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Abstract

After three decades of amazing progress made in molecular studies of plant-microbe interactions 

(MPMI), we start to ask ourselves “what are the major questions still remaining?” as if the puzzle 

has only a few pieces missing. Such an exercise ultimately leads to the realization that we still 

have many more questions than answers. Therefore, it would be an impossible task for us to 

project a coherent “big picture” of the MPMI field in a single review. Instead, we provide our 

collection of opinions on where we would like to go in our own research (Figure 1) as an invitation 

to the community to join us in this exploration of new frontiers of MPMI.
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Extracellular immunity at the battlefront of plant defense

Plants encounter a great number of microbes with different lifestyles during their lifetime. 

The extracellular microbes, from beneficial to pathogenic, are the first challenge faced by 

the plant immune system. Plants could launch immunity to restrict the colonization and 

entry of these microbes (Melotto et al., 2006; Boller and He, 2009; Hawes et al., 2012). At 

the same time, some of these beneficial microbes and successful pathogens have evolved 

sophisticated strategies to either evade or actively disrupt these surveillance mechanisms 

(Liang et al., 2013; Melotto et al., 2006; 2017), thereby achieving successful colonization 

and entry into plants.

At this battlefront, stomatal immunity against leaf-associated microbes and rhizospheric 

immunity against root-associated microbes are essential layers of the plant’s extracellular 

defense system. Even after entry into plants, many plant pathogens proliferate in the 

apoplastic space outside of plant cells. Therefore, immune responses that occur in the 

apoplast can also be considered extracellular immunity. Significant progress has been made 

in understanding the immune mechanisms in aerial tissues (Melotto et al., 2006; Boller and 

Felix, 2009; Zeng and He, 2010; Zeng et al., 2011; Dubiella et al., 2013; Gao et al., 2013; 

Kadota et al., 2014; Li et al., 2014; Liang et al., 2018; Sun and Zhang, 2020; Zhou and 

Zhang, 2020). However, in roots, with constant exposure to soil microbes, how plants 

differentiate beneficial microbes from pathogenic ones and establish rhizospheric immunity 

remain mostly unknown.

Stomatal immunity

Stomata are natural pores surrounded by specialized guard cells that control gas exchange 

and water loss in plants. They are typically found in the leaf epidermis and play a critical 

role in plant growth and development. However, they also provide natural openings for entry 

of some filamentous and bacterial pathogens (Melotto et al., 2006; Zeng and He, 2010; Zeng 

et al., 2011). Upon contact, conserved molecular signatures derived from microbes, named 

microbe-associated molecular patterns (MAMPs) (Ausubel, 2005; Boller and Felix, 2009) 

are recognized by plant surface pattern-recognition receptors (PRRs). The perception of 

MAMPs induces stomatal closure, which is important for restricting the entry of microbes 

lacking a penetration apparatus (Melotto et al., 2006; Thor et al., 2020; Ye et al., 2020). 

MAMP perception also triggers complicated crosstalk of multiple plant hormone signaling 

pathways. It has been well-documented that the plant hormone abscisic acid (ABA) can 

induce stomatal closure (Sirichandra et al., 2009; Joshi-Saha et al., 2011), whereas a 

derivative of jasmonate (JA), (+)-7-iso-jasmonoyl-L-Ile (JA-Ile), induces stomatal opening 

(Okada et al., 2009). In addition, salicylic acid (SA)-deficient mutants exhibit compromised 

stomatal defense mechanisms, indicating a positive role of SA in stomatal defense (Melotto 

et al., 2006; Zeng and He, 2010; Zeng et al., 2011).

Besides MAMP perception, stomatal development mediated by the ERECTA (ER)-YODA 

(YDA) signaling pathway also indirectly contributes to plant immunity (Nadeau, 2009; 

Shpak et al., 2005; Meng et al., 2015). Moreover, this signaling pathway can act in parallel 

with the canonical PRR signaling pathway to confer broad-spectrum immunity with the ER 
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serving to also recognize yet-to-be-identified MAMPs (Godiard et al., 2003; Llorente et al., 

2005; Adie et al., 2007; Shpak, 2013; Häffner et al., 2014; Sopeña-Torres et al., 2018). 

These findings indicate dual roles of ER-YDA signaling in stomatal development and 

immunity, and suggest that the key regulators of stomatal development might be co-opted for 

stomatal immunity during evolution to resolve the dilemma of stomata allowing gas 

exchange as well as pathogen entry.

To counteract plant immune responses, successful foliar pathogens and some beneficial 

microbes have evolved strategies to interfere with stomatal immunity. Several pathovars of 

Pseudomonas syringae produce the phytotoxin coronatine (COR) to induce an interaction 

between CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM-DOMAIN 

proteins (JAZs). This induced interaction triggers the degradation of JAZs and the activation 

of NO APICAL MERISTEM [NAM], ARABIDOPSIS TRANSCRIPTION ACTIVATION 

FACTOR [ATAF], AND CUP-SHAPED COTYLEDON [CUC] (NAC) transcription factors 

(TFs), thereby inhibiting the accumulation of SA and promoting stomatal opening (Chini et 

al., 2007; Thines et al., 2007; Yan et al., 2007, 2009; Katsir et al., 2008; Melotto et al., 2008; 

Sheard et al., 2010; Zheng et al., 2012; Gimenez-Ibanez et al., 2017; Melotto et al., 2017). 

COR also targets the Arabidopsis RPM1-INTERACTING4 (RIN4) and plasma membrane H
+-ATPases, AUTOINHIBITED H(+)-ATPASE ISOFORM 1 (AHA1) and AHA2, to induce 

stomatal opening (Zhang et al., 2008a; Liu et al., 2009).

Bacterial pathogens secrete effectors to prevent stomatal closure triggered by the perception 

of MAMPs. The P. syringae effectors HopZ1, AvrB, and HopX1 all target COI1-JAZ 

complexes to promote stomatal opening (Jiang et al., 2013; Gimenez-Ibanez et al., 2014; 

Lee et al., 2015; Ma et al., 2015; Zhou et al., 2015b). HopF2 has been reported to target the 

MITOGEN-ACTIVATED PROTEIN KINASE KINASE 5 (MAPKK5), BRI1-

ASSOCIATED RECEPTOR KINASE 1 (BAK1), and RIN4 to suppress MAMP-induced 

stomatal closure (Wang et al., 2010; Wilton et al., 2010; Hurley et al., 2014; Zhou et al., 

2014). The Xanthomonas oryzae effector XopR targets the Arabidopsis RESPIRATORY 

BURST OXIDASE HOMOLOG D (RBOHD) and interferes with stomatal defense (Wang et 

al., 2016). The examples of pathogen effector-mediated evasion of stomatal immunity 

reinforce its important function in plant defense.

Developmentally related to stomata, hydathodes found in leaves of many plants direct the 

colonization of phytopathogens into the xylem, including Xathomonas campestris (Cerutti et 

al., 2017). Although hydathode pores do not respond to flagellin treatment, it remains 

unclear whether hydathodes contribute to sensing and restriction of microbial entry.

Rhizospheric immunity

Although less understood than leaf defense, it is conceivable that the plant rhizosphere is 

equipped with sophisticated immune mechanisms to differentiate commensal and beneficial 

microbes from pathogens to allow normal interactions with microbes that are important for 

plant health.
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Extensins are cell wall glycoproteins that are predominantly expressed in plant roots and 

play an essential role in plant defense (Esquerré-Tugayé et al., 1979; Merkouropoulos and 

Shirsat, 2003). The composition and structure of extensins in the roots of infected plants 

undergo significant alterations upon the perception of pathogenic microbes (Xie et al., 2011; 

Plancot et al., 2013; Wu et al., 2017b), resulting in the strengthening of the plant cell wall to 

restrict infection. In addition to playing a direct role in modulating the structure and rigidity 

of the cell wall, extensins and extensin-like molecules are secreted into the rhizosphere and 

extracellular rhizospheric mucilage (Koroney et al., 2016).

Besides molecules like extensins, border cells are detached cell populations released from 

the root tip into the rhizosphere (Hamamoto et al., 2006; Hawes et al., 2012). Pathogenic 

infection can cause an increase in the release of border cells from the root tip (Zhao et al., 

2000; Cannesan et al., 2011; Hawes et al., 2012). Accumulating evidence indicates a 

potential role of border cells in attracting or repelling certain microbes (Gunawardena et al., 

2005; Curlango-Rivera and Hawes, 2011; Driouich et al., 2013). Border and border-like cells 

secrete mucilage containing antimicrobial molecules, polysaccharides, and extracellular 

DNAs (exDNAs). Both treatment of roots with DNase I and mutating the pathogen’s 

exDNase-encoding genes reduce root tip immunity, suggesting a positive role of exDNAs in 

root immunity (Curlango-Rivera et al., 2013; Hawes et al., 2016; Tran et al., 2016). What are 

the functional mechanisms of exDNAs in the process? Do attraction and repulsion of 

microbes confer specificity? How is specificity achieved? These are major questions that 

remain to be addressed.

Extensins and extensin-like molecules, together with root border and border-like cells, have 

been proposed to form the “root extracellular trap” that functions as a defense network 

(Brinkmann et al., 2004; Driouich et al., 2013). Additional components that contribute to the 

formation of root extracellular trap await further investigation. This protective network has 

potential roles in eliminating pathogenic microbes and facilitating the attachment of 

beneficial microbes (Brinkmann et al., 2004; Driouich et al., 2013). Secreted extensins and 

extensin-like molecules can interact with pectins and arabinogalactan proteins to reinforce 

the mucilage network, thus weakening the attachment of pathogenic microbes to plant roots 

(Oosterveld et al., 2002; Immerzeel et al., 2006; Cannesan et al., 2012). During a symbiotic 

interaction, the accumulation of extensins in infected nodules suggests their putative roles in 

facilitating the attachment of beneficial microbes (Sujkowska-Rybkowska and Borucki, 

2014). It remains unknown whether secreted extensins, and extensin-like molecules could 

serve as signals to modulate microbial behavior. The underlying mechanisms of the root 

extracellular trap in mediating the interactions with soil microbes await further investigation.

Apoplastic immunity

The apoplast is an enclosed active battle field between plants and microbes and is one of the 

first environments encountered after pathogen invasion inside the plant body. The plant cell 

wall is a formidable physical barrier that restricts pathogen colonization. Pathogen attack 

usually triggers modifications in the plant cell wall and alterations in cell wall integrity 

(Malinovsky et al., 2014; Bacete et al., 2018; De Lorenzo et al., 2019). The deposition of 

callose at infection sites is a typical defense response, strengthening the plant cell wall 
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(Stone and Clarke, 1992). Pathogens secrete cell wall-degrading enzymes to modify or 

hydrolyze cell wall components. The impairment of integrity and degradation of cell walls 

produces damage or pattern signals that are sensed by plants to activate immune signaling, 

indicating an active role of the plant cell wall in immunity, rather than a passive role as a 

barrier only (Malinovsky et al., 2014; Bacete et al., 2018; De Lorenzo et al., 2019).

In the addition to the cell wall, plants also secrete pathogenesis-related (PR) proteins, lytic 

enzymes and antimicrobial secondary metabolites into the apoplastic space upon pathogen 

challenge to restrict the colonization of both foliar and rhizospheric microbes (van Loon et 

al., 2006; Shabab et al., 2008; van Esse et al., 2008). Some MAMPs buried within 

supramolecular microbial surface structures or larger proteins need to be released by the host 

lytic enzymes for perception to occur (Liu et al., 2014; Buscaill et al., 2019). Therefore, 

these enzymes not only serve to destruct microbial structures, but also release immunogenic 

patterns to trigger plant defenses (Doehlemann and Hemetsberger, 2013; Liu et al., 2014; 

Jashni et al., 2015; Buscaill et al., 2019).

Roots are also capable of sensing MAMPs in the apoplastic space and mount immune 

responses (Millet et al., 2010; Beck et al., 2014; Wyrsch et al., 2015; Stringlis et al., 2018). 

However, perception of the immunogenic peptides flg22, nlp20, and the medium-chain 3-

hydroxy fatty acid are spatially restricted in Arabidopsis roots, with the differentiated zone 

exhibiting very low to no response (Zhou et al., 2020). It has also been observed that there is 

a higher expression of PRR genes in the inner cellular layers than in the outer cellular layers 

of Arabidopsis roots (Beck et al., 2014). The lack of flagellin responsiveness correlates with 

the lack of FLAGELLIN SENSING 2 (FLS2) expression in the differentiated zone. Laser-

induced cell ablation of small clusters of cells was shown to be sufficient to induce FLS2 
expression and confer MAMP responsiveness in neighboring cells (Zhou et al., 2020). These 

observations suggest a spatial differentiation of immune responses in root cells that provides 

a strategy to reduce their responsiveness to beneficial and free-living microbes, while 

enabling the initiation of specific and strong immune responses to pathogenic microbes 

through damage associated with the infection. The results highlight the interplay between 

stresses and suggest a “damage-gated” mechanism for differential response to beneficial and 

pathogenic microbes.

Microbes employ diverse strategies to evade or disrupt host recognition in the apoplast. 

Some of them evade host recognition via the divergence of MAMPs. For instance, the 

nitrogen-fixing symbiont Sinorhizobium meliloti possesses variations in the core sequences 

of flagellin, evading recognition by the flagellin receptor FLS2 in Arabidopsis (Felix et al., 

1999). Another common strategy to suppress apoplastic immunity is through disruption of 

the recognition of MAMPs by their cognate receptors. Foliar pathogens can secrete effector 

proteins into the apoplast to achieve this goal. For example, some P. syringae and P. 
aeruginosa strains secrete the alkaline protease AprA that is capable of degrading flagellin 

monomers, thereby inhibiting flagellin perception (Bardoel et al., 2011; Pel et al., 2014). P. 
syringae can also secrete inhibitory molecules to suppress the activity of the plant β-

galactosidase 1, which functions to release immunogenic peptides from glycosylated 

flagellin (Buscaill et al., 2019). Moreover, P. syringae strains possess glycan polymorphisms 

on flagellin that can evade hydrolysis by plants (Buscaill et al., 2019). The fungal pathogen 
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Cladosporium fulvum secretes the chitin-binding effector proteins Avr4 and Ecp6 to prevent 

chitin hydrolysis or its recognition by the lysin motif domain-containing receptors (Van den 

Burg et al., 2006; de Jonge et al., 2010). Although less documented for their specific 

functions, AprA homologs and Ecp6-like proteins are present in a wide range of 

rhizospheric beneficial bacterial (Pel et al., 2014) and fungal species (Bolton et al., 2008). 

The soil-borne pathogen Verticillium dahliae secretes the polysaccharide deacetylase, 

VdPDA1, to deacetylate chitin oligomers and disrupt chitin perception by plants, providing 

evidence for the prevention of MAMP recognition by root-infecting fungal pathogens (Gao 

et al., 2019). In addition, the plant growth-promoting rhizobacterium Piriformospora indica 
produces the β-glucan-binding lectin, FGB1, to disrupt host perception of chitin (Wawra et 

al., 2016).

Besides proteins, microbes can also produce other molecules to suppress MAMP-activated 

immune response. Pseudomonas spp. uses organic acids to lower the environmental pH and 

inhibit flagellin-activated immune responses (Yu et al., 2019a) while Bradyrhizobium 
japonicum produces nodulation (Nod) factors to suppress MAMP-induced immune 

responses in soybean and Arabidopsis (Liang et al., 2013). Lipopolysaccharide of S. meliloti 
has been shown to suppress MAMP-induced reactive oxygen species (ROS) burst in 

Medicago truncatula (Scheidle et al., 2005; Tellstrom et al., 2007).

The above evidence demonstrates that the apoplast is a place where the battle between the 

pathogen and the host intensifies. Despite the progress, the mechanisms that prevent 

overstimulation of immune responses against beneficial and free-living microbes remain a 

challenging area for future research.

Sensing immunogenic signals by immune receptors on the cell surface

PRRs are also referred to as cell surface immune receptors that include a large number of 

receptor kinases (RKs) and receptor-like proteins (RLPs) (Tang et al., 2017; Zipfel and 

Oldroyd, 2017). In addition to MAMPs, PRRs also sense host-derived, damage-associated 

molecular patterns (DAMPs), such as structures that are released from plant cell walls, 

extracellular ATP and NAD (Choi et al., 2014; Wang et al., 2017a; Bacete et al., 2018). 

These immunogenic patterns are characteristic of a pathological state caused by pathogen 

invasion (Cook et al., 2015). In addition to MAMPs and DAMPs, plants also produce 

immune-modulating peptides called phytocytokines whose receptors either directly stimulate 

immune responses or interact with other PRRs to modulate immune responses (Gust et al., 

2017; Segonzac and Monaghan, 2019). Perception of immunogenic patterns by PRRs 

activates pattern-triggered immunity (PTI) which plays a key role in fending off potential 

pathogens.

Detailed analyses of several Arabidopsis PRRs, particularly FLS2, EF-TU RECEPTOR 

(EFR), and LysM-CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5), have uncovered 

molecular mechanisms underlying the activation of early signaling events downstream of 

PRRs. Associate with PRRs, receptor-like cytoplasmic kinases (RLCKs) including Botrytis-

Induced Kinase 1 (BIK1), PBS1-like kinases (PBLs), and BR-Signaling Kinase 1 (BSK1) 

directly connect PRRs to downstream components (Lu et al., 2010; Zhang et al., 2010; Shi et 
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al., 2013; Rao et al., 2018; Majhi et al., 2019). The phosphorylation state and/or stability of 

BIK1is regulated by MAP 4 kinase, PP2C, CPK28 and PLANT U-BOX PROTEIN 25 

(PUB25) and PUB26, allowing fine-tuning of responsiveness and degree of immune output 

(Monaghan et al., 2014; Couto et al., 2016; Wang et al., 2018a; Zhang et al., 2018). A recent 

study shows that BIK1 is also mono-ubiquitinated by E3 ubiquitin ligases RING-H2 

FINGER A3A (RHA3A) and RHA3B and that this modification is necessary for BIK1 to 

dissociate from PRRs and activate downstream signaling (Ma et al., 2020). Do different 

PRRs connect to the same RLCKs? A systematic analysis of RLCK higher order mutants 

showed that while some RLCKs are redundantly required for multiple PRRs, others are 

specifically required for particular PRRs (Rao et al., 2018). Unlike most other RLCKs that 

positively regulate PRR-dependent immunity, PBL13 negatively regulates FLS2 function 

(Lin et al., 2015). Moreover, BIK1 was also found to negatively regulate signaling mediated 

by RLP23, a receptor for the epitope nlp20 derived from fungal, oomycete and bacterial 

NLP proteins, through an unknown mechanism (Wan et al., 2019b).

Upon activation by PRRs, RLCKs phosphorylate downstream components, initiating an 

array of early signaling events including rapid influx of calcium ion, production of ROS, 

activation of heterotrimeric G proteins, and activation of MAP kinase cascades. BIK1 and its 

paralog in rice can phosphorylate several cyclic nucleotide-gated channels (CNGCs) to 

positively regulate calcium influx, although these findings only partially explain MAMP-

triggered calcium burst (Tian et al., 2019; Wang et al., 2019b). The increased calcium influx 

is profoundly important in immune activation, as a number of key immune regulatory 

proteins are directly regulated by calcium. These include calcium-dependent kinases 

(CDKs), RBOHs, TFs such as CALMODULIN BINDING PROTEIN 60-LIKE g and 

CAMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (Wang et al., 2009; Huang et 

al., 2020), CALCIUM-DEPENDENT PROTEIN KINASES (CPKs; Romeis et al., 2001) and 

calcium-dependent metacaspases (Hander et al., 2019; Shen et al., 2019). BIK1 also directly 

phosphorylates the N-terminus of RBOHD to promote the rapid production of ROS which 

serve as a secondary signal for immune activation (Kadota et al., 2014; Li et al., 2014). In 

contrast, PBL13 phosphorylates the C-terminus of RBOHD to promote its degradation and 

dampen its activity (Lee et al., 2020). BIK1 additionally phosphorylates components of 

heterotrimeric G protein complex including regulator of G protein signaling 1 and EXTRA 

LARGE G protein 2 (XLG2) to activate heterotrimeric G proteins (Liang et al., 2016; 2018). 

Furthermore, BIK1, multiple PBLs, and BSK1 phosphorylate specific residues in the C-

terminus or N-terminus of MAP kinase kinase kinases to activate MAP kinase cascades to 

induce defense (Yamada et al., 2016; Bi et al., 2018; Yan et al., 2018). Despite of these 

advances, we still know little about how these early signaling events are linked to 

downstream defense. For instance, what are the target proteins regulated by ROS and G 

proteins? How do these proteins regulate defense outputs?

Sensing microbial effector proteins inside the host cell

In addition to PRRs, plants also possess intracellular immune receptors that are nucleotide-

binding leucine-rich repeat receptors (NLRs; Jones et al., 2016). NLRs recognize pathogen 

effectors delivered into the host cell which are initially evolved as virulence factors. This 

layer of immunity has been referred to as ETI (effector-triggered immunity). The recognition 
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occurs either directly via a physical interaction between an NLR and an effector or indirectly 

via an interaction between an NLR and an effector-target protein in the host cell. NLR 

proteins can be broadly divided into three major classes based on the N-terminal domains: 

coiled-coil, TOLL-INTERLUKIN 1 RECEPTOR, or RPW8 and are thus called CNL, TNL, 

and RNL (Shao et al., 2016). Recent advances show that these NLRs play different roles in 

the perception of effectors and immune signaling. Some TNLs and CNLs act as singletons in 

effector perception and signaling, while others as physically interacting pairs, with one 

acting as an effector sensor, while the other serving as a helper for signaling (Adachi et al., 

2019b). RNLs are a small class of highly conserved NLRs divided into the N. benthamiana 
N requirement gene1 (NRG1) and Activated Disease Resistance 1 (ADR1) clades (Peart et 

al., 2005; Bonardi et al., 2011; Collier et al., 2011; Wang et al., 2011) and act downstream of 

all studied TNLs and some CNLs as “executors” of the hypersensitive response (HR) or 

salicylate (SA) production (Wang et al., 2011; Qi et al., 2018; Gantner et al., 2019; Lapin et 

al., 2019). Solanaceous plants carry an additional class of slow-evolving CNLs called NLR-

REQUIRED FOR CELL DEATH (NRCs) that function as a network required for the 

function of different sensor NLRs (Wu et al., 2017a).

Recent breakthroughs are starting to unveil mechanisms by which TNLs and CNLs activate 

immune signaling upon effector perception. Two reports show that the TIR domain of TNLs 

possesses the NADase activity upon dimerization, and an unidentified metabolite(s) 

generated in the reaction is proposed to act as a signal that functions through ENHANCED 

DISEASE SUSCEPTIBILITY 1 (EDS1) before activating NRGs and ADRs through 

unknown mechanisms (Horsefield et al., 2019; Wan et al., 2019a). Another study on ZAR1, 

a singleton NLR with a canonical coiled-coil domain, showed that, upon perception of 

effector activity, it oligomerizes to form a pentameric complex (Wang et al., 2019a, 2019c). 

In this complex, which was named the resistosome, the N-terminal α1 helix of ZAR1 forms 

a funnel-shaped structure, and the resulting pore on the plasma membrane has been found to 

be required for cell death and antibacterial immunity. The fact that the structural 

requirements for in vitro assembly of the resistosome are also required for effector-induced 

oligomerization observed in protoplasts supports the formation of the resistosome during 

immune activation. How does this pore-forming activity trigger cell death and immune 

responses? Does it simply cause cell lysis or create an ion channel? Is it also localized to the 

membranes of organelles? These are urgent questions to be addressed. The mechanism 

underlying ZAR1 resistosome-mediated immune signaling appears to be shared by a group 

of CNLs, including the N. benthamiana NRC proteins and some canonical CNLs, which 

carry a MADA-motif in the N-terminus, as this motif possess similar signaling activity as 

the ZAR1 α1 helix (Adachi et al., 2019a). The coiled-coil domain of RNLs, referred to as 

CCR in recent literatures, appear to have a comparable fold as ZAR1’s CC and may also 

form a pore on membranes, a possibility remains to be tested. This raises an interesting 

possibility that TNLs and CNLs may use analogous mechanisms for immune execution.

Cross-talk among different receptors and immune activation

It is increasingly clear that integration of different immunogenic signals is critical for proper 

plant immune output. Two very recent studies showed that activation of NLRs in the absence 

of PRR activation results in mild immune responses (Ngou et al., 2020; Yuan et al., 2020). 
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When both PRRs and NLRs are stimulated, the plant mounts strong defenses characterized 

by a much greater ROS production, defense gene transcription, the HR, and fully induced 

disease resistance. It appears that activation of the two classes of immune receptors can 

mutually potentiate each other in defense outputs. A study showed that activations of PRRs 

and NLRs give rise to overlapping phosphoproteomes, with some key signaling components 

phosphorylated at similar sites, suggesting a very early cross talk of PRR and NLR signaling 

pathways (Kadota et al., 2019). It is interesting to note that the BIK1-dependent 

phosphorylation is required but not sufficient for activating CNGCs, RBOHD, heterotrimeric 

G proteins, and MAP kinase kinase kinases (Kadota et al., 2014; Li et al., 2014; Liang et al., 

2016; Bi et al., 2018; Tian et al., 2019). It is possible that multiple inputs at the post 

translational level are required for the activation of these key signaling components. Indeed, 

activation of RBOHD also requires phosphorylation by CPKs and likely EF-hand-dependent 

calcium-binding in the N-terminus of this protein (Dubiella et al., 2013). Do PTI and ETI 

employ common signaling pathways? While RBOHD and MAP kinases are known to be 

required for both PTI and ETI (Katota et al., 2019; Su et al., 2018), whether additional PTI 

components are also required for ETI remains an outstanding question. In addition, it is 

unknown whether different signal inputs are integrated via direct receptor-receptor 

interactions or at the level of post-translational modification of signaling components.

Under field conditions, plants are frequently subjected to simultaneous infection with 

different pathogen classes. Cross talk among immune receptors/co-receptors also plays an 

important role in cross-protection during complex infections. A recent study shows that 

CERK1, a co-receptor for chitin, is associated with BAK1, which is a co-receptor for 

multiple proteinaceous PAMPs including flagellin (Gong et al., 2019). Infection of 

Arabidopsis plants with bacterial pathogens leads to a BAK1-dependent phosphorylation of 

CERK1 in the jaxtamembrane domain which potentiates chitin perception and antifungal 

immunity. Another receptor-like kinase, nuclear shuttle protein-interacting kinase1 (NIK1), 

is a positive player in anti-virus immunity. NIK1 interacts with FLS2, and the activation of 

FLS2 can lead to NIK1 phosphorylation to potentiate anti-viral immunity (Li et al., 2019a).

The observation of “damage-gated” MAMP perception in the differentiated zone of 

Arabidopsis roots represents another example of how different signals are integrated to 

activate defenses only in response to pathogen infection (Zhou et al., 2020). This unique 

control of immunity may be particularly important for root microbiota, as constant 

stimulation of immune responses is not desirable for the interaction with commensal or 

beneficial microbes. It is currently unknown, however, how cell damage leads to PRR gene 

expression in the neighboring cells, as application of known DAMPs failed to induce PRR 

expression in differentiated zone.

Defense mediated by noncanonical resistance genes

In contrast to PRRs and NLRs, other resistance proteins belong to diverse families and often 

confer broad-spectrum disease resistance. Durable resistance to soybean cyst nematode 

conferred by Rhg1 is linked to copy number variation in a gene cluster encoding an α-

soluble N-ethylmaleimide-sensitive factor attachment protein, a wound-inducible domain 

protein 12, and an amino acid transporter (Cook et al., 2012). Rhg1 exhibits strong epistatic 
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interaction with Rhg4, a serine hydroxy-methyltransferase, to confer full nematode 

resistance in the Peking background (Meksem et al., 2001; Liu et al., 2012). Broad-spectrum 

disease resistance can also be conferred by mutations in susceptibility genes (van Schie and 

Takken, 2014). For example, loss of function of rice Bsr-k, encoding a tetratricopeptide 

repeats protein, induces overaccumulation of defense related OsPAL mRNAs, resulting in 

resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Zhou et al., 2018). 

Naturally occurring transcription factor alleles, such as the rice Broad-Spectrum Resistance-
Dingu 1 (Bsr-d1), can confer broad-spectrum resistance (Li et al, 2017). The rice Ideal Plant 
Architecture 1 (IPA1) gene encodes a SQUAMOSA promoter binding protein-like (SPL) 

transcription factor (Jiao et al., 2010; Miura et al., 2010). The ipa1–1D allele is resistant to 

targeting by miR156 and miR5269, resulting in higher IPA1 transcript and protein 

accumulation (Jiao et al., 2010; Wang et al., 2015b). The presence of ipa1–1D is able to 

increase both yield and disease resistance to the fungal pathogen Magnaporthe oryzae (Wang 

et al., 2018b). Phosphorylation changes this transcription factor’s DNA binding specificity; 

unphosphorylated IPA1 binds the DEP1 promoter to enhance growth and yield, whereas 

phosphorylated IPA1 binds the WRKY45 promoter to enhance defense gene expression 

(Wang et al., 2018b). This elegant example illustrates how a mechanistic understanding of 

broad-spectrum resistance can be used to enhance crop production. In wheat, WHEAT 
KINASE START1 (WKS1) encodes a kinase fused to a START lipid-binding domain and 

renders partial resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Fu et al., 

2009). WKS1 localizes to chloroplasts where it phosphorylates a thylakoid-associated 

ascorbate peroxidase, reduces the ability of the cells to detoxify ROS and contributes to 

death of infected cells (Gou et al., 2015). Another noncanonical resistance gene Yr19/Lr34/
Sr57/Pm38 encodes an abscisic acid ABC transporter and controls partial resistance against 

powdery mildew, leaf rust, stripe rust, and stem rust (Krattinger et al., 2019). Yr46/Lr67/
Sr55/Pm39 encodes a nonfunctional hexose transporter that confers partial resistance to 

powdery mildew and all three wheat rusts (Moore et al., 2015). Fhb7 encodes a glutathione 

S-transferase that confers broad resistance to Fusarium species by detoxification of 

trichothecenes, such as the deoxynivalenol (DON) toxin in Fusarium graminearum (Wang et 

al., 2020). It seems that each of these noncanonical resistance genes mediate unique defense 

mechanisms. Additional studies are required to elucidate which directly perceive the 

presence of the pathogen and how they activate disease resistance.

An emerging class of broad-spectrum disease resistance genes encode tandem kinase 

proteins (TKPs), which represent a novel protein family that is widely present in the plant 

kingdom (Klymiuk et al., 2018). TKPs evolved by either duplication or fusion of two kinase 

domains, with the most common functional domains belonging to WALL ASSOCIATED 

KINASEs (WAK) and cysteine-rich kinases. Wheat tandem kinase 1 (WTK1) possesses a 

kinase-pseudokinase domain architecture and is likely derived from a fusion of WAK and 

RLCK subfamily VIII domains. WTK1 confers broad-spectrum resistance against more than 

3,000 genetically diverse Puccinia striiformis f. sp. tritici isolates (Klymiuk et al., 2018). 

WTK3 also possesses a kinase-pseudokinase domain architecture and confers resistance to 

powdery mildew caused by Blumeria graminis f. sp. tritici (Lu et al., 2020). WTK2 and 

barley RPG1 possess tandem kinase domains and confer resistance to wheat and barley stem 

rusts, respectively (Brueggeman et al., 2002; Chen et al., 2020). Many outstanding questions 
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remain about this novel class of resistance genes. How are effector(s) or pathogen 

components recognized? Do pseudokinase domains serve as decoys for pathogen effectors? 

What downstream signaling events are initiated by diverse TKPs? Does TKP function 

extend beyond immunity?

Immune responses in vascular tissue

Not only can diverse pathogens of all classes infect plants, but also their distribution and 

disease phenotypes are variable within a tissue. Various plant pathogens are capable of 

colonizing specific host tissues and some of them can invade into distinct vascular cell types. 

Phloem-limited pathogens comprise vector-borne viruses and bacteria whose distribution is 

influenced by climate change and interconnected with production practices (Juroszek et al., 

2020). Bacterial and fungal pathogens such as Xylella, Ralstonia, Clavibacter, Fusarium, and 

Verticillium employ diverse strategies, including vector transmission, root invasion, and 

seed/wound entry, to gain entry into and colonize xylem vessels (Michielse and Rep, 2009; 

Bae et al., 2015).

Fundamental questions remain about mechanisms regulating plant immune responses to 

pathogens that colonize vascular tissues. Multiple NLR immune receptors have been 

identified that recognize effectors from xylem-colonizing pathogens. They include RPS4/

RRS1-R and ZAR1 that recognize the bacterial pathogens R. solanacearum and 

Xanthomonas campestris, respectively (Narusaka et al., 2009; Wang et al., 2015a). Using a 

split-GFP system to visualize effector delivery early during infection, the recognized R. 
solanacearum effector PopP2 accumulated in the nuclei of host cells surrounding the site of 

lateral root emergence, which correlates with sites of invasion before xylem entry (Henry et 

al., 2017). The soilborne fungus Fusarium oxysporum f. sp. lycopersici (Fol) is recognized 

in tomato by two surface localized immune receptors (the receptor like protein I and the 

receptor like kinase I-3) as well as one intracellular NLR (I-2) (Takken and Rep, 2010). 

Tomato lines with the surface localized immune receptors I and I-3 were more effective at 

restricting fungal spread than the NLR I-2, but all three only inhibited colonization after 

Fusarium reached xylem tissues (van der Does et al., 2019). These intriguing results expose 

multiple outstanding questions: What plant cell types are responsible for immune 

perception? Are specific cell types targeted for effector delivery?

The phloem environment contains carbohydrates, proteins, amino acids, and sugars, 

representing a specialized niche for pathogens. Some of the most devastating plant 

pathogens and insects reside and feed, respectively, in phloem sieve elements including the 

bacterium Ca. Liberibacter asiaticus that has severely impacted the citrus industry 

worldwide, causing billions of dollars in economic losses (Wang et al., 2017b). To fight 

infection, the phloem transports mobile defense signals required for systemic acquired 

resistance (SAR) and systemic wound responses. Recent studies on glutamate, which acts a 

DAMP, provided striking images of the speed and systemic spread of calcium after 

glutamate perception (Toyota et al., 2018). Waves of Ca2+, electrical signals, and ROS form 

a network to promote rapid systemic signaling in plants (Choi et al., 2016). Phloem-specific 

forisomes and P proteins are also activated by Ca2+, rapidly expand in size, and have been 

hypothesized to occlude sieve pores (Knoblauch et al., 2014). However, detailed 
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investigation of SEOR (sieve element occlusion-related) P proteins did not reveal alterations 

in phloem translocation and future studies will be required to understand their physiological 

roles (Knoblauch et al., 2014). Callose deposition at sieve plates and plasmodesmata is a 

common defense in response to pathogens and insect feeding which blocks viral spread, but 

not movement of Ca. Liberibacter (Hao et al., 2008; Achor et al., 2020). The distribution of 

the bacterial pathogens, phytoplasmas, and Ca. Liberibacters in the vascular tissue cannot be 

completely explained by source-sink relationships either. Future research is required to 

understand how both pathogens and the host alter tissue tropism during an infection.

It remains unclear if phloem sieve elements or companion cells are capable of direct 

pathogen recognition through PRRs or NLRs. There is evidence that phloem-feeding insects 

can trigger plant immunity while possessing effectors that suppress defense responses. 

Hemipteran insects use their stylets to occasionally pierce host cells to sample plant 

material, feed from the phloem, and secrete watery saliva (Tjallingii, 2006; Will et al., 

2009). Watery saliva not only contains MAMPs from bacterial symbionts and pathogens that 

can be perceived by the host, but also contains insect effectors that manipulate host 

physiology and suppress defense (Chaudhary et al., 2014; Elzinga et al., 2014). For plant 

defense, a cluster of three lectin receptor kinases were found to confer resistance to both the 

brown and the white back planthopper insect pests (Liu et al., 2015). Future research 

identifying additional RLKs or RLPs involved in active perception of piercing-sucking 

insects and studying their role in controlling plant disease would be a significant advance in 

our understanding of immune responses.

Investigating heterogeneity of immune responses within tissues and cells

Variations in cellular responses and tissue types determine the outcome of plant-pathogen 

interactions. Heterogeneity in pathogen distribution and thus uneven targeting of host cells 

during infection must influence plant responses. For example, microscopy analyses with 

fluorescently tagged P. syringae reveal preferential colonization of particular sites 

(substomatal cavity, epidermal cell junctions) (Boureau et al., 2002; Rufián et al., 2018). The 

fungal pathogen Ustilago maydis induces tumor formation in aerial maize organs by 

deploying distinct effectors for colonization and virulence in specific organ types 

(Hemetsberger et al., 2012; Schilling et al., 2014).

One of the most striking demonstrations of the spatial and temporal dynamic of a plant 

defense response occurs during a typical ETI, where effector-triggered cell death is sharply 

restricted to the site of infection. The cell death and survival decision is modulated through 

the spatial and temporal expression of SA and JA at the infection site and in surrounding 

cells (Enyedi et al., 1992; Liu et al., 2016; Betsuyaku et al., 2018) through the interplay of 

NONEXPRESSOR of PR (NPR) proteins (Fu et al., 2012; Liu et al., 2016; Zavaliev et al., 

2020). In the Zavaliev et al., (2020), the authors found that many NLRs as well as 

downstream signaling components, such as EDS1, are sequestered in the SA-induced NPR1 

condensates (SINCs) in the cytoplasm of cells surrounding the ETI-induced cell death zone. 

How SA triggers the dynamic formation of SINCs will require future research using 

technologies with higher resolutions.
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Recent advances in single cell RNA-seq, coupled with live cell imaging of reporter lines 

could facilitate an understanding of how plants dynamically respond to infection (Denyer et 

al., 2019) to address the questions: How many distinct response clusters occur within a leaf? 

What is the gradient in PRR and NLR responses in cells directly targeted by pathogen 

effectors, and in cells proximal and distal to pathogens?

Response to pathogen infection is not uniform even within a cell. For example, the average 

diameter of P. syringae cells are 1.2 μm, compared with 15–35 μm for the spongy mesophyll, 

40–80 μm for the palisade mesophyll, and 10–200 μm for an epidermal pavement cell in 

fully expanded Arabidopsis leaves (Melaragno et al., 1993; Monier and Lindow, 2003; 

Wuyts et al., 2010). Visualization of P. syringae effector delivery using a split-GFP system 

revealed that membrane localized effectors are delivered in small stretches surrounding the 

plasma membrane and rarely exhibit uniform distribution (Henry et al., 2017; Park et al., 

2017). Multiple filamentous pathogens deliver effectors at the haustorial interface (Bozkurt 

and Kamoun, 2020). Plant organelles cluster at this interface, which may facilitate localized 

defense (Bozkurt and Kamoun, 2020). Selective autophagy is also deployed at the haustorial 

interface to counteract pathogen invasion (Dagdas et al., 2018; Bozkurt and Kamoun, 2020). 

As pathogen-induced modification of individual host cells is not uniform, the corresponding 

host response may also be compartmentalized.

There is accumulating evidence for localized plant responses. Chitin responses in 

Arabidopsis plasmodesmata require the RLKs, LYK4 and LYK5, as well as LYSM-

CONTAINING GPI-ANCHORED PROTEIN 2 (LYM2) (Faulkner et al., 2013; Cheval et al., 

2020). Chitin-induced plasmodesmatal closure results in dynamic changes in the association, 

mobility and localization of all three proteins, but only LYM2 and LYK4 are found in the 

plasmodesmatal plasma membrane (Cheval et al., 2020). In response to osmotic stress, the 

receptor like kinases Qiān Shŏu kinase (QSK1), inflorescence meristem kinase 2, and 

CYSTEINE RICH RECEPTOR LIKE KINASE 2 (CRK2) rapidly relocate and cluster to 

plasmodesmata pores (Grison et al., 2019; Hunter et al., 2019). The flagellin receptor FLS2 

and the brassinosteroid receptor BRASSENOSTERIOD INSENSITIVE 1 (BRI1) localize to 

distinct membrane microdomains, despite these two receptors requiring the same co-receptor 

BAK1 (Bücherl et al., 2017). The differential organization of FLS2 and BRI1 in the plasma 

membrane may facilitate differentiation between pathogen perception and steroid-mediated 

growth. Taken together, these data highlight that the reorganization of receptor kinases to 

distinct membrane domains and subcellular compartments are important layers regulating 

the specificity and response to the perception of pathogens and abiotic stresses. Future 

research investigating spatial and temporal responses in plant immune signaling in the 

context of pathogen localization will shed light onto how plants are capable of integrating 

rapid, robust, and specific responses to different stimuli.

Translational regulation is a critical layer of control in plant immune 

induction

Besides the knowledge gaps outlined above, another major blind spot in the plant immune 

signaling network is translational regulation. This might be due to the intrinsic complexity of 
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the translational process as well as technical limitations in examining the multitude of 

players involved. However, recent applications of sequencing technology to studies of 

ribosomal footprinting on mRNAs (Ribo-seq) (Ingolia et.al, 2009), tRNA levels (Zheng et 

al, 2015a), mRNA modifications (e.g., m6A) (Dominissini et al., 2012; Meyer et al., 2012), 

as well as in vivo RNA secondary structures (Ding et al., 2014) have made genome-wide 

investigation of how plants regulate protein production during defense a distinct possibility.

During an infection, the host and the pathogen may compete for access to the host 

translational machinery. The extreme case on the pathogen side are viruses which rely on the 

host ribosomes for viral protein synthesis. Various RNA viruses carry internal ribosome 

entry site (IRES) elements in their genomes that recruit host ribosomes to translate viral 

RNA despite the absence of a 5’ cap (Martinez-Salas et.al., 2017) required for normal 

translation initiation in eukaryotes. Perturbation of host metabolism by the pathogen 

(Scheideler et al., 2002; Ward et al., 2010; Aliferis et al., 2014; Misra et al., 2016; 

Schwachtje et al., 2018; Yoo et al., 2020) may be an early signal for mounting defense by 

selectively translating preexisting mRNAs encoding defense proteins. How these defense 

mRNAs are chosen, whether their translation is at the expense of those involved in growth-

related activities, and if there is a correlation between transcriptional and translational 

regulation need to be addressed.

While examining proteomic changes during a pathogen infection would be the most direct 

way to tackle the aforementioned questions, this approach currently has significant technical 

limitations. Jones et al. (2006) took the challenge and performed two-dimensional gel 

electrophoresis on Arabidopsis inoculated with the virulent bacterial pathogen PstDC3000, 

the mutant version of PstDC3000, hrpA, which exclusively activates PTI, or PstDC3000 

carrying the effector AvrRpm1 which induces ETI. The study detected changes in proteins 

enriched in defense-related antioxidants and metabolic enzymes and discovered that changes 

in these proteins occurred prior to significant transcriptional reprogramming, indicating the 

presence of translational regulation in early immune responses.

Before such a proteomic analysis becomes more accessible, Ribo-seq has been used to 

estimate translational activity of mRNAs through their association with ribosomes (Ingolia 

et.al, 2009). Essentially, the amount of mRNA pulled down with the ribosome is compared 

with the total mRNA level to calculate the translation efficiency (TE). Xu et al. (2017a) 

performed Ribo-seq on Arabidopsis after treatment with the MAMP signal, elf18. This study 

was inspired by the earlier finding of Pajerowska-Mukhtar et al. (2012) that translation of 

the key immune transcription factor, TBF1, is tightly controlled by the 5’-leader sequence 

(5’-LS) of its mRNA. Consistent with the Jones et al. (2006) findings, Xu et al. (2017a) 

found no significant correlation (r = 0.41) between the elf18-mediated translational changes 

and transcriptional dynamics, indicating that translational reprogramming is a distinct 

regulatory step in PTI induction.

What is the regulatory mechanism of this translational reprogramming during PTI? In yeast, 

mammals, and plants, stresses such as amino acid starvation could lead to an overall 

decrease in translational activity, but an increase in translation of stress-responsive proteins 

such as GCN4 in yeast and ATF4 in mammals (Hinnebusch, 2005; Lageix et al., 2008; 
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Kilberg et al., 2009). This integrated stress response is conserved across eukaryotes and is 

carried out by GCN2 (or other kinases in mammals)-mediated phosphorylation and the 

consequent inactivation of the translation initiation factor eIF2α (P-eIF2α), allowing the 

ribosome to bypass the inhibition of upstream open reading frames (uORFs) and reach the 

downstream main ORFs (mORFs) (Hinnebusch, 2005; Lageix et al., 2008; Zhang et al., 

2008b; Kilberg et al., 2009). Surprisingly, several plant studies found that blocking eIF2α 
phosphorylation in the gcn2 knockout mutant did not affect immunity-induced translational 

reprogramming (Luna et al., 2014; Xu et al., 2017a; Izquierdo et al., 2018). For example, 

elf18-induced TBF1 translation, which is controlled by uORFs in the 5’-LS, and pathogen 

resistance were appropriately induced in the gcn2 background (Xu et al., 2017a). Moreover, 

elf18 treatment did not significantly alter the overall translational capacity. Though Liu et al. 

(2019) found that GCN2 plays a role in stomatal immunity through ABA, the majority of the 

current data suggest a novel mechanism in reprogramming translatome during plant immune 

responses.

To elucidate this translational regulatory mechanism, Xu et al. (2017a) searched for 

sequence features, namely consensus sequences and uORFs, that are associated with 

mRNAs whose translation is induced during PTI. This search led to the discovery of a 

significantly enriched consensus sequence consisting of mostly purines (“R-motif”) in the 

5’-LSs of those mRNAs and found that the R-motif is not only necessary, but also sufficient 

for PTI-induced translation. One mRNA feature that Xu et al. (2017a) did not attempt to 

search for was conserved secondary structure because the prediction algorithms at that time 

could not accurately reflect the in vivo RNA structural dynamics during stress responses 

(Ding et al., 2014). Recent developments of in vivo RNA structure probing technologies, 

such as SHAPE-MaP (Smola and Weeks, 2018), will ultimately enable visualization of RNA 

structural dynamics inside living cells, which has been shown to be critical in explaining 

how uORF mediates translation of the mORF (Gunisova and Valasek, 2014; Corley et al., 

2017).

The identification of the R-motif in the 5’-LSs of mRNAs with enhanced TE during PTI 

suggests that its associated protein(s) may play a role in selecting these mRNAs for 

translation. Poly(A)-binding proteins (PABPs) can bind to the R-motif and affect basal as 

well as elf18-induced translation (Xu et al., 2017a). Since PABPs link the poly(A) tail of a 

mRNA to its 5’ cap through interaction with eIF4G and eIF3 to facilitate translation 

initiation (Sonenberg and Hinnebusch, 2009; Jackson et al., 2010), it is plausible that the 5’ 

R-motif serves as a cap-independent translation enhancer (CITE) (Shatsky et al., 2018). 

Indeed, in yeast, cap-independent translation of mRNAs involved in invasive growth induced 

by nutrient deprivation was found to require recruitment of the poly(A)-binding protein 1 

(Pab1) by an A-rich element in the 5’ untranslated regions of these mRNAs (Gilbert et al., 

2007).

Besides specialized mRNA features that might serve as CITEs, different components of the 

translational machinery may be used specifically for translating stress responsive proteins. 

Through a genetic study performed in Arabidopsis, Izquierdo et al.（2018）found a yeast 

GCN1 homolog named NOXY7 to act through GCN20, instead of GCN2-P-eIF2α, in 

mediating translation in response to mitochondrial dysfunction, high boron concentration, 
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and infection by PstDC3000. Future biochemical, proteomic, and genetic studies will lead to 

identification of more such stress-specific components of the translational machinery.

Recruitment of stress-specific components and/or modifications of the translational 

machinery is also likely to control translation during ETI that occurs when a pathogen 

effector is detected by an NLR. Since ETI often leads to programmed cell death, it was 

surprising that no significant global changes in polysome profiles were observed by either 

Meteignier et al. (2017) who examined Arabidopsis 2 hr after dexamethasone-induced 

expression of the bacterial effector AvrRpm1 gene or by Yoo et al. (2020) who performed 

the experiment 8 hr after inoculation with Ps pv. maculicola ES4326 carrying avrRpt2 (Psm 
ES4326/avrRpt2). Moreover, while Meteignier et al. (2017) observed a moderate level of 

overlap between transcriptionally and translationally induced genes (77%), Yoo et al. (2020) 

found a significant correlation (r = 0.92) between the two activities. It is intuitive to 

conclude that during ETI, transcriptional induction is the major driving force that defines the 

ETI proteome. The counter argument may be that since transcription and translation occur in 

distinct cellular compartments, a good correlation suggests an intricate interplay between the 

two separately regulated processes. How plants reprogram the proteome without 

significantly altering the overall translational capacity will be a fascinating question which 

may be addressed through identification of ETI-specific translation regulators.

What kinds of genes are translationally regulated during PTI and ETI? For those found 

during PTI, gene ontology (GO) term analyses did not provide a clear answer, probably 

because the current GO terms were mostly defined by transcriptional dynamics. However, 

these “first responders” to pathogen challenge are most likely translated from preexisting 

mRNAs without the involvement of transcriptional regulation. Though they do not have the 

“defense” GO term yet, many of them (e.g., TFs and enzymes) were found to be critical for 

PTI (Xu et al., 2017a). In contrast to the PTI translatome analysis, identification of 

translationally regulated genes during ETI was more difficult due to the strong correlation 

between transcriptional and translational activities. Perhaps for this very reason, “defense” 

GO terms turned out to be more helpful in narrowing down the candidate gene list in ETI. 

Genes involved in aromatic amino acid and phenylpropanoid metabolism and those 

encoding NLR immune receptors were determined to be translationally regulated by 

Meteignier et al. (2017) and Yoo et al. (2020). Since NLR expression is regulated at many 

stages, from mRNA nuclear export to proteasome-mediated degradation (Johnson et al., 

2012; Wu et al., 2020; Zavaliev et al., 2020), it was not surprising that some immune 

receptors are translationally regulated. However, it was somewhat unexpected that knocking 

out these NLR genes partially compromised ETI triggered by RPS2, a sensor NLR that has 

been studied extensively, demonstrating the effectiveness of translational profiling in 

identifying novel players in plant defense.

There are still many unexplored posttranscriptional processes impacting the defense 

proteome. mRNAs and tRNAs are known to be modified at multiple positions of different 

nucleotides, such as methylation at N6-adenosine (m6A), which can affect mRNA transport, 

stability, and translational efficiency (Roundtree et al., 2017). The writers, readers and 

erasers of m6A have been identified and characterized in plants (Ruzicka et al., 2017; 

Arribas-Hernandez and Brodersen, 2020), but it is still challenging to quantitatively measure 
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the dynamic changes in m6A to identify defense-specific modifications and distinguish a 

direct impact of the modification from a pleiotropic effect on plant immunity. Besides RNA 

modifications, there have been several studies focusing on the various RNA degradation 

processes during plant immune responses (Gloggnitzer et al., 2014; Maldonado-Bonilla et 

al., 2014; Roux et al., 2015; Meteignier et al., 2016; Makinen et al., 2017; Li and Wang, 

2018; Yu et al., 2019b). For example, Gloggnitzer et al. (2014) found that the nonsense-

mediated mRNA decay pathway (NMD) controls the turnover of a large number of NLR 

mRNAs. During bacterial infection, plants turn down NMD to enhance resistance. 

Moreover, formation of RNA processing bodies upon different immune responses was found 

by Yu et al. (2019b) to destabilize PTI-down regulated transcripts and by Meteignier et al. 

(2016) to inhibit viral RNA translation during ETI. Besides mRNA, tRNA concentrations 

and charging can also be affected by pathogen challenge (Pajerowska-Mukhtar et al., 2012; 

Luna et al., 2014; Soprano et al., 2018), which may link pathogen-induced metabolic 

changes directly to translation of mRNAs through codon-usage, instead of indirectly through 

activation of GCN2 (Hinnebusch, 2005).

Understanding the regulatory mechanisms controlling translation of plant defense proteins is 

not only critical for basic science, but also has broader impact on applications in agriculture 

and beyond (Xu et al., 2017b). After all, most of biological activities are carried out by 

proteins. Transcripts encoding key regulatory proteins, such as the mRNA of TBF1, carry 

sequences, such as R-motifs and uORFs, for translation at the proper time, in the specific 

tissue and of the right amount. Even though the mechanisms by which these sequences 

control translation still need to be elucidated, they are ready-to-use because they have been 

optimized through evolution.

The circadian clock is a key mechanism that breaks the disease triangle in 

plants

So far, most of our studies have been focused on defense against an established infection. 

However, the battle between the host and the pathogen begins at an even earlier stage. It is 

known that a successful infection requires at least three factors: a virulent pathogen, a 

susceptible host, and a favorable environment known as “the disease triangle” (Francl, 

2001). Below we will examine how the circadian clock affects each of these factors.

A role of the circadian clock in controlling plant defense against pathogen infection is not as 

immediately obvious as in regulating plant growth and reproduction, because plants need to 

be able to respond to infection whenever pathogen invades. Reinforcing this idea, a study by 

Nagano et al. of transcriptome data of rice plants grown in a paddy field with the 

corresponding meteorological data found that defense genes had higher stochastic variances 

than those involved in basic metabolic functions (Nagano et al., 2012). However, the 

serendipitous discovery that a large number of defense genes against Hyaloperonospora 
arabidoposidis (Hpa) were directly regulated by the morning circadian clock component, 

CCA1, unveiled a role for the circadian clock in controlling defense against at least certain 

pathogens (Wang et al., 2011). The fact that the life cycles of both the plant hosts and some 

of their pathogens are dictated by the diurnal cycle of the earth suggests that when infection 
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is a predictable event, the host can anticipate it through the function of the circadian clock 

(Slusarenko and Schlaich, 2003; Bhardwaj et al., 2011; Goodspeed et al., 2012; Zhang et al., 

2013; Korneli et al., 2014; Hevia et al., 2015; Ingle et al., 2015; Schumacher, 2017; Lei et 

al., 2019). For example, for the obligate biotrophic pathogen Hpa to complete its life cycle, 

darkness is required for the formation of spores, while spore dissemination is triggered by 

drying of the leaf surface in the morning (Slusarenko and Schlaich, 2003). Meanwhile, the 

virulence of the fungal pathogen Botrytis cinerea (Bc) on Arabidopsis has been shown to be 

controlled by the fungal circadian clock regulator, BcFRQ1, resulting in formation of bigger 

lesion on leaves if the pathogen is inoculated at dusk (Hevia et al., 2015). However, there are 

still numerous questions to be answered. Is there a general role for the circadian clock in 

regulating resistance against other pathogens whose life cycles are less predictable than Hpa 
and Bc? Besides helping plants anticipate infection, does the clock play a role in modulating 

defense response during an infection? How do changes in environmental conditions, such as 

humidity, affect plant defense through the circadian clock?

A general role for the circadian clock in plant defense is supported by the Goodspeed et al. 

study (2012) showing circadian oscillations in basal levels of the plant defense hormones SA 

and JA. Since SA and JA have antagonistic effects in mediating resistance against biotrophic 

pathogens and necrotrophs/insects, respectively (Spoel and Dong, 2008), the opposite 

phasing of SA (peaking at subjective night) and JA (peaking during the subjective day) 

observed by Goodspeed et al. (2012) suggests that the circadian clock may help plants avoid 

such a conflict. A direct link between the clock and SA synthesis was made in the Zheng et 

al. (2015b) study, in which the clock component, CHE, was shown to bind to the promoter 

of the SA synthesis gene, ICS1, to regulate its transcription. In addition to rhythmic 

expression of basal SA, CHE was also found to be required in SA synthesis in systemic 

tissue and disease resistance. However, the biological significance of having a clock 

component regulating SAR is still unknown. The study by Li et al. (2018) may shed some 

light on this question. The authors observed that treating a single leaf of two-week-old 

Arabidopsis seedlings with PstDC3000 or SA dampened the circadian clock in systemic 

tissues. They hypothesized that this might allow plants to uncouple SA synthesis from the 

normal clock control and have continuous production of SA for the establishment of SAR. 

Since CHE has been shown to be a repressor of the core morning clock gene CCA1 
(Pruneda-Paz et al., 2009), it is plausible that CHE promotes SA synthesis in systemic tissue 

by activating ICS1 while dampening the clock.

However, the relationship between SA and the clock appears to be “very complicated”, to 

use the words of Dr. Steven Kay in describing phenomena associated with the circadian 

clock. Zhou et al. (2015a) found that spraying mature Arabidopsis with SA, instead of 

soaking seedlings grown on plates in SA solution, increased the amplitude of the circadian 

clock genes, such as LHY and TOC1, in contrast to what was observed by Li et al. (2018). 

This increase was facilitated by the central SA signaling component NPR1 through its 

associated TGA transcription factors. Moreover, the npr1 mutant was not only insensitive to 

this SA-mediated reinforcement of the clock, but also had lower-than-WT amplitude of the 

clock gene expression.
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Because the phase and the period of the clock have traditionally been the main focus of 

chronobiology research, it is easy to overlook the importance of the clock amplitude. The 

clock amplitude might also play a critical role for the integration of the environmental 

signals into the regulation of physiological responses. For example, Nagano et al.’s field 

grown rice transcriptome data showed that the daily amplitudes of core circadian clock 

genes were affected by environmental stimuli such as temperature and solar radiation, while 

their phases and periods remained stable (Nagano et al., 2012). Furthermore, Mwimba et al. 

(2018) found that, in addition to light and temperature, daily humidity oscillation is a novel 

environmental cue that entrains the plant circadian clock (i.e., a zeitgeber). Interestingly, 

adding humidity oscillation to the light/dark cycle as it occurs in nature increased amplitude 

of the circadian clock leading to better plant performance such as higher total biomass and 

seed weight.

This ability of the plant circadian clock to sense humidity may be critical for defense against 

pathogen infection because high humidity in the environment is often associated with 

outbreaks of plant diseases (Thurston et al., 1958; Brown and Ogle, 1997; Xin et al., 2016). 

High humidity has been shown to induce expression of the HrpL transcription factor in 

PstDC3000, which activates the type III secretion system for delivery of effectors into the 

host (Mwimba et al., 2018). High humidity is also required for the pathogen to cause disease 

by maintaining the aqueous environment in the apoplastic space where the bacterium 

proliferates (Xin et al., 2016). Therefore, there is “a war over water” between the pathogen 

and its plant host (Beattie, 2016). The SA-mediated repression of water transport genes 

found by Zhou et al. suggests that inhibiting genes such as aquaporins may be one of the 

defense mechanisms of this defense hormone (Zhou et al., 2015a).

Since both SA treatment and daily humidity oscillation could increase the amplitude of the 

circadian clock, a reasonable question to ask is how this increase affects plant defense. Since 

the morning clock components CCA1/LHY are known positive regulators (Wang et al., 

2011; Zhang et al., 2013) whereas evening clock component TOC1 is a negative regulator of 

defense genes (Zhou et al., 2015a), an increase in the clock amplitude would result in a 

higher SA-induced defense gene expression in the morning than in the evening. Indeed, a 

striking difference in this time-of-the-day sensitivity was observed in the microarray analysis 

performed by Zhou et al. on plants after treating them with SA in the subjective morning and 

subjective evening (Zhou et al., 2015a). Zhou et al. found that repression of water transport 

genes by treating plants with SA in darkness led to significant loss of fresh weight and 

ultimately death (Zhou et al., 2015a). Therefore, besides its anticipatory function, the 

circadian clock also serves to gate immune responses upon infection to minimize conflict 

with other physiological functions, in this case, water transport. As in circadian medicine, 

which aims to administer drugs at the right time of the day to increase drug efficacy and 

reduce side effects, the consequence of plants taking “aspirin” at the wrong time of the day 

(i.e., at night) might be as severe as death by desiccation.

Despite the important role that the circadian clock plays in regulating plant defense, research 

in this area is technically challenging and financially prohibiting because of the requirement 

for time series data collection and analysis. The use of clock-driven luciferase reporters is 

limited to organisms like Arabidopsis which can be readily transformed. To remedy the 
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reliance on time-course experiment in circadian clock studies, the ingenious “molecular 

timetable” method has been developed first in mice (Ueda et al., 2004) and adapted to plants 

(Kerwin et al., 2011; Higashi et al., 2016; Li et al., 2019b), which aims to extract circadian 

information from data taken at a single timepoint. Recently, Li et al. applied this 

methodology to map abiotic stress inputs into the soybean circadian clock (Li et al., 2019b). 

These findings were then experimentally confirmed using RASL-seq, a multiplexed targeted 

RNA sequencing technology (Li et al., 2012). Using this two-module discovery pipeline, one 

can make good use of all the available plant-microbe interaction transcriptome data 

regardless whether they are generated from time-course or single-time-point experiments to 

study the impact that biotic stresses have on the circadian clock.

Future Perspectives

Research discoveries in plant sciences have the potential to guide sustainable increases in 

agricultural production to feed, shelter, and clothe the world’s population. Crop losses from 

plant pathogens and pests directly impact human health and range from 17 to 30% average 

globally in major food crops (Gregory et al., 2009; Savary et al., 2019). The identification 

and deployment of diverse plant resistance genes using a variety of technologies have clear 

potential for crop improvement. In contrast to disease-specific resistance, broad-spectrum 

resistance involving multiple defense mechanisms may have the advantage of increased 

durability and decreased guesswork involved in the deployment if it can be tightly regulated 

to minimize potential yield penalty. Therefore, basic research focused on understanding how 

plants naturally manage their immune responses is the foundation on which applied research 

can be built. The utility and relevance of fundamental discoveries may not be immediately 

noticeable, but some of the most impactful discoveries, including genome editing, occurred 

as the result of curiosity-driven investigations. We believe that investigating novel disease 

resistance genes, their activation mechanisms, and signaling networks will provide a more 

holistic understanding of plant defense and can be harnessed for controlling some of the 

most devastating plant diseases.
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Here we summarize recent progress and share our perspective in the areas of extracellular 

immunity, sensing of immunogenic signals by cell surface and intracellular immune 

receptors, heterogeneity of immune responses within tissues and cells, translational 

regulation as a critical layer of control in plant immune induction and the role of the 

circadian clock in breaking the disease triangle in plants.
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Figure 1. Plant immune responses
The front line of plant defense occurs in the stomata, rhizosphere and apoplast. Recognition 

of microbe-associated molecular patterns (MAMPs) can trigger stomatal closure to restrict 

entry of microbes into plants. To counteract, microbes produce effectors and coronatine to 

promote stomatal opening. In roots, extensins, border and border-like cells, and extracellular 

DNAs (exDNAs) contribute to rhizospheric immunity that functions in attracting beneficial 

microbes while repelling pathogens. In the apoplastic space, plants produce lytic enzymes to 

release immune-inducing MAMPs and antimicrobial pathogenesis-related (PR) proteins and 

metabolites to restrict the proliferation of invading pathogens. In the same space, microbes 

can use effectors and inhibitory molecules to counteract plants’ apoplastic immunity. 

Recognition of MAMPs and pathogen effectors activate pattern-recognition receptors 

(PRRs) on the cell surface and nucleotide-binding leucine-rich repeat immune receptors 

(NLRs) inside the cell to trigger pattern-triggered immunity (PTI) and effector-triggered 

immunity (ETI), respectively. These immune receptors signal through Ca2+, reactive oxygen 

species (ROS), G proteins, and MAP kinase cascades to confer resistance which in ETI is 

often associated with cell death. Activation of both PTI and ETI involve reprogramming of 

plant proteome through decay of house-keeping mRNAs (perhaps inside stress granules; 

circle) and activation of translation of defense proteins. Heterogeneity exists in plant 

responses to infection due to differential pathogen distribution and host immune sensitivity. 

Plant immune responses are also regulated by the circadian clock which not only helps 
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plants anticipate infection, but also gates immune responses when infection occurs to 

minimize effects on plant physiology and fitness.
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