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ABSTRACT INTERPOLATION AND
OPERATOR-VALUED KERNELS

JOHN J. F. FOURNIER AND BERNARD RUSSO

ABSTRACT

The complex interpolation method is used to prove a sharp inequality of Hausdorff-Young type
for integral operators with operator-valued kernels.

1. Introduction

Let ^ be a complex Hilbert space, and let M be a a-finite measure space. Denote
by l}(M; j f ) the space of equivalence classes of square-integrable, measurable,
jf-valued functions on M; then L2(M; «?f) is also a complex Hilbert space. Denote
by ^ ( J f ) the space of bounded, linear operators on jf .

In this paper, we consider SS{3^)-valued functions on M x M, and we show that
if such a function k belongs to certain mixed-norm spaces, then we can associate to k
a bounded operator K on l}(M; JF), by letting

= j k(x,y)-f(y)dy, (1)
M

for a l l / i n l3(M; j f ) , and almost all x in M. In Theorem 1, below, we give a sharp
estimate for the norm of K in a certain space of operators on 1}(M; JV), in terms of
the norm of k in an appropriate mixed-norm space. A similar estimate, for
scalar-valued kernels, was proved in [4; Theorem 1], and used to estimate the norm of
the IS Fourier transform on certain groups. A variant of Theorem 1 of the present
paper will be applied in a future publication.

Theorem 1 is stated and proved in Section 3, and the results in the complex
interpolation method that are needed in the proof of Theorem 1 are summarized in
Section 2.

2. The complex interpolation method

The standard reference concerning this method is Calderon's paper [2]. We
begin with the basic definitions.

An interpolation pair (B°, B1) is a pair of complex Banach spaces, both
continuously imbedded in a complex, topological vector space V. The subspace
B° + Bi of V becomes a Banach space relative to the norm

IMIflo+B. = inf{||j;||Bo+||z||Bl : x = y+z, yeB°, zeB1}.

Given an interpolation pair (B°, Bl), let & = ^(B°, B1) be the space of all functions
/ o f the complex variable ( = s + it, denned in the strip where 0 < s ^ 1, with values
in J^ + B1, continuous and bounded relative to the norm in B° + Bi, analytic in the
strip where 0 < s < 1, and such that / (if) e .6°, is B°-continuous, and tends to 0 as
|/| -• oo, and f (I + it) eBl, is B1 -continuous, and tends to 0 as \t\ -> oo. Then 3F is a
Banach space with the norm

\ , = max {sup ||/(/OIIBO, sup | | / (1 +i7)||fl.}.
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Given a real number 5, with 0 < 5 < 1, let Bs be the subspace of all x in B° + Bl such
that x =f(s) for some/in 2F\ this space is also denoted by [B°, Bl]s, and is called a
complex interpolation space. Then Bs becomes a Banach space relative to the norm

It follows immediately from these definitions [2; p. 115], that if (A0, A1) and (B°, Bl)
are interpolation pairs, and L : A0-{-A1 -* B°+Bl is a linear mapping such that the
restriction of L to A0 is a bounded operator from A0 to B° with norm Mo, and the
restriction of L to A1 is a bounded operator from A1 to Bl with norm Ml 5 then, when
0 < 5 < 1, the restriction of L to ,4S is a bounded operator from /4S to Bs with norm
at most MQ 1 ^ M / ,

To use this machinery, we need to know more about the interpolation spaces in
specific instances. Given a cr-finite measure space M, we follow the usual convention
of regarding two complex-valued, measurable functions on M as being equivalent if
they agree almost everywhere, and we let V be the space of all such equivalence classes
of measurable functions, with the topology of convergence in measure. Call a subspace
X of V a Banach lattice on M if it is a Banach space relative to a norm || • II* such
that, if feX, geV and \g\ ^ | / | almost everywhere, then geX, and ||^||x ^ ||/ILv
Say that X has the dominated convergence property if the conditions

feX, fnsV, I / J O / I and /„ -> 0 almost everywhere

imply that | | / J X -*•0. Now let Xo and Xt be two Banach lattices on M, and let
0 < s < 1; then let X be the subspace of all elements / of V for which there exist a
positive number X and non-negative elements g of Xo and A of I , such that
l ls l lxo-HAIIx.- l .and

I/KV1*1. (2)

Let | | / | | x = inf{A : relation (2) holds}. Then X is a Banach lattice on M relative to
the norm || • ||x [2; p. 123]; the space X is also denoted by X Q 1 " 5 ^ 5 . Given any
Banach lattice X on M, and any complex Banach space B, form the Banach space X(B)
of B-valued measurable functions/such that \\f(')\\BeX, and define | | / | |X(B)

 t o be
II II/( ' ) II £ II x- The key result concerning complex interpolation of these spaces is
the following theorem of Calderon [2; p. 125].

THEOREM 0. Let (B°, B1) be an interpolation pair, and let Xo and Xt be Banach
lattices on a a-finite measure space M. Let 0 < s < 1, let B — [B°, B1]^ and let
X = XO

1~SX1
S. Suppose that at least one of the spaces Xo and Xt has the dominated

convergence property. Then

[XO(B°),X,{B')}S = X{B), (3)

with equality of norms.

Next, we consider subspaces of the space ^(^f) of all bounded linear operators
on a complex Hilbert space W. Let C^C^f) = @{3tf)\ if 1 < p < 00, let

CJtff) = {T e ^ p f ) : tr [(T* T)p/2] < 00}.

Evidently, C ^ p f ) is a Banach space with the norm || • IL = || • 11^^; so is
when 1 < p < oo, with the norm
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Given indices p0 and plt in the interval [1, oo], and s, in the interval (0,1), define ps by

1 l-s s

Ps Po Pi

It is shown in [3; p. 44] that

with equality of norms.

3. Integral operators with operator-valued kernels

In this section, we show that, if a measurable ^(«#)-valued function k on M xM
belongs to a certain mixed-norm space XP(CP), with 1 ^ p < 2, then the operator K,
defined by formula (1) above, belongs to CP-{J}(M\ «5f)), and, in fact,
II-Klip' ^ ll̂ llxp(Cp.)5 n e r e P' denotes the index conjugate to p. We follow [1] in de-
fining mixed-norm spaces.

If 1 ^ r, s < oo, let Lr> 5(M x M) be the space of all equivalence classes of
complex-valued, measurable functions k on M xM such that

J j\k(xty)\rdx (4)

make the obvious modifications when one or both of r and s are infinite. Then
L1"' S(M x M), with the norm || • ||rj s, is a Banach lattice on M x M, whenever 1 ^ r, s
^ oo; this lattice has the dominated convergence property if r and s are both finite.
Now consider functions o n M x M with values in {ffiffl), and denote the norm in
E's{MxM)(Cp(^)) by || • ||p>Pi-; that is,

11*11,
LM \M

I Is

(5)

if r and s are finite, and the appropriate modifications are made if some indices are
infinite. Observe that, in both formulae (4) and (5), the indices are subscripted to the
norm in the order in which the norm is computed; in formula (5), for instance, on first
computes the norm of k(x, y) in Cp(jf), for fixed x and y, then the Lr-norm with
respect to x, and, finally, the Ls-norm with respect to y.

We also have to consider the norms that arise when the order of integration is
reversed. Given any function k on MxM, define a function k* by letting
k*(x, y) = k(y, x) for all x and y in M; given any Banach space B of functions on
MxM, let

B* = {k : k* eB}, and let \\k\\B. = \\k*\\B. (6)

Given any index p, with 1 ^ p ^ oo, define a Banach lattice Xp by letting

Xp = [Lp> P'(M x M)f[U- P\M x M)*]*;

again p' = p/(p -1). Finally, we use the abbreviation Xp(Cp.) for the space Xp{Cp.{3^)),
which consists of all measurable, ^ . ( ^ - v a l u e d functions k on MxM such that
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\\K'»' )llcp.(jf) belongs to Xp, the norm on this space is given by

We can now state and prove our main result.

THEOREM 1. Let #? be a complex Hilbert space, and let M be a a-finite measure
space. Let 1 ^ p < 2, and let k e Xp(Cp). Then the integral operator K, with kernel k,
belongs to CP(L2(M; #?)), and

\\K\\ (7)

Proof. For brevity, we use the notation Ep for Xp(CP'(Jif)). First, let p = 2.
The lattice X2 is just L2<2(MxM), that is L2(MxM), and the space E2 is just
L2(M x M; C2(J^)). Now it is fairly well known that the map kt-+K given by formula
(1) is an isometry of L2(MxM; C2(3V)) onto C2(L

2(M; j?)). Thus inequality (7)
holds, with equality, when p = 2.

Now let p = 1. The proof in this case is a modification of a standard argument;
we include it for completeness. Let keEu and l e t / eL2(M ; tf). Fix a number A
such that X > \\k\\El; by the definition of the space Elt there exist non-negative,
measurable, functions g and h on MxM such that ||g||,( w = ||/i*||t> m = 1, and

for all * and y in M. Let

Since

= J \\k{x,y)'f{y)\\*dy.
M

M

j Xh{x,y)*g(x,y)*\\fm*dy
M

_M

by the Schwarz inequality. Now, for almost all x,

M
Thus

J l{x)2 dx ^ ) 2

M M

, y) ||/{y)\\x>
LM

= A2 J ll/GOLr2 jgixty)d
M

dx

dy,

I *
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by Fubini's theorem. Again, for almost all y,

< 11*11 i . e o - l .J
M

so that ||/||2 < A ||/||L2(M> jfy In particular, l(x) < oo for almost all x, and the integral
(1) defining Kf(x) converges, in the norm of Jf, for almost all x; moreover

That is, K e @(L2(M; 3f% and ||K||m ^ L Now A is any number greater than
Therefore,

and inequality (7) holds when p = 1.
To complete the proof, we use the complex interpolation method, as summarized

in Section 2. Whenever we write A = B, for Banach spaces A and B, we mean that the
spaces coincide, with equality of norms. Now let 1 < p < 2, and let s = 2/p\ Then
0 < s < 1, and

We claim that Ep = [£,, £2]s . First observe that

1 l - £ s

so that Cp,(Jf) = \CJ^e\ C 2 (^ ) ] s . Next, by some applications of Holder's
inequality,

U< P\M xM)=[Ll>a>(Mx M)]l~s[L2' 2(M x M)]s;

this can also be deduced from Theorem 0 and the fact, implicit in [1], that

If' P'(M x M) = [L1- °°(M x M), L2' 2(M x M)]s.

Finally, it is trivial that, if A, B, C and D are all Banach lattices on M x M, then

[Al~s J3S]± [C 1 - s Ds]* = [A* C * ] 1 " 8 ^ D*f.

Therefore, Xp = Jf , 1"1^1 . Now the lattice X2 = L2(MxM) has the dominated
convergence property. Therefore Theorem 0 applies and yields that Ep = [Eit E2]s, as
claimed.

We also have that

Cp,(L
2(M; X)) = \Cjfi{M- jf)), C2(L

2(M',

and we have shown that the map k\->K is bounded from £, to Cw(L2(M; ^ ) ) , and
from E2 to C2(L2(M; ^f)), with norm at most 1 in both cases. By interpolation, this
map is also bounded from Ep to CP-(L?(M; Jf)), with norm at most 1. This completes
the proof of the theorem.

COROLLARY 2. / / 1 < p < 2, then

* p , p O * . (8)
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Proof. There is nothing to prove if the right side of the inequality is infinite.
If the right side is finite, then k e Xp(Cp>), and

l|Ar|lxP(c,.)<(ll*llp'.P.P')*(ll^*llp'.p.p')*. (9)

Inequality (8) then follows from equalities (7) and (9). This completes the proof of the
corollary.

Various simplifications occur when the space 3tf has dimension 1. The spaces Cq

and their norms, all coincide, and Xp{Cp) is just Xp. Since \\k\\q> r> s is independent of
the first index q, it is appropriate to suppress this index. Then Corollary 2 reads

\\K\\P><(W\p.P>\\k*\\p.p)*, (10)

whenever 1 ^ p ^ 2. This inequality was proved in a different way in [4; Theorem 1].
We indicate briefly how inequalities (7), (8) and (10) generalize the classical

Hausdorff-Young inequality. Let M be the unit circle, with measure dd/2n, and let g
be an integrable function on the circle, with Fourier coefficients {g(ri)}™=_00. Then let
kg be the function o n M x M given by kg(x,y) = g(x—y) for all x andy inM, and let
Kg be the integral operator associated with the kernel kg. Now Kg is just the
convolution operator fi-+g*f, and it turns out that \\Kg\\r = ||g||r for all indices r.
On the other hand, ||fcJPil. = ||g||p for all second indices r; also, ||(fcg)*||pjr = ||g||p
for all r. In particular, (||fcg||p,P'||(A:g)*||PtPO* i s Ju s t \\g\\P> a n d inequality (10) implies
that |||||p» ^ ||g||p, whenever 1 < p ^ 2. This is the Hausdorff-Young inequality for
the circle; the corresponding inequality for Fourier transforms on the real line, how-
ever, is not a special case of any of the inequalities proved in this paper.

Finally, we remark that inequalities (7), (8) and (10) are sharp, and that, in general,
the indices appearing in these inequalities are best possible. Indeed, if k is the
characteristic function of a measurable rectangle of finite, positive measure, then equality
holds in relation (10); in fact

IIKL = (\\k\\P,P'\\k*\\P!p.)*

in this case. It can then be shown that, if J f and M are as in Theorem 1, then there is a
non-trivial kernel k, in Xp(CP'(3^)), for which equality holds in relation (8) and
therefore in relation (7).

The indices appearing in relations (7), (8) and (10) are best possible in the
following sense. Letq, r, s and / be indices with the property that, whenever M and 3tf
are as in Theorem 1, then there exists a constant D, possibly depending on M and 34?,
such that

r,s\\^\\q,r,s)\ 01)

for all ^(^)-valued kernels k on M x M. Then

s = r', and / > max (2, q, s).

Conversely, if the indices satisfy these conditions, then it follows from Corollary 2 that
inequality (11) holds with D = 1; moreover, the resulting inequality is sharp. We omit
the proofs of these facts.

Note added in proof. After this paper was accepted, we learned of the paper
" On the membership of integral operators in classes Sp forp^l ", by G. E. Kar-
adzhov (Problemy Matematicheskogo Analiza, No. 3: Integral'nye i DifferentsiaTnye
Operatory. Differentsial'nye Uravneniya, pp. 28-33, 1972; English translation in
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J. Soviet Math., 1 (1973), 200-204). Karadzhov deals only with scalar-valued kernels,
and uses the real interpolation method to derive generalizations of our inequality
(10). In particular, inequality (10) is a special case of the final inequality in
Karadzhov's paper, except that, in the latter paper, an unspecified constant occurs
in the right side of the inequality. This constant can be chosen to be independent of
the underlying measure spaces, however, and this fact can be used as in [4; Lemma 5]
to show that the constant can in fact be chosen to be 1. There seem to be serious
difficulties in deriving our Theorem 1, even for scalar-valued kernels, by Karadzhov's
method. On the other hand, the methods of the present paper can be used to generalize
Karadzhov's results to the context of operator-valued kernels.
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