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STalign: Alignment of spatial
transcriptomics data using diffeomorphic
metric mapping

Kalen Clifton 1,2,8, Manjari Anant1,3,8, Gohta Aihara 1,2, Lyla Atta 1,2,
Osagie K. Aimiuwu 4, Justus M. Kebschull2,5, Michael I. Miller 2,5,
Daniel Tward 6,7 & Jean Fan 1,2,5

Spatial transcriptomics (ST) technologies enable high throughput gene
expression characterization within thin tissue sections. However, comparing
spatial observations across sections, samples, and technologies remains
challenging. To address this challenge, we develop STalign to align ST datasets
in amanner that accounts for partially matched tissue sections and other local
non-linear distortions using diffeomorphic metric mapping. We apply STalign
to align ST datasets within and across technologies as well as to align ST
datasets to a 3D common coordinate framework. We show that STalign
achieves high gene expression and cell-type correspondence across matched
spatial locations that is significantly improved over landmark-based affine
alignments. Applying STalign to align ST datasets of themouse brain to the 3D
common coordinate framework from the Allen Brain Atlas, we highlight how
STalign can be used to lift over brain region annotations and enable the
interrogation of compositional heterogeneity across anatomical structures.
STalign is available as an open-source Python toolkit at https://github.com/
JEFworks-Lab/STalign and as Supplementary Software with additional doc-
umentation and tutorials available at https://jef.works/STalign.

Spatial transcriptomics (ST) technologies have enabled high-
throughput, quantitative profiling of gene expressionwithin individual
cells and small groups of cells in fixed, thin tissue sections. Compara-
tive analysis of ST datasets at matched spatial locations across tissues,
individuals, and samples provides the opportunity to interrogate
spatial gene expression and cell-type compositional variation in the
context of health and disease. Such comparative analysis is compli-
cated by technical challenges such as in sample collection, where the
experimental process may induce tissue rotations, tears, and other
structural distortions. Other challenges include biological variation
suchasnatural inter-individual tissue structural differences. Inorder to

reliably characterize spatialmolecular differences between STdatasets
along comparative axes of interest, it is integral to control for poten-
tially confounding tissue structural variation by spatially aligning these
tissue structures across ST datasets.

Considering the recent development of such ST technologies,
options for spatially aligning across ST datasets are still limited. Pre-
vious computational methods have focused on spatial alignment of ST
datasets for which each dataset is assayed using the same pixel-
resolution ST technology with only a few hundred to a few thousand
spatial measurements1,2. These methods face challenges in scaling to
larger, single-cell resolution ST datasets with tens to hundreds of
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thousands of spatial measurements. Further, spatial alignment of
datasets across different ST technologies remains challenging. Other
alignment methods are limited to rigid, affine transformation such as
based on landmarks3 and cannot accommodate non-linear distortions.
To address these challenges, we present an approach called STalign
that builds on recent developments in Large Deformation Diffeo-
morphic Metric Mapping4,5 (LDDMM) to align ST datasets using image
varifolds. STalign is amenable to data from single-cell resolution ST
technologies as well as data from multi-cellular pixel-resolution ST
technologies for which a corresponding registered single-cell resolu-
tion image such as a histology image is available. STalign is further able
to accommodate alignment in both 2D and 3D coordinate systems.
STalign is available as an open-source Python toolkit at https://github.
com/JEFworks-Lab/STalign and as Supplementary Software with
additional documentation and tutorials available at https://jef.works/
STalign.

Results
Overview of Method
To align two ST datasets, STalign solves a mapping that minimizes the
dissimilarity between a source and a target ST dataset subject to reg-
ularization penalties. Within single-cell resolution ST technologies,
both the source and target ST datasets are represented as cellular
positions xρS ,yρSð Þ and xρT ,yρTð Þ respectively (Fig. 1a, Supplementary
Note 1). Solving the mapping with respect to single cells has quadratic
complexity and is computationally intractable, so STalign applies a
rasterization approach to reduce computational time (Fig. 1b, Sup-
plementaryNote 2). Briefly, STalignmodels the positions of single cells

as amarginal spacemeasureρwithin the varifoldmeasure framework6.
STalign then convolves the spacemeasure ρwith Gaussian kernels k to
obtain the smooth, rasterized function I x,yð Þ= ½k 1

2*ρ� x,yð Þ. Finally,
STalign samples from the continuous I(x,y) to get a discrete image of a
specified size with a specified pixel resolution. For ST technologies or
atlases that are not single-cell resolution, instead of rasterizing cellular
positions to generate an image, we can utilize other registered stan-
dard image types for alignment including red-green-blue images of
hematoxylin and eosin (H&E) stained tissue.

To solve for a mapping that minimizes the dissimilarity between
source and target images IS and IT , STalign utilizes the LDDMM fra-
mework (Fig. 1c). Using LDDMM to identify a diffeomorphic solution
allows us to have a smooth, continuous, invertible transformation
which permits mapping back and forth from the rasterized image and
original cell positions while respecting the biological constraints such
that cell neighbor relationships stay relatively the same7. Themapping
ϕA,v is constructed from two transformations, an affine transformation
Α and a diffeomorphism φv

1 such that ϕA,v xð Þ=Aφv
1 xð Þ, where φv

1 is
generated by integrating a time-varying velocity field vt over time and
Α acts on φv

1 ðxÞ through matrix vector multiplication in homogeneous
coordinates (Supplementary Note 3). STalign focuses on solving for a
mapping that minimizes the dissimilarity between the source and
target images IS and IT rather than minimizing the dissimilarity
between the source and target space measures because, while
approximately equivalent, the former can be calculated more effi-
ciently (Supplementary Note 4).

The optimalϕA,v is computedbyminimizing anobjective function
that is the sum of a regularization term, R(v), and a matching term,

Fig. 1 | Overview of STalignon ST data froma single-cell resolution technology.
a STalign takes as input a source (blue) and target (orange) ST dataset as x- and
y-coordinates of cellular positions, xρS ,yρSð Þ and xρT ,yρTð Þ. b Source and target
coordinates are then rasterized into images IS and IT . c To align IS and IT , STalign
solves for the mapping ϕA,v that when applied to IS estimates IT such that
IT xð Þ= ½ϕA,v � IS�ðxÞ. Gradient descent is used to solve affine transformation A and
large deformation diffeomorphic metric mapping (LDDMM) φv

1 that compose ϕA,v

such that ϕA,v xð Þ=Aφv
1 xð Þ. The objective function minimized includes a regular-

ization termRðvÞ to penalize non-smooth solutions (where id is an identitymatrix,a

is a spatial smoothness constant, Δ is the Laplacian, p is a power, and vt is a time
varying velocity field) and a matching term MθðϕA,v � IS,IT Þ that minimizes the dis-
similarity between the transformed source image and the target image while
accounting for tissue and technical artifacts withW(x) and f θ, respectively. Balance
between regularization and matching accuracy can be tuned with the parameters
σ2

R and σ2
M . Components of the objective function decrease over epochs with

transforms at different stages of the diffeomorphism. d Once ϕA,v is solved,
visualized as a deformation field, the mapping is applied to the coordinates of the
source to obtain the coordinates for the aligned source, xρSA ,yρSAð Þ.
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MθðϕA,v � IS,IT Þ. The relative weights of the regularization term and
matching termcanbe tunedwith σ2

R and σ2
M . The regularization term

controls spatial smoothness. In this term, we optimize over vt ,t 2 ½0,1�
noting that if vt is constricted to being a smooth function, the φv

1
constructed from vt is guaranteed to be diffeomorphic. The matching
term incorporates a Gaussian mixture model W(x) to estimate
matching, background, and artifact components of the image to
account for missing tissue such as due to partial tissue matches or
tears. Additionally, the matching term contains an image contrast
function f θ to account for differences due to variations in cell density
and/or imaging modalities. To solve all parameters in each term a
steepest gradient descent is performed over a user-specified number
of epochs. Once ϕA,v is computed, STalign applies this computed
transformation to the source’s original cell positions xρS ,yρSð Þ to gen-
erate aligned source coordinates xρSA ,yρSAð Þ (Fig. 1d, Supplemen-
tary Note 5).

STalign enables alignment of single-cell resolution ST datasets
within technologies
As a proof of concept, we first applied STalign to align two single-cell
resolution ST datasets from the same technology. Specifically, we
aligned, in a pairwisemanner atmatched locations, ST data from 9 full
coronal slices of the adult mouse brain representing 3 biological
replicates spanning 3 different locations with respect to bregma
assayed by MERFISH (Methods). Inherent local spatial dissimilarities
between slices, due to biological variability and further exacerbated by
technical variation aswell as tears and distortions sustained in the data
acquisition process, render affine transformations such as rotations
and translations often insufficient for alignment.

To evaluate the performance of STalign, we first evaluated the
spatial proximity of manually identified structural landmarks between
the source and target ST datasets, expecting the landmarks to be
closer together after alignment. We manually placed 12 to 13 land-
marks that could be reproducibly identified (Supplementary Fig 1,
Supplementary Table 1). To establish a supervised affine transforma-
tion for comparison with STalign, we solved for the affine transfor-
mation that minimized the error between these landmarks using least
squares. We then compared the positions of the corresponding land-
marks after both the supervised affine alignment and STalign align-
ment using root-mean-square error (RMSE). When the supervised
affine transformations were used for alignment, RMSE was 202 + /-
17.1 µm, 170 + /- 3.47 µm, and 266 + /- 6.65 µm for biological replicates
of each slice location respectively. When STalign based on an LDDMM
transformation model was used for alignment, RMSE was 113 + /-
10.5 µm, 169 + /- 4.53 µm, and 175 + /- 5.47 µmfor biological replicates of
each slice location respectively. STalign was thus able to consistently
reduce the RMSE between landmarks after alignment compared to an
affine transformation, suggestive of higher alignment accuracy.

Given the ambiguity of where landmarks may be manually
reproducibly placed and their inability to evaluate alignment perfor-
mance for the entire ST dataset, we next took advantage of the avail-
able gene expression measurements to further evaluate the
performance of STalign. Because of the highly prototypic spatial
organization of the brain, we expect high gene expression corre-
spondence across matched spatial locations after alignment. We
focused our evaluation on one pair of ST datasets of coronal slices
frommatched locations (Methods).Wevisually confirm that alignment
results in a high degree of spatial gene expression correspondence
(Fig. 2a, Supplementary Fig. 2a). To further quantify this spatial gene
expression correspondence, we evaluated the gene expression mag-
nitudes at matched spatial locations across the aligned ST datasets.
Specifically, we aggregated cells into pixels in a 200μm grid to
accommodate the differing numbers of cells across slices and then
quantified gene expression magnitude correspondence at spatially
matched 200μm pixels using cosine similarity (Fig. 2b, c,

Supplementary Fig. 2b). For a good alignment, wewould expect a high
cosine similarity approaching 1, particularly for spatially patterned
genes. To identify such spatially patterned genes, we applied
MERINGUE8 to identify 457 genes with highly significant spatial auto-
correlation (Methods). For these genes, we observe a high spatial
correspondence after alignment as captured by the high median
cosine similarity of 0.73. In contrast, for the remaining 192 non-
spatially patterned genes, we visually confirm as well as quantify the
general lack of spatial correspondence (Fig. 2d–f, Supplementary
Fig. 3a, b). We note that these non-spatially patterned genes are enri-
ched in negative control blanks (57%), which do not encode any spe-
cific gene but instead represent noise such that we would not expect
spatial correspondence even after alignment. Further, we observe a
low median cosine similarity of 0.21 across non-spatially patterned
genes (n = 192) that is significantly lower than for spatially patterned
genes (n = 457) (Wilcoxon rank-sum test p-value < 2.2e-16).

We next compare the alignment achieved with STalign to the
alignment from a supervised affine transformation based on our pre-
viously manually placed landmarks (Supplementary Fig. 4a, Methods).
We visually confirm that a supervised affine alignment results in a
lower degree of spatial gene expression correspondence than align-
ment by STalign (Supplementary Fig. 4b). We again evaluate the per-
formance of the supervised affine transformation using a pixel-based
cosine similarity quantification (Supplementary Fig. 4c). We find that
for spatially patterned genes, the cosine similarity is consistently
higher with a mean difference of 0.09 for the alignment by STalign
compared to supervised affine (Supplementary Fig. 4d). In contrast,
for non-spatially patterned genes, the cosine similarity is more com-
parable with a mean difference of 0.02 for the alignment by STalign
compared to supervised affine (Supplementary Fig. 4e). This greater
improvement in spatial gene expression correspondence for the
alignment achieved with STalign compared to supervised affine
transformation for spatially patterned genes suggests that modeling
non-linearity in alignment with approaches like STalign can achieve a
higher alignment accuracy compared to linear alignment approaches.

STalign enables alignment of ST datasets across technologies
Many technologies for spatially resolved transcriptomic profiling are
available, varying in experimental throughput and spatial resolution9.
We thus applied STalign to align two ST datasets from two such dif-
ferent ST technologies. Specifically, we applied STalign to align the
previously analyzed single-cell resolution ST dataset of a full coronal
slice of the adult mouse brain assayed by MERFISH to a multi-cellular
pixel resolution ST dataset of an analogous hemi-brain slice assayed by
Visium (Fig. 3a). As such, in addition to being from different ST tech-
nologies, these two ST datasets further represent partially matched
tissue sections. Because of this partial matching, we incorporated
manually placed landmarks to initialize the alignment aswell as further
help steer our gradient descent towards an appropriate solution
(Supplementary Note 6). For the MERFISH data, we rasterized the cell
positions to generate the source image. For the Visium dataset, the
target image for alignment was a red-green-blue single-cell resolution
H&E staining image obtained from the same tissue section as the gene
expression data (Methods).

To evaluate the performance of this alignment, we again take
advantage of the available gene expression measurements. Due to
partially matched tissue sections, we restricted downstream compar-
isons to tissue regions STalign assessed with a matching probability >
0.85 (Methods). We again visually confirm that the spatial alignment
results in a high spatial gene expression correspondence albeit at
differing resolutions across the two technologies (Fig. 3b, Supple-
mentary Fig. 5a). To further quantify this spatial gene expression cor-
respondence, we evaluated the gene expression magnitudes at
matched spatial locations across the aligned tissue sections for the 415
genes with non-zero expression in both ST datasets. We evaluated
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these genes for spatial autocorrelation on the Visium data to identify
227 spatially patterned genes and 188 non-spatially patterned genes
(Methods). Due to the resolution differences between the two tech-
nologies, to ensure appropriate comparisons, we used the positions of
the Visium spots to aggregate MERFISH cells into matched resolution
pseudospots. Likewise, to control for detection efficiency differences
between the two technologies, we performed the same counts-per-
million normalization on the Visium spot gene expression measure-
ments and the aggregated MERFISH pseudospots gene expression
measurements (Fig. 3c, Supplementary Fig. 5b). We again evaluated
gene expression correspondence at spatially matched spots using
cosine similarity andobserved amediancosine similarity of0.55 across
spatially patterned genes (Fig. 3d) and a median cosine similarity of
0.06 across non-spatially patterned genes (Supplementary Fig. 6a–c).
We note that this gene expression correspondence after spatial

alignment is lower than what was previously observed within tech-
nologies most likely due to variation in detection efficiency across
technologies in addition to variation in tissue preservation rather than
poor spatial alignment. While MERFISH detects targeted genes at high
sensitivity, Visium enables untargeted transcriptome-wide profiling
though sensitivity for individual genes may be lower9. Likewise, while
the MERFISH dataset was generated with fresh, frozen tissue, the Vis-
ium dataset was generated with FFPE-preserved tissue. Still, we
anticipate that while sensitivity to specific genes may vary across
technologies and with different tissue preservation techniques, the
underlying cell-types should be consistent.

Therefore, we sought to evaluate the performance of our align-
ment based on cell-type spatial correspondence. To identify putative
cell-types, we performed transcriptional clustering analysis on the
single-cell resolution MERFISH data (Supplementary Fig. 7a) and
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deconvolution analysis10 on the multi-cellular pixel-resolution Visium
data (Fig. 4a, Methods). We matched cell-types based on transcrip-
tional similarity between cell clusters and deconvolved cell-types
(Supplementary Fig. 7b). Indeed, we visually observe high spatial cor-
respondence across matched cell-types (Fig. 4a, b). We evaluated the
proportional correspondence of cell-types at aligned spot and pseu-
dospot spatial locations by cosine similarity and observed a high
median cosine similarity of 0.75 across cell-types (Fig. 4c, d). As such,
STalign achieves high cell-type spatial correspondence across aligned
ST datasets, suggestive of high alignment accuracy.

STalign enables alignment of ST datasets to a 3D common
coordinate framework
Tissues are inherently 3-dimensional (3D), and tissue sections are
subject to distortions in 3D as well as 2D. As such, a more precise
spatial alignment of 2D tissue sections must accommodate this 3D
distortion. The underlying mathematical framework for STalign is
amenable to alignment in 2D aswell as 3D (Supplementary Note 7). We
thus applied STalign to align ST datasets to a 3D common coordinate
framework (CCF). Specifically, we applied STalign to align 9 ST data-
sets of the adult mouse brain assayed by MERFISH to a 3D 50 µm
resolution grayscale volume of the adult mouse brain CCF established
by the Allen Brain Atlas11 (Methods, Fig. 5a).

We note that when aligning 2D ST datasets to a 3DCCF, theremay
not exist a perfect 2D hyperplane in the 3D space in which the

alignment falls. For example, when MERFISH Slice 2 Replicate 2 was
aligned to theAllenBrainAtlas, theRMSEwith respect to thebest-fit 2D
plane is 1.255 µm (Methods, Fig. 5b); this non-zero RMSE highlights the
slice has deformities that extend out of the 2D hyperplane. Addition-
ally, the angle of the best-fit 2D plane with respect to the y-z plane of
the Allen Brain Atlas is 9.07 degrees; this non-zero angle demonstrates
that the slice does not alignwith a strictly coronal section. As such, our
2D-3D alignment accommodates global deformations (i.e. 2D plane
with respect to the 3D atlas) as well as local distortions (i.e. deforma-
tions in and out of a 2D plane) using the same underlying LDDMM
framework as 2D alignments.

In the construction of the Allen Brain Atlas CCF, brain regions
were delineated based on several features like cellular architecture,
differential gene expression, and functional properties via modalities
such as histological stains, in situ hybridization, and connectivity
experiments to generate a set of reference brain region annotations11.
By aligning to this CCF, we can lift over these annotations to each cell
(Fig. 5c, Supplementary Fig. 8a), enabling further evaluation of varia-
tions of gene expression and cell-type composition within and across
these annotated brain regions.

To assess the performance of our atlas alignment and lift-over
annotations, we first confirmed the enrichment of genes within certain
brain regions. Numerous previous studies have shown that some brain
regions can be demarcated based on the expression of particular
genes12,13. We use these characteristic gene expression patterns to
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evaluate whether the brain regions lifted over from the Allen Brain
Atlas CCF by STalign indeed contain expression of known marker
genes. Consistent with previous studies, we found Grm2 to be visually
primarily enriched in the dentate gyrus brain region14, Sstr2 to be
enriched in cerebral cortical layers 5 and 6brain region15, andGpr161 to
be enriched in the CA1 brain region16 (Fig. 5d), which was consistent
across replicates (Supplementary Fig. 8b).

Next, we took a more agnostic approach to assess the perfor-
mance of our atlas alignment and lift-over annotations by evaluating
the consistency of cell-type compositional heterogeneity within brain
structures across replicates. To identify cell-types, we perform unified
transcriptional clustering analysis on these 9 ST datasets to identify
transcriptionally distinct cell clusters and annotate them as cell-types
based on known differentially expressed marker genes (Methods,
Fig. 5e, f, Supplementary Fig. 9a). Many brain regions are known to
have a characteristic cell type distribution17–19. Consistent with pre-
vious studies20, we observed cell-types to be spatially and composi-
tionally variable across brain regions (Fig. 5c, e).We visually confirmed
that this spatial and compositional variability is consistent across
replicates (Supplementary Fig. 8a, Supplementary Fig. 9b). To further
quantify this consistency, for each brain region, we evaluated whether
its cell-type composition was more similar between replicates than
compared to a randomly demarcated brain region of matched size
(Methods). For an accurate atlas alignment, we would expect the lift-
over brain region annotations to be more similar in cell-type

composition across replicates, particularly for brain structures with
distinct cell-type compositions, as compared to random brain regions
of matched size. Indeed, we found that cell-type composition was
generallymore similar between replicates than compared to a random
brain region of matched size (Fig. 5g). For example, for one replicate
pair, we found that in 93% of evaluated brain structures (131/141), the
cell-type composition was significantly more similar (paired t-test
p-value = 6.805e-121) between replicates than compared to a random
brain region of matched size. For the 7% (10/141) of brain regions that
were less similar across replicates, we found that the number of cells in
these brain regions was significantly fewer (Wilcoxon rank-sum test
p-value = 0.002) than in other brain regions (Supplementary Fig. 10a).
Notably, 60% of these brain regions had a minimum width of under
50 µm, including both compact and long, thin structures (Supple-
mentary Fig. 10b), highlighting potential limitations with respect to
alignment accuracy of such structures at this given resolution of
alignment.

Finally, we also sought to assess the performance of our atlas
alignment and lift-over annotations by evaluating cell-type compo-
sitions within and beyond annotated brain region boundaries
(Methods). Specifically, we compare the entropy of each brain region
based on the region’s cell-type composition to entropy if the
boundaries of these regions were expanded. Again, due to the
characteristic cell-type distributions within brain regions in which
one or a few cell-types predominate, we would expect accurate lift-
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over brain region annotations to exhibit entropies that are com-
paratively lower than if the boundaries of these regions were
expanded, as more cell-types would be incorporated into the region
and entropy would increase. We, therefore, expanded the brain
structures lifted over by STalign by 100 nearest neighbors (NN), or
approximately 100 µm, and evaluated the change in entropy. We
performed the same analysis on randomly demarcated brain regions
of matched size, which were expanded by 100 NN to account for
increases in entropy due to the incorporationofmore cells.We found

that the entropies for the original brain region annotations lifted over
by STalign were significantly lower (paired t-test p-value = 8.6e-18)
than for the expanded regions (Fig. 5h). In contrast, the entropies for
randomly demarcated brain regions were not significantly lower
(paired t-test p-value = 0.12) for the expanded regions (Supplemen-
tary Fig 11). Taken together, these results demonstrate that STalign
can align ST datasets to a 3D CCF to consistently lift over atlas
annotations that recapitulate the unique gene expression and cell-
type composition within brain regions.
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STalign applicable to diverse tissues profiled by diverse ST
technologies
STalign relies on variations in cell densities that generally form visible
structures that can be used for alignment. As we have shown, align-
ment across samples and animals is possible for tissues with highly
prototypic structures such as the brain. We further highlight the
applicability of STalign to the diverse ST technologies by applying
STalign to achieve structural correspondence for partially matched
slices of the adult mouse brain assayed by two additional different
single-cell resolution ST technologies, Xenium21 and STARmap PLUS22

(Methods, Fig. 6a–c).
For other tissues with substantially more inter-sample and inter-

animal variation, alignment across serial sections is still achievable. For
example, for serial sections of the developing human heart assayed at
single-cell resolution with in situ sequencing (ISS)23, we can apply
STalign to achieve structural correspondence (Methods, Fig. 6d–f).
Likewise, even for cancer tissues, which are highly non-prototypic in
structure, there may still be sufficient structural consistency across
serial sections to enable alignment. As such, we have applied STalign to
align single-cell resolution ST datasets arising from partially matched
serial sections of the same breast cancer sample assayed by Xenium
(Methods, Fig. 6g–i). Likewise, we have applied STalign to align a
single-cell ST dataset assayed by Xenium to a corresponding H&E
image of the same tissue section (Methods, Fig. 6j–l). We visually
observe a high degree of spatial correspondence and overlap of
structural features after alignment, highlighting STalign’s applicability
to diverse tissues.

Discussion
Alignment of ST datasets is a prerequisite step to enable comparisons
across samples, subjects, and technologies. Alignment can also enable
the pooling of measurements across biological replicates to construct
consensus ST profiles1 as well as enable 3D reconstruction by serial
registration24. Here, we presented STalign, which builds on advance-
ments in LDDMM, to perform alignment of ST datasets in a pairwise
manner within ST technologies, across ST technologies, as well as to a
3D common coordinate system. We have shown that STalign achieves
high accuracy based on the spatial proximity of manually identified
shared landmarks as well as gene expression and cell-type corre-
spondence at matched spatial locations after alignment. We note that
based on these metrics, STalign outperforms affine transformations
alone, highlighting the utility of local, non-linear transformations in
alignment. STalign can further accommodate partially matched tissue
sections, where one tissue section may be a fraction of another. We
further apply STalign to align ST datasets to a 3D CCF to enable
automated lift-over of CCF annotations such as brain regions in a
scalable manner. We confirm that lift-over brain region annotations
identify cells that express expected genes for a variety of brain regions.
We also show that brain region annotations lifted over by STalign
exhibit consistent cell-type compositions across replicates and within
boundaries compared to random brain regions matched in size.

We anticipate that future applications of STalign to ST data from
serial sections or conditionally matched tissues across different ST
technologies will enable cross-technology comparisons as well as
cross-technology integration through spatial alignment. In particular,
applying STalign to align STdata of structurally similar tissues from the
same condition across different ST technology platformsmay allow us
to better interrogate platform-specific differences and strengths.
Given that different ST technologies currently generally prioritize
either resolution or genome-wide capabilities, applying STalign to
align serial sections assayed by different ST technologies may allow us
to leverage each technology’s unique strengths to characterize mat-
ched spatial locations. With atlasing efforts like The Human BioMole-
cularAtlas Programandothersproducing 3DCCFs25, the applicationof
STalign to align ST data to such CCFs to enable automated lift-over of

atlas structural annotations will facilitate standardization and unifica-
tion of biological insights regarding annotated structures. Likewise,
STalign complements gene-expression-based approaches for sample
alignment26 by focusing on the real space rather than a higher-order
transcriptomic manifold. We further anticipate future applications of
STalign to ST data from structurally matched tissues in case-control
settings assayed by the same ST technologies will enhance the
throughput for yielding meaningful comparisons regarding gene
expression and cell-type distributions in space as evidenced by recent
applications of ST technologies to characterize spatially-resolved age-
related27 and injury-related28 gene expression variation.

As ST technologies continue to evolve, we anticipate STalign will
continue to be applicable due to our use of rasterization to convert the
positions of single cells into an image with a specified resolution. The
runtime of each iteration of the STalign alignment algorithm scales
with respect to the number of pixels in this image. For most evaluated
datasets, we find that STalign is generally able to converge onto an
optimal alignment within a few minutes to a few hours, depending on
the number of pixels, the number of iterations, and other system
variables (Methods, Supplementary Table 2).Whereas other alignment
algorithms generally scale inmemory and runtimewith the number of
spatially resolved measurements (spots or cells)1,2, which will likely
make them computationally untenable as ST technologies evolve to
increase the number of spatially resolved measurements that can be
assayed. Overall, we anticipate that the ability for users to choose the
rasterization resolution, and therefore the number of pixels in the
rasterized image, will allow STalign to maintain its utility for larger
datasets.

Still, among the limitations of STalign with respect to ST data, it is
currently applicable to only ST datasets with single-cell resolution or
those accompanied with a registered single-cell resolution histology
image from the same assayed tissue section, which may not be avail-
able to all non-single-cell resolution ST technologies. STalign further
relies on the representative nature of cell segmentations in ST data to
reflect underlying tissue structures. As such, limitations in cell seg-
mentations that render the derived cell density no longer repre-
sentative of the profiled tissue structure could present challenges for
alignment with STalign.

Further, as STalign is based on an LDDMM transformation model
for alignment, it inherits the same limitations. As LDDMM relies on
optimization using gradient descent, the resulting alignment solution
may converge on local minima. Strategies to guide the optimization
away from potential local minima may be applied in the future. Like-
wise, the more different the source and targets for alignment, parti-
cularly for partially matching sections, the more important the
initialization will be for this optimization. As we have shown, landmark
points may be used to guide the initialization of an orientation and
scaling for alignment. In addition, LDDMM enforces an inverse con-
sistency constraint such that every observation in the targetmust have
some correspondence in the source in a manner that cannot accom-
modate holes or other topological differences in the tissue through the
deformation only7. As such, when performing alignments, we advise
choosing the more complete tissue section as the source because our
Gaussian mixture modeling for accommodating partially matched
tissues and other artifacts applies to the target image intensity only.

Still, alignment accuracy at the resolution of single cells is limited
by the fact that there is generally no one-to-one correspondence
between cells across samples, particularly for complex tissues. As such,
accuracy can typically only be expected to be achieved up to a
mesoscopic scale at which it is reasonable to define cell density29. As
we have shown, this presents challenges, particularly in aligning thin
structures. While STalign currently uses an isotropic (Gaussian) kernel
to estimate cell densities, future work considering non-isotropic ker-
nels may improve accuracy for these thin structures. However, gen-
erally, our choice of kernel will inherently bias our alignment towards
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accuracy at a certain structural scale. Likewise, although we focused
here on aligning based on cell densities, STalign and the underlying
LDDMM framework can also be applied to align using cellular features
such as gene expression magnitude, reduced dimensional repre-
sentations of gene expression such as via principal components, or
cell-type annotations, which may improve the accuracy of alignment
for regions with homogenous cell density but heterogeneous gene
expression and cell-type composition. However, integration of such
features in the alignment process necessitates orthogonal means of
performance evaluation beyond the correspondences in gene
expression magnitude and cell-type proportions that we have used
here. By aligning basedon cell densities,wedonot require shared gene
expression quantifications or unified cell-type annotations, potentially
enhancing flexibility and providing opportunities for integrating
across other data modalities for which spatially resolved single cell
resolution information is available such as other spatial omics data in
the future.

Overall, we anticipate that moving forward STalign will help
provide a mathematical framework for ST data alignment to enable
integration and downstream analyses requiring spatial struc-
tural alignment to potentially reveal new insights regarding molecular
and cell-type compositional differences between different tissue
structures and across various physiological axes.

Methods
Datasets
NineMERFISHdatasets consisting of 734,696 cells and 483 total genes,
across 9 brain slices (3 replicates of 3 coronal sections from matched
locations with respect to bregma) were obtained from the Vizgen
website for MERFISH Mouse Brain Receptor Map data release (https://
info.vizgen.com/mouse-brain-map).

A Visium dataset of an FFPE-preserved adult mouse brain were
obtained from the 10X Datasets website for Spatial Gene Expression
Dataset by Space Ranger 1.3.0 (https://www.10xgenomics.com/
resources/datasets/adult-mouse-brain-ffpe-1-standard-1-3-0).

A Xenium dataset (In Situ Replicate 1) of a fresh frozen mouse
brain coronal section was obtained from the 10X Datasets website for
Mouse Brain Dataset Explorer (https://www.10xgenomics.com/
products/xenium-in-situ/mouse-brain-dataset-explorer).

STARMAP Plus data (well11_spatial.csv) of coronal slices of the
adult mouse brain was downloaded from the Broad Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell/study/SCP1830/
spatial-atlas-of-molecular-[…]pes-and-aav-accessibility-across-the-
whole-mouse-brain).

Developing heart data for samples CN73_E1 and CN73_E2 were
downloaded from the Human Developmental Cell Atlas (https://hdca-
sweden.scilifelab.se/a-study-on-human-heart-development/) via
ST_heart_all_detected_nuclei.RData (https://github.com/MickanAsp/
Developmental_heart).

TwoXeniumdatasets (InSitu Replicate 1 and In Situ Replicate 2) of
a single breast cancer FFPE tissue block were obtained from the 10X
Datasets website for High-resolution mapping of the breast cancer
tumor microenvironment using integrated single cell, spatial and in situ
analysis of FFPE tissue (https://www.10xgenomics.com/products/
xenium-in-situ/preview-dataset-human-breast).

The CCF and brain region annotations were obtained from
the Allen Brain Atlas API (https://help.brain-map.org/display/
mouseconnectivity/API). The 50 µm resolution 3D adult mouse brain
CCF used for alignment was ara_nissl_50 can be downloaded directly
(http://download.alleninstitute.org/informatics-archive/current-release/
mouse_ccf/ara_nissl/ara_nissl_50.nrrd). The brain region annotations
that correspond to the 50um resolution CCF were ccf_2017/annota-
tion_50 downloaded can be directly (https://download.alleninstitute.
org/informatics-archive/current-release/mouse_ccf/annotation/ccf_
2017/annotation_50.nrrd).

Application of STalign
To align MERFISH datasets, we applied STalign in a pairwise manner
across replicates for sections from matched locations with respect to
bregma, rasterized at a 50 µm resolution, and iterated over 1000
epochs, with the following changes to default parameters
(sigmaM: 0.2).

To align a MERFISH dataset to a Visium dataset, we applied STa-
lign with MERFISH Slice 2 Replicate 3, rasterized at a 50 µm resolution,
as the source and the red-green-blue high-resolution Visium hema-
toxylin and eosin (H&E) staining image as the target. We utilized the
landmark points stored in Merfish_S2_R3_points.npy and tissue_hir-
es_image_points.npy as inputs pointsI and pointsJ. We iterated for 200
epochs with the following changes to default parameters (sigmaP: 0.2,
sigmaM: 0.18, sigmaB: 0.18, sigmaA: 0.18, diffeo_start: 100, epL: 5e-11,
epT: 5e-4, epV:5e1).

To align MERFISH to the Allen CCF, we applied STalign using the
3D reconstructed Nissl image from the Allen CCF atlas as a source, and
each of our 9 MERFISH images as a target. The Nissl CCF is a 50 µm
resolution grayscale volume that was constructed by registering 2D
Nissl images to a 3D anatomical template. The template to which this
Nissl dataset was registered was constructed by averaging high-
resolution customized serial two-photon tomography scans of 1675
brains11.

To align Xenium and STARmap datasets of mouse brain coronal
sections, we applied STalignwith Xenium In Situ Replicate 1, rasterized
at 30 µm resolution, as the source and STARmap well 11, rasterized at
30 µm resolution, as the target. Prior to rasterization, STARmap cell
centroid positions were scaled by 1/5 such that the overlay of una-
ligned sections showed both Xenium and STARmap cells positions at a
similar scale. We iterated for 1000 epochs with the following changes
to default parameters (sigmaM:1.5, sigmaB:1.0, sigmaA:1.5, epV: 100,
muB: black).

To align serial developing heart sections, we applied STalign with
sample CN73_E1 as the source and CN73_E2 as the target, both raster-
ized at 100 µm resolution. We iterated for 1000 epochs with the fol-
lowing changes to default parameters (diffeo_start:100, a: 250,
sigmaB:0.1, epV: 1000, muB: black).

To align Xenium datasets, we applied STalign with Xenium
Breast Cancer Replicate 1 as the source and with Xenium Breast
Cancer Replicate 2 as the target, rasterized at 30 µm resolution. We
placed a set of 3 manually chosen landmark points to compute an
initial affine transformation. We iterated for 200 epochs with the
following changes to default parameters (sigmaM:1.5, sigmaB:1.0,
sigmaA:1.5, epV: 100).

To align Xenium to H&E, we applied STalign with Xenium Breast
Cancer Replicate 1, rasterized at 30 µmresolution, as the target and the
corresponding red-green-blue H&E image from the same tissue as the
source. We placed a set of 3 manually chosen landmark points to
compute an initial affine transformation. We iterated for 2000 epochs
with the following changes to default parameters (sigmaM:0.15, sig-
maB:0.10, sigmaA:0.11, epV: 10, muB: black, muA: white) where muB
andmuA initializes the mixturemodel for the background and artifact
components as corresponding to black and white colors respectively
in the target image.

Expression based performance evaluation for STalign-based
alignment of single-cell resolution ST datasets within
technologies
To evaluate the performance of STalign on aligning datasets from the
same technologies based on expression correspondence, we focused
on the alignment of Slice 2 Replicate 3 and Slice 2 Replicate 2 from the
MERFISH datasets, with the former as the source and the latter as the
target.

A grid was created to partition all cells into 200 µm square pixels.
For each 200 µm pixel, the gene expression of cells in the pixel was
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summed for the aligned source and for the target to get gene
expression at 200 µm resolution.

MERINGUE (v1.0)was applied to calculateMoran’s I on the 200 µm
resolution summed gene expression of the target. Genes with an
adjusted p-value < 0.05 were identified as significantly spatially pat-
terned genes and genes with an adjusted p-value >= 0.05 were iden-
tified as non-significantly spatially patterned genes.

For each gene, the cosine similarity was calculated between the
200 µm resolution summed gene expression counts in the aligned
source and the 200 µm resolution summed gene expression counts in
the target acrosspixels. AWilcoxon rank sum testwas used to compare
the distributions of cosine similarities for spatially patterned and non-
significantly spatially patterned genes.

Comparison to supervised affine alignment of single-cell reso-
lution ST datasets within technologies
In addition to alignment by STalign, we performed supervised affine
alignment of Slice 2 Replicate 3 and Slice 2 Replicate 2 from the
MERFISH datasets, with the former as the source and the latter as the
target. We manually placed 13 landmarks in the source and target that
could be reproducibly identified (Supplementary Fig 1, Supplementary
Table 1) using our script point_annotator.py. We solved for the affine
transformation that minimized the error between these landmarks
using least squares and applied the affine transformation to the cell
positions of the source. With the supervised affine aligned source and
target, we repeated the expression-based performance evaluation
described in section “Expression-based performance evaluation for
STalign-based alignment of single-cell resolution ST datasets within
technologies”.

Evaluation alignment across technologies
Expression based performance. Given that the MERFISH tissue sec-
tion is larger than the Visium, we considered the aligned region to be
limited to the MERFISH tissue that had a matching probability > 0.85
based on the posterior probability of pixels belonging to the matched
class in the Gaussian mixture modeling, with the 0.85 threshold being
manually chosen based on visual inspection. We restricted the set of
cells in the MERFISH dataset to only those in this aligned region for
downstream evaluation.

To aggregate the cells in the aligned MERFISH dataset into pseu-
dospots that match with the Visium spots, we calculated the distances
between the positions of the MERFISH cells and the positions of the
Visium spot centroids. Cells were classified as within the pseudospot
that corresponds to the Visium spot if the distance of the cell to the
Visium centroid was less than the Visium spot radius. The Visium spot
radius information was obtained by multiplying the spot_-
diameter_fullres by the tissue_hires_scalef in the Visium scale-
factors_json.json file and dividing by 2. For each pseudospot, the gene
expression of all cells within the pseudospot was summed.

For gene expression correspondence analysis,we restricted to the
415 genes that had at least one copy in both the MERFISH and Visium
datasets and that were detected in more than one spot in the Visium
dataset.

MERINGUE (v1.0) was applied to calculateMoran’s I on the Visium
counts-per-million (CPM) normalized counts. Genes with an adjusted
p-value < 0.05 were identified as significantly spatially patterned genes
and genes with an adjusted p-value >= 0.05 were identified as non-
significantly spatially patterned genes.

CPM normalization and log10 transformation with a pseudo-
count of 1 were applied on the gene expression of the MERFISH
pseudospots and Visium spots. For each gene, the cosine similarity
was calculated between the normalized and log-transformed gene
expression magnitudes across matched MERFISH pseudospots and
Visium spots.

Cell-type correspondence performance. To identify cell-types in the
Visium data, we applied STdeconvolve (v1.6.0) on a corpus of 838
genes after filtering out lowly expressed genes ( < 100 copies), genes
present in <5% of spots and genes present in > 95% of spots and
restricting to significantly over-dispersed with alpha =1e-16 to obtain a
corpus <1000 genes, resulting in 16 deconvolved cell-types.

To identify cell-types in the aligned MERFISH data, PCA was per-
formed on the CPMnormalized cell by genematrix. Louvain clustering
was performed on a neighborhood graph of cells using the top 30 PCs
and 90 nearest neighbors to identify 16 transcriptionally distinct
clusters of cells.

Tomatch deconvolved cell-types and single-cell clusters, we used
the deconvolved cell-type-specific transcriptomic profiles from STde-
convolve and averaged the transcriptional profiles per cluster from
single-cell clustering. We restricted to the 257 shared genes, CPM
normalized, and correlated the resulting normalized transcriptional
profiles using Spearman correlation. We considered a Visium decon-
volved cell-type andMERFISH single-cell cluster as a match if they had
transcriptional similarity > 0.5.

For each matched cell-type, we evaluated spatial compositional
correspondence using cosine similarity of the cell-types proportional
representation across matched MERFISH pseudospots and
Visium spots.

Evaluation of 2D to 3D CCF alignment
Quantification of local and global distortions. To evaluate the local
deformation of the 2DMERFISH Slice 2 Replicate 2 when aligned to the
3D Allen Brain Atlas CCF, the STalign function LDDMM_to_slice() was
run with the following parameters: nt=4, niter=2000, sigmaA = 2, sig-
maB = 2, sigmaM = 2, muA = [3,3,3], muB = [0,0,0]. Then, the least
squares fit methodwas used to evaluate themost representative plane
for the transformed slice, and the root mean square error was calcu-
lated. The angle between the most representative plane and the y-z
plane, which runs through the medio-lateral and dorso-ventral axis of
the Allen Brain Atlas, was computed.

Unified transcriptional clusteringanalysis andcell-typeannotation.
All MERFISH datasets were combined. Transcriptional clustering ana-
lysis and cell type annotation was performed using the SCANPY
package30 [version 1.9.1]. Data were normalized to counts per million
(scanpy: normalize_total) and log transformed (scanpy: log1p). PCA
(scanpy: pca) was computed on the cell by gene matrix. A neighbor-
hood graph of cells using the top 10 PCs and 10 nearest neighbors was
created (scanpy: neighbors), and Leiden clustering was performed on
this graph (scanpy: leiden) to identify 29 clusters. Differentially
expressed genes were extracted from each cluster (scanpy: rank_gen-
es_groups), and cell-types were annotated based on marker genes in
each cluster.

Annotated brain region composition analysis. To generate randomly
demarcated brain regions, a random number generator (random.ran-
dint) defined the x, y coordinate of the center of the random region,
and the random region was composed of the N closest points to the
center, where N is the number of cells in the brain region. A slice/
replicate with random regions was constructed for all slice/replicates
with STalign annotated regions, and the number of cells (N) were the
same for STalign and randomly demarcated regions.

To compare cell-type compositions, each region was repre-
sented by a cell-type vector, which was composed by the proportion
of each cell type in the region (29 x 1 vector). We calculate the
Euclidean distance between cell-type vectors of the same region
across replicates in Slice 2 using the regions annotated by STalign.
The Euclidean distance was also found across replicates in Slice 2
using randomly demarcated brain regions and STalign brain
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regions. 431 data points for each group were used, comparing
replicate 1 to replicate 2, replicate 2 to replicate 3, and replicate 3 to
replicate 1 for up to 148 shared brain regions across replicate pairs.
Further characterization was performed for one representative
MERFISH replicate pair (Slice 2 Replicates 2 and 3) to characterize
differences in Euclidean distance for the 141 shared brain regions.
The Euclidean distances of cell type vectors between STalign brain
regions replicate and between randomly demarcated brain regions
were compared using a paired t-test.

To evaluate annotated brain region boundaries, brain regions
were expanded using k-nearest neighbors (k = 100) using the ball tree
algorithm for each region and each replicate in Slice 2 (sklearn.-
neighbors.NearestNeighbors). The procedure was conducted for
STalign annotated brain regions and randomly demarcated brain
regions. Shannon’s entropy was evaluated for STalign annotated and
randomly demarcated brain regions that were expanded by 100
nearest neighbors. Paired t-tests were used to compute p-values
between original and expanded brain regions for STalign and random
groups. Effect size was computed as a difference in the means of the
compared distributions. PP plots were used to visualize normality, and
we used a Gaussian fit with R >0.8 and a variance ratio less than 4 to
confirm normality and equal variances. 431 data points for each group
were used.

To evaluate regions that hada greater Euclideandistance between
two STalign regions compared to random versus STalign regions, we
calculated the number of cells and Shannon’s entropy of each region
and tested for significance using a Wilcoxon Rank Sum test due to the
small sample size. Shannon’s entropy was calculated using the formula
P

p xð Þ* log p xð Þð Þ where p(x) is the probability of picking cell-type x
from the given brain region (scipy.special.entr).

Statistics & reproducibility
No data were excluded from the statistical analyses. No statistical
method was used to predetermine sample size. The experiments were
not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Evaluation of alignment within technologies. Statistical analyses
were performed by the R package stats version 4.2.1. p-value was
determined by Wilcoxon rank-sum test, and p-value < 0.05 is con-
sidered statistically significant.

Evaluation of 2D-3D alignment. Statistical analyses were performed
by the SciPy Python package, v1.11. p-value was determined by paired
t-test (Fig. 5h, Supplementary Fig. 11) and Wilcoxon rank-sum test
(Supplementary Fig. 10), and p-value < 0.05 is considered statistically
significant.

Implementation
The implementation of STalign as STalign.py (Supplementary Soft-
ware) uses the parameters and default values provided in Table 1.

The PyTorch framework was used for automatic gradient calcu-
lations. Based on the PyTorch backend, STalign supports paralleliza-
tion across multiple cores or on GPUs. Derivatives (covectors) are
converted to gradient vectors5,31 for natural gradient descent32.

For improved robustness, STalign allows users to input pairs of
corresponding points in the source and target images. These points
can be used to initialize the affine transformation A through least
squares to steer our gradient-based solution toward an appropriate
localminimum in this challenging nonconvex optimization problem as
well as be added to the objective function to drive the optimization
problem itself. Landmark-based optimization in the LDDMM frame-
work has been studied extensively33. A script point_annotator.py is
provided to assist with the interactive placement of these points
(Supplementary Software).

Runtime estimate. Runtime for the Stalign.LDDMM function was
estimated for CPU settings using a MacBook Pro with an 2.4 GHz
8-Core Intel Core i9 processor and 32 GB 2400MHz DDR4 memory,
and for GPU settings using an Intel Xeon W-3365 2.7 GHz Thirty-Two
Core 48MB 270W processor with 8 x DDR4-3200 16GB ECC Reg
memory and a NVIDIA RTX A5000 24GB PCI-E video card.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data that was aligned with STalign is publicly available. MERFISH
datasets are available on the Vizgen website forMERFISHMouse Brain
Receptor Map data release (https://info.vizgen.com/mouse-brain-
map). The Visium dataset is available on the 10X Datasets website
for Spatial Gene Expression Dataset by Space Ranger 1.3.0 (https://
www.10xgenomics.com/resources/datasets/adult-mouse-brain-ffpe-
1-standard-1-3-0). STARMAP Plus data is available on the Broad Single
Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/
SCP1830/spatial-atlas-of-molecular-[…]pes-and-aav-accessibility-
across-the-whole-mouse-brain). Developing heart data is available on
the Human Developmental Cell Atlas https://hdca-sweden.scilifelab.
se/a-study-on-human-heart-development/ via ST_heart_all_detected_
nuclei.RData from https://github.com/MickanAsp/Developmental_
heart. The Xenium dataset (In Situ Replicate 1) of a fresh frozen
mouse brain coronal section is available on the 10X Datasets website
for Mouse Brain Dataset Explorer (https://www.10xgenomics.com/
products/xenium-in-situ/mouse-brain-dataset-explorer). The two
Xenium datasets (In Situ Replicate 1 and In Situ Replicate 2) of a
single breast cancer FFPE tissue block are available on the 10X
Datasets website for High resolution mapping of the breast cancer
tumor microenvironment using integrated single cell, spatial and in

Table 1 | Parameters and default values of functions STa-
lign.rasterize() and STalign.LDDMM()

Symbol Explanation Default

dx Width of rasterization kernel 30 μm

σM Weight on image-matching functional 1.0

σR Weight on regularization matching functional 5.00E +05

σP Weight on landmark matching functional 2.00E +01

σA Variance of artifact component for Gaussian Mixture
Modeling

5

σB Variance of background component for Gaussian
Mixture Modeling

2

a Smoothness scale of diffeomorphism 500.0 μm

p Power of Laplacian for regularization 2

niter Number of iterations of gradient descent 5000

diffeo_start Iteration to start optimizing vt for coarse-to-fine 0

nt Number of timesteps for integration of vt 3

epL Gradient descent step size: linear part of A 2.00E-08

epT Gradient descent step size: translation part of A 2.00E-01

epv Gradient descent step size: vt 2.00E +03

pointsI Landmark points for source image None

pointsJ Landmark points for target image None

muB Mean intensity/color of background pixels None

muA Mean intensity/color of artifact pixels None

L Initial guess for linear transform None

T Initial guess for translation None

A Initial guess for affine matrix. Either L and T can be
specified, or A, but not both

None
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situ analysis of FFPE tissue (https://www.10xgenomics.com/products/
xenium-in-situ/preview-dataset-human-breast). The CCF and brain
region annotations are available from the Allen Brain Atlas API
https://help.brain-map.org/display/mouseconnectivity/API. Source
data are provided with this paper. Aligned cell positions, gene
expression counts, cell-type annotations, and brain structure anno-
tations generated in this study derived from these public datasets
have been deposited in a Zenodo repository (https://doi.org/10.5281/
zenodo.8384019)34.

Code availability
STalign is available as an open-source Python toolkit at https://github.
com/JEFworks-Lab/STalign35 with additional documentation and
tutorials available at https://jef.works/STalign. Code (STalign.py and
point_annotator.py) is also archived as Supplementary Software.
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