
   

 

 
 

 

 
 

DOES TELECOMMUTING  
REDUCE VEHICLE-MILES TRAVELED? 

AN AGGREGATE TIME SERIES ANALYSIS FOR THE U.S.  
 
 

by 
 
 

Sangho Choo 
Department of Civil and Environmental Engineering  

University of California, Davis 
Davis, CA  95616, USA 

voice: 530-754-7421 
fax: 530-752-6572 

e-mail: cshchoo@ucdavis.edu 
 

Patricia L. Mokhtarian* 
Department of Civil and Environmental Engineering 

and 
Institute of Transportation Studies 

University of California, Davis 
Davis, CA  95616, USA 

voice: 530-752-7062 
fax: 530-752-7872 

e-mail: plmokhtarian@ucdavis.edu 
 

and 
 

Ilan Salomon 
Leon J. and Alyce K. Ell Professor of Environmental Studies 

School of Public Policy 
and 

Department of Geography 
The Hebrew University of Jerusalem 

Jerusalem 91905, Israel 
voice: 972-2-5883345 
fax: 972-2-5883347 

e-mail: msilans@mscc.huji.ac.il 
 
 

July 2004 
Transportation 32(1), 2005, 37-64 

 
* corresponding author



   

  

DOES TELECOMMUTING 
REDUCE VEHICLE-MILES TRAVELED? 

AN AGGREGATE TIME SERIES ANALYSIS FOR THE U.S. 

Abstract 

 
This study examines the impact of telecommuting on passenger vehicle-miles traveled (VMT) 

through a multivariate time series analysis of aggregate nationwide data spanning 1966-1999 for 

all variables except telecommuting, and 1988-1998 for telecommuting. The analysis was 

conducted in two stages.  In the first stage, VMT (1966-1999) was modeled as a function of 

conventional variables representing economic activity, transportation price, transportation supply 

and socio-demographics.  In the second stage, the residuals of the first stage (1988-1998) were 

modeled as a function of the number of telecommuters. We also assessed the change in annual 

VMT per telecommuter as well as VMT per telecommuting occasion, for 1998.  The models 

suggest that telecommuting reduces VMT, with 94% confidence.  Together with independent 

external evidence, the results suggest a reduction in annual VMT on the order of 0.8% or less.  

Even with impacts that small, when informally compared to similar reductions in VMT due to 

public transit ridership, telecommuting appears to be far more cost-effective in terms of public 

sector expenditures. 

Keywords:  aggregate analysis, telecommuting, teleworking, time series analysis, vehicle-miles 
traveled (VMT) modeling/forecasting 
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INTRODUCTION 

Teleworking is defined for this study as working at home or a location closer to home than the 

regular workplace, using information and communication technology (ICT) to support produc-

tivity and communication. We distinguish two main types of teleworkers:  salaried employees of 

an organization, called telecommuters, and primary home-based business workers. In view of the 

ambiguity of the transportation impacts of home-based business work, the difficulty in obtaining 

reliable data on its nature and extent, and the limited time frame of this study, we focus only on 

salaried telecommuters here. We do not count after-hours work as telecommuting, if the 

employee still spends a full day at the regular workplace. We also focus only on home-based 

telecommuting, since center-based telecommuters probably number only in the hundreds 

nationwide. 

In general, telecommuting per se appears to have considerable popular appeal, although a 

number of barriers prevent it from achieving the penetration that might be expected from 

consideration of its potential benefits alone. Nevertheless, perhaps facilitated by several high-

profile public-sector demonstration projects in the late 1980s and early 1990s (e.g. Kitamura, et 

al., 1990; Ulberg, et al., 1993), the adoption of telecommuting has apparently been steadily 

increasing over the past two decades, even if not as rapidly as its enthusiasts may have predicted. 

The best data available (see Mokhtarian, et al., 2004 for an in-depth critique of various estimates 

of the amount of telecommuting in the U.S., some of which are shown in Figure 2, discusssed 

later; the statistics presented here are based on the “Market Research Firms” series of that figure) 

indicate that about 12% of the workforce telecommuted at least once a month in 1998, with an 

average annual growth rate of 20% since 1988.  However, some evidence also suggests that the 

amount of telecommuting in the U. S. may be leveling off, reaching a natural dynamic equili-
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brium in which new adopters are approximately balanced by dropouts (see Mokhtarian, et al., 

2004 and Varma, et al., 1998). 

Telecommuting has been discussed as a strategy for reducing travel, and hence conges-

tion, energy consumption, and air pollution emissions, since the term was coined by Jack Nilles 

in the 1970s (see, e.g., Nilles, et al., 1991). Despite the now-common inclusion of telecommuting 

in public policy instruments directed toward reducing travel (from regional transportation plans 

and air quality regulations, to state legislation and Federal executive orders, laws, and programs), 

a number of questions about its transportation impacts remain without clear answers to date. On 

one hand, many small-scale empirical studies (e.g. Hamer, et al., 1991; Henderson, et al., 1996; 

Mokhtarian and Varma, 1998; Mokhtarian, et al., 1995; Nilles, 1988; Pendyala, et al., 1991) 

have established the short-term transportation (and air quality) benefits of telecommuting at the 

disaggregate level: vehicle-miles traveled are substantially reduced for those who telecommute, 

on days that they telecommute, for as long as they telecommute. On the other hand, an important 

question is whether that impact “scales up” to a systemwide level. It has been suggested 

(Mokhtarian, 1998) that it will not, in view of the relatively small amounts of telecommuting 

occurring today, the relatively slow growth that can be expected as the phenomenon matures and 

as attrition continues to occur, and the likelihood of long-term indirect impacts partly 

counteracting the short-term direct savings. Nevertheless, to our knowledge an aggregate 

empirical study of the impact of teleworking on transportation has not previously been 

conducted, although several scenario-based projection studies have been produced (see, e.g., 

USDOE, 1994). 

The purpose of this study is to estimate the impact of telecommuting on vehicle-miles 

traveled (VMT) of personal transportation through a multivariate time series analysis, using 
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aggregate nationwide data. Therefore, in this study, we focus on a single direction of causality 

and a subset of all telecommunications activity, to explore the impact of telecommuting on 

VMT. This is a limitation that must be kept in mind in interpreting the results. In fact, VMT 

should properly be modeled in a system of multiple structural equations. For example, VMT is 

influenced by the fleet size (number of registered personal vehicles), which in turn is a function 

of the number of licensed drivers, levels of employment, and number of households, which in 

turn are functions of the population size. In addition, VMT is influenced by transportation supply 

indicators such as number of lane-miles, but also influences supply through pressures to relieve 

rising congestion caused by rising demand. Congestion directly, and VMT indirectly, influences 

the level of telecommuting, in a direction that counteracts the hypothesized influence of telecom-

muting on VMT: more travel should stimulate more telecommuting, but more telecommuting 

reduces travel. Telecommuting is also influenced by the same transportation supply and price 

variables postulated to influence VMT directly. And, like VMT, levels of telecommuting are also 

functions of population and employment as well as other variables. 

Thus, the single-equation results presented here are inevitably subject to the endogeneity 

bias that occurs when explanatory variables in a single equation are actually endogenous to the 

system of interest rather than exogenous influences on the dependent variable of the equation. 

However, this limitation is common to nearly all the numerous published studies that model 

aggregate VMT (e.g. Springer and Resek, 1981; Gately, 1990; Greene, 1992; Schimek, 1996). 

With that caveat in mind, in any case, the tentative results that can be obtained here are still of 

interest for the new insight they may be able to provide into the relationship between telecom-

muting and travel at the aggregate level,  In particular, it is desirable to see whether the 

substitution effect observed in the disaggregate studies can be replicated, that is, whether, after 
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filtering out other forces expected to influence aggregate VMT, telecommuting has an effect that 

can be detected. 

In the following sections, we describe the data used for this study, and the time series 

analysis methodology we employed. Then, the modeling results are presented:  several candidate 

first-stage models containing all explanatory variables except telecommuting, and the 

corresponding second-stage models containing telecommuting to see if it adds significant 

explanatory power. Finally, conclusions and policy recommendations are discussed. 

 

DATA DESCRIPTION 

Aggregate time series data is used for this study of telecommuting on personal transportation 

over time. Of necessity due to time and resource constraints, we rely on secondary sources for 

the data, usually collected by trade or private sector organizations, government agencies, or other 

public agencies.  Figure 1 presents the time trends for the dependent variables as well as key 

explanatory variables.  It can be seen that most of the explanatory variables exhibit a rising trend 

similar to that of VMT (however, see the later discussion regarding the need for stationarity in 

each series), while the most notable exception, gasoline prices, may be useful in explaining 

fluctuation of VMT around a deterministic upward trend. 

[Figure 1 goes about here] 

The Dependent Variable  

The primary dependent variable of the current study is vehicle-miles traveled or VMT: annual 

passenger vehicle-miles traveled (i.e. miles traveled by light-duty autos and light-duty trucks in 

the US in a given year). Specifically, total VMT is annually reported by each state to the Federal 

Highway Administration (FHWA). It is calculated by multiplying daily VMT times 365 days 



                            

 

5
 

 

(366 days for leap years). Daily VMT is generally based on a product of the annual average daily 

traffic (AADT) on a given highway link and the centerline length of the corresponding link. 

AADT is generally obtained through counts of traffic on a given link over a 24- or 48-hour 

period, at one or more times of the year, with the results seasonally adjusted. All segments of 

interstate highways and other principal arterials are required to have new counts made at least 

once every three years (i.e. with at least a third of such segments sampled each year). In between 

new counts, AADT for a given segment is updated by applying estimated growth factors. AADT 

for the lower functional classifications (minor arterials and below) is generally based on counts 

taken on sampled segments. Some states estimate VMT for those functional classifications using 

fuel tax revenues (indicating how many gallons of fuel are sold) and data on fuel efficiency 

(miles per gallon) of the fleet.  It can be seen from this description that VMT estimates can have 

many sources of error:  sampling (both of links and of days; Kumapley and Fricker, 1996), 

measurement (fallible counting devices, difficulty in determining what proportion of a 

mechanically-obtained count represents two-axle versus three-or-more-axle vehicles, 

inconsistent definitions between states), extrapolation to non-counted years, and so on. 

Nevertheless, at the nationwide level, measurement of the growth of VMT over time can be 

reasonably reliable, if the errors tend to have a consistent effect from one year to the next and 

hence cancel out when comparing differences between years. 

 

The Explanatory Variables 

We considered several key types of influences on VMT, such as economic factors, transportation 

price and supply factors, and socio-demographic factors, in addition to telecommuting, and 

efforts were made to obtain data on each key type. The explanatory variables used in this study 
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include those appearing most often in models of VMT identified in our review of the literature. 

For example, a number of studies (e.g. Springer and Resek, 1981; Gately, 1990; Greene, 1992; 

Schimek, 1996) have modeled VMT as a function of economic indicators (GNP or GDP), 

gasoline price and fuel efficiency using aggregate time series data.  Ultimately, a total of 15 

explanatory variables besides telecommuting were selected for initial model specification: 

• Economic activity: real gross domestic product (GDP), real disposable income, employment, 

unemployment rate, federal interest rate; 

• Transportation price:  real gasoline price, fuel efficiency (miles per gallon), consumer price 

index (CPI) of all urban consumers for all items1, CPI of all urban consumers for 

transportation; 

• Transportation supply:  lane-miles; 

• Socio-demographics: population, household size, licensed drivers, number of personal 

vehicles, proportion of the population living in suburban areas. 

Many other variables were considered, but had to be excluded either because of high correlations 

with other variables, sometimes coupled with lack of significant impact in preliminary testing 

(e.g. the CPIs for personal vehicles and public transportation, the percentage of licensed drivers 

who were female), or because adequate measurements of them were not available for the entire 

period of interest (e.g. population and employment densities in metropolitan areas). 

 

                                                 
1 The Consumer Price Index (CPI) is a measure of the overall level of prices (paid by urban consumers) that 
indicates the cost of a fixed market basket of consumer goods and services relative to the cost of the same basket in 
a base year (Mankiw, 2003). The Bureau of Labor Statistics publishes the consumer price indices for all items and 
specific types of goods every month. 
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All data on vehicle-miles traveled (VMT), number of vehicles, and fuel efficiency and 

consumption include the 50 US states and the District of Columbia. These data are classified by 

vehicle type (car, truck, and all motor vehicles), and calculated by the FHWA. The car category 

is the only one used in this study; it includes passenger cars, motorcycles, and other 2-axle 4-tire 

vehicles such as vans, pickup trucks, and sport utility vehicles. Before 1966, the “other 2-axle 4-

tire vehicle” category was combined with trucks. To maintain consistency in the measurement of 

personal-vehicle-miles traveled, the key variable of this study, we elected to begin the analysis 

with 1966. Reinforcing this decision was the fact that some other variables (notably number of 

licensed drivers and data on several economic indicators such as the CPI, disposable income, and 

the Federal interest rate) also had some key changes in measurement or availability in years close 

to (although earlier than) 1966. Thus, the first-stage models analyzed here are based on 34 

observations, from 1966 to 1999.   

Factor analysis was conducted on these 15 (differenced) explanatory variables, to reduce 

the problems caused by multicollinearity. Factor analysis develops a smaller number of 

essentially uncorrelated composite measures, where each composite measure is some linear 

combination of the correlated variables. Four factors, similar to the key types of explanatory 

variables outlined above, were identified, accounting for 70% of the total variance in all the 

variables. Despite the intuitive nature of these factors, however, there is no guarantee that they 

will improve the models.  They will do so if in fact it is really the latent variables (composite 

factors) that are the true influences on VMT, and the constituent observed variables do a good 

job of measuring the latent variables.  On the other hand, if the true influences on VMT are better 

captured by the individual observed variables themselves, then the models will generally be 

better by letting the coefficients of the individual variables each be freely estimated (by entering 
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them directly into the models), than by only allowing them to enter the model through the linear 

combination comprising the factor score, and thereby (in effect) constraining their coefficients to 

be proportional to the coefficient of the factor.  

In our case, models incorporating the factor scores as explanatory variables were no 

better than, and generally inferior to, models containing only individual variables. In view of 

their disappointing performance and the additional complexity of interpretation involved with 

having composite factors as explanatory variables, we did not pursue this line of analysis further. 

 

The Telecommuting Variable 

A number of organizations have produced estimates of the amount of telecommuting or home-

based work in the US from time to time, primarily in terms of the number of telecommuters.  

Four different sources of published data on the number of home-based workers in the US were 

identified for this study. Figure 2 presents the data on number of telecommuters provided by 

each source. The source labeled “market research firms” refers to a series of annual surveys of 

home-based work directed by a single individual, Thomas E. Miller, under the auspices of 

several different firms over time:  LINK Resources, FIND/SVP, and Cyber Dialogue. 

[Figure 2 goes about here] 

Some large discrepancies between sources can be observed in the figure. They are 

probably mainly caused by differences in definitions of telecommuting, by sampling error, and 

by errors in weighting the sample to achieve population representativeness. For example, in 1997 

the Bureau of Labor Statistics reported 3.6 million home-based wage and salary workers (based 

on the Current Population Survey), whereas the market research firm of FIND/SVP estimated 

there to be 11.1 million telecommuters. But the CPS data counted only “formal arrangements” of 
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home-based wage and salary work, which is likely to undercount the number of telecommuters. 

On the other hand, the FIND/SVP survey included contract workers as well as salaried 

employees in its total. Excluding the 3.4 million reported contract workers from that total 

(leaving 7.7 million salaried telecommuters) and hypothetically inflating the CPS number to 

correct for a downward bias would bring the two counts closer together, although the 

discrepancy between 3.6 and 7.7 million is probably larger than would be accounted for by a 

CPS undercount alone. 

Although none of the telecommuting data sources is entirely satisfactory, the necessity of 

having data measured reasonably consistently over a series of years dictated the choice of data 

for this study. The chosen series of market research data represents the longest series of data 

available on number of telecommuters, with estimates published for each year between 1988 and 

1998. The estimates are based on 2,000 – 2,500 randomly-selected households interviewed by 

telephone each year. However, it should be stressed that these numbers, based as they are on 

small samples that must rely on the proper weighting in order to be representative, are in our 

opinion subject to a great deal of uncertainty. From various considerations presented in greater 

detail by Mokhtarian, et al. (2004), it is likely that the data used here overestimate the true 

number of telecommuters.  

We will assess the change in annual VMT per telecommuter for the latest year available 

(1998), which can then be translated to a change in VMT per telecommuting occasion based on 

an assumption about the average telecommuting frequency (and hence the number of occasions 

in a year). Considering the relatively stable average frequencies of telecommuting over time 

found in the literature (see, e.g., Mokhtarian, 1998), as well as the lack of complete information 

on frequency for each year in the sample, we assume the average frequency of telecommuting to 
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be constant across the period of study. The results are presented for two such assumptions: 50 

occasions per year (representing a frequency of about once a week, not including vacation 

weeks), and 75 occasions per year (about 1.5 days a week). 

 

METHODOLOGY 

In this study, we take the widely-practiced Box-Jenkins (1976) approach to time series analysis. 

The object of the Box-Jenkins approach is to obtain the most parsimonious model that is still an 

adequate representation of the data. The approach consists of three steps:  identification, estima-

tion, and diagnosis. Identification involves formulation of a tentative hypothesis about the nature 

of the model. The identification is suggested by patterns either in the raw series itself, or in the 

residuals from a previously-estimated model.  At the initial identification stage, autocorrelation 

of the raw series is expected, and can be modeled explicitly through either a univariate or 

multivariate specification.  Simultaneous estimation of the parameters of the identified model is 

done via least-squares, maximum likelihood, or some other approach using one of a number of 

special-purpose routines devoted to time series analysis (such as modules within SAS, Limdep, 

or EViews). Finally, the residuals from the estimated model are diagnosed to see if there are any 

patterns left that indicate an incorrect or incomplete specification.  At this stage, neither 

autocorrelation nor other time-dependent trends in the residuals should occur; the desirable 

pattern is one of white noise, or purely random variation.  The Durbin-Watson test is one 

common approach to checking for a residual pattern of white noise.  If this pattern is not 

achieved, the three-step process is repeated. 

Although model-building, diagnosis, and model revision takes place step by step, 

customarily all parameters from earlier steps are re-estimated simultaneously with parameters 
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relating to the current step. This makes the most efficient use of the data, and allows all 

parameters to be estimated as precisely (with the greatest confidence) as possible. In the present 

context, however, we deviate from that practice slightly, because of the fact that the time series 

for telecommuting is so much shorter (11 annual observations, 1988-1998) than those for the 

other variables (34 years, 1966-1999). Modeling VMT directly as a function of telecommuting 

together with the other variables, would mean the loss of many data points and hence degrees of 

freedom, making the resulting model statistically unreliable. Further, since we are trying to 

assess the potential effect of telecommuting on VMT, the conservative, scientifically rigorous 

approach is to model the effect of other, more conventional variables on VMT first, and then see 

if any of the remaining variation in VMT can be explained by telecommuting. Thus, we adopted 

a two-stage approach for this study. First, we modeled VMT as a function of all variables other 

than telecommuting, for the full 34-year series. Next, we computed the unexplained residual of 

VMT from that model. Finally, using only the 11 observations corresponding to the years 1988-

1998, we modeled that residual time series as a function of telecommuting. 

 

MODEL ESTIMATION 

This section presents the results of the two-stage models described in the previous section.  Prior 

to estimating the first-stage models, we standardized each variable (with one exception discussed 

below) to control for drastic differences in scale.   

In the classic Box-Jenkins methodology, the first step in analyzing a series is to make 

sure it is stationary (i.e., does not increase or decrease over time, on average), since key results 

with respect to the validity of the estimated parameters are based on an assumption of station-

arity. In a multivariate time series context, it can be intuitively understood that when two series 
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are both increasing over time, they will show a strong apparent relationship to each other simply 

because each is strongly correlated with time, whether or not there is a genuine relationship 

between them (Greene, 1997). It is important to control for that “third-party” correlation before 

the true relationship between two series can be ascertained. 

In the current study, each time series variable was non-stationary in its raw form, but in 

every case except one, first-order differencing of the series achieved stationarity.  In the case of 

the telecommuting variable, two forms of the series, a simple natural log and a first-order 

difference, were considered to achieve stationarity. Neither the Augmented Dickey-Fuller unit 

root test nor the Durbin-Watson test statistics for the residuals of the second-stage estimation 

provided a strong basis for choosing between the two forms.  Based on visual inspection of the 

correlogram, the first-order difference form was more stationary than the natural log one.  

However, differencing the telecommuting series would have reduced the already small number 

of observations available for estimation from 11 to 10.  We considered the log transform prefer-

able to preserve the additional degree of freedom, given that the Durbin-Watson test statistic (of 

2.17, see Table 2) for this transformation was satisfactory.  However, using the log transform for 

the telecommuters variable meant that it could not be standardized before transformation, since 

the log transform is undefined for negative numbers. 

We extensively explored including various lagged explanatory variables in the models, 

on the basis of both the univariate models for each variable and the cross-correlation function of 

each explanatory variable with the dependent variable2, but for the most part lagged terms were 

not significant in the final models presented here.  The econometric software package EViews 

                                                 
2   The cross-correlation function (CCF) displays the correlation of, say, VMTt with a given explanatory variable X 
lagged 0, 1, 2, … time periods behind t, respectively.  Spikes (high correlations) in the CCF at lag k suggest the 
inclusion of Xt-k in the model for VMTt. 
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4.0 (Quantitative Micro Software, 2000) was used to estimate the models in view of its user-

friendliness and graphical interface. 

 

First Stage VMT Models (without Telecommuting) 

Initially, we modeled (standardized, first-differenced) VMT itself, as a function (potentially) of 

the 15 explanatory variables (also standardized and first-differenced). Since population itself was 

seldom significant in those exploratory models, however, we also developed models of VMT on 

a per capita basis. After extensive testing of numerous different specifications of both forms of 

VMT, several good models emerged. We took each of these models to the second stage and 

examined the effects of telecommuting on the residual unexplained VMT in each case. It will be 

seen in Tables 1 and 2 that the estimated effects of telecommuting depend substantially on which 

stage 1 specification is adopted. For this reason, we present a range of stage 1 models here. We 

recommend a model that in our opinion is best, and explain our reasoning, but we wished to 

show the reader the effects of various alternatives. 

Table 1 presents three models for VMT and five models for VMT per capita. Adjusted 

R2s for these models range from 0.488 to 0.649 (the latter being our recommended model)3.  

Durbin-Watson statistics for the models ranging from 1.57 to 1.92 show that there is no 

autocorrelation between residuals, since the statistics are greater than the upper bounds for the 

critical values, which vary by the sample size and number of regressors (Savin and White, 1977).  

Because all variables are standardized, the magnitudes of the estimated coefficients can be 

                                                 
3   The R2s of 0.9 and higher that are frequently reported for time series models are generally based on non-
stationary series, where the high correlations of explanatory with dependent variables are due in large part to their 
mutual high correlation with time.  Given the high pairwise correlations of our undifferenced data (shown in Table 3 
of Choo, et al., 2001), we obtained similarly large R2s for models based on the raw data. 
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viewed as direct indicators of the relative impact of the associated explanatory variable on the 

dependent variable. 

[Table 1 goes about here] 

Each of the models contains variables representing economic activity (GDP per capita in 

six models; disposable income per capita in the other two), transportation price (gasoline price 

in seven models; miles per gallon in five), or both. These kinds of variables are consistent with 

those found to significantly affect VMT in previous studies using linear (Springer and Resek, 

1981) or log-linear models (Gately, 1990; Greene, 1992; Schimek, 1996). The “CPI-all” 

variable, which appears with a negative coefficient in five of our models, relates to both types of 

variables:  it is both a measure of general economic conditions (the higher prices are in general, 

the less discretionary income people will have to devote to travel) and (due to its high correlation 

with CPI for transportation goods only: 0.87 between the two standardized, first-differenced 

variables) a proxy measure of transportation prices specifically. The final model in the table also 

includes CPI-transportation, with a counterintuitive positive sign, but it should be interpreted 

together with CPI-all and can be understood as a correction of the overly strong estimated impact 

of CPI-all. Based on the relative magnitudes of their coefficients, the combined impact of these 

two variables will nearly always be negative as expected. 

The only other variable appearing in any of the models is population, which enters the 

VMT Alternative 3 model. Although this model is appealing (all variables having the expected 

sign, and an adjusted R2 of 0.601), the coefficient of population is not significant at the 0.1 level 

(we chose this relatively liberal cutoff rather than the more typical 0.05, due to the small sample 

size). When population is dropped from the model, VMT Alternative 2 results, in which CPI-all 

then becomes insignificant at the 0.1 level. When CPI-all is dropped, miles/gallon becomes 
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insignificant (not shown), finally resulting in VMT Alternative 1, the only case in which all 

variables (comprising only GDP per capita and gasoline price) were significant.  

Five models are presented with VMT per capita as the dependent variable. Alternative 1 

is the counterpart to Alternative 1 for VMT only, but its goodness of fit is inferior4. Alternatives 

2 and 3 contain disposable income per capita instead of GDP per capita (the two variables being 

highly correlated), since the former variable may offer a more directly causal relationship to 

VMT per capita. However, their goodness of fit is also inferior to even the “worst” model of 

VMT alone. 

Alternatives 4 and 5 represent the best models of VMT per capita, with Alternative 4 

resulting from dropping the counterintuitively-signed CPI-transportation variable from 

Alternative 55. But comparing the two models shows that (a) the jump in adjusted R2 from 0.556 

(Alt. 4) to 0.649 (Alt. 5) is rather extraordinary with the addition of just one variable, and (b) the 

addition of CPI-transportation results in lower standard errors of the estimators (and therefore 

higher t-statistics) in comparison to those in Alt. 4. This is an indication that excluding CPI-

transportation would result in omitted variables bias. Excluding relevant variables that are 

correlated with included variables leads to biased coefficient estimates (where the bias is a 

function of the correlation between excluded and included variables) and also to upwardly biased 

estimates of standard errors. For these reasons, some authorities (e.g. Conlisk, 1971; Kennedy, 

1998) suggest that it is appropriate to retain two variables even when they are highly correlated 
                                                 
4  Although the dependent variables are different (VMT versus VMT per capita), they represent two alternative 
approaches to measuring the same conceptual construct (amount of passenger vehicle travel), and hence it is 
legitimate to inquire which of those two alternatives can be modeled more effectively with the available data.  
Assuming best models are identified in each case, a comparison of R2s simply indicates that a greater proportion of 
variance in the dependent variable is explained in one case than in the other, i.e. that one form of the construct of 
interest can be modeled more effectively than the other. 
5   Dropping CPI-all from Alternative 5, in the hope that CPI-transportation would change signs to reflect the 
combined impact of the two measures, resulted in a CPI-transportation coefficient with a p-value of 0.95 and a miles 
per gallon coefficient with a p-value of 0.77. Dropping both of these variables resulted in Alternative 1 of the VMT 
per capita group. 
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and therefore their separate effects are difficult to distinguish, but to interpret only the combined 

effects of the two variables. 

Thus, we advocate in favor of the Alternative 5 VMT per capita model as the final stage 1 

model. It contains GDP per capita (positive impact on VMT per capita) representing economic 

activity, gasoline price (negative) and miles per gallon (positive) representing transportation 

prices, and CPI-all and CPI-transportation (joint impact negative), together representing both 

available income (inversely related) and transportation prices.  

 

Second Stage VMT Models (the Impact of Telecommuting) 

Table 2 presents the second stage models, identifying the impact of telecommuting on the 

residual VMT after the impacts of the stage 1 variables are accounted for. As a general tendency, 

it can be seen that the higher the adjusted R2 in the stage 1 model, the lower the adjusted R2 in 

stage 2.  Similar to the first stage models, Durbin-Watson statistics (1.70 - 2.36) for the models 

indicate that there is no autocorrelation between residuals. That is, white noise is achieved by the 

residuals for each model.  Further, the more powerful the stage 1 model, generally the smaller in 

magnitude and significance is the telecommuting coefficient in the stage 2 model. These are 

natural results:  the more variance in VMT that is explained by the earlier variables, the less that 

remains for telecommuting to explain, and the less powerful it will be. 

[Table 2 goes about here] 

As indicated in the previous section, the scientific, conservative approach taken in this 

study is to attempt to disprove any effect of telecommuting, by explaining as much variance in 

VMT as possible using more conventional variables. It is noteworthy, then, that in all eight stage 

2 models shown in Table 2, even the one based on the strongest stage 1 model, the 
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telecommuting variable is significant at a 0.1 level or better. In particular, in the Alternative 5 

VMT per capita model (our recommended stage 1 model), the estimated coefficient of the 

telecommuting variable has a p-value of 0.057 (and the expected negative sign, meaning that 

increases in the number of telecommuters result in decreased per-capita VMT). 

Statistical significance is one critical measure of the importance of a variable, but 

practical impact is at least as critical a measure. A variable can be statistically significant but 

practically unimportant, and conversely a variable that is insignificant (perhaps due to a small 

sample, insufficient variation in the sample, and/or multicollinearity) can have an impact that is 

still potentially substantial, even if imprecisely estimated (Ziliak and McCloskey, 2003).  In the 

present context, it is important to translate the estimated coefficient of the telecommuting 

variable into what it means in terms of impact on VMT. 

Those impacts are displayed in Tables 3 and 4 for 1998, the last year in the time series on 

the number of telecommuters. Table 3 is based on the 95% confidence interval for the telecom-

muting coefficient, while Table 4 is based on the 90% confidence interval. To obtain the absolute 

impacts on VMT, the log of 15.7 (the number of telecommuters in millions, in 1998) is multi-

plied by the lower bound, midpoint, and upper bound of the confidence interval on the coeffi-

cient of log-telecommuters. Since VMT is standardized in the model, this gives the range of 

impacts of telecommuting on VMT expressed in standard deviations. The three numbers 

representing the range are then multiplied by the standard deviation of VMT (across the entire 

series, i.e. the factor used to standardize the observations in the series) to yield the incremental 

impacts of telecommuting in terms of absolute changes in VMT.  An identical process based on 

VMT per capita is employed for the second group of models. 

[Tables 3 and 4 go about here] 
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Next, to put the absolute changes in perspective, we express them as a percent of the total 

annual observed VMT (or VMT per capita) in 19986. We also express them in terms of change in 

annual VMT per telecommuter.  Finally, as a reality check, we calculate the estimated impact on 

VMT per telecommuting occasion, under two assumptions:  50 occasions per telecommuter per 

year (about one day a week) and 75 occasions per person per year (about 1.5 days per week).  

Based on the literature, we are reasonably confident that these two assumptions bracket the true 

mean frequency of telecommuting in terms of number of commute trips eliminated. Obviously, 

given a fixed total reduction in VMT, the higher the number of telecommuting occasions per 

year, the lower the average reduction in VMT per occasion. 

Turning first to the 95% confidence interval results shown in Table 3, we note that the 

estimated mean percent changes in VMT are all reductions (as the uniformly negative coefficient 

estimates guarantee). The midpoint numbers indicate that estimated VMT without telecom-

muting would have been 1.78% to 3.31% higher than the observed VMT, with a mean impact of 

2.12% implied by our recommended Alternative 5 VMT per capita model. To put these 

estimated impacts into context, it is of interest to compare them to those of public transportation.  

If it is assumed that every passenger-mile on public transportation would otherwise have been a 

passenger vehicle-mile in a light-duty auto or truck7, the 44,128 million transit PMT in the US in 

                                                 
6  Thus, strictly speaking, the percents presented are not “percent reductions in VMT”, which would be based on 
[number of miles reduced/(miles reduced + miles observed)] instead of just [number of miles reduced/number of 
miles observed].  We preferred to report percent impacts based on observed VMT rather than on the estimated 
“counterfactual” VMT in the absence of telecommuting.  However, in view of the relatively small reductions in 
question, the two ways of calculating percentages are not very different.  
7 If one transit passenger-mile equated to one person-mile traveled by auto or truck, it would translate to only 0.63 
vehicle-miles traveled in view of an average vehicle occupancy of 1.59 (obtained by dividing the 1998 auto/truck 
PMT of 3,855,696 million by the corresponding VMT of 2,428,135 million).  This would change the impact of 
transit on VMT to 1.1%, making telecommuting look even stronger by comparison.  On the other hand, some studies 
(Holtzclaw, undated) have argued that the average one-mile trip on transit replaces a trip of anywhere from 1.4 to 9 
vehicle-miles in length, due to concomitant changes in destinations, routes, and overall mode mix.  However, since 
these studies are based on disaggregate cross-sectional data mostly involving rail transit, a number of questions 
remain.  Given the counteracting directions of the two effects mentioned here (one deflating the impact of transit on 
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1998 would have increased the 2,428,135 million VMT by 1.8% (see Tables 1-32 and 1-34 at 

http://www.bts.gov/publications/national_transportation_statistics/2003/index.html, accessed 

July 11, 2004).  Thus, taken at face value, the midpoint estimated impact of telecommuting on 

VMT is comparable to or even greater than that of all the public transit ridership in the US put 

together!  Since this implication seems dubious, it is important to keep in mind the uncertainty 

associated with a point estimate of the impact, and to analyze the confidence interval around that 

point estimate. 

Loosely speaking, the 95% confidence intervals displayed in Table 3 mean that, if the 

given model specification is correct, we can be 95% confident that the true mean effect of 

telecommuting on VMT lies somewhere in that interval. Although by construction the midpoint 

of the interval is the highest-probability fit to the data, in consideration of random sampling 

variation we would not be able to reject the null hypothesis that the true mean effect was any 

given point in that interval. With that in mind, the endpoints of the intervals shown in Table 3 

enclose VMT changes from a 5.08% reduction to a 0.08% increase, where the latter can be 

interpreted as essentially no change. Importantly, the latter is the upper bound on the 

telecommuting impact for the preferred Alternative 5 model.  

Assessing the per-occasion impact of telecommuting on VMT provides a useful concrete 

interpretation of the results. Looking first at the midpoints, we see that the models imply an 

average per-occasion reduction in VMT ranging between 55 and 102 miles for one-day-a-week 

frequencies, and between 37 and 68 miles for 1.5-day-a-week frequencies. To put these numbers 

in perspective, several benchmarks can be noted: 

                                                                                                                                                             
VMT, the other inflating it), for the purposes of the present discussion we simply assume a one-to-one relationship 
between transit PMT and passenger VMT. 
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• Based on the 1995 Nationwide Personal Transportation Survey (NPTS), the average one-way 

commute distance in the US is 11.6 person-miles (Table 4 of Hu and Young, 1999). It is 

likely that the average commute length for the population of prospective telecommuters is 

longer than that, since other evidence suggests that telecommuters will be disproportionately 

drawn from workers having higher-than-average incomes and professional, technical, or 

managerial occupations – both of which characteristics are related to longer commutes.  

Further, it has been noted that average commute lengths for the telecommuters in early 

empirical studies are longer than normal, although it is also suggested that that average is 

likely to approach (but not converge to) the typical average as telecommuting moves more 

into the mainstream (Mokhtarian, et al., 1995). 

• Also based on the 1995 NPTS, daily per capita PMT for people between 21 and 65 years old 

is 45-46 miles (Table 13 of Hu and Young, 1999).  PMT for the population of prospective 

telecommuters is likely to be greater than this number by an unknown amount, for the 

reasons given above.  VMT, on the other hand, will be lower than the corresponding PMT. 

• Mokhtarian (1998) reports a weighted average of 56 vehicle-miles traveled on non-telecom-

muting days and 33 vehicle-miles saved per telecommuting occasion, calculated for telecom-

muters across four empirical studies (total N = 192). The telecommuters analyzed in these 

studies (based on data collected from 1988 to 1996) should be considered early adopters who 

may not be typical of “mainstream” telecommuters. If the expectation is correct that average 

commute lengths of telecommuters decline the greater the number adopting, then the average 

non-telecommuting-day VMT and the per-occasion savings identified in these early studies 

are likely to represent ceilings on current numbers. 
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With these bases for comparison, the midpoint reductions implied by all the models again 

appear to be unrealistically high – even the lowest one of 37 exceeds the probably high value of 

33 vehicle-miles reduced observed in disaggregate studies. Obviously, the reductions implied by 

the lower bounds are even more extreme. The upper bounds, however, are more plausible: they 

range from reductions of 39 miles to increases of 2.4 miles per occasion for the lower 

telecommuting frequency, and from reductions of 32 miles to increases of 1.6 miles per occasion 

for the higher frequency. The preferred Alternative 5 model represents the higher end of those 

ranges in both cases.  

The 90% confidence intervals shown in Table 4 are included for consistency with our 

standard of a p-value of 0.1 or lower for retaining a variable in the model. However, the 90% 

confidence intervals are of course narrower than the corresponding 95% intervals (it takes a 

larger interval to be 95% sure of including the true value than only to be 90% sure), and so they 

constitute a less rigorous test of the null hypothesis that telecommuting has no effect on VMT.  

None of the 90% intervals enclose the zero point. In particular, comparing the 95% and 90% 

confidence intervals for the preferred Alternative 5 model leads to the conclusion that (if this is 

the correct model specification) we can be 90% confident that telecommuting reduces VMT (by 

an amount as little as 0.34% of the observed travel), but not 95% confident that it does so. 

 

SUMMARY AND DISCUSSION OF RESULTS 

This study estimates the impact of home-based telecommuting on personal transportation 

through a multivariate time series analysis of aggregate nationwide data spanning 1966-1999 for 

all variables except telecommuting, and 1988-1998 for telecommuting. Vehicle-miles traveled 

(VMT) was modeled in direct and per-capita forms. The analysis was conducted in two stages.  
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In the first stage (after ensuring that all series were stationary through first-differencing and log 

transformations), each dependent variable (1966-1999) was modeled as a function of 

conventional variables representing economic activity (e.g. GDP, employment, disposable 

income), the cost of transportation (e.g. gasoline price, fuel efficiency, CPI for transportation), 

transportation supply (lane-miles of roadways), and demographics (e.g. population, household 

size, licensed drivers, number of personal vehicles). A total of 15 explanatory variables were 

allowed to enter the first-stage models. In the second stage, the residuals of the first stage (1988-

1998) were modeled as a function of the number of telecommuters. 

The study necessarily relied on secondary data sources, all of which have measurement 

issues. The critical telecommuting variable in particular has a number of concerns associated 

with its measurement, and it is likely that the data used here overestimate the true number of 

telecommuters. Although no better data on telecommuting are available, these concerns should 

be kept in mind in interpreting the empirical results. 

The preferred first stage model has an adjusted R2 of 0.65. The five significant variables 

(besides the constant term) represent economic activity and the cost of transportation, with GDP 

per capita and miles per gallon having the expected positive signs, and gasoline price and the 

combined effect of CPI-all and CPI-transportation having the expected negative signs. The 

corresponding second stage model has an adjusted R2 of 0.27, and the coefficient for number of 

telecommuters is significant and negative, suggesting that telecommuting does measurably 

reduce VMT. 

When the amount of that reduction is quantified, however, concerns regarding its 

plausibility emerge. Using the estimated coefficient of telecommuting directly, the estimated 

impact on VMT in 1998 translates to a reduction of 66 miles per telecommuting occasion on the 
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assumption of 50 occasions per year (about once a week), and 44 miles per occasion at an 

assumed 75 occasions per year (about 1.5 times a week). Even the lower number of 44 miles 

seems unrealistically high compared to benchmark data on average commute lengths and average 

daily VMT. Thus, we present the VMT reductions estimated by the 95% and 90% confidence 

intervals on the coefficient of telecommuting, and suggest that other evidence on average 

commute lengths and disaggregate VMT savings per telecommuting occasion supports the true 

mean impact lying in the upper halves of those intervals. The 95% confidence interval on the 

coefficient encloses the value zero, meaning that with that standard, we cannot reject the null 

hypothesis that telecommuting has no impact on VMT. On the other hand, the 90% confidence 

interval does not include zero (the p-value for the telecommuting coefficient is 0.057, meaning 

94% confidence that there is an effect). 

Taken together, these results can be simply summarized as follows: 

• Assuming the specified models are the correct ones, we can be 90% confident that telecom-

muting reduces VMT (by an amount as little as 0.34% of the observed VMT in 1998), but 

not 95% confident. 

• Taking independent external evidence into account, the amount of that reduction is most 

likely small, falling somewhere between a 2% reduction in VMT and essentially no change 

in VMT. 

It is of interest to compare these results to a previous study estimating the aggregate 

impact of telecommuting on VMT (Mokhtarian, 1998). That study analyzed “base case” and 

“future” scenarios.  For the base case scenario, the level of telecommuting was estimated at 

about 6% of the workforce, using 1992 empirical data on the adoption of telecommuting among 

employees of the City of San Diego, California. This estimated level of telecommuting is 
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consistent both with estimates independently obtained from a statewide travel diary survey 

conducted in California in 1991, and the nationwide number of telecommuters obtained by the 

LINK Resources market research firm in 1992. For the future scenario (date unspecified), the 

level of telecommuting was estimated at 11.4% of the workforce, based on assumptions about 

the increasing proportion of the workforce able to telecommute. This assumed level of 

telecommuting is roughly consistent with the 1998 estimate (15.7 million, 12% of the workforce) 

made by the Cyber Dialogue market research firm and used in this study. 

Therefore, using the previous study’s future case scenario assumptions of (1) a 27-mile 

average round trip commute distance for telecommuters, (2) a factor of 0.76 for the proportion of 

commute miles that are drive-alone, and (3) an average telecommuting frequency of 1.2 days a 

week (say 60 occasions a year), we obtain an estimate of (27 × 0.76) VMT saved/telecom-

muter/occasion × 15.7 million telecommuters × 60 occasions/ year = 19,329.84 million vehicle-

miles/year saved due to telecommuting. This constitutes 0.79% of the 2,428,135 million VMT 

measured in 1998. This effect is certainly congruent with the results obtained in the present study 

(falling in the upper half of the range obtained from the 90% confidence interval on the effect of 

telecommuting). However, that informal calculation only accounts for travel savings due to 

telecommuting; it does not include any increases in travel due to factors such as non-work trip 

generation, residential relocation, and the realization of induced or latent demand. In contrast, the 

models estimated in the current study do account for such effects, because the observed VMT 

that constitutes the dependent variable in the model will include any such effects. The limited 

empirical evidence available on this question suggests that those travel-increasing effects are 

small relative to the savings, but whatever their magnitudes, they will act to reduce the 

transportation benefit of telecommuting. 
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Thus, in our opinion, a reduction of 0.79% of VMT represents a reasonable upper bound 

on the effect of telecommuting on VMT in 1998, taking both internal statistical evidence and 

external reality checks into consideration.  In the Model Estimation section we noted that public 

transportation accounted for travel roughly equivalent to 1.8% of VMT in 1998.  Here we can 

comment that even if telecommuting “only” accounts for 0.8% of VMT, it still looks very cost-

effective by comparison, when one considers that in 1998, federal, state, and local government 

expenditures on public transit totaled around $28 trillion (see Table 3-29a of 

http://www.bts.gov/publications/national_transportation_statistics/2003/index.html, accessed 

July 11, 2004), compared to, at most, tens of millions of dollars on telecommuting (personal 

communications with Ms. Kathy King of the State of Oregon and Dr. Wendell Joice of the US 

General Services Administration, both administrators of governmental telecommuting policies, 

July 13 and 15, respectively, 2004).  This is not even counting the comparative sunk costs of the 

requisite infrastructures, on which public transit even further outstrips telecommuting. 

If we must rely on external evidence to point to the “right” answer in this study, it is 

understandable to wonder (as one referee did) whether it was worth doing the time series 

modeling in the first place.  We suggest that this investigation provides a good example of 

multiple techniques corroborating and refining each other to result in an outcome that is more 

reliable than either approach could have yielded alone.  The value added by the external “reality 

check” conducted to refine our estimate of the magnitude of the impact of telecommuting is 

clear.  What value is added by the time series analysis reported here?  The estimate produced by 

the previous study could perhaps best be characterized as “informed speculation”, based on an ad 

hoc synthesis of findings from a number of small disaggregate studies, among other sources.  

The present study, by contrast, represents a systematic, rigorous statistical analysis of aggregate 
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data (for the first time, from this perspective).  It is only such an analysis, not the more informal, 

speculative one of the previous study, that allows us to empirically demonstrate, within the limits 

of data quality and the confidence constraints of sampling error, that telecommuting does in fact 

have a detectable impact on VMT in the aggregate. 

On the other hand, in addition to the measurement uncertainty for the number of telecom-

muters, VMT, and the other variables, and the ever-present possibility of a Type I error (falsely 

rejecting the null hypothesis of no impact), another caveat is that when we are dealing with 

effects this small (perhaps only fractions of a percent), the results are inevitably sensitive to 

model specification. As Table 3 shows, the estimated impact of telecommuting could be as high 

as 5% of VMT under at least one specification tested in the study, albeit one that we consider 

inferior to the final one selected.  In general, the worse the first-stage model is (i.e. the less 

variation in VMT that is explained by variables other than telecommuting), the more powerful 

the effect of telecommuting will appear to be. Conversely, if we were able to improve the 

specification of the best first-stage model beyond the current adjusted R2 of 0.65, there would be 

less residual variation for telecommuting to explain and its estimated effect could become 

weaker. In view of these issues and the endogeneity bias concerns discussed in the Introduction, 

it would be unwise to place too much emphasis on the specific quantitative results obtained here. 

It is also of interest to comment on two variables that were not found to be significant in 

the final model:  lane-miles and number of vehicles. An extensive literature (e.g., Noland, 2001) 

examines the impact of increasing network capacity on travel, by modeling VMT as a function of 

lane-miles as well as economic and other variables. The fact that the lane-miles variable is inev-

itably found to be significant in those induced demand studies but is not significant here, is intri-

guing.  Its absence here is presumably not due to correlations with included variables, since the 
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pairwise correlations and factor analysis demonstrated that the lane-miles variable has very little 

variation in common with the other explanatory variables (in their first-differenced forms, as 

used in our models). 

One speculation is that if the time series in the induced demand studies were not made 

stationary before building the models, the significance of lane-miles could be due to third-party 

correlation with time: as the pairwise correlations showed, in raw form, lane-miles is highly 

correlated with the other variables in this study, including VMT. Another difference with some 

of the induced demand studies is that we included lane-miles for all facility types, whereas some 

studies restricted their analysis only to higher-level facility types. As DeCorla-Souza (2000) 

points out, by not including lower-level facilities such as minor arterials in the analysis, shifts in 

traffic from minor facilities to the major ones under study would erroneously be counted as 

induced demand. Further, increases in lane-miles over time can be due to the reclassification of 

minor facilities into major ones (or, when the unit of observation is a metropolitan area, through 

the incorporation of additional land into the officially-designated metro area), rather than through 

true capacity increases. The VMT on these reclassified facilities would augment total VMT 

accordingly, but that would not represent the same causal mechanisms as generation of 

completely new traffic (whether induced or “natural”). 

The second explanatory variable that is intriguing by its absence is number of vehicles.  

Conventional wisdom holds that vehicles themselves tend to induce vehicle travel, but this is not 

borne out by our results. Again, inspection of pairwise correlations suggests that the absence of 

this variable does not appear to be due to overly high correlations with included variables, but 

there could still be a subtle network of connections through correlations among number of 

vehicles per capita, employment, disposable income, and GDP. Based on the present results, it 
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seems that if employment and disposable income are indirectly accounted for through the 

presence of GDP in the model, there is no residual effect of number of vehicles on VMT.  

However, here is a case where a more elaborate system of structural equations may be able to 

identify an effect that is not apparent in our single-equation model. 

 

POLICY RECOMMENDATIONS 

Given that telecommuting appears to have a statistically significant – albeit modest in magnitude 

– effect on reducing travel, several public policy recommendations can be suggested. 

First and perhaps foremost, better data is of paramount importance to a more precise 

determination of the true impact of telecommuting on VMT. As this study demonstrates, a great 

deal of uncertainty surrounds estimates of the number of telecommuters and frequency of 

telecommuting, and a wide range of answers to the question of “what impact on travel?” can be 

obtained. Telecommuting appears to be an important enough trend to justify the cost and effort 

required to collect reliable data with respect to its adoption and frequency, on an annual basis. 

In view of its apparently beneficial transportation-related impacts, public agencies could 

consider several strategies for increasing the adoption of telecommuting. One such strategy is 

simply to collect and widely disseminate case-study information on telecommuting successes.  

Where costs and benefits can be quantified, the business case for telecommuting can be 

compelling. Case studies are more important in the many situations in which the costs of 

telecommuting may be evident and quantifiable, but the benefits may be less evident and less 

easy to quantify. Individual organizations are likely to be receptive to evidence showing that 

major competitors in the same industry have successfully adopted telecommuting and consider it 

a net benefit. In at least one study (Illegems, et al., 2001, p. 290), human resources managers 
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“viewed the widespread dissemination of information on ‘best teleworking practices’ in large 

and well-known companies as the most efficient way to obtain an enhanced implementation of 

teleworking” and as “the most effective policy tool to promote teleworking”. 

Public agencies have also occasionally considered (and some have implemented) tax 

credits for organizations who adopt telecommuting. However, the modest incentives that are 

usually involved in such proposals may not be sufficient in their own right to overcome the 

managerial resistance that often exists. Further, enforcement must be a concern, with possibly a 

high potential for false claims on the part of organizations or their employees. Even if reported 

telecommuting is genuine, to judge the cost-effectiveness of this policy it should be determined 

to what extent the reported telecommuting was in fact stimulated by the tax incentive, rather than 

something that would have occurred anyway. 

Finally, one or more variables relating to the cost of transportation was significant in 

every model presented here, with a negative impact on travel. Thus, it stands to reason that 

policies that increase the cost of travel – congestion pricing, fuel taxes – will reduce the amount 

of travel, and by extension will make telecommuting more attractive. Although in this case more 

telecommuting is arguably just a desirable by-product of a policy oriented toward reducing travel 

directly (rather than a direct object of the policy itself), there may also be some additional trans-

portation benefits accruing from the adoption of telecommuting itself. For example, some studies 

have found that telecommuting not only reduced commute travel, but non-work travel as well, 

and not only of telecommuters but also of their household members (Mokhtarian, et al., 1995). 

The encouraging transportation-related results obtained in this study, together with the 

other potential public and private benefits of telecommuting, certainly support further 

commitment to increasing its adoption, and further refinement of our knowledge of its impacts. 
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Figure 2.  The Number of Telecommuters 
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Table 1.  Multivariate Time Series Models for Vehicle-Miles Traveled (VMT) (N = 33) 

Explanatory variables 

 Model Adjusted 
R2 

Durbin- 
Watson 
statistic Constant Real GDP 

per capita 

Real 
disposable 

income  
per capita 

Real 
gasoline 

price 

Miles per 
gallon CPI (all) CPI 

(transportation) Population 

VMT           

Alt. 1 0.555 1.668 0.0739 

(7.930) 
0.257 

(3.968)  -0.0490 
(-4.130)     

Alt. 2 0.582 1.752 0.0957 
(4.291) 

0.286 
(4.249)  -0.0417 

(-2.975) 
0.181 

(1.964) 
-0.416 

(-1.569)   

Alt. 3 0.601 1.920 0.0110 
(0.186) 

0.287 
(4.366)  -0.0383 

(-2.755) 
0.204 

(2.237) 
-0.521 

(-1.948)  0.916 
(1.537) 

VMT per capita           

Alt. 1 0.495 1.572 0.0663 
(4.432) 

0.332 
(3.191)  -0.0761 

(-4.000)     

Alt. 2 0.509 1.612 0.0521 
(2.935)  0.472 

(3.362) 
-0.0658 
(-3.354)     

Alt. 3 0.488 1.697 0.144 
(3.814)  0.481 

(3.282)  0.260 
(1.781) 

-1.226 
(-3.135)   

Alt. 4 0.556 1.856 0.134 
(3.884) 

0.348 
(3.333)  -0.0509 

(-2.340) 
0.298 

(2.084) 
-1.004 

(-2.443)   

Alt. 5 
(recommended) 0.649 1.856 0.153 

(4.866) 
0.366 

(3.936)  -0.0936 
(-3.847) 

0.352 
(2.737) 

-2.076 
(-3.990) 

0.834 
(2.895)  

Notes: 
All dependent and explanatory variables are the standardized, first-order differenced (i.e.Xt−Xt-1) variables. 
The number in parentheses indicates the t-statistic for that coefficient.  The degrees of freedom are N-k where k is the number of parameters estimated, and hence 
ranges from 27 to 30 for these models.  Critical t-values for α = 0.05 and 0.1, with 27 (30) degrees of freedom, are 2.052 (2.042) and 1.703 (1.697), respectively. 



                                                                                                                                                           38    

 

 

 

Table 2.  Telecommuting Models for VMT Residuals (N = 11) 

Explanatory variables 
 Model Adjusted 

R2  

Durbin- 
Watson 
statistic Constant Natural log of the number of 

telecommuters (in millions) 
VMT     

Alt. 1 0.550 2.362 0.0988 

(4.073) 
-0.0450 
(-3.636) 

Alt. 2 0.289 2.308 0.0754 
(2.643) 

-0.0328 
(-2.250) 

Alt. 3 0.319 2.005 0.0731 
(2.452) 

-0.0363 
(-2.383) 

VMT per capita     

Alt. 1 0.628 2.122 0.143 
(3.945) 

-0.0781 
(-4.232) 

Alt. 2 0.591 1.708 0.136 
(3.888) 

-0.0703 
(-3.934) 

Alt. 3 0.410 1.702 0.118 
(3.009) 

-0.0566 
(-2.818) 

Alt. 4 0.438 2.208 0.118 
(2.829) 

-0.0632 
(-2.968) 

Alt. 5 
(recommended) 0.273 2.173 0.102 

(2.284) 
-0.0499 
(-2.183) 

Notes: 
Each dependent variable comprises the residuals of the corresponding estimated time series model in Table 1. 
The number in parentheses indicates the t-statistic for that coefficient.  Critical t-values for α = 0.05 and 0.1, with 9 
degrees of freedom, are 2.262 and 1.833, respectively. 
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Table 3.  Estimated Impact of Telecommuting on VMT in 1998 (using the 95% confidence interval for the estimated coefficient 
of telecommuting) 

Change in annual VMT 
(millions of miles) % change in annual VMT Change in annual VMT per 

telecommuter (miles) 
Change in VMT per 

occasion (miles) Model 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
VMT             
Alt. 1 50 occasions/year -123.0 -75.8 -28.6 

 75 occasions/year -96,537 -59,509 -22,481 -3.98 -2.45 -0.93 -6,149 -3,790 -1,432 -82.0 -50.5 -19.1 
Alt. 2 50 occasions/year -110.6 -55.2 0.3 

 75 occasions/year 
-86,836 -43,300 235 -3.58 -1.78 0.01 -5,531 -2,758 15 

-73.7 -36.8 0.2 
Alt. 3 50 occasions/year -119.1 -61.1 -3.1 

 75 occasions/year 
-93,460 -47,941 -2,421 -3.85 -1.97 -0.10 -5,953 -3,054 -154 

-79.4 -40.7 -2.1 

VMT per capita  (miles)           

Alt. 1 50 occasions/year -157.1 -102.4 -47.7 
 75 occasions/year -456 -297 -138 -5.08 -3.31 -1.54 -7,256 -4,607 -1,958 -104.8 -68.3 -31.8 

Alt. 2 50 occasions/year -145.1 -92.1 -39.2 
 75 occasions/year 

-422 -268 -114 -4.69 -2.98 -1.27 -7,856 -5,120 -2,383 
-96.7 -61.4 -26.1 

Alt. 3 50 occasions/year -133.7 -74.1 -14.6 
 75 occasions/year 

-388 -215 -42 -4.32 -2.40 -0.47 -6,683 -3,707 -731 
-89.1 -49.4 -9.7 

Alt. 4 50 occasions/year -145.9 -82.8 -19.7 
 75 occasions/year 

-424 -241 -57 -4.72 -2.68 -0.64 -7,296 -4,140 -984 
-97.3 -55.2 -13.1 

Alt. 5 50 occasions/year -133.3 -65.5 2.4 
 75 occasions/year 

-387 -190 7 -4.31 -2.12 0.08 -6,667 -3,274 119 
-88.9 -43.6 1.6 

Notes: 
A negative sign indicates a reduction in VMT, while a positive sign indicates an increase in VMT. 
Based on 50 and 75 annual average telecommuting occasions, the change in VMT per occasion is calculated for each case. 
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Table 4.  Estimated Impact of Telecommuting on VMT in 1998 (using the 90% confidence interval for the estimated coefficient 
of telecommuting) 

Change in annual VMT 
(millions of miles) % change in annual VMT Change in annual VMT per 

telecommuter (miles) 
Change in VMT per 

occasion (miles) Model 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
Lower 
bound Mean Upper 

bound 
VMT             
Alt. 1 50 occasions/year -114.0 -75.8 -37.6 

 75 occasions/year -89,514 -59,509 -29,504 -3.69 -2.45 -1.22 -5,702 -3,790 -1,879 -76.0 -50.5 -25.1 
Alt. 2 50 occasions/year -100.1 -55.2 -10.2 

 75 occasions/year 
-78,580 -43,300 -8,021 -3.24 -1.78 -0.33 -5,005 -2,758 -511 

-66.7 -36.8 -6.8 
Alt. 3 50 occasions/year -108.1 -61.1 -14.1 

 75 occasions/year 
-84,826 -47,941 -11,055 -3.49 -1.97 -0.46 -5,403 -3,054 -704 

-72.0 -40.7 -9.4 

VMT per capita  (miles)           

Alt. 1 50 occasions/year -146.7 -102.4 -58.0 
 75 occasions/year -426 -297 -169 -4.74 -3.31 -1.88 -6,754 -4,607 -2,460 -97.8 -68.3 -38.7 

Alt. 2 50 occasions/year -135.1 -92.1 -49.2 
 75 occasions/year 

-392 -268 -143 -4.37 -2.98 -1.59 -7,337 -5,120 -2,902 
-90.0 -61.4 -32.8 

Alt. 3 50 occasions/year -122.4 -74.1 -25.9 
 75 occasions/year 

-355 -215 -75 -3.96 -2.40 -0.84 -6,119 -3,707 -1,295 
-81.6 -49.4 -17.3 

Alt. 4 50 occasions/year -134.0 -82.8 -31.7 
 75 occasions/year 

-389 -241 -92 -4.33 -2.68 -1.02 -6,698 -4,140 -1,583 
-89.3 -55.2 -21.1 

Alt. 5 50 occasions/year -120.5 -65.5 -10.5 
 75 occasions/year 

-350 -190 -30 -3.89 -2.12 -0.34 -6,023 -3,274 -524 
-80.3 -43.6 -7.0 

Notes: 
A negative sign indicates a reduction in VMT, while a positive sign indicates an increase in VMT. 
Based on 50 and 75 annual average telecommuting occasions, the change in VMT per occasion is calculated for each case. 
 


