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Abstract 

How altruistic behavior evolves despite its evolutionary cost is 
still an intriguing question. Using Neural Network and 
Gradient descent algorithms, we proposed a mixed 
computational model of fitness competition among three 
artificial agents (predator, altruistic prey, recipient prey), in the 
zero-sum game environment. We found that altruism emerged 
without direct reciprocity when the predator invested in 
altruism aiming to use the prey’s altruistic behavior as “bait” 
to fish for more prey. For the decisive factor of this mechanism, 
we demonstrated that the long-term decision-making of a 
predator enhanced its investment in the prey's altruistic 
behavior, which leads to a significant increase in altruism and 
fitness in altruistic prey. We interpreted our findings from 
economic, evolutionary, and psychological perspectives, 
connecting zero-sum economies, K-selection, and third-party 
emotional decision-making to the emergence and maintenance 
of altruistic behavior. 

Keywords:  altruism; long-term decision-making; cooperative 
hunting; Prey-Predator model; zero-sum game; evolution; 
Neural Network 

Introduction 

The evolution of altruism is a perplexing problem in biology, 

anthropology, psychology, and cognitive science; altruistic 

behavior enhances inclusive fitness by providing 

reproductive success to an organism’s relatives (Hamilton, 

1964). However, non-kin altruism directly leads to the loss of 

evolutionary fitness while increasing others’ fitness, not 

genetically related to the donor of altruism (Trivers, 1971). 

Nevertheless, various prosocial and highly intelligent animal 

species such as humans, primates, and even some bird species 

have a high quality of non-kin altruistic nature; altruism even 

composes the fundamental principles of ethics in human 

culture.  

To answer the complex question of altruism, reciprocal 

altruism theory (Trivers, 1971), competitive altruism 

(Alexander, 1987), and Costly Signaling Theory (Zahavi, 

1975) were presented to explain the widespread altruistic 

nature regardless of its cost. Above all, reciprocal altruism 

theory, combined with computational modeling research 

methods (Axelrod & Hamilton, 1981), has been the main 

hypothesis of altruism's universal evolutionary and cognitive 

mechanism. This theory represents altruism can be evolved 

since the recipient of altruism compensates the loss of 

altruism by giving altruistic behavior back at a later time, or 

 

 
 

Figure 1: Description of model structure. The top and middle 

figures depict the agents’ mobility and altruism. The bottom 

figure describes fitness score exchanges among agents. 

 

3rd party’s altruism compensates it (Roberts, 2008). The 

existence of reciprocity is attempted to be explained with 3rd 

party punishment (Fehr & Gächter, 2000): This model based 

on game theory suggested that altruism evolved when 

altruistic behavior leads to more efficient results (e.g., 

cooperative hunting), and free-riders of altruism or public 

goods must be punished by 3rd parties in the society. 
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However, there were numerous unsolved problems: 3rd party 

punishment is costly and risky (Barclay, 2006), and altruism 

can only evolve when public goods' efficiency is higher than 

1. Furthermore, the existing mathematical and agent-based 

model does not explain the effect of cognitive abilities on the 

emergence of altruism.  

Innate mental factors which affect altruistic behavior were 

also investigated with psychological and neurological 

research methods. Based on the somatic marker hypothesis 

(Damasio, 1985), Psychological theories have suggested that 

emotions based on physical factors including neural 

mechanisms have an important influence on decision-making 

rather than logical cost-benefit computations (Schwarz, 

2000; Lerner et al., 2015). It has been found through neural 

and behavioral response experiments that emotion acts as an 

important factor not only in moral decision-making closely 

related to altruism (Naqvi et al., 2006), but also in economic 

decision-making that judges the expected material costs and 

benefits (Sanfey et al., 2003); These emotions were 

interpreted as empathy(Batson et al., 1991), or expectations 

for emotional rewards such as praise, gratitude, and intimacy 

returned by the recipient (Batson & Shaw, 1991; Barasch et 

al., 2014).  

These psychological and neuroscientific findings provide 

the insight that altruistic behavior is not determined solely by 

the immediate cost-benefit given in the external environment, 

but is caused by innate and long-term cognitive strategies, 

such as the emotions of altruistic behavior actors. However, 

these theories of psychology and neuroscience do not 

sufficiently explain why evolutionary fitness remains stable 

due to intrinsic cognitive factors involved in altruism, such as 

emotions.  

To solve these questions in computational biology and 

psychology, cognitive modeling using multi-agent artificial 

intelligence systems, which combines psychological insights 

about cognitive capacity into computational research 

methods, has been introduced as a new research methodology 

(Yong, 2001; Ueda, 2004). Recently, various machine 

learning algorithms are designed for imitating the human 

cognition structure; unsupervised reinforcement learning 

algorithms are actively used for structuralizing cognition and 

decision-making in social dilemmas (Leibo et al., 2017; 

Hughes et al., 2018).  

In this manner, research methods using Neural Network 

and reinforcement learning are applied to the altruism 

problem to figure out the problem with the cognitive 

approach (Zhao, 2012; Wang, 2019; Hostallero et al., 2020). 

These machine learning-based research figured out the 

principles of altruistic decision-making facilitated when 

expecting the recipient’s reciprocal behavior. This approach 

has a limitation of implementing reciprocal altruism and 3rd 

party punishment to cognitive abilities such as complex 

decision-making; this did not present a new solution to the 

altruism problem with cognitive factors or the model other 

than reciprocal altruism.  

In this study, we suggest a new model for investigating 

how altruism evolves, replacing the 3rd party punishment with 

the 3rd party investment from predator to a prey species, 

postulating the ecological resource as zero-sum. 

Furthermore, we applied the mixed methodology with Neural 

Network and gradient descent algorithm, to optimize the 

fitness of agents. Neural Network is used to model the long-

term decision-making cognitive factor inversely proportional 

to the sensitivity to environmental change. The gradient 

descent algorithm is used to model the instantaneous 

modification of behavioral strategies, aiming to optimize 

agents’ fitness. 

Methods 

Models 

We constructed a simplified ecological model which imitates 

the real-world situation that one predator must decide 

whether to prefer prey as altruists or prey who only receives 

the benefits from other prey’s altruistic behavior; gathers 

around altruists but returns nothing. The model contains three 

agents, corresponding to one predator, and two prey 

(altruistic prey and recipient prey).  

Each agent aims to maximize its fitness score; the agent 

spontaneously modulates behavioral factor values (e.g., 

investment ratio to altruism) to enhance the score 

corresponding to the environmental conditions given by other 

agents. We constructed a predator agent as a Neural Network 

agent with a Stochastic Gradient Descent algorithm to 

examine the effect of long-term decision-making capacity on 

the emergence of altruistic behavior. Prey agents were 

designed as computational equations with Gradient Descent 

Algorithm. 

 

Predator System Structure We designed the zero-sum 

prey-predator system model which represents the ecological 

situation where one species of predator and two species of 

prey are competing to maximize their fitness, in the closed 

energy system. Two virtual spaces (I, II) are given: altruistic 

prey (“Altruist”) is fixed to space I, and can give benefit to 

recipient prey (“Recipient”) only when the Recipient is in the 

same space. The recipient can decide its location with the 

probability of being in space I. The predator (“Predator”) also 

can modulate its probability of being in space I and reward 

Altruist proportional to the quantity of altruistic behavior. 

 

Fitness Score Calculation Each agent aims to maximize the 

value of the fitness score equivalent to its survival and 

evolutionary success. The fitness score of Altruist, Recipient, 

and Predator is described as follows: 

 

𝐹(𝐴) =  𝑞𝑤𝑙𝑃 − 𝑞𝑙𝑅 − 𝑙𝑃 

𝐹(𝑅) =  𝑞𝑙𝑅 − 𝑙𝑅𝑙𝑃 − (1 − 𝑙𝑅)(1 − 𝑙𝑃) 

𝐹(𝑃) =  −𝑞𝑤𝑙𝑃 + 𝑙𝑃 + 𝑙𝑅𝑙𝑝 + (1 − 𝑙𝑅)(1 − 𝑙𝑃) 
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Table 1: Variables of fitness score equations 

 

Variable1 Meaning 

F(Agent) Fitness Score of agent. 

q Quantity of altruism from 

Altruist to Recipient. 

lAgent The probability that the 

agent is in space I. 

w Quantity of reward from 

Predator to Altruist. 
 

 
 

Figure 2: Sample architecture of fully-connected Neural 

Network of the Predator agent. This sample Neural Network 

has a pair of 4 output neurons; for instance, the 8th output 

neuron’s value represents Predator’s w value after 3-time 

steps from the input. 

 

Neural Network To investigate whether a Predator’s long-

term decision-making enhances the emergence of Altruist’s 

altruistic behavior, we used a fully connected Neural 

Network as a Predator agent. This Neural Network has an 

input layer with two inputs (q, lR), one hidden layer with 32 

neurons with activation function as ReLu, and an output 

layer, with activation function as sigmoid function. The 

output layer has the number of neurons equivalent to the 

doubled value of the series of future actions, ranging from 23 

to 210. Half of the output neurons decide the lP value of the 

Predator, and the other half decide the w value of Predator. 

Each output value from the neurons, at respective time steps, 

designates the lP value or w value. The number of output 

neurons is equivalent to the time-length of future actions 

(behavioral strategies) from given inputs. 

We used the Stochastic Gradient Descent optimizer 

provided by Keras open-source library (Chollet et al., 2021)2, 

postulating maximizing Predator's fitness score as the goal of 

Neural Network optimization. In the optimizer, Predator's 

Neural Network was updated 10 times through the following 

process: the weight values of the Neural Network were 

 
1 All values of variables are greater than or equal to 0, and smaller 

than or equal to 1. 

designated as variables. In addition, setting the initial q value 

and lR value to 0, the average of the predator's fitness score 

during 512-time steps of the simulation in which the three 

agents interacted together was designated as a target function. 

Among the 10 updates, the weight value of the neural 

network that generated the highest average fitness score was 

extracted; the output values calculated in the state of the 

Neural Network at this time were collected as samples of 

output values corresponding to the experiment results.  

 

The hyperparameters of this Neural Network and optimizer 

are as follows: 

Table 2: Hyperparameters 

 

Hyperparameter Value 

Learning rate 0.001 

Momentum 0 

Decay 0 

Nesterov momentum false 

Input domain float between 0 and 1 

Weight Initialization 0 for all weights 

 

Prey Models Models of Altruist and Recipient are 

constructed with a gradient descent algorithm. Each model 

computes the differential value of fitness by its score 

variables. Then, the agent adds the differential value 

multiplied by the learning rate (η = 0.2) to the score variable. 

This computation updates the latest fitness score. The model 

formula is constructed as follows:  

 

𝑞 ←  𝑞 + 𝜂(𝑤𝑙𝑝 − 𝑙𝑅) 

𝑙𝑅 ←  𝑙𝑅 + 𝜂(𝑞 − 2𝑙𝑃 + 1), 

Experiment Procedure 

We computed the simulation experiment with 8-level long-

term decision-making conditions, 512-time steps, and 500 

trials to measure changes in agents’ fitness scores, location, 

altruism, and reward to altruistic behavior by the degree of 

the long-term behavioral strategy of Predator.  

 

 
 

2https://github.com/keras-team/keras/blob/master/keras/ 

optimizers.py#L157 
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Figure 3: Examples of Neural Network decision-making that 

vary depending on the degree of future actions time-length 

(x). The red arrow represents the time that the Neural 

Network takes the input value, and the green dot represents 

the time that the neural network decides the future behavioral 

strategies (lP, w) within the time-length (x). Time step (t) is 

limited to 512; the number of changes in behavioral strategies 

is inversely proportional to x. 

 

Agents changed their behavior in 512-time steps. Levels of 

long-term decision-making conditions were divided into 8 

conditions, from 22 (with 27 strategies) to 29 (with a single 

behavioral strategy) with a geometric progression of 2. 

We optimized the Predator’s neural network 10 times, 

selected the most optimized neural network, and measured 

the result that the network finally adjusted the six variables 

of three agents: F(A), F(R), F(P), lR, q, and w. We repeated 

the computation 500 times and obtained the average values. 

Results 
Effect of long-term decision-making level (time-length of 

future actions, x) and six variables (F(A), F(R), F(P), 𝑙𝑅, q, 

and w) was computed in the zero-sum condition. First, we 

examined the Altruist’s quantity of altruistic behavior(q) by 

the time-length conditions of the Predator’s decision-making. 

There was no significant altruistic behavior in the conditions 

of Predator’s “short-term” decision-making (q=5.93E-05 

when x=22; q=0.0002 when x=23; q=0.008 when x=24). 

However, after the transition period (x=25; q=0.227, std = 

0.198), the q value significantly increased and the maximum 

q value recorded q=0.352 (std = 0.071) when x=22. There was 

a significant decrease in altruism value when x=29 (q=0.145, 

std = 1.49E-08), which is an extreme condition that the 

Predator agent only can take a single behavioral strategy. 

Altruistic behavior instantaneously reduces an Altruist's 

fitness score; Predator’s long-term decision-making made 

altruistic behavior adaptive to Altruist, even compared to 

Recipient. F(A) significantly increased from -1 (std = 0.006, 

x=22) to -0.691 (std = 0.043, x=28), while F(R) decreased 

from 0(std = 0.002, x=22) to -0.32 (both except when x=29). 

Furthermore, in the extreme condition when x=29, F(A) 

increased to -0.573 (std = 5.96E-08) and F(R) decreased to -

0.43 (std = 2.98E-08).  

We did not postulate the initial value of fitness scores as 

F(A)=-1 and F(R)=0; F(A) is computed as -1 when q=0 

because all portion of Altruist is hunted by Predator since 

F(A) is equivalent to 𝑞𝑤𝑙𝑃 − 𝑞𝑙𝑅 − 𝑙𝑃, q=0 and 𝑙𝑃=1. In the 

same condition, F(R)=0 since 𝐹(𝑅) =  𝑞𝑙𝑅 − 𝑙𝑅𝑙𝑃 − (1 −
𝑙𝑅)(1 − 𝑙𝑃) , q=0, and lR=0. The difference in baseline 

between F(A) and F(R) is occurred by initial environmental 

inequity between the two agents; Altruist cannot avoid 

predation since the location of Altruist is constantly fixed to 

space I (lA = 1), however, Recipient can modulate the value 

of 𝑙𝑅  to maximize its fitness score, regarding avoiding 

predation and taking altruistic benefits from Altruist. 

There was a clear loss of fitness score of Altruist caused by 

the expense from altruistic behavior, however, altruism was 

adaptive because Predator gave rewards to altruistic 

behavior, which is represented as w. There was no significant 

compensation of altruistic behavior to Altruist in the 

condition of the lower level of long-term decision making 

(w=1.158E-06 when x=22, w=3.879E-06 when x=23, w=0.001 

when x=24). However, after the x=25 transition period 

(w=0.202, std = 0.243), the w value significantly increased 

and remained approximately 0.5, even in the extreme 

condition when x=29 (w=0.495, std = 5.96E-08). 

 

 
Figure 4: Altruism(q) significantly enhanced when the time-

length of future actions(x) was over 25. 
 

 
 

Figure 5: Fitness score of Altruist (F(A)) significantly 

enhanced when time-length of future actions (x) was over 25, 

while fitness score of Recipient (F(R)) significantly 

decreased at the same condition, despite the enhancement of 

altruistic behavior (q).  

 

Like the altruistic behavior of Altruist, the reward from 

Predator to Altruist also was a significant factor that reduces 

Predator’s fitness score. F(P) increased when x was higher 

than 25, which were the conditions that Predator invested w 

value of approximately 0.5. Maximum F(P) was 1.011 when 

x=28, though the score remains F(P)=1 when x was under the 

transition period (x < 25). However, there was a significant 

decrease in F(P) when x=29 (w=0.145, std = 1.49E-08). 

Increased F(P) in Predator’s long-term decision-making 

conditions indicated that giving a reward to Altruist is 

adaptive to Predator despite the loss of fitness score driven 
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by the expense of w. The fitness of the Predator appears to be 

compensated by the increase of lR while the x value increased;  

 
 

Figure 6: Predator’s reward to Altruist (w) significantly 

enhanced when the time-length of future actions (x) was over 

25, coinciding with the period of a significant increase in 

altruistic behavior (q). 

 

 
 

Figure 7: Fitness score of Predator (F(P)) significantly 

enhanced when time-length of future actions (x) was over 25, 

despite the increase of reward to Altruist (w).  

 

an increase in lR makes prey gather in the same space and 

gives more amount and certainty of predation.  

Recipient did not share location with Altruist when x was 

under the transition period (lR = 0 when x=22 or x=23; lR = 

0.001, std=0.016 when x=24); Maximum lR recorded 0.362 

(std=0.034) when x=26, right after the transition period. 

Discussion 

We found long-term decision-making of the Predator affects 

the significant increase of altruistic behavior of prey agents 

(Altruist), by encouraging Predator to invest in altruism. 

From the experiment results, we figured out altruism (q), 

investment to Altruist (w), and the fitness of Altruist and 

Predator (F(A), F(P)) significantly increased only when the 

Predator had cognitive ability to make decisions in the long-

term time-length (x > 25). 

 
 

Figure 8: Recipient’s probability to be in space I (lR) 

significantly enhanced when the time-length of future 

actions(x) was over 25, which coincides with the period of the 

significant increase in altruistic behavior (q), and the period 

of the significant increase in Predator’s investment to 

altruism (w). 

 

The result is interpreted as the mechanism as follows: 

Predator invests in altruistic prey’s altruistic behavior, then 

altruistic prey enhances altruistic behavior to get the reward 

from the predator; the reward can be interpreted as a direct 

reward or lower probability of being predated. recipient prey 

is gathered to the surrounding location of Altruist to get the 

incentives of altruistic behavior of other prey. Therefore, the 

predator gets the benefit because prey is gathered at one 

location, which can be interpreted as lowered uncertainty of 

the hunting task. 

This mechanism indicates that altruism is used as “bait” to 

reduce the spatial uncertainty of prey in hunting. Also, in the 

perspective of altruists, altruism is used as a behavioral 

strategy that seduces the free-rider to be exposed to higher 

predation risk and reduces the risk of predation pressure. 

Because this model environment is a zero-sum closed energy 

system, the Recipient's fitness score decreased when Altruist 

and Predator increased their benefit from the bait-altruism 

strategy. This can be interpreted as cooperative hunting 

between Predator and Altruist: “fishing free-rider”, using 

altruism as bait. Therefore, unlike the existing theory of 

reciprocal altruism, our model suggests an evolutionary 

mechanism of altruism that is indirectly disadvantageous to 

free-riders and gives reward to altruism through 3rd party 

investors. 

Furthermore, using the zero-sum energy environment 

model, we showed that altruism emerges even in the social or 

ecological environment where the additional energy or 

economic income is not continuously supplied from the 

external system. Our findings imply that altruism can emerge 

even when there is no economic growth or an isolated 

environment.  

We also found that long-term decision-making is the key 

factor in altruistic behavior. This provides insights into both 

the evolutionary origins and psychological basis of altruism. 

First, we can interpret long-term decision-making as the long 
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generation time of a species, and modification of behavioral 

strategy as changes in gene pool composition of behavioral 

traits by natural selection. In this perspective, species that 

have longer generation time to reproduce offspring, and 

consequently have slower genetic adaptation to the 

environment would lead to the evolution of altruistic 

behavioral traits. According to r/K selection theory (Pianka, 

1970), at K-selection with less quantity and more quality of 

offspring, which the survival and reproduction strategy 

adaptive when higher stability of the environment, animal 

species have linked attributes containing longer life 

expectancy and generation time, longer growth period and 

parental care and consequential higher intelligence (Rushton, 

2004). In this manner, altruism might not be the consequence 

of higher intelligence (Millet & Dewitte, 2007); altruism and 

higher intelligence would have occurred from a longer 

lifespan and originated from a stable environment.  

Second, our findings investigated that altruists do not need 

long-term decision-making, but rather their sponsor’s 

(Predator in our model) long-term decision-making capacity 

supports altruism and acts as an important factor in 

generating altruistic behavior. In our model, Altruist 

instantaneously decided whether to perform altruistic 

behaviors regarding external information such as cost and 

benefit; for altruism to evolve, the motivation of sponsors 

who support the altruists would be based on intrinsic and 

long-term emotions rather than spontaneous reactions to 

external stimuli. This suggests that, in addition to the 

cognitive factors of altruists, the cognitive factors of 3rd 

parties involved in altruism play an important role in the 

conditions of the emergence of altruism. For instance, the 

emotional and cognitive attributes of laities who feel 

religious awe of the clergies (Prade & Saroglou, 2016), can 

be a crucial factor in maintaining the altruistic behavior of 

clergies. 

However, our experiment results also showed that if these 

sponsors' trust is overly consistent such as not changing at all 

once determined, another "free-riding" in which altruists 

deceive and exploit sponsors by performing less altruistic 

behavior while taking continuous benefit from sponsors. 

Under the condition of x=29 where the Predator minimized 

the modifications of the behavioral strategy in the Neural 

Network, the predator maintained a high value that gives a 

reward for Altruist's altruistic behavior. At this time, Altruist 

maximized its fitness score by reducing altruistic behavior 

according to the instantaneous cost and benefit calculation. 

As a result, the fitness score of the Predator decreased to a 

lower level than the transition period. This suggests that 

appropriate time intervals of updating reward policy for 

altruistic behavior, as well as long-term decision-making, are 

required to maintain altruism. 

The current study leaves collateral parametric effects and 

comparison among technical conditions unexplored; in future 

research, we suggest the reward from Predator to Altruist to 

expand to Neural Network, to precisely figure out the 

correlation and causality between reward policy and altruistic 

behavior. In the current research, the learning rate of prey 

agents was fixed at 0.2; the effect of the learning rate on 

altruism should be examined. Furthermore, future studies 

may expand our model simulations to a wider range of 

various machine learning techniques such as DNN, Genetic 

Algorithm, and Reinforcement Learning to explore how the 

evolution of altruism differs by algorithmic attributes of 

artificial intelligence agents. 
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