UC Irvine UC Irvine Previously Published Works

Title

Linear mappings of operator algebras

Permalink https://escholarship.org/uc/item/74w165h9

Journal Proceedings of the American Mathematical Society, 17(5)

ISSN

0002-9939

Author

Russo, B

Publication Date

DOI

10.1090/s0002-9939-1966-0198269-4

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

eScholarship.org

LINEAR MAPPINGS OF OPERATOR ALGEBRAS

B. RUSSO¹

In (6) it was shown that a linear mapping ϕ of one C*-algebra \mathfrak{A} with identity into another which carries unitary operators into unitary operators is a C*-homomorphism followed by multiplication by the unitary operator $\phi(I)$, i.e. $\phi(A) = \phi(I)\rho(A)$, $\phi(A^*) = \phi(A)^*$, and $\rho(A^2) = \rho(A)^2$ for each A in \mathfrak{A} . We continue in that spirit here, with the unitary group replaced first by an arbitrary semigroup contained in the unit sphere, then by the semigroup of regular contractions. By a C*-algebra we shall mean a uniformly closed self-adjoint algebra of bounded linear operators on some Hilbert space, which contains the identity operator.

LEMMA 1. Let & be a normed algebra containing a multiplicative semigroup S with the following properties: (i) the linear span of S is &; (ii) $\sup\{||s||:s \in S\} = K < \infty$. For x in \mathfrak{B} , define $||x||_S$ to be $\inf\{\sum_{i=1}^{n} |a_i|$ $:x = \sum_{i=1}^{n} a_i s_i, s_i \in S$, a_i complex, $n \ge 1\}$. Then $||\cdot||_S$ is a normed algebra norm on \mathfrak{B} such that $||\cdot|| \le K ||\cdot||_S$. Furthermore, if S and 5 are multiplicative semigroups in the normed algebras \mathfrak{B} and \mathfrak{C} resp., each satisfying (i) and (ii), and if ϕ is a linear mapping of \mathfrak{B} into \mathfrak{C} such that $\phi(S) \subseteq 5$, then for each x in \mathfrak{B} , $||\phi(x)||_5 \le ||x||_S$.

PROOF. Verify.

Let \mathfrak{A} be a C^* - algebra and let \mathfrak{S} be a multiplicative semigroup contained in the unit sphere of \mathfrak{A} . Suppose that the linear span of \mathfrak{S} is \mathfrak{A} and that $||A||_{\mathfrak{S}} = ||A||$ whenever A is a regular element of \mathfrak{A} . For example \mathfrak{S} could be the group of unitary operators, the semigroup of regular contractions, or the entire unit sphere of \mathfrak{A} .

LEMMA 2. Let ϕ be a linear mapping of α into a C*-algebra β such that $\phi(I) = I$ and ϕ maps β into the unit sphere of β . Then ϕ is a self-adjoint mapping, i.e. $\phi(A^*) = \phi(A)^*$.

PROOF. We argue as in [2, Lemma 8]. Let A be a self-adjoint element of a of norm 1. Then $\phi(A) = B + iC$, where B and C are self-adjoint elements of B. If $C \neq 0$, let b be a positive number in the spectrum of C (otherwise consider -C). Choose a positive integer n such that $(1+n^2)^{1/2} < b+n$. Then since A + inI is regular, $||A + inI|| = (1+n^2)^{1/2} < b+n \leq ||iC + inI|| \leq ||B + i(C + nI)|| = ||\phi(A + inI)||$

1019

Received by the editors March 28, 1966.

¹ This research was supported by a National Science Foundation grant.

 $\leq ||A + inI||_{\mathbb{S}} = ||A + inI||$, a contradiction. It follows that ϕ is a selfadjoint mapping.

THEOREM 1. Let \mathfrak{A} and \mathfrak{B} be C*-algebras and let $\mathfrak{S}(\operatorname{resp.} 5)$ be a multiplicative semigroup contained in the unit sphere of $\mathfrak{A}(\operatorname{resp.} \mathfrak{B})$. Suppose that $||A||_{\mathfrak{S}} = ||A||$ (resp. $||B||_{\mathfrak{I}} = ||B||$) whenever A (resp. B) is a regular element of $\mathfrak{A}(\operatorname{resp.} \mathfrak{B})$. Let ϕ be a one-to-one linear mapping of \mathfrak{A} onto \mathfrak{B} such that $\phi(I) = I$, ϕ maps \mathfrak{S} into the unit sphere of \mathfrak{B} , and ϕ^{-1} maps \mathfrak{I} into the unit sphere of \mathfrak{A} . Then ϕ is a C*-isomorphism.

PROOF. By Lemma 2, ϕ is a self-adjoint mapping. If A is a selfadjoint element of α then A+iI is regular and $(||\phi(A)||^2+1)^{1/2}$ $= ||\phi(A+iI)|| \leq ||A+iI||_{\mathfrak{S}} = ||A+iI|| = (||A||^2+1)^{1/2}$, so that $||\phi(A)|| \leq ||A||$. Similarly $||\phi^{-1}(B)|| \leq ||B||$ for each self-adjoint element B of \mathfrak{B} . Thus ϕ is an isometry of the Jordan algebra of self-adjoint elements of α onto the Jordan algebra of self-adjoint elements of \mathfrak{B} [3]. By a theorem of Kadison [3, Theorem 2], ϕ is a C*-isomorphism.

The theorem shows that isometries of C^* -algebras which preserve the identity are C^* -isomorphisms [2, Theorem 7].

We now consider the semigroup $R_1(\mathfrak{A})$ of all regular contractions of a C^* -algebra \mathfrak{A} , i.e. the set of all invertible elements of \mathfrak{A} of norm at most one. Let ϕ be a linear mapping of \mathfrak{A} into a C^* -algebra \mathfrak{B} such that $\phi(I) = I$ and $\phi(R_1(\mathfrak{A})) \subseteq R_1(\mathfrak{B})$. By Lemma 2, ϕ is a self-adjoint mapping and clearly $\phi(R(\mathfrak{A})) \subseteq R(\mathfrak{B})$, where $R(\mathfrak{A})$ denotes the group of all regular elements of the C^* -algebra \mathfrak{A} .

In case $\alpha = \mathfrak{G}$ is a matrix algebra, it is known [5, Theorem 2.1] that the weaker hypothesis $\phi(R(\mathfrak{A})) \subseteq R(\mathfrak{B})$ implies that ϕ is a Jordan homomorphism (i.e. preserves squares) followed by multiplication by a fixed regular element. We next show that this result does not generalize to arbitrary C^* -algebras except in a very special case, namely for commutative \mathfrak{B} .

EXAMPLE. Let α be any C^* -algebra and let $\mathfrak{B} = M_2(\alpha)$ be the C^* algebra of all 2 by 2 matrices with entries in α . Let ζ be any automorphism of α . Define a mapping ϕ of α into $M_2(\alpha)$ by the formula

$$\phi(A) = \begin{pmatrix} A & A - \zeta(A) \\ 0 & A \end{pmatrix}, \quad (A \in \mathfrak{a}).$$

Then clearly ϕ is a linear mapping such that $\phi(I) = I$, but it is easy to check that $\phi(R(\mathfrak{a})) \subseteq R(M_2(\mathfrak{a}))$ and that ϕ is not a Jordan homomorphism unless ζ is the identity automorphism.

PROPOSITION. Let ϕ be a linear mapping of a C*-algebra α into a commutative C*-algebra α such that $\phi(R(\alpha)) \subseteq R(\alpha)$. Then there is a

C*-homomorphism ρ of α into α and an element B in R(α) such that $\phi(A) = B\rho(A)$ for each A in α .

PROOF. Set $\rho(A) = \phi(I)^{-1}\phi(A)$. Then $\rho(I) = I$ and $\rho(R(\mathfrak{a})) \subseteq R(\mathfrak{B})$ and it suffices to show that ρ is a C^* -homomorphism. Since $\rho(I) = I$, the condition $\rho(R(\mathfrak{a})) \subseteq R(\mathfrak{B})$ is equivalent to $\operatorname{Sp}(\rho(A)) \subseteq \operatorname{Sp}(A)$ for each A in \mathfrak{a} , where $\operatorname{Sp}(A)$ denotes the spectrum of the operator A. If U is any unitary operator in \mathfrak{a} then $\operatorname{Sp}(\rho(U))$ is a subset of the unit circle. Since \mathfrak{B} is commutative, $\rho(U)$ is normal, hence unitary. The result follows from [6, Corollary 2].

We now return to the semigroup of regular contractions. By the remarks following Theorem 1 we may assume our mappings are self-adjoint.

LEMMA 3. Let ϕ be a linear self-adjoint mapping of a C*-algebra \mathfrak{A} into a C*-algebra \mathfrak{B} such that $\phi(R(\mathfrak{A})) \subseteq R(\mathfrak{B})$ and $\phi(I) = I$. Then (i) if P is a projection in \mathfrak{A} , then $\phi(P)$ is a projection in \mathfrak{B} ; (ii) if P and Q are orthogonal projections in \mathfrak{A} , then $\phi(P)$ and $\phi(Q)$ are orthogonal projections in \mathfrak{B} .

PROOF. (i) if P is a projection, then $\phi(P)$ is a self-adjoint operator with spectrum contained in the two point set $\{0, 1\}$. (ii) if U is a selfadjoint unitary operator in α then $\phi(U)$ is self-adjoint and unitary in \otimes . An operator T is a projection if and only if I-2T is self-adjoint and unitary. Let P and Q be orthogonal projections in α and set U=I-2P, V=I-2Q. The orthogonality of P and Q implies that U and V commute. Hence UV is also a self-adjoint unitary operator. Thus $\phi(UV) = I - 2(\phi(P) + \phi(Q))$ is self-adjoint and unitary so that $\phi(P) + \phi(Q)$ is a projection. It follows that $\phi(P)\phi(Q) = 0$.

LEMMA 4. Let ϕ be a linear self-adjoint mapping of a commutative C^* -algebra α into a C^* -algebra α such that $\phi(R(\alpha)) \subseteq R(\alpha)$ and $\phi(I) = I$. Then $\|\phi\| = 1$.

PROOF. Let A be a positive element of \mathfrak{A} . Then $\phi(A)$ is self-adjoint and since $\operatorname{Sp}(\phi(A)) \subseteq \operatorname{Sp}(A)$ it follows that $\phi(A)$ is positive. Thus ϕ is a positive mapping. By results of Stinespring [7, Theorems 1 and 4], there is a Hilbert space K, a *-representation ρ of \mathfrak{A} on K and an isometry V of H into K (\mathfrak{B} acts on H) such that $\phi(A) = V^*\rho(A) V$ for all A in \mathfrak{A} . Thus if $A \in \mathfrak{A}$, then $||\phi(A)|| = ||V^*\rho(A) V|| \leq ||A||$.

Recall that a von Neumann algebra is a C^* -algebra which is closed in the weak operator topology [1, p. 33].

THEOREM 2. Let ϕ be a linear mapping of a von Neumann algebra M

into a C*-algebra \mathfrak{B} such that $\phi(R_1(M)) \subseteq R_1(\mathfrak{B})$ and $\phi(I) = I$. Then ϕ is a C*-homomorphism.

PROOF. As noted above, ϕ is self-adjoint and $\phi(R(M)) \subseteq R(\mathfrak{B})$. Let A be a self-adjoint element of M of norm 1. The von Neumann algebra M_0 generated by A is commutative and if $\epsilon > 0$ there exist orthogonal projections P_1, P_2, \dots, P_n in M_0 and real numbers r_1, r_2, \dots, r_n such that $||A - \sum_{i=1}^{n} r_i P_i|| < \epsilon$ [1, p. 3]. By several applications of the preceding two lemmas and after a computation one obtains $||\phi(A)^2 - \phi(A^2)|| < 2 \in (2+\epsilon)$. Since ϵ was arbitrary $\phi(A)^2 = \phi(A^2)$ for each self-adjoint A in M of norm 1. It follows trivially that ϕ is a C^* -homomorphism.

We note that the theorem holds with an identical proof in case M is an AW^* -algebra [4].

REMARKS. 1. It is an open question as to whether Theorem 2 is true when M is a C^* -algebra. Since the conclusion, i.e. $\phi(A)^2 = \phi(A^2)$, need only hold for self-adjoint operators A, there is no loss of generality in assuming M to be commutative. Then by Lemma 4 we have $||\phi|| = 1$.

2. The author believes that a solution to the following special case would shed considerable light on the problem: let α be a commutative C^* -algebra acting on a Hilbert space H, and let P be a projection operator on H, say mapping H onto a subspace K. Let ϕ be the mapping $\phi(A) = PA$ of α into the bounded operators on K. The reason for this belief is the relation of the mapping $A \rightarrow PA$ to the results of Stinespring quoted above, and to normal dilations of operators.

References

1. J. Dixmier, Les algèbres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.

2. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.

3. ——, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. **56** (1952), 494–503.

4. I. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.

5. M. Marcus and R. Purves, *Linear transformations on algebras of matrices*, Canad. J. Math. 11 (1959), 383-396.

6. B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416.

7. W. F. Stinespring, *Positive functions on C*-algebras*, Proc. Amer. Math. Soc. 6 (1955), 211-216.

UNIVERSITY OF CALIFORNIA, IRVINE