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LINEAR MAPPINGS OF OPERATOR ALGEBRAS
B. RUSSO!

In (6) it was shown that a linear mapping ¢ of one C*-algebra @
with identity into another which carries unitary operators into uni-
tary operators is a C*-homomorphism followed by multiplication by
the unitary operator ¢(I), i.e. p(4) =¢(I)p(4), ¢(4*) =¢(4)*, and
p(A4?%) =p(A4)? for each 4 in @. We continue in that spirit here, with
the unitary group replaced first by an arbitrary semigroup contained
in the unit sphere, then by the semigroup of regular contractions.
By a C*-algebra we shall mean a uniformly closed self-adjoint algebra
of bounded linear operators on some Hilbert space, which contains
the identity operator.

LEMMA 1. Let ® be a normed algebra containing a multiplicative semai-
group S with the following properties: (i) the linear span of 8§ is ®;
(it) sup{||s||:sE8} =K < 0. For x in ®, define ||x||s to beinf{ D 7 |a,|
=D "a;sj, 5;E8, a; complex, n=1}. Then ||-||g is a normed algebra
norm on & such that ||-|| <K||-||s. Furthermore, if s and 3 are multi-
plicative semigroups in the normed algebras ® and C resp., each satisfy-
ing (1) and (ii), and if ¢ is a linear mapping of ® into C such that
#(S) 3, then for each x in ®, ||¢(x)||5=||«|s-

Proor. Verify.

Let @ be a C*- algebra and let 8§ be a multiplicative semigroup con-
tained in the unit sphere of @. Suppose that the linear span of $is @
and that || 4||g=]| 4|| whenever 4 is a regular element of @. For exam-
ple 8 could be the group of unitary operators, the semigroup of regular
contractions, or the entire unit sphere of G.

LEMMA 2. Let ¢ be a linear mapping of @ into a C*-algebra ® such
that ¢(I) =1 and ¢ maps 8 into the unit sphere of ®. Then ¢ is a self-
adjoint mapping, i.e. p(A*)=¢(4)*. ’

Proor. We argue as in [2, Lemma 8]. Let 4 be a self-adjoint ele-
ment of @ of norm 1. Then ¢(4) =B+iC, where B and C are self-
adjoint elements of ®. If C#0, let b be a positive number in the spec-
trum of C (otherwise consider — C). Choose a positive integer n such
that (14#n2)Y2<b+4n. Then since A-+inl is regular, ||A +inl
=1 +n)2 <b+n <|iC+inl|| <||B+i(C+nl)|| =||¢(4 +inl)
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<||4+inl||g=||4 +inI|, a contradiction. It follows that ¢ is a self-
adjoint mapping.

THEOREM 1. Let @ and ® be C*-algebras and let S(resp. 3) be a multi-
plicative semigroup contained in the unit sphere of @ (resp. ®). Suppose
that ||Al|g=1|4]|| (resp. || Bll5=||BI|) whenever A (resp. B) is a regular
element of @ (resp. ®). Let ¢ be a one-to-one linear mapping of @ onto
® such that ¢(I) =1, ¢ maps S into the unit sphere of ®, and ¢~ maps 3
into the unit sphere of Q. Then ¢ is a C*-isomorphism

Proor. By Lemma 2, ¢ is a self-adjoint mapping. If 4 is a self-
adjoint element of @ then A+<I is regular and (H¢(A)l|2+ 1)1z
=64 +iD|| slla+ill|s =4 +iIl| = (|4[]>+1)12, so that ||¢(4)]
<||4||. Similarly “dr‘(B)H §||Bl| for each self-adjoint element B of ®.
Thus ¢ is an isometry of the Jordan algebra of self-adjoint elements
of @ onto the Jordan algebra of self-adjoint elements of ® [3]. By a
theorem of Kadison [3, Theorem 2], ¢ is a C*-isomorphism.

The theorem shows that isometries of C*-algebras which preserve
the identity are C*-isomorphisms [2, Theorem 7].

We now consider the semigroup R;(Q) of all regular contractions
of a C*-algebra @, i.e. the set of all invertible elements of @ of norm
at most one. Let ¢ be a linear mapping of @ into a C*-algebra ® such
that ¢(I) =1 and ¢(R:i(@)) CRi(®). By Lemma 2, ¢ is a self-adjoint
mapping and clearly ¢(R(@)) S R(®), where R(Q) denotes the group
of all regular elements of the C*-algebra G.

In case @=@® is a matrix algebra, it is known [5, Theorem 2.1]
that the weaker hypothesis ¢(R(@)) S R(®) implies that ¢ is a Jordan
homomorphism (i.e. preserves squares) followed by multiplication
by a fixed regular element. We next show that this result does not
generalize to arbitrary C*-algebras except in a very special case,
namely for commutative ®.

ExAMPLE. Let @ be any C*-algebra and let ® = M,(Q) be the C*-
algebra of all 2 by 2 matrices with entries in @. Let { be any auto-
morphism of @. Define a mapping ¢ of @ into M;(@) by the formula

4 A4 —¢(4)
0 A4

am=( >,(Aem.

Then clearly ¢ is a linear mapping such that ¢(/) = I, but it is easy to
check that ¢(R(@)) SR(M:(@)) and that ¢ is not a Jordan homo-
morphism unless { is the identity automorphism.

PROPOSITION. Let ¢ be a linear mapping of a C*-algebra @ inio a
commutative C*-algebra ® such that ¢(R(Q)) SR(®). Then there is a
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C*-homomorphism p of @ into B and an element B in R(®) such that
¢(A4) =Bp(A) for each A in Q.

Proor. Set p(4) =¢(I)"'¢(4). Then p(I)=1I and p(R(@)) SR(®)
and it suffices to show that p is a C*-homomorphism. Since p(I) =1,
the condition p(R(@)) CR(®) is equivalent to Sp(p(4)) CSp(4) for
each 4 in @, where Sp(4) denotes the spectrum of the operator 4.
If Uis any unitary operator in @ then Sp(p(U)) is a subset of the unit
circle. Since ® is commutative, p(U) is normal, hence unitary. The
result follows from [6, Corollary 2].

We now return to the semigroup of regular contractions. By the
remarks following Theorem 1 we may assume our mappings are self-
adjoint.

LeMMA 3. Let ¢ be a linear self-adjoint mapping of a C*-algebra @
1nto a C*-algebra ® such that $(R(Q)) SR(®) and ¢(I)=1I. Then (i) if
P is'a projection in @, then ¢(P) is a projection in &; (ii) if P and Q
are orthogonal projections in @, then ¢(P) and ¢(Q) are orthogonal pro-
Jections in ®&.

Proor. (i) if P is a projection, then ¢(P) is a self-adjoint operator
with spectrum contained in the two point set {0, 1}. (ii) if U is a self-
adjoint unitary operator in @ then ¢(U) is self-adjoint and unitary
in ®. An operator T is a projection if and only if /—2T is self-adjoint
and unitary. Let P and Q be orthogonal projections in @ and set
U=1—-2P, V=I-2Q. The orthogonality of P and Q implies that U
and V commute. Hence UV is also a self-adjoint unitary operator.
Thus ¢(UV) =I—2(¢(P)+¢(Q)) is self-adjoint and unitary so that
¢(P)+¢(Q) is a projection. It follows that ¢(P)¢p(Q) =0.

LEMMA 4. Let ¢ be a linear self-adjoint mapping of a commutative
C*-algebra @ into a C*-algebra ® such that $(R(R)) CR(®) and ¢(I) =1.
Then ||¢|| =1.

ProOF. Let 4 be a positive element of G. Then ¢(4) is self-adjoint
and since Sp(¢(4)) ESp(4) it follows that ¢(A4) is positive. Thus ¢ is
a positive mapping. By results of Stinespring [7, Theorems 1 and 4],
there is a Hilbert space K, a *-representation p of @ on K and an
isometry V of H into K (® acts on H) such that ¢(4) = V*p(4)V for
all 4 in @. Thus if 4 EQ@, then ||¢(4)|| =|| V*o(4) V|| =] 4]|.

Recall that a von Neumann algebra is a C*-algebra which is closed
in the weak operator topology [1, p. 33].

THEOREM 2. Let ¢ be a linear mapping of a von Neumann algebra M
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into a C*-algebra ® such that ¢(Ri(M))CRi(®) and ¢(I)=1. Then
¢ is a C*-homomorphism.

Proor. As noted above, ¢ is self-adjoint and ¢(R(M)) CR(®). Let
A be a self-adjoint element of M of norm 1. The von Neumann
algebra M, generated by A is commutative and if ¢>0 there exist
orthogonal projections Py, P,, - - -, P, in M, and real numbers
71, 7a, + -+ -, 7, such that ||A —-> r¢P¢l| <e [1, p. 3]. By several ap-
plications of the preceding two lemmas and after a computation one
obtains l|¢(A)2—-¢>(A2)H <2&(24e€). Since € was arbitrary ¢(A4)?
=¢(A4?) for each self-adjoint 4 in M of norm 1. It follows trivially
that ¢ is a C*-homomorphism.

We note that the theorem holds with an identical proof in case M
is an 4 W*-algebra [4].

REMARKS. 1. It is an open question as to whether Theorem 2 is
true when M is a C*-algebra. Since the conclusion, i.e. $(4)2=¢(42),
need only hold for self-adjoint operators 4, there is no loss of general-
liItyHin assuming M to be commutative. Then by Lemma 4 we have

ol =1.

2. The author believes that a solution to the following special case
would shed considerable light on the problem: let @ be a commutative
C*-algebra acting on a Hilbert space H, and let P be a projection
operator on H, say mapping H onto a subspace K. Let ¢ be the
mapping ¢(4)=PA of @ into the bounded operators on K. The
reason for this belief is the relation of the mapping 4—PA to the
results of Stinespring quoted above, and to normal dilations of
operators.
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