of the

differentiable structure of spacetime with dimensionless generators ξi and ζ.

6.3 Decoupling time reparametrizations from the shift vector

We can now finally propose a meaningful candidate for the spacetime gauge

symmetry that underlies the construction of the topological nonrelativistic theory in

Section 4 of Part I.

After performing the change of basis ξ̂i = ξi − ζni and ζ̂ = ζ in the generators of

the c = 0 transformation rules, which is again a change of basis whose Jacobian is

one, we get

δ̂n = ξ̂k∂kn+ ζ̂(ṅ− nk∂kn) + (∂tζ̂ − nk∂kζ̂)n, (6.17)

δ̂ni = ∂tξ̂
i + ξ̂k∂kn

i − ∂kξ̂ink, (6.18)

δ̂gij = ξ̂k∂kgij + ∂iξ̂
kgkj + ∂j ξ̂

kgik + ζ̂(ġij − nk∂kgij − ∂inkgkj − ∂jnkgik).(6.19)

These transformations satisfy the following commutation relations: The commutator

of a transformation δ̂1 generated by ξ̂i1 and ζ̂1 with a transformation δ̂2 generated by

ξ̂i2 and ζ̂2,

[δ̂1, δ̂2] = δ̂3, (6.20)

is the transformation δ̂3 generated by

ζ̂3 = ζ̂1 (∂tζ̂2 − nk∂kζ̂2)− ζ̂2 (∂tζ̂1 − nk∂kζ̂1) + ξ̂k1∂kζ̂2 − ξ̂k2∂kζ̂1, (6.21)

ξ̂i3 = ξ̂k1 ∂kξ̂
i
2 − ξ̂k1 ∂kξ̂i2. (6.22)

We will simply refer to this symmetry algebra as G. Note that the structure “constants”

of G in this basis are field-dependent, due to the explicit appearance of nk. This field

dependence of the structure constants could of course be undone by “unshifting” the

62



basis and representing the transformations using the original generators ξi and ζ.

However, in the context of the BRST gauge-fixing in our topological gravity from

Part I, it is the shifted representation in terms of ξ̂i and ζ̂ that will make a natural

appearance. Note also that the action of the algebra G on n and ni satisfies all the

necessary requirements listed in our three bullet points at the beginning of Section 6,

needed to be a candidate for our underlying spacetime symmetry for the topological

gravity of Part I: The subalgebra in G generated by ξ̂i is the standard Lie algebra of

spatial diffeomorphisms, while the subalgebra generated by ζ̂ is an ideal in G, and

this ideal acts trivially on the shift vector ni.

Besides the symmetries generated by ζ̂ and ξ̂i, we also include the original

topological symmetries fij acting on gij , as we did in (5.2). Putting all the symmetries

together, we reach the following algebra:

δ̂n = ξ̂k∂kn+ ζ̂(ṅ− nk∂kn) + (∂tζ̂ − nk∂kζ̂)n, (6.23)

δ̂ni = ∂tξ̂
i + ξ̂k∂kn

i − ∂kξ̂ink, (6.24)

δ̂gij = fij + ξ̂k∂kgij + ∂iξ̂
kgkj + ∂j ξ̂

kgik + ζ̂(ġij − nk∂kgij − ∂inkgkj − ∂jnkgik).(6.25)

Finally, redefining the topological transformation to

f̂ij ≡ fij + ξ̂k∂kgij + ∂iξ̂
kgkj + ∂j ξ̂

kgik + ζ̂(ġij − nk∂kgij − ∂inkgkj − ∂jnkgik), (6.26)

which is again a change of basis whose Jacobian is equal to one, we bring the

symmetries to the following simple form:

δ̂n = ξ̂k∂kn+ ζ̂(ṅ− nk∂kn) + (∂tζ̂ − nk∂kζ̂)n,

δ̂ni = ∂tξ̂
i + ξ̂k∂kn

i − ∂kξ̂ink, (6.27)

δ̂gij = f̂ij.

Note that the symmetries generated by ζ̂, ξ̂i and f̂ij are non-redundant. When

we treat these gauge symmetries using the BRST formalism, only first-generation

ghosts will be needed, and no ghost-for-ghosts. Introducing the ghosts c, ci and ψij
associated with our symmetry generators ζ̂, ξ̂i and f̂ij, the BRST transformations of
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this BRST multiplet are

QB n
i = ċi + ck∂kn

i − ∂kcink,
QB c

i = ck∂kc
i,

QB n = c(ṅ− nk∂kn) + (ċ− nk∂kc)n+ ck∂kn,

QB c = c(ċ− nk∂kc) + ck∂kc, (6.28)

QB gij = ψij,

QB ψij = 0.

It is this BRST algebra that we now wish to compare to the structure of the Q

supermultiplets of the topological nonrelativistic gravity from Section 4 of Part I.

7 Superfields in topological quantum gravity of the Ricci

flow

With the improved understanding of the relevant aspects of relativistic and

nonrelativistic diffeomorphisms developed in the previous section, we are now ready to

examine the supersymmetric theory of gravity with nonprojectable lapse constructed

in Part I, and see if it comes from a simple BRST gauge fixing of an underlying

symmetry acting on the ADM metric variables gij, n
i and n. First, we need to solve

the superfield constraints (5.33), (5.34) and (5.35) of the lapse sector in terms of the

component fields.

7.1 Solving the constraints

The process of solving the constraints for the lapse sector superfields follows the

steps parallel to the steps we took in solving for the components of the shift superfield

N i, Si and S
i

in Section 5.1.

First, we solve (5.33) and find

Θ = −ν + θ(−νν̇ − σk∂kν + nkν∂kν)− θz
+ θθ(−ν̇ − zν̇ + νż − Y k∂kν + σk∂kz + χkν∂kν + nkz∂kν − nkν∂kz),(7.1)
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and then solving (5.34) gives

Θ = −ν − θw + θ(−νν̇ − σk∂kν + nkν∂kν)

+ θθ(wν̇ − νẇ + σi∂iσ
k∂kν − σk∂kw − ψkν∂kν − nkw∂kν + nkν∂kw).(7.2)

Here we must remember that Y i and χi appearing in the top component of Θ are

composite fields, expressed in terms of the independent component fields ni, X i, σi

and σi of the shift sector as

Y i = −ni −X i + σk∂kσ
i + σk∂kσ

i, (7.3)

χi = σ̇
i
+ σk∂kn

i − ∂kσink. (7.4)

Then we can simply evaluate the components of the E superfield by evaluating

the right-hand side of (5.35). For the inverse lapse e we get

e = 1 + w + z − ν(ν̇ − nk∂kν)− ν(ν̇ − nk∂kν)− σk∂kν − σk∂kν. (7.5)

This relation is very similar to (5.18), and we will handle it in the same way: Our

independent bosonic component fields will be the inverse lapse e, plus the field w

which satisfies Qw = 0 and therefore is our candidate auxiliary field of the antighost-

auxiliary multiplet. Thus, (7.5) serves to express z as a composite field in terms of

the independent bosonic and fermionic component fields e, w, ν and ν.

The two fermionic components of the inverse lapse superfield E can also be easily

evaluated by applying (5.35),

ψ = ν(ė− nk∂ke)− (ν̇ − nk∂kν)e+ σk∂ke, (7.6)

χ = ν(ė− nk∂ke)− (ν̇ − nk∂kν)e+ σk∂ke, (7.7)

and so can the top bosonic component B, although its explicit expression is not

particularly illuminating and will not be useful in the rest of the thesis.

7.2 BRST interpretation of the component fields and gauge symmetries

Here we review all the Q multiplets, in the component language, which we obtained

in Sections 5.1 and 7.1 above by solving the superfield constraints for the lapse and

shift superfields derived in Part I. We can then check that these multiplets of the

nonrelativistic gravity can indeed be interpreted as BRST multiplets of a one-step

gauge-fixing of a non-redundant gauge symmetry which acts by a combination of
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topological transformations and spacetime diffeomorphisms.

First, we have the original Q multiplet containing the spatial metric,

Qgij = ψij, Qψij = 0. (7.8)

ψij is indeed the topological BRST ghost, associated with the topological symmetry

generated by δgij = f̂ij. The spatial metric supefield Gij also contains the multiplet

Qχij = −Bij QBij = 0. (7.9)

Here χij is the BRST antighost, and −Bij its associated auxiliary field.

Next we summarize the structure of the Q multiplets in the lapse and shift sectors.

The component solutions of the superspace constraints that we found in Section 5.1

show that the shift vector ni forms a multiplet with σi,

Qni = σ̇i + σk∂kn
i − ∂kσink, (7.10)

Qσi = σk∂kσ
i. (7.11)

This is indeed the standard BRST multiplet for gauge fixing spatial diffeomorphisms

ξ̂i acting on the shift vector, when we identify σi as the ghost associated with the

diffeomorphism generator ξ̂i. The shift sector also contains the trivial Q multiplet

Qσi = X i, QX i = 0. (7.12)

Here σi is naturally interpreted as the antighost, and X i its associated auxiliary field.

In the lapse sector, we also find two multiplets, but since the constraints have

involved also the shift-vector superfields, the Q transformations of the components

are a bit more intricate,

Qe = ν(ė− nk∂ke)− (ν̇ − nk∂kν)e+ σk∂ke, (7.13)

Qν = ν(ν̇ − nk∂kν) + σk∂kν, (7.14)

as one can see from the component solutions of the lapse-sector constraints found in

Section 7.1. Happily, on closer inspection (and recalling that e = 1/n), these happen to

be the BRST transformation rules (6.28) associated with the ζ̂ time-reparametrization

symmetry, if we identify ν as the ghost field c.

Thus, we conclude that the Q transformation rules of the multiplets containing

gij, n
i and e are exactly the standard BRST tranformation rules (6.28) we obtained
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in the process of gauge fixing of the spacetime reparametrization and topological

symmetries (6.27) that we discussed in the previous section! In addition, among the

components of the lapse-sector superfields we have also found the antighost-auxiliary

multiplet

Qν = w, Qw = 0. (7.15)

Together with the antighost-auxiliary multiplets (7.9) and (7.12) found in the spatial

metric sector and the shift sector, these multiplets are ready to be used in the standard

way for implementing the BRST gauge fixing conditions.

We see that the multiplet structure of the topological nonrelativistic gravity

constructed in Part I precisely reproduces the standard BRST multiplets associated

with our gauge symmetries (6.27), and gives the correct number of the antighost-

auxiliary multiplets needed for the gauge fixing. The supercharge Q is precisely the

standard BRST charge associated with the symmetries (6.27). Since these symmetries

are non-redundant, the BRST construction closes after the first step, and no ghost-

for-ghost fields are needed. This clarifies the meaning of the two-step superspace

construction of our topological gravity, and answers fully all the questions about this

theory that we raised at the beginning of this part.

7.3 Action functionals and Wess-Zumino gauge

Having clarified the structure of the BRST multiplets, and in particular having

understood that the supercharge Q is the standard BRST charge associated with

our gauge symmetries (6.27), it is time to use the BRST machinery and construct

the appropriate gauge-fixed action S; or, more precisely, a family of such actions,

parametrized by various coupling constants.

The only action S0(gij, n
i, n) that is invariant under our gauge symmetries is zero,

or more precisely, a sum of available topological invariants (whose precise list can

depend on the spacetime dimension). No local dynamics is induced by this gauge-

invariant action S0; as usual in topological field theories of the cohomological type

[31], the entire dynamics will be generated by the judicious choice of the gauge-fixing

part of the action, which should take the form

S =

∫
dt dDx {Q,Ψ} , (7.16)

with the gauge-fixing fermion Ψ being a local functional built out of the available

BRST multiplets. Since we insist on the N = 2 superalgebra (1.13) with supercharges
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Q and Q, the most efficient method for constructing an action consistent with this

extended BRST supersymmetry is the superspace approach used in Part I. The action

will thus be written as

S =

∫
dt dDx d2θL, (7.17)

where the superspace Lagrangian L is a local functional of all the superfields of Part

I. The superspace geometry then automatically implies that every such superspace

action is of the form (7.16) for some Ψ.

We are dealing with a nonrelativistic theory, which has two a priori unrelated

scales L and T as discussed in Section 6.1, so the next step is to decide which values

of the dynamical exponent z are appropriate for our goals. Since we wish to make

contact with the Ricci flow equations, which happen to select the value of z = 2, we

will be interested in writing down the action that respects this z = 2 scaling at short

distances, and contains the minimal number of time derivatives on the component

fields. As we did in Part I, it is useful to write such an action in superspace as a sum

of two terms,

S =
1

κ2
(SK − SW), (7.18)

where the “kinetic” term SK contains at least one of the supertime derivatives D,

D, ∂t, while the “superpotential” term SW contains no such supertime derivatives.

As we showed in Part I, in order the achieve the desired z = 2 scaling at short

distances, SK will contain terms with one D and one D, while the superpotential SW
will contain terms with up to two spatial derivatives. Interestingly, this two-derivative

superpotential is essentially playing the role of Perelman’s F -functional in our theory.

Finally, we need to decide whether we wish to keep any of the underlying gauge

symmetries unfixed, or whether we prefer the fully gauge-fixed version of the theory.

The appropriate choice may be different depending on which of the three symmetries

generated by f̂ij, ξ̂
i and ζ̂ we consider. Keeping some of the gauge symmetries

unfixed would lead to the so-called “equivariant” theory: Roughly speaking, the

BRST cohomology is then defined as the cohomology of the BRST charge on objects

that are gauge invariant under the unfixed symmetry. This is the strategy often

followed for example in topological Yang-Mills gauge theories in four dimensions,

where only the topological symmetry is gauge-fixed while the unfixed “equivariant”

symmetry consists of the ordinary Yang-Mills gauge transformations.

Does it make sense to consider a similar equivariant theory in the context of our

topological nonrelativistic gravity of the Ricci flow? In Section 4.4 of Part I, we

constructed an action which was invariant under the (supersymmetric extension of)
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the foliation-preserving spacetime diffeomorphisms. Going to Wess-Zumino gauge as

discussed in Part I, the resulting theory is still equivariant with respect to the bosonic

foliation-preserving spacetime diffeomorphisms, generated by spacetime-dependent

spatial diffeomorphisms ξi(t, xk) and projectable time reparametrizations f(t). This

unfixed gauge symmetry is strictly larger that the gauge symmetries exhibited by

Perelman’s Ricci flow.

In the present context, to achieve a closer connection to the Ricci flow, it makes

more sense to consider a hybrid theory, in which the gauge-fixing fermion Ψ in

(7.16) (or the Lagrangian L in (7.17)) is chosen such that not only the topological

symmetries f̂ij but also the time-reparametrization gauge symmetries ζ̂ are fully

gauge-fixed. On the other hand, it is meaningful to treat the spatial diffeomorphisms

generated by ξi as an unfixed, equivariant symmetry: This symmetry can be gauge-

fixed later, as outlined in Section 3.5 of Part I. Several gauge choices for the spatial

diffeomorphism gauge symmetry – which we referred to as Perelman gauge, Hamilton

gauge, and DeTurck gauge Part I – are naturally available, and they match standard

manipulations known in the mathematical theory of the Ricci flow.

In the superfield language of Part I, keeping the bosonic symmetries generated by ξi

unfixed is accomplished by first choosing L that is invariant under the superymmetric

generalization of the spatial diffeomorphism, and then going to Wess-Zumino gauge,

setting the shift superfield equal to its lowest, bosonic component:

N i = ni. (7.19)

In the language of component fields, this amounts to setting the ghost field σi, as

well as the antighost σi and its auxiliary X i all equal to zero. Indeed, this makes

sense: By throwing away the antighost and the auxiliary, we prevent ourselves from

gauge-fixing the associated bosonic symmetry generated by ξi. In this Wess-Zumino

gauge, the action can then be gauge invariant under the remaining bosonic symmetry

ξi.

In contrast, it would not be very interesting to treat the nonprojectable symmetry

of time reparametrizations ζ̂ equivariantly: As we pointed out in (6.16), if we insist

on the unfixed nonprojectable bosonic symmetry ζ̂(t, xi), the only lowest-derivative

Lagrangians that respect this symmetry are ultralocal in space, with the superpotential

given by just the cosmological constant term, and leading to a rather trivial theory

and no z = 2 scaling.

As we shall see in Part III, in which we establish the precise contact with Perelman’s

equations of the Ricci flow, it will indeed be vital to use this hybrid strategy: Gauge-
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fixing the topological symmetries in the gij and n sector, while keeping the spatial

diffeomorphism symmetry manifest.

7.4 Dual gauge symmetries

As an aside remark, we note the following interesting curiosity: Our theory has an

alternative dual interpretation. Indeed, it is possible to interpret the same component

fields studied above as having originated from the gauge fixing of a dual copy of

spacetime diffeomorphisms, with the role of the BRST charge in this dual picture

played by the original anti-BRST charge Q. This is a consequence of the extended

N = 2 supersymmetry, together with the “balanced” property of the theory, which

implies a symmetry between the ghosts and antighosts.

The existence of such a dual interpretation of the theory can be directly verified

by taking a closer look at the Q transformations of the component fields. In the shift

sector, we have

Qni = σ̇i − nk∂kσi + σk∂kσ
i, (7.20)

Qσi = σk∂kσ
i. (7.21)

This is indeed the BRST structure obtained by gauge fixing spatial diffeomorphisms,

with the antighost σi of the original intepretation now playing the role of the ghost.

Similarly, in the lapse sector, we find

Qe = ν(ė− nk∂ke)− (ν̇ − nk∂kν)e+ σk∂ke, (7.22)

Qν = ν(ν̇ − nk∂kν) + σk∂kν. (7.23)

Again, this is the BRST multiplet obtained from our ultralocal time reparametrization

gauge symmetry, with the original antighost ν now playing the role of the ghost

associated with the dual symmetry.

Similarly, the original ghosts and auxiliary fields of Q give rise to the standard

antighost-auxiliary multiplets of Q in the dual interpretation. First, in the shift sector

one finds

Qσi = Y i, Q Y i = 0. (7.24)

Note that the correct identification of the auxiliary field requires that we solve (5.18)

in a different way than we did in (5.19), now expressing X i in terms of the independent
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components ni, Y i, σi and σi:

X i = −ni − Y i + σk∂kσ
i + σk∂kσ

i. (7.25)

Thus, the auxiliaries X i and Y i of the two dual interpretations are related by a

nonlinear field redefinition.

Similarly, the antighost-auxiliary Q multiplet in the lapse sector is found to be

Qν = z, Q z = 0. (7.26)

This also requires that we solve (7.5) differently than how we solved it in Section 7.1,

with w expressed in terms of the independent component fields that now include z:

w = −1 + e− z + ν(ν̇ − nk∂kν) + ν(ν̇ − nk∂kν) + σk∂kν + σk∂kν. (7.27)

As in the shift sector, the auxiliaries w and z in the two dual interpretations are

related by this nonlinear redefinition. The role of the ghosts and antighosts is simply

exchanged between the two dual pictures.

8 Summary

In this part, we have analyzed the ingredients of topological nonrelativistic gravity

associated with the Ricci flow, presented in Part I. In particular, we substantially

clarified the structure of the underlying gauge symmetries of this theory, especially in

the time sector. The construction of Part I used a two-step procedure, starting with

the rigid N = 2 nonrelativistic BRST superspace, and then gauging the symmetries

of foliation-preserving spacetime diffeomorphisms. Here we have demonstrated that

this theory can be understood in the more traditional way, as a standard one-step

BRST gauge fixing of a theory whose dynamical fields are simply the ADM variables

of bosonic gravity describing the spatial metric gij, the shift vector ni and the lapse

function n, and whose gauge symmetries consist of the topological symmetries acting

on the spatial metric, combined with the “ultralocal” nonrelativistic limit of spacetime

diffeomorphisms. These gauge symmetries appear most naturally in their “shifted”

form (6.27). These findings explain the origin of the ingredients obtained in the

superspace formulation in Part I, and the origin of the superfield constraints derived

from geometric superspace arguments. In particular, since the underlying gauge

symmetries of the one-step construction presented in this part are non-redundant, it
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is clear why no ghost-for-ghost fields were needed in the two-step construction.

It is now also clear that the theory is a cohomological quantum field theory of the

standard type [31], with the supercharge Q exactly playing the role of the standard

BRST charge in the full theory. Moreover, we have also shown why this theory is

topological, in the sense of containing no local propagating excitations: Since all of

our gauge symmetries, including the time reparametrizations, are nonprojectable,

the number of gauge symmetries matches locally the number of dynamical field

components, and the number of local propagating degrees of freedom is zero. We have

also pointed out an intriguing dual interpretation of this theory, as having originated

from the gauge fixing of a dual copy of spacetime diffeomorphisms, and with the

second supercharge Q now playing the role of the BRST charge.

With this improved understanding of the supermultiplets and the underlying

gauge symmetries in the topological quantum gravity of the Ricci flow, it is now

possible to study the precise relation between this topological quantum theory and

the mathematical theory of Perelman’s Ricci flow.

Part III

Localizing to Perelman’s Ricci

Flow
Since its inception in the 1980’s [1], the mathematical theory of the Ricci flow on

Riemannian manifolds has undergone several stages of development. The first stage,

lasting for about two decades, was dominated by the study of Hamilton’s Ricci flow

equation,
∂ĝij
∂t

= −2R̂ij, (8.1)

and its geometrical consequences. Many important achievements highlight this era

[26]. The next stage was reached with Perelman’s Ricci flow equations [2–4] (see

[11–15,22–24] for extensive reviews), which are designed so that the flow of the metric

is coupled to the flow of another field, which Perelman called the “dilaton.” (This
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field is traditionally denoted by f , but we will call it φ̂ in this part.)16

∂ĝij
∂t

= −2R̂ij − 2∇̂i∂jφ̂, (8.2)

∂φ̂

∂t
= −R̂− ∆̂φ̂. (8.3)

The major advance in Perelman’s formulation stems from the fact that the right-hand

side of these coupled flow equations is given by the gradient of a functional, Perelman’s

“F -functional”

F̂ = 2

∫
dDx

√
ĝe−φ̂

{
R̂ + ĝij∂iφ̂∂jφ̂

}
, (8.4)

assuming that the variations of ĝij and φ̂ are subjected to the constraint requiring

that the volume element

e−φ̂
√
ĝ dDx = dm(xi) (8.5)

be held fixed in time and equal to a fixed measure dm(xi) on the spatial manifold Σ.

Perelman’s equations are further simplified by an application of what has become

known in the mathematical literature as “DeTurck’s trick”: a specific spatial diffeo-

morphism is applied to the original equations, with its generating vector field ξi given

by the gradient of the dilaton, ξi = ĝij∂jφ̂. After this diffeomorphism, Perelman’s

Ricci flow equations simplify to

∂ĝij
∂t

= −2R̂ij, (8.6)

∂φ̂

∂t
= −R̂− ∆̂φ̂+ ĝij∂iφ̂∂jφ̂, (8.7)

In this form, Hamilton’s original metric flow equation is now nicely separated from

the flow equation for the dilaton.

Perelman’s Ricci flow was of course instrumental in his proof of the Poincaré

conjecture [4,18–21], and since then in the proofs of many other important results: the

Thurston geometrization conjecture [4, 19], the generalized Smale conjecture [6–10],

and even a new proof of the uniformization theorem in two spatial dimensions [5].

16Throughout this part, we will systematically denote Perelman’s variables by hats, .̂ This includes
both the geometric fields ĝij , φ̂, . . . and the various geometric quantities such as the covariant

derivative ∇̂i. We reserve the notation without hats for our variables gij , φ, . . ., ∇i. These two sets
of variables will be related by a nonlinear transformation which involves a change of frame for the
metric.
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The topological quantum gravity theory presented in Part I has been designed

around a family of generalized Ricci flow equations similar to Perelman’s. These

equations appear in the topological gravity in a central role, as localization equations:

With the appropriate initial or boundary conditions, the path integral is reduced by

standard topological arguments to an integral over the space of classical solutions to

the flow equations.

The localization equations depend on many physical coupling constants available

in this theory. One can naturally ask whether Perelman’s equations can be precisely

reproduced in some regime of this topological quantum gravity, and if so, what is the

precise mapping of the variables between the mathematical and the physical picture.

In the present part, we address these questions in the semiclassical limit of the theory.

That such a direct embedding of Perelman’s Ricci flow equations into our topolog-

ical gravity should even exist is not immediately obvious, for several reasons. First,

note that Perelman’s equations have less spacetime symmetry than the localization

equations of the theory constructed in Part I, at least before we fix a part of the

secondary gauge symmetry of foliation-preserving spacetime diffeomorphisms. At

best, we can find a covariantized version of Perelman’s equations which respects

time-reparametrization invariance (this will be done in Section 9); or we need to

propose an appropriate gauge fixing of time reparametrizations in our theory to

match the symmetries of Perelman’s equations (this will be the subject of Section 10).

Secondly, our version of the flow equations is schematically of the form

eφġij = −αRRij + . . . , (8.8)

with an extra multiplicative eφ factor between the two sides. This suggests the

need for a nonlinear “reframing” field redefinition between Perelman’s variables and

ours. Thirdly, the question is how to interpret the additional volume-fixing condition

(8.5), which was postulated by Perelman in order to derive the flow equations. This

condition cannot be a part of gauge fixing of the residual gauge symmetries in our

theory, since (i) the theory presented in Part I only exhibits spatially-independent

time reparametrizations, and (ii) we wish to reserve all the spatial diffeomorphism

symmetry in the unfixed form, so that we can implement the DeTurck trick as a

gauge fixing condition, as we did in Part I. Finally, note also that in our approach,

both sides of the flow equations come from a variational principle, which leads not

only to more couplings but also to additional restrictions on the form of the equations

of motion one can obtain.

In this part, we resolve these issues in two steps. First, in Section 9, we consider
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the covariant theory of Part I, with secondary gauge symmetry of foliation-preserving

spacetime diffeomorphisms. We identify the regime where the localization equations

represent the covariant version of Perelman’s equations. In the process, we learn how

our fields are related to Perelman’s by a change-of-frame transformation, and how

Perelman’s fixed-volume condition emerges dynamically in our topological gravity.

Then, in Section 10, we perform the gauge fixing that leads directly to the localization

of the path integral on Perelman’s Ricci flow equations (8.2) and (8.3), and the fixed-

volume condition (8.5). Those readers who are interested only in our final product –

the topological gravity of Perelman’s Ricci flow – can go directly to Section 10, and

return to Section 9 for the motivation and logical derivations as needed. In Section 11

we extend our construction to include the W and W+ entropy functionals associated

with the shrinking and expanding Ricci solitons; the main new ingredient that we

will need to introduce is going to be the Goldstone superfield T asssociated with

spontaneously broken time translations.

9 Covariantized Perelman-Ricci flow equations from topo-

logical gravity

The theory presented in Parts I and II is a theory of the spacetime metric expressed

in the ADM variables [43], consisting of the spatial metric gij, the shift vector ni,

and the lapse function n. The theory is designed to be topologically invariant, and

nonrelativistic – it is sensitive to a preferred foliation F of spacetime M by leaves Σ

of constant time. Given the required N = 2 extension (1.13) of the BRST symmetry,

this topological theory is most concisely formulated in an N = 2 superspace extension

Part I of the nonrelativistic spacetime manifold M. Spacetime is thus extended to a

supermanifold M of superdimension (D + 1|2), which also inherits a foliation by the

spatial leaves Σ.

Throughout this section, we will consider the theory which enjoys – besides

the topological symmetry – a secondary gauge symmetry of foliation-preserving

diffeomorphisms of spacetime,

G ≡ DiffF (M). (9.1)

This symmetry is locally generated by infinitesimal spacetime-dependent spatial

diffeomorphisms δxi = ξi(t, xj), and time-dependent time reparametrizations δt =

f(t). We intend to treat this secondary symmetry equivariantly: In particular, we

will construct our action functionals in this section to be manifestly invariant under
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G.

As is often done in supersymmetric gauge-theory constructions, we impose this

secondary gauge symmetry G by first extending it to a gauge symmetry in superspace,

making G manifestly consistent with the underlying N = 2 supersymmetry. The

full list of superfields in this theory consists of the unconstrained metric superfield

Gij, whose lowest component is gij, the superfields N i, Si and S
i

in the shift-vector

sector, with the bosonic shift vector ni appearing as the lowest component of N i; and

the superfields E, Θ and Θ in the lapse function sector, with the lapse function n

appearing as the inverse of the lowest component e of E, n = 1/e. In components,

each of the three sectors contains the original ADM bosonic field, its ghost, its

antighost, and an auxiliary. In the spatial metric sector, these component fields are

gij, ψij, χij, Bij. (9.2)

In the lapse and shift sectors, they are

e ≡ 1/n, ν, ν, w (9.3)

and

ni, σi, σi, X i, (9.4)

with Bij, w and X i the bosonic auxiliaries in the corresponding sectors. See Parts I

and II for all additional details, including the Q and Q transformation rules for these

component multiplets, and for our conventions.

9.1 Localization equations for gij in topological quantum gravity

The action can be written as

S =
1

κ2
(SK − SW) , (9.5)

where the kinetic term SK is defined as the part of the action containing at least one

supertime derivative, and the term SW – which we call the superpotential – contains

all the remaining terms, with no supertime derivatives. The minimal kinetic term is

SK =

∫
d2θ dt dDx

√
GN (GikGj` − λGijGk`) DθGij DθGk`. (9.6)
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Here Dθ and Dθ are the covariant superspace derivatives associated with the gauge

group G.

The superpotential terms can be organized by the increasing dimension of the

operators. In the case of interest, relevant to Ricci flow, we focus on all the terms up

to second order in spatial derivatives, which gives – up to integration by parts – the

following superpotential:

SW =

∫
d2θ dt dDx

√
GN

{
αRR

(G) + αΦG
ij∂iΦ∂jΦ + αΛ

}
, (9.7)

where αR, αΦ and αΛ are real coupling constants, and the superfield R(G) is the Ricci

scalar superfield constructed from the metric superfield Gij . The supefield Φ is simply

related to the lapse superfield N ≡ 1/E,

Φ ≡ − logN ≡ logE. (9.8)

Since we have restricted our attention to the terms in SW with up to two spatial

derivatives, we are anticipating that the short-distance behavior in this theory will

exhibit anisotropy between time and space characterized by the dynamical exponent

z = 2. With this scaling, the two-derivative terms in SW are of the same classical

scaling dimension as the kinetic term. The cosmological constant term αΛ is the only

available relevant term.

Now we wish to study the localization equations, and their possible relation to

Perelman’s Ricci flow. We begin with a simple theory, in which the lapse superfield

E is constrained to be chiral, and no chirality conditions are imposed on either Gij or

N i; as before, we shall refer to this theory as Type C (for “chiral” lapse). First, we

will focus on the localization equation for the spatial metric gij in this Type C theory.

In terms of the component fields listed in (9.3), the chirality condition amounts to

setting the antighost σi and the auxiliary w to zero.

When focusing on the localization equations, we will often – for clarity of discussion

– keep track of only the bosonic fields, setting all the fermionic component fields to

zero.17 When we write the type C theory in components, it will be consistent with

our equivariant treatment of spatial diffeomorphisms to adopt Wess-Zumino gauge in

the superspace shift sector, as discussed in Part I. This choice is equivalent to setting

σi, σi and X i in (9.4) to zero. In this gauge, the bosonic gauge symmetry G of the

17We use the symbol “≈” to denote the evaluation of any quantity by keeping its full dependence
on the bosonic component fields while setting all the fermionic components to zero.

77



action is still manifest. In particular, the time derivative of gij is still covariantized to

∇tgij ≡ ∂tgij −∇inj −∇jni. (9.9)

With this notation, the bosonic part of the action is

SK ≈ −
∫
dt dDx

√
gn (gikgj`−λgijgk`)BijBk`+

∫
dt dDx

√
g (gikgj`−λgijgk`)Bij∇tgk`

(9.10)

and

SW ≈
∫
dt dDx

√
gnBijE ij, (9.11)

with E ij given by

E ij ≡ 1
√
gn

δF
δgij

= αR

(
1

2
Rgij −Rij

)
+ αR

(
gikgj` − gijgk`

) 1

n
∇k∂`n

+ αΦ

(
1

2
gijgk` − gikgj`

)
∂kφ∂`φ+

1

2
αΛg

ij. (9.12)

Here we denoted by F the spacetime integral of the lowest component of the super-

potential Lagrangian density in superspace,

F =

∫
dt dDx

√
gn
(
αRR

(g) + αΦg
ij∂iφ∂jφ+ αΛ

)
, (9.13)

with R(g) in (9.13) now being the bosonic Ricci scalar of gij . We have also introduced

a slight change of notation in the lapse sector: From now on, we will use

φ = − log n, (9.14)

which is often a more convenient variable than the lapse field n itself. Also, it is this

field φ which will turn out to be simply proportional to Perelman’s dilaton φ̂.

The equation of motion obtained from varying Bij in the full action S is

2Bij =
1

n
∇tgij − (gikgj` − λ̃gijgk`)Ek` ≡ Eij. (9.15)

Here the tensor

gikgj` − λ̃gijgk` (9.16)
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is the inverse to the DeWitt metric on the space of metrics

gikgj` − λgijgk`, (9.17)

with λ̃ given in terms of λ by [33]

λ̃ =
λ

λD − 1
. (9.18)

By solving for Bij algebraically, the action now becomes

S ≈ 1

4

∫
dt dDx

√
gnEij

(
gikgj` − λgijgk`

)
Ek`. (9.19)

Assuming that the DeWitt metric (9.17) is weakly positive definite (i.e., positive

definite modulo spatial diffeomorphisms), standard arguments of topological quantum

field theory will localize the path integral to the minima of the action, which thus

requires the validity of the localization equation

Eij = 0. (9.20)

For our specific superpotential (9.7), this equation yields the metric flow

eφ∇tgij = −αRRij +
αR
2

[
1 + (2−D)λ̃

]
gijR− αR∇i∂jφ

+ αR

[
1 + (1−D)λ̃

]
gij∆φ+ (αR − αΦ)∂iφ∂jφ (9.21)

+
{αΦ

2

[
1 + (2−D)λ̃

]
− αR

[
1 + (1−D)λ̃

]}
gij(∂φ)2 +

αΛ

2
(1− λ̃D)gij.

Our next challenge is to identify for which values of the couplings, if any, these

localization equations are related to Perelman’s Ricci flow.

9.2 Finding Perelman’s equations: The DiffF (M) equivariant case

Our first step is to propose a change of variables, with the metric rescaled via

ĝij = eφgij. (9.22)

This change of frames of the spatial metric is designed to eliminate the extra factor

of eφ between the two sides of (8.8) or (9.21), so that the leading terms on both
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sides match those of the flow equation (8.2). Given the importance of such reframing

transformations throughout this part, we have collected the relevant change-of-

frame formulas for various geometric objects in Appendix B for convenience and

completeness.

Next we need to determine how Perelman’s dilaton φ̂ should be related to our φ.

Rewriting our superpotential SW in the mixed variables ĝij and φ and comparing to

Perelman’s F̂ -functional then suggests that we need to set

φ̂ =
D

2
φ. (9.23)

Finally we also identify n̂i = ni.

It is natural to introduce the couplings α̂R and α̂Φ in Perelman’s functional,

F̂ = 2

∫
dDx

√
ĝe−φ̂

{
α̂R R̂ + α̂Φ ĝ

ij∂iφ̂∂jφ̂
}
, (9.24)

noting that the original F̂ functional (8.4) corresponds to the specific choice of

α̂R = α̂Φ = 2. (9.25)

Using the reframing formulas from Appendix B shows that in our original variables,

this choice translates into

αR = 2, αΦ =
2−D

2
. (9.26)

These are the predictions for the regime of our topological gravity where we may

expect contact with Perelman’s flow equations.

With this proposed relation (9.22) and (9.23) between Perelman’s variables and

ours, it is now illuminating to rewrite the covariant form of his volume-fixing condition

(8.5) in our variables. It is pleasing to see that this condition becomes simply

∇t
√
g = 0, (9.27)

the condition of the spatial volume element being covariantly constant in time. This

observation is very suggestive: It is indeed well-known in nonrelativistic quantum

gravity of the Lifshitz type [32–34,42] how to realize such a spatial “unimodularity”

condition dynamically! This condition is the result of the equations of motion when
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we take the limit of

|λ| → ∞. (9.28)

This regime of nonrelativistic quantum gravity is particularly interesting for a number

of reasons [32–34,42], and it has also been studied in the context of physical cosmology

[75]. Leaving such physical motivations aside, it is intriguing to see that this same

regime of “gravity at the farpoint” λ = ±∞ in the kinetic coupling λ makes an

independent appearance in the topological quantum gravity of Perelman’s Ricci flow!

We can now verify how our localization equation (9.21) is precisely related to

Perelman’s equations. Taking the values of the couplings in (9.26), setting λ = ±∞,

and rewriting our localization equations in Perelman’s variables using the reframing

formulas from Appendix B, our (9.21) becomes

∇̂tĝij −
2

D
ĝij∇̂tφ̂ = −2R̂ij − 2∇̂i∂jφ̂+

2

D
ĝijR̂ +

2

D
ĝij∆̂φ̂, (9.29)

where ∇̂tφ̂ ≡ ∂tφ̂− n̂i∂iφ̂. This is just the sum of Perelman’s first equation (8.2) and

−(D/2)ĝij times Perelman’s second equation (8.3)! Note that we did not have to

take the cosmological constant αΛ to zero: This is one of the benefits of being at the

“farpoint” |λ| =∞ in the kinetic coupling λ. Moreover, by taking the trace of (9.29),

we obtain

ĝij∇̂tĝij − 2∇̂tφ̂ = 0, (9.30)

which can be usefully rewritten as

∇̂t

(
e−φ̂
√
ĝ
)

= 0. (9.31)

This confirms that in accord with our anticipation, our theory in the |λ| =∞ limit

indeed dynamically imposes Perelman’s fixed-volume condition (8.5), in its covariant

form, and in a form in which the rather awkward and unnecessary reference to an

arbitrary constant measure dm(xi) on Σ in (8.5) is nicely absent.

This is as close as we can get to Perelman’s original equations in the covariant

theory studied in this section. The two equations cannot be separated in a covariant

way: Such a split would be inconsistent with the fact that the localization equations in

our theory with the G gauge symmetry realized equivariantly must be gauge invariant

under time-dependent time reparametrization, a symmetry not respected by the

individual equations (8.2) and (8.3) but respected by their appropriate sum. Thus,

our system (9.29) represents a covariantized version of Perelman’s equations, made
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consistent with time reparametrizations.

9.3 Gauge fixing of spatial diffeomorphisms and DeTurck’s trick

The theory is still gauge invariant under the symmetry of spacetime-dependent

spatial diffeomorphisms. We can perform a gauge fixing of this symmetry to make

contact with Perelman’s equations before and after the DeTurck trick. The simplest

natural gauge choice, which we referred to in Part I as Perelman gauge, is to set

ni = 0. In this case, we simply obtain Perelman’s original flow equations (8.2) and

(8.3).

Another natural gauge fixing, which we referred to in Part I as Hamilton gauge,

is given in Perelman’s variables by

n̂i = ∂iφ̂, (9.32)

where we define n̂i ≡ ĝijn
j. In our original variables, this condition can be rewritten

as

eφni =
D

2
∂jφ, or ni = −D

2
∂in. (9.33)

With this choice of ni, our localization equations in Perelman’s variables become

˙̂gij −
2

D
ĝij

˙̂
φ = −2R̂ij +

2

D
ĝij

(
R̂ + ∆̂φ̂− ĝk`∂kφ̂∂`φ̂

)
, (9.34)

which nicely reproduces the sum of Perelman’s equations after the DeTurck trick,

(8.6) and (8.7).

Having shown how to use spatial diffeomorphisms to perform DeTurck’s trick as

their gauge fixing, one might still be concerned that our theory contains D(D + 1)/2

localization equations (9.21) for [D(D + 1)/2] + 1 field variables gij and φ, given the

fact that our lapse sector is nonprojectable and φ therefore spacetime-dependent.

Where is the missing equation, which would provide the localization condition in the

φ sector?

In Type C theory, on which we have focused in this section so far, the fact that

we are missing one localization equation is consistent: By imposing the chirality

condition on the lapse superfield E, we effectively set the antighost and the auxiliary

field associated with φ to zero. Thus, our Type C theory is not yet fully gauge

fixed: For example, the ghost field in the lapse sector does not have a non-degenerate

kinetic term. Choosing a BRST-trivial antighost-auxiliary multiplet and adding

another gauge-fixing term to the action would be required in order to complete the

82



construction of the theory.

In Type B theory on the other hand, these remaining gauge-fixing ingredients

are already present. Since one does not impose any chirality condition on the lapse

superfields, the component content is then “balanced” (in the sense reviewed in Part

I): ν and ν are the ghost and the antighost, and w is a bosonic auxiliary. Note

that the secondary gauge symmetry G that we require throughout this section only

contains spatially-independent time reparametrizations, a symmetry clearly not large

enough to mimic what we did in the shift sector and set these three component fields

to zero by some Wess-Zumino-type gauge. If we choose the same action (9.6) and

(9.7) in the Type B theory, the w auxiliary field will yield the missing scalar flow

equation. It is intriguing that it does so in a time-reparametrization covariant way.

This last observation also clearly indicates that the Type B theory, with the gauge

symmetry G treated equivariantly, will not be the correct setting if our goal is to

obtain Perelman’s Ricci flow as the exact localization equations. In order to achieve

that goal, we will have to revisit the original gauge symmetries and their gauge fixing,

following the arguments developed in Part II. This will be the main focus of Section 10

below. However, since the Type B theory with the gauge symmetry G may still be

of independent interest, we present the structure of its localization equations now,

before we proceed with our main task in Section 10.

9.4 Type B theory

In Type B theory, the bosonic part of the action is

SK ≈ −
∫
dt dDx

√
gn (gikgj`−λgijgk`)BijBk`+

∫
dt dDx

√
g (gikgj`−λgijgk`)Bij∇tgk`,

(9.35)

and

SW ≈
∫
dt dDx

√
gnBijE ij +

∫
dt dDxwπ, (9.36)

where E ij is again given by (9.12), and

π = αR
√
g
(
gikgj` − gijgk`

)
∇i

(
∇jn∇tgk` − n∇j∇tgk`

)
− 2αΦ∂i

[
n∇t

(√
ggij∂jφ

)]
. (9.37)
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In order to get the component action into such a nice diagonalized form in the

auxiliaries, we had to perform a simple redefinition of the auxiliary fields Bij and w,

Bij = Bij − w∇tgij. (9.38)

This field transformation from Bij, w to Bij, w has the unit Jacobian and therefore it

is an allowed change of variables in the path integral, including its component field

measure.

The equations of motion that are obtained from varying Bij and w in the full

action S are:

2Bij =
1

n
∇tgij − (gikgj` − λ̃gijgk`)Ek` ≡ Eij, (9.39)

π = 0. (9.40)

Here Eij is again the same as in Type C theory above. The path integral over w yields

a delta function and imposes the constraint π = 0, which represents the “missing”

scalar equation. Unfortunately, we have not been able to decode the geometric

meaning of this π = 0 constraint in terms relevant to the mathematical theory of the

Ricci flow equations.

10 Perelman’s equations and gauge fixing of time reparametriza-

tions

We are now ready to combine together the pieces of the puzzle that we learned in

this thesis so far, and finally to write down the precise topological quantum gravity

theory whose localization equations are equivalent to Perelman’s Ricci flow, after the

appropriate change of frames.

10.1 The theory

The key is to choose the suitable underlying gauge symmetry, and to gauge fix

it such that the residual symmetries match the symmetries of Perelman’s equations.

The crucial lesson was learned in Part II, where we showed how the superspace

construction of Part I can be interpreted as the one-step BRST gauge fixing of a

theory of the ADM metric variables, with a non-redundant gauge symmetry. In Part

II, this symmetry was a combination of topological deformations of the spatial metric

gij and the ultralocal limit of all spacetime diffeomorphisms acting on the lapse and
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shift n and ni. It will be useful to change the gauge symmetry to a closely related,

also non-redundant symmetry G , generated by

δn = f(t, xi), (10.1)

δni = ξ̇i + ξk∂kn
i − nk∂kξi, (10.2)

δgij = fij(t, x
k). (10.3)

The interpretation of this symmetry structure is as follows: ξi acts via standard

spacetime-dependent spatial diffeomorphisms on ni as indicated, and on n and gij in

the standard way as well. In addition, we have arbitrary topological deformations fij
of the spatial metric gij, as well as arbitrary topological deformations f of the lapse

n; much like in Part II, we have absorbed the action by ξi on gij and n into a shift in

the definition of f and fij, certainly a change of variables whose Jacobian is equal to

one. This explains the simplicity of the gauge transformations, and makes it clear

that the gauge symmetries are non-redundant. Note that this symmetry structure

leads to zero local propagating degrees of freedom, and thus a topological theory.

We choose to realize only the spacetime-dependent spatial diffeomoprhisms equiv-

ariantly. The symmetries generated by f and fij need to be gauge fixed. Thus, the

N = 2 BRST superfields that we will use are as follows. In the metric sector, we use

the same unconstrained metric superfield Gij that we have used so far,

Gij = gij + θψij + θχij + θθ Bij. (10.4)

The superfields N i, Si and S
i

in the shift sector will be identical to those used thus

far; their component fields are ni, σi, σi and X i, interpreted as the shift vector, its

ghost, its antighost, and its auxiliary associated with the gauge symmetries generated

by ξi. We will again adopt the Wess-Zumino gauge, setting σi, σi and X i to zero.

Finally, in the lapse sector we will use an unconstrained lapse superfield N , or better

yet, the superfield Φ ≡ − logN , whose lowest component is our φ:18

Φ = φ+ θψ + θχ+ θθB. (10.5)

Given these component fields, the action of the gauge-fixed theory will be of the

18Note that this is the only place where our conventions in this part differ from those of Part II,
where ψ and χ were used to denote the component fermions of the E superfield, E = log Φ.
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form

S =

∫
dt dDx{Q,Ψ}, (10.6)

with an appropriately chosen gauge-fixing fermion Ψ. Writing this action as a

superspace integral

S =

∫
dt dDx d2θL (10.7)

with some superspace Lagrangian L will make sure that the action is of the form

(10.6) for some gauge-fixing fermion Ψ, and it will also ensure the extension to the

N = 2 BRST supersymmetry. Now, everything rests on the choice of Ψ.

It is the entire idea of gauge fixing to make sure that the choice of the gauge-fixing

fermion Ψ fixes the part of the gauge group that we wish to gauge-fix. In our case,

we decided to keep the spatial diffeomorphisms generated by ξi unfixed, so that we

can make contact with the symmetries of the Ricci flow. Thus, Ψ (or, equivalently,

L) must be chosen such that it fixes the topological symmetries generated by f

and fij, while still being invariant under ξi. This is where our construction will be

different from that in Section 9 above: The gauge-fixing fermion of the DiffF (M)

covariant theory studied in Section 9 was chosen such that the time-dependent time

diffeomorphisms were unfixed; here we choose Ψ such that even these residual time

reparametrizations are gauge-fixed.

The appropriate modification will come from the kinetic sector. First, instead of

the minimal kinetic term (9.6) with time-reparametrization gauge invariance, we now

begin with

S
(0)
K =

∫
d2θ dt dDx

√
G (GikGj` − λGijGk`)DGij DGk`. (10.8)

The superderivatives D and D are covariant with respect to spatial diffeomorphisms,

but not with respect to any time reparametrizations. Their definition is the same as

in Part I,

DGij ≡ DGij − Sk∂kGij −Gkj∂iS
k −Gik∂jS

k, (10.9)

DGij ≡ DGij − S
k
∂kGij −Gkj∂iS

k −Gik∂jS
k
. (10.10)

By design, this kinetic term fixes not just the topological gauge symmetry of gij but

also the gauge symmetries acting on n, and leaves no local time reparametrizations

unfixed. To this kinetic term, we are free to add other terms of the same classical
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scaling dimension that are of the minimal form in derivatives and respect the same

symmetries: We can add terms of the form DΦDΦ, GijDGij DΦ and GijDGij DΦ,

with independent couplings. For our purposes, the first one – the kinetic term for

Φ – will be sufficient, and the couplings of the off-diagonal terms mixing Φ with the

metric will be set to zero. Thus, our full kinetic term will be

SK =

∫
d2θ dt dDx

√
G
{

(GikGj` − λGijGk`)DGij DGk` + λΦDΦDΦ
}
. (10.11)

As we will see below, the value of the coupling constant λΦ for which the match to

Perelman’s equations will be accomplished is λΦ = D. The superpotential (9.7) stays

unchanged,

SW =

∫
d2θ dt dDx

√
Ge−Φ

{
αRR

(G) + αΦG
ij∂iΦ∂jΦ + αΛ

}
, (10.12)

except that now Φ is an unconstrained superfield, with the lapse also unconstrained

and given by N = exp(−Φ).

In components, the bosonic part of the action is

S ≈ −
∫
dt dDx

√
g
{
Bij

(
gikgj` − λgijgk`

)
Bk` + λΦB2

}
+

∫
dt dDx

√
g Bij

{(
gikgj` − λgijgk`

)
∇tgk` − E ij

}
(10.13)

−
∫
dt dDx

√
gB (λΦ∇tφ− E ) ,

where ∇t continues to denote the time derivative covariantized with respect to spatial

diffeomorphisms,

∇tgij = ġij −∇inj −∇jni, (10.14)

∇tφ = φ̇− nk∂kφ, (10.15)
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and where

E ij ≡ 1
√
g

δF
δgij

= e−φ
{
αR

(
−Rij +

1

2
Rgij

)
+

(
1

2
αΦ − αR

)
gij(∂φ)2 + αRg

ij∆φ

+ (αR − αΦ)gimgjs∂mφ∂sφ− αRgimgjs∇m∂sφ+
αΛ

2
gij
}
,(10.16)

E ≡ 1
√
g

δF
δφ

= e−φ
{
−αRR + αΦ

[
gij ∂iφ ∂jφ− 2∆φ

]
− αΛ

}
, (10.17)

with F again given by

F =

∫
dt dDx

√
ge−φ

{
αRR

(g) + αΦg
ij∂iφ∂jφ+ αΛ

}
. (10.18)

In the process of deriving δF/δgij, it is important to recall the correct formula for

the variation of the Einstein-Hilbert scalar curvature term,

δ(
√
gR) = −√g

(
Rij − 1

2
Rgij

)
δgij +

√
g
(
gikgj` − gijgk`

)
∇i∇jδgk`. (10.19)

It then follows from the form of our component action that the localization equations

are

eφ∇tgij = eφ
(
gikgj` − λ̃gijgk`

)
E k` ≡ −αRRij +

αR
2

[
1− λ̃(D − 2)

]
gijR

+ (αR − αΦ)∂iφ∂jφ+
[(αΦ

2
− αR

)
(1− λ̃D) + (αΦ − αR)λ̃

]
gij(∂φ)2

+ αR

[
1− λ̃(D − 1)

]
gij∆φ− αR∇i∂jφ+

αΛ

2
(1− λ̃D)gij,(10.20)

λΦe
φ∇tφ = −αRR + αΦ

[
gij ∂iφ ∂jφ− 2∆φ

]
− αΛ. (10.21)

We see that in this theory, the previously “missing” localization equation for φ has

been supplied by our choice of the gauge-fixing fermion leading to the action (10.11)

and (10.12).
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Figure 10.1: A typical qualitative example of a solution of Perelman’s
Ricci flow equations in 3 + 1 dimensions, which includes both topology-
changing transitions at time instants ts and t′s and Perelman’s extinction
of positively curved spatial regions. (a): The evolution in the Perelman
frame, and (b): in our frame.

10.2 Reframing to Perelman’s variables

The main conclusion from our investigations of the covariant theory in Section 9

was that our variables gij and φ are related to Perelman’s variables ĝij and φ̂ by

ĝij = eφgij, (10.22)

φ̂ =
D

2
φ. (10.23)

In addition, the shift vector transforms trivially, n̂i = ni. We will accept these relations

here as well. Its strongest motivation comes from our desire to see Perelman’s volume

condition take the simple form of a covariant constancy of
√
g in our variables, so

that we can dynamically impose it by taking the |λ| → ∞ limit.

As an aside remark, we note that the reframing transformation (10.22) from

Perelman’s metric to ours will have an interesting effect on the solutions of Perelman’s

Ricci flow equations. Consider the case of 3+1 dimensions, for which the most detailed

information is available in the mathematical literature. As we briefly reviewed in the

beginning of Part I, under the influence of Perelman’ Ricci flow, spatial geometries

89



with positive sectional curvatures round themselves out with time and shrink to an

extinguishing singularity in finite time. In contrast, hyperbolic spatial geometries with

negative sectional curvatures expand forever. Besides the extinguishing singularities

of positively-curved regions, the geometries can also go through topology-changing

“neckpinch” singularities. We have illustrated such a generic evolution of an initial

spatial geometry in Figure 10.1(a). All these features are found when the spatial

metric is in Perelman’s frame, ĝij.

The reframing to our frame gij has an interesting effect on the qualitative behavior

of the solutions. Viewed in our frame, the positively-curved regions round themselves

up, but approach a constant radius limit asymptotically, as t→∞. Similarly, the

metric of the hyperbolic regions also approaches a stationary limit as t → ∞. In

contrast, the topology-changing “neckpinch” singularities still happen at finite time.

We illustrate this qualitative behavior in our frame in Figure 10.1(b).

This contrast between the spacetime geometry viewed from different frames does

not mean that the spacetime configuration is somehow different between the two

frames: It just shows, in the context of the Ricci flow, that viewing the same geometric

solution in different frames may reveal new features, often difficult to see if one insists

on one preferred frame. This phenomenon is well-understood in string theory, where

the same spacetime geometry can be probed by different probes (such as strings,

or branes of various dimensions), revealing complementary information about the

same solution of the theory. It is pleasing to see a similar behavior in the topological

quantum gravity of the Ricci flow.

10.3 Gravity at farpoint: Taking the |λ| → ∞ limit

We know that the desired fixed-volume condition in our variables will be dy-

namically imposed when we take the “farpoint” limit of the kinetic coupling λ,

taking

λ→ ±∞. (10.24)

At the level of the localization equations, either of these two limits is permissible: In

fact, they both lead to the same localization equations. Indeed, in terms of the dual

coupling λ̃, both cases correspond to the same value,

λ̃ =
1

D
. (10.25)

While the localization equations are formally identical in both limits λ→ ±∞, the

two cases differ from the perspective of the path integral. To see that, let us integrate
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out the auxiliary fields Bij and B in the path integral. The reduced action is now a

sum of squares of the localization equations,

S ≈
∫
dt dDx

√
g

{
1

4

(
gikgj` − λgijgk`

)
(∇tgij − . . . )(∇tgk` − . . . ) +

λΦ

4
(∇tφ− . . . )2

}
,

(10.26)

where the “. . .” stand for the right-hand sides of the localization equations determining

∇tgij and ∇tφ. We see that for λ→ −∞, and with λΦ > 0, the action is manifestly

S ≥ 0, with the equality saturated exactly for those bosonic configurations that

satisfy the flow equations. This is then the preferred value to take, in order to make

the path integral well-defined. Taking the other limit, λ → ∞, would put us in a

situation similar to the one encountered in general relativity, where the Euclidean

action is not bounded from below and the path integral requires a subtle analytic

continuation.

When the |λ| → ∞ limit is taken, our localization equations (10.20) and (10.21)

reduce to the more manageable system

eφ∇tgij = −αRRij +
αR
2
gijR +

αR
D
gij∆φ− αR∇i∂jφ

+ (αR − αΦ)∂iφ∂jφ+
1

D
(αΦ − αR)gij(∂φ)2, (10.27)

λΦe
φ∇tφ = −αRR + αΦ

[
gij ∂iφ ∂jφ− 2∆φ

]
− αΛ. (10.28)

Having determined our full list of localization equations in the “farpoint” limit of

|λ| → ∞, and having committed to the change-of-frame relation between our variables

and Perelman’s, we can now determine whether Perelman’s Ricci flow corresponds to

a particular choice of our couplings αR, αΦ and αΛ after reframing.

10.4 Localization and Perelman’s Ricci flow

We consider the covariantized form of Perelman’s flow equations,

∇̂tĝij = −2R̂ij − 2∇̂i∂jφ̂, (10.29)

∇̂tφ̂ = −R̂− ∆̂φ̂. (10.30)

In Perelman gauge n̂i = 0, these reduce back to Perelman’s original system (8.2)

and (8.3). We begin with the scalar flow equation (10.30) for φ̂. Does it match our

scalar localization equation (10.28) after reframing? This is a nontrivial check: Notice
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that both the ∆φ term and the (∂φ)2 term on the right-hand side of our (10.28)

are controlled by the same coupling αΦ. If the reframing of the right-hand side of

Perelman’s scalar flow equation (10.30) yields the two terms ∆φ and (∂φ)2 with a

relative coefficient different than −2, our program would fail. Happily, applying our

reframing formulas from Appendix B gives

R̂ + ∆̂φ̂ = e−φ
{
R +

D − 2

4

[
(∂φ)2 − 2∆φ

]}
. (10.31)

Comparing this to our scalar flow (10.28), we obtain the ratio of αR and αΦ in our

frame’s Lagrangian,

αΦ =
2−D

4
αR. (10.32)

This is indeed the same ratio of the couplings which was predicted in (9.26)! In fact,

we can set αR = 2 by convention, and use (10.32) to determine that αΦ = (2−D)/2,

as given in (9.26). We must also set the cosmological constant αΛ = 0. Finally, we

see that the scalar flows will match exactly if we set λΦ = D.

With these values of the couplings, it remains to see whether our metric flow

equation matches Perelman’s after reframing. There is no more freedom of choice

of any couplings left, so this highly nontrivial check in the metric sector must work

identically, for our goal to succeed. The right-hand side of our metric flow equation

(10.27) now simplifies to

eφ∇tgij = −2Rij +
2

D
gijR−

2 +D

2D
gij(∂φ)2 +

2 +D

2
∂iφ∂jφ+

2

D
gij∆φ− 2∇i∂jφ.

(10.33)

Note that this expression is correctly traceless, as it must, since it corresponds to the

λ = ±∞ limit which imposes dynamically the unimodularity condition on gij. This

is a good check of self-consistency of our framework.

The question is whether (10.33) is a reframing of the right-hand side of the

Perelman flow equation for the metric. Let us begin with the right-hand side of

Perelman’s flow equation for the metric:

2R̂ij + 2∇̂i∂jφ̂. (10.34)

In order to write this expression in our frame, we need to invoke the reframing

equation (B.8) from the Appendix. Using this relation, we find that the reframing of
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(10.34) is

2Rij + 2∇i∂jφ− gij∆φ−
D + 2

2
∂iφ∂jφ+ gij(∂φ)2. (10.35)

This does not look at all like the right-hand side of (10.33). However, it should not

yet look like it, because (10.34) is the right-hand side of Perelman’s equation for his

metric ĝij , while (10.33) is the right-hand side of the flow equation for our metric gij .

Since they are related by ĝij = eφgij, we have

∇̂tĝij = eφ (∇tgij + gij∇tφ) . (10.36)

Hence, to compare (10.34) to (10.33), we must subtract from it eφgijφ̇, and substitute

for eφφ̇ using our scalar flow equation whose right-hand side is in (10.31). This gives

2Rij + 2∇i∂jφ− gij∆φ−
D + 2

2
∂iφ∂jφ+ gij(∂φ)2

− 2

D
gij

{
R +

D − 2

4

[
(∂φ)2 − 2∆φ

]}
. (10.37)

Simple algebra then shows that this expression is

2Rij −
2

D
gijR + 2∇i∂jφ−

2

D
gij∆φ−

D + 2

2
∂iφ∂jφ+

D + 2

2D
gij(∂φ)2. (10.38)

Happily, this indeed coincides with our −Eij in (10.33). This concludes the proof

that the localization equations of our topological quantum gravity, for the values of

the couplings

αR = 2, αΦ =
2−D

2
, αΛ = 0, λ = ±∞, λΦ = D, (10.39)

given by

eφ∇tgij = −2Rij +
2

D
Rgij − 2∇i∂jφ+

2

D
∆φgij +

D + 2

2
∂iφ∂jφ−

D + 2

2D
(∂φ)2gij,(10.40)

eφ∇tφ = − 2

D
R− D − 2

2D

[
(∂φ)2 − 2∆φ

]
, (10.41)

are exactly equivalent to Perelman’s Ricci flow equations (10.29) and (10.30), after

the appropriate change of frames. This is the central result of the thesis.
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11 Shrinking and expanding solitons: Perelman’sW entropy

functional

While Perelman’s F̂-functional is at the core of the modern theory of the Ricci

flow, it turns out to be best suited for the study of static solitons. The important

cases of shrinking and expanding solitons are associated with refined versions of the

F̂ functional, known as the W and W+ entropy functionals. These satisfy important

monotonicity properties along the appropriate Ricci flow.

11.1 Shrinking solitons and the W entropy functional

In his analysis of shrinking solitons [2], Perelman introduced the entropy W-

functional,

W =

∫
dDx

√
ĝ

1

(4πτ)D/2
e−φ̂

{
τ
(
R̂ + ĝij∂iφ̂∂jφ̂

)
+ φ̂−D

}
, (11.1)

which depends – besides the fields ĝij and φ̂ – on a projectable field τ(t). In the

original context of [2], this field was playing the role of a spatial scale, related to

Perelman’s original inspiration from the renormalization group behavior of non-linear

sigma models in string theory. We shall comment on the interpretation of this field τ

in our topological gravity below.

Using the W-functional instead of the F-functional in the variational principle,

and imposing a modified fixed-volume condition which requires that

1

(4πτ)D/2
e−φ̂
√
ĝ dDx (11.2)

be held fixed with time, one obtains the modified gradient flow equations (see Ch. 6.1

of [12] for detailed derivation),

∂ĝij
∂t

= −2R̂ij − 2∇̂i∂jφ̂,

∂φ̂

∂t
= −R̂− ∆̂φ̂+

D

2τ
, (11.3)

∂τ

∂t
= −1.

The last of these equations is usually solved by setting τ = t0 − t for some positive
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constant t0, and then τ is usually interpreted in the mathematical literature of the

Ricci flow as such a linear function of time.

Just as in the case of the original equations (8.2) and (8.3), these modified

equations can be further simplified by DeTurck’s trick to

∂ĝij
∂t

= −2R̂ij,

∂φ̂

∂t
= −R̂− ∆̂φ̂+ ĝij∂iφ̂∂jφ̂+

D

2τ
, (11.4)

∂τ

∂t
= −1,

which again separates Hamilton’s original metric flow from the flow of the dilaton.

It is natural to ask whether our construction from Section 9 can be extended to

accommodate the W-functional and its modified flow equations in our topological

quantum gravity.

11.2 Adding the Goldstone superfield T

In the context of quantum gravity, we must first find an interpretation of Perel-

man’s τ function as a dynamical field. In fact, this field can be interpreted in several

seemingly distinct ways,19 which all stem from the simple idea of spontaneous symme-

try breaking. The symmetry in question is the symmetry of global time translations.

While global time translations may be an isometry of the static Ricci flow solitons

most suitable for the F functional, shrinking or expanding Ricci solitons (or any

other time-dependent background solution) will break this symmetry spontaneously.

On general grounds, it is natural to expect the presence of a gapless Goldstone mode

associated with this global symmetry breaking. A very similar field has played a

prominent role in modern cosmology, in the effective field theory of inflation [78–83]

(see also [84] for further geometric clarifications).

In order to accommodate Perelman’s τ field consistently with our N = 2 super-

symmetry, we first promote it to a superfield. We choose to introduce a projectable

19The field τ can be intepreted as the dilaton for anisotropic conformal transformations [33, 44] of
spacetime (see Ch. 13.2 of [76] for a particularly lucid discussion of the relation between the dilaton
and scale invariance); or it can be interpreted as a compensator field similar to those that appear
in relativistic supergravity [77]. It can also be interpreted as the Goldstone field associated with
spontaneous breaking of time translation symmetries in the background, analogous to a very similar
Goldstone field π that appears prominently in the effective field theory approach to cosmological
inflation [78–83].
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superfield T (t, θ, θ), otherwise unconstrained, and require its dynamics to be consistent

with the condition of a constant shift symmetry,

T (t, θ, θ) 7→ T (t, θ, θ) + c. (11.5)

This shift symmetry is indeed a hallmark of T being a Goldstone field. While in

nonrelativistic systems, shift symmetries allow an intriguing refinement [85, 86] on

symmetric backgrounds, for our purposes it is sufficient to consider this simplest case,

which is background independent.

Next, we choose the action of the T sector to be of the minimal form. The kinetic

term is augmented to

SK =

∫
d2θ dt dDx

√
G
{

(GikGj` − λGijGk`)DGij DGk` + λΦDΦDΦ
}

+

∫
dt d2θDT DT.

(11.6)

The lowest-derivative kinetic term for T is indeed consistent with the constant shift

symmetry. For a projectable T , we also find that no T -dependent terms can be added

to the superpotential, which stays the same as before,

SW =

∫
d2θ dt dDx

√
GN

{
αRR

(G) + αΦG
ij∂iΦ∂jΦ + αΛ

}
. (11.7)

Any appearance of T without derivatives would violate the shift symmetry, and

spatial derivative terms are not available because T is projectable. Note that we have

also required the absence of mixing terms between the T sector and the gij, n
i and

n sector of the theory. Thus, the T sector is trivial and decoupled from the metric

geometry. The localization equation for the lowest component field in T simply states

that this component field is constant in time.

Using the insights from effective field theory of inflation about the treatment of

the Goldstone field associated with spontaneously broken time translations [78,80,84],

we choose to define the component fields of T as follows,

T (t, θ, θ) = t+ τ(t) + θ η(t) + θ η(t) + θθ b(t). (11.8)

Note that we have defined the component field τ(t) such that the lowest component

of the T superfield is t + τ(t). The pair of real projectable fermions η, η are the

ghost and the antighost, and b is a projectable auxiliary field. Since the BRST charge

Q acts on τ as Qτ = η, this BRST multiplet clearly originates from an underlying
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projectable topological symmetry acting on τ ,

δτ(t) = f(t), (11.9)

with f(t) an arbitrary real function of t. Together with the underlying gauge symme-

tries of our topological theory of the metric multiplets, the full gauge symmetry of

the theory including the τ sector continues to be non-redundant, and Q continues to

play the role of the standard BRST charge.

With this choice of variables, the localization equation in the T sector now gives

∂

∂t
[t+ τ(t)] = 0, (11.10)

which we will rewrite in the following suggestive form,

∂

∂t
τ = −1. (11.11)

This is indeed the last of Perelman’s flow equations (11.3) for the shrinking solitons

in the context of the W functional.

In the effective field theory of cosmological inflation [78,80,84], the Goldstone field

that corresponds to our τ is traditionally called π; more importantly, in inflationary

cosmology this field π is nonprojectable. It is interesting to note that in our construc-

tion of topological quantum gravity of the Ricci flow, it is also possible to promote

T to a nonprojectable field. This would lead to two modifications of the action:

First, the kinetic term needs to be covariantized under spatial diffeomorphisms, and

integrated over the entire spacetime:∫
dt dDx d2θ

√
GDT DT, (11.12)

with the covariant derivatives DT and DT given by

DT = DT − Si∂iT, (11.13)

DT = DT − Si∂iT. (11.14)

Secondly, when we still keep the constant shift symmetry (11.5), it is now possible to
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add new terms to the superpotential SW ,∫
dt dDx d2θ

√
G {αT ∂iT∂iT + . . .} . (11.15)

Here we have indicated just the simplest, lowest-derivative term quadratic in T

and consistent with the shift symmetry. In principle, one should also consider the

possibility of mixing between the T sector and the metric sector, both in the kinetic

and the superpotential terms. The localization equation that corresponds to (11.12)

and (11.15) is

∇tτ = −1 + αT ∆τ. (11.16)

Writing τ = −t + T (t, xi), (11.16) becomes simply the covariant heat equation

∇tT = αT∆T on Σ: Under the spatial diffeomorphism of Σ, T transforms as a

scalar, and ∆ is thus the Laplacian of gij on scalars. While such nonprojectable

extensions of our theory are indeed possible, for the purposes of this thesis we see no

advantage in extending the theory to nonprojectable T , and therefore we will consider

only the case of projectable T from now on.

11.3 Perelman’s equations for shrinking solitons from topological gravity

The transformation between the fields gij and φ of topological gravity and Perel-

man’s variables ĝij and φ̂ will now have to involve factors of τ . On the topological

gravity side, our equations are the same as in Section 9, schematically of the form

(8.8). No τ has been introduced yet – the entire dependence on τ will come from

rewriting the theory in Perelman’s variables. Therefore, in order to match the leading

terms on the two sides of (8.8), we must again set

ĝij = eφgij, (11.17)

as we did in Section 9.2. We need another relation to determine the change of

variables uniquely. The key is again to look at Perelman’s fixed-volume condition,

(11.2), which suggests that we identify

gij =
1

4πτ
ĝije

−2φ̂/D (11.18)

and interpret (11.2) as the condition of time independence of the spatial volume

element
√
g in topological gravity – a condition we know how to ensure dynamically,
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by going to the |λ| → ∞ limit.

Putting these two conditions together, we obtain our transformation rules between

the two sets of fields,

ĝij = eφgij, (11.19)

φ̂ =
D

2
[φ− log(4πτ)] . (11.20)

In addition, the shift vector and the τ field stay unchanged: n̂i = ni, τ̂ = τ . Note

that in the inverse of this transformation, gij depends explicitly on τ :

gij =
1

4πτ
e−2φ̂/Dĝij, (11.21)

n =
1

4πτ
e−2φ̂/D, (11.22)

with our lapse function as always given by n ≡ e−φ.

With the transformation properties determined, we are in the position to rewrite

our localization equations (10.40), (10.41) and (11.11) of topological gravity in

Perelman’s variables. A direct calculation yields

∇̂tĝij = −2R̂ij − 2∇̂i∂jφ̂,

∇̂tφ̂ = −R̂− ∆̂φ̂+
D

2τ
, (11.23)

τ̇ = −1.

These equations are indeed the covariantized version of the flow equations (11.3) that

Perelman derived from his W entropy functional! They reduce to (11.3) in Perelman

gauge n̂i = 0. Thus, the conclusion is the same as in the case of the F -functional: By

taking the |λ| → ∞ limit of our topological quantum gravity – augmented now by

the decoupled Goldstone superfield T – we get a covariantized version of Perelman’s

equations (11.3) associated with the W entropy functional and the shrinking solitons.

What remains to do is to perform the alternate gauge fixing of spatial diffeomor-

phisms and to go to Hamilton gauge, in order to establish the relation with Perelman’s

equations (11.4) after the DeTurck trick has been performed on them. The gauge

fixing condition turns out to be the same (in either set of variables) as in Section 9.3:

In Perelman’s variables, Hamilton gauge is

n̂i = ∂iφ̂, (11.24)
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while in our variables it can be equivalently written as

ni = −D
2
∂in. (11.25)

Note that these relations imply that

ni =
1

4πτ
e−2φ̂/D∂iφ̂, (11.26)

which together with (11.21) and (11.22) gives the full list of our ADM fields describing

the spacetime geometry of topological quantum gravity in Hamilton gauge in terms

of Perelman’s geometric data.

11.4 Expanding solitons and the W+ entropy functional

Shortly after Perelman’s work, Feldman, Ilmanen and Ni [87] modified the W
entropy functional to a form suitable for expanding Ricci solitons. Their W+ entropy

functional depends on ĝij, φ̂ and instead of τ(t) a new projectable field σ(t) which

will now be a growing linear function of time. It takes the form

W+ =

∫
dDx

√
ĝ

1

(4πσ)D/2
e−φ̂

{
σ
(
R̂ + ĝij∂iφ̂∂jφ̂

)
− φ̂+D

}
. (11.27)

The volume-fixing condition is to hold the following measure,

1

(4πσ)D/2
e−φ̂
√
ĝ dDx, (11.28)

fixed in time, and the corresponding gradient flow equations are

∂ĝij
∂t

= −2R̂ij − 2∇̂i∂jφ̂,

∂φ̂

∂t
= −R̂− ∆̂φ̂− D

2σ
, (11.29)

∂σ

∂t
= +1.

The last of these equations is solved by setting σ = t− t0 for some constant t0, and

that is how σ is often interpreted in the mathematical literature. After DeTurck’s
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trick, these equations are simplified to

∂ĝij
∂t

= −2R̂ij,

∂φ̂

∂t
= −R̂− ∆̂φ̂+ ĝij∂iφ̂∂jφ̂−

D

2σ
, (11.30)

∂σ

∂t
= +1.

It is easy to see how this set of equations can be reproduced in our topological

quantum gravity. Using the same action (11.6) and (11.7) as in the case of shrinking

solitons, we now define the components of the Goldstone superfield T as

T (t, θ, θ) = t− σ(t) + θ η(t) + θ η(t) + θθ b(t). (11.31)

In terms of these components, the localization equation for σ reads

∂σ

∂t
= +1, (11.32)

which reproduces the last equation in (11.30). Next, we propose the following change

of variables from our fields to those of the W+ functional,

ĝij = eφgij, (11.33)

φ̂ =
D

2
[φ− log(4πσ)] , (11.34)

again keeping the lapse ni and the projectable field σ unchanged: n̂i = ni, σ̂ = σ. In

these Perelman-like variables, our localization equations (10.40), (10.41) and (11.32)

are found to be

∇̂tĝij = −2R̂ij − 2∇̂i∂jφ̂,

∇̂tφ̂ = −R̂− ∆̂φ̂− D

2σ
, (11.35)

σ̇ = +1.

Thus, we again find the perfect match between the localization equations of topological

quantum gravity, and the covariantized flow equations for the expanding solitons

associated with the W+ functional. Going to Perelman or Hamilton gauge will again

establish the isomorphism with the W+ flow equations (11.29) before or (11.30) after
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DeTurck’s trick.

12 Summary

In this part, we identified the precise regime of nonrelativistic topological quantum

gravity of Part I, in which the localization equations in the path integral are identical

to Perelman’s celebrated Ricci flow equations. This map involves an interesting change

of frames between Perelman’s geometric variables and ours. Perelman’s fixed-volume

condition is implemented by taking the “farpoint” limit λ → −∞ in the kinetic

coupling of our nonrelativistic topological gravity.

When the localization equations correspond to the Ricci flow equations, the

quantum theory exhibits anisotropic scaling between time and space, characterized

by dynamical exponent z = 2, for any spacetime dimension D + 1. Such a theory

would be power-counting renormalizable for D = 2, but its mathematical structure is

richer and more relevant to deep questions of topology and geometry when studied

for D = 3. This raises an intriguing question of a short-distance completeness,

and possibly renormalizability of this quantum field theory that goes beyond naive

perturbative power counting. In which dimensions is our topological quantum gravity

UV complete? Does its topological BRST symmetry play a role in improving the

short-distance behavior of the path integral? Such questions remain open for closer

examination.

Perhaps the main importance of the precise embedding of Perelman’s Ricci flow

theory into topological nonrelativistic quantum gravity that we found stems from

the fact that it sets the stage for importing the remarkable wealth of mathematical

results accumulated in the theory of Perelman’s Ricci flow over the past two decades

into the physical setting of quantum gravity, at least in the relatively well-controlled

situation of a topological theory with no local propagating degrees of freedom. The

structure of solutions of Perelman’s equations is well-studied, and exhibits many

fascinating dynamical features, including topology-changing processes and other

deeply nonequilibrium phenomena, not only in the most analyzed case of 3 + 1

spacetime dimensions. The frequent appearance of various “entropy functionals”

with precise monotonicity properties along the general flow is also begging for an

explanation more directly grounded in the physical arguments of quantum gravity

and quantum field theory. For instance, in this thesis we found an intimate relation

between the W and W+ entropy functionals associated with the mathematical theory

of the shrinking and expanding Ricci solitons, and the important physical concept of
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spontaneous symmetry breaking. We expect that future investigations will continue

this process of mutual illumination between the physical and mathematical aspects

of the theory.
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Appendices

A Prepotentials for the lapse and shift superfields

In order to gauge spatial diffeomorphisms and time reparametrizations, we in-

troduced superfields N i, Si, S
i

and E,Θ,Θ respectively. These superfields satisfy a

complicated set of mutual constraints. In order to make the superspace formulation

simpler, especially in the quantum case, it would be beneficial to solve the constraints

and express these constrained superfields in terms of unconstrained prepotential

superfields. The purpose of this Appendix is to identify such prepopotentials, both

for the lapse and for the shift sector.

A.1 Prepotential for the supervielbein

Consider first the projectable Type B theory. Introduce an unconstrained pro-

jectable superfield U(t, θ, θ), the prepotential for the projectable supervielbein. Θ

and Θ are given by

Θ = − DU

1 + U̇
, Θ = − DU

1 + U̇
. (A.1)

Such Θ and Θ satisfy their nonlinear constraints. E then follows by plugging these

expressions into the constraint that expresses E in terms of Θ,Θ and their derivatives:

E =
1

1 + U̇
. (A.2)

It seems appropriate to refer to the prepotential U of the lapse sector as “prelapse.”

The extension to the nonprojectable Type B case is straightforward. U(t, θ, θ, xk)

is now an unconstrained nonprojectable superfield, and

Θ = − DU − Sk∂kU
1 + U̇ −N j∂jU

, Θ = − DU − Sk∂kU
1 + U̇ −N j∂jU

. (A.3)

These expressions satisfy the full nonprojectable constraints (3.25-3.27), and give E

in terms of U .

The gauge transformations of the prepotential are

δU = F + FU̇ + Ξk∂kU, (A.4)
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and they correctly imply the standard gauge transformations for Θ,Θ and E.

Note that in (A.3), the constrained superfields Si, S
i

and N i of the shift sector

appear explicitly. In order to get an expression for the nonprojectable lapse superfieds

in terms of only unconstrained superfields, we now have to find the prepotentials V

for the shift sector, express Si, S
i

and N i in terms of V , and substitute back in (A.3).

A.2 Prepotential for the shift superfields

Consider the shift superfields N i, Si and S
i

of Type B theory. They can be

expressed in terms of an unconstrained superfield prepotential V i as follows. Denote

by ∂V the matrix ∂kV
i, and by I the unit matrix δik. Write

Si = DV k

(
1

I + ∂V

) i

k

, S
i

= DV k

(
1

I + ∂V

) i

k

. (A.5)

These expressions again imply that the constraints on Si and S
i

are satisfied, and N i

is then expressed in terms of V i via the constraints that gives N i in terms of Si, S
i

and their derivatives. The vector prepotential transforms under the gauge symmetries

as

δV i = Ξi + FV̇ i + Ξk∂kV
i. (A.6)

While these expressions for the gauge superfields in terms of the prepotential

superfields look quite simple, they are rather nonlocal and perhaps of limited practical

use.

B Collection of the reframing formulas

The map between Perelman’s metric ĝij and dilaton φ̂ on one hand, and our

fields gij and φ on the other is given by a nonlinear transformation of the fields,

which involves a change of frame of the metric. Such changes of frame are common

in theories of gravity coupled to scalar fields, in particular in string theory. It is

well-known that different geometric probes (such as branes of diverse dimensions)

may be naturally probing the spacetime geometry in distinct frames.

In the present context of nonrelativistic quantum gravity, the slight novelty of

the change of frames stems from the fact that we are reframing the spatial metric

gij, and that the role of the spatial scalar field is played by the (logarithm of the)

lapse function n. Of course, the formulas for the transformation properties of various
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geometric objects under such a change of frame are standard and well-understood.

We collect them in this Appendix simply for convenience and completeness, given

the prominent role that they play in the precise comparison between our theory and

Perelman’s equations in the bulk of the thesis.

We begin with a spatial metric gij on a D-dimensional manifold Σ, and a field φ

which transforms under the spatial diffeomorphims of Σ as a scalar. A “change of

frame” from gij to g̃ij is defined as the transformation

g̃ij = eαφgij, (B.1)

for some real constant α. We will systematically denote all the geometric objects in

the new frame g̃ij by ˜. The tilde and un-tilde quantities are related as follows. The

volume element is given by √
g̃ = eαDφ/2

√
g. (B.2)

The Christoffel symbols of the Levi-Cività connections of g̃ij and gij are related by

Γ̃kij = Γkij +
α

2

(
δkj ∂iφ+ δki ∂jφ− gijgk`∂`φ

)
. (B.3)

The Riemann tensor is given by

R̃i
jk` = Ri

jk` +
α

2

(
δi`∇k∂jφ− δik∇`∂jφ+ gjkg

im∇`∂mφ− gj`gim∇k∂mφ
)

+
α2

4

(
δik ∂`φ ∂jφ− δi` ∂kφ ∂jφ+ δi` gjkg

ms∂mφ ∂sφ

−δik gj`gms ∂mφ ∂sφ+ gj`g
is ∂sφ ∂kφ− gjkgis ∂sφ ∂`φ

)
, (B.4)

the Ricci tensor by

R̃ij = Rij +
α

2
{(2−D)∇i∂jφ− gij∆φ}

+
α2

4

{
(D − 2)∂iφ ∂jφ+ (2−D)gij(g

k`∂kφ ∂`φ)
}
, (B.5)

and the Ricci scalar is

R̃ = e−αφ
{
R + α(1−D)∆φ− α2(D − 2)(D − 1)

4
gij∂iφ ∂jφ

}
. (B.6)
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The Laplace operator on scalars transforms as

∆̃f = e−αφ
{

∆f +
α(D − 2)

2
gij∂iφ ∂jf

}
. (B.7)

Finally, in the bulk of the thesis we also need the relation between the uncontracted

second derivatives on a scalar,

∇̃i∂jf = ∇i∂jf +
α

2
gij(g

k`∂kφ ∂`f)− α

2
(∂iφ ∂jf + ∂jφ ∂if). (B.8)
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