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Abstract

Cognitive performance in children is predictive of academic and social outcomes; therefore, understanding neurobiological
mechanisms underlying individual differences in cognition during development may be important for improving quality of
life. The belief that a single, psychological construct underlies many cognitive processes is pervasive throughout society.
However, it is unclear if there is a consistent neural substrate underlying many cognitive processes. Here, we show that a
distributed configuration of cortical surface area and apparent thickness, when controlling for global imaging measures, is
differentially associated with cognitive performance on different types of tasks in a large sample (N = 10 145) of
9–11-year-old children from the Adolescent Brain and Cognitive DevelopmentSM (ABCD) study. The minimal overlap in
these regionalization patterns of association has implications for competing theories about developing intellectual
functions. Surprisingly, not controlling for sociodemographic factors increased the similarity between these regionalization
patterns. This highlights the importance of understanding the shared variance between sociodemographic factors,
cognition and brain structure, particularly with a population-based sample such as ABCD.

Key words: adolescence, cognition, cortical morphology, development, multivariate, neuroimaging

Introduction
Two-factor theories of intellectual development have divided
cognitive function into two broad components: fluid abilities
refer to one’s propensity to solve problems, reason, act quickly,
and adapt to novel situations; whereas, crystallized abilities
encompass task-specific knowledge that accrues throughout
the lifespan (Horn and Cattell 1966; Deary 2012). Despite these

constructs being seemingly dissociable, performance across
different tasks probing these cognitive processes is often
correlated (Spearman 1904; Wechsler 1946; Akshoomoff et al.
2013). The latent factor explaining this shared variance, termed
“g,” is heritable (Bouchard and McGue 1981; Gottfredson and
Deary 2004; Plomin and Spinath 2004; Panizzon et al. 2014)
and predictive of social and academic outcomes (Gottfredson

https://academic.oup.com/
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and Deary 2004; Arendt and Nielsen 2005; Cutler et al. 2012).
A pervasive view in society is that “g” represents a single causal
underlying trait that influences performance across multiple
domains. Although genome-wide-association-studies (GWAS)
demonstrate that cognitive phenotypes, including “g,” can be
associated with specific genetic variants (Davies et al. 2018;
Savage et al. 2018), some of which are also associated with brain
structure (Grasby et al. 2020; Lett et al. 2020), these associations
are highly polygenic, and though the mediating pathway
from genetics to cognition is still poorly understood, there is
little support for a causal pathway associated with a unitary
neural correlate. Cognitive development is highly complex and
some models of intellectual development have posited that
correlations in performance across multiple tasks, the so-called
“positive manifold,”may emerge via positive interactions among
developing cognitive systems, which may have distinct neural
substrates (Van Der Maas et al. 2006, 2017; Hampshire et al. 2012).
This framework is difficult to test empirically; however, one
prediction from this mutualism model would be that individual
differences in cognitive performance would be associated
with different distributions of neural phenotypes across
individuals.

Previous studies have reported associations of general cog-
nitive ability with larger brain volume and distributed struc-
tural and functional neural correlates particularly across frontal
and parietal regions (Duncan et al. 2000; Colom et al. 2009,
2013; Gläscher et al. 2010; Basten et al. 2015). Cortical volume,
as measured with magnetic resonance imaging (MRI), is com-
prised of two genetically and developmentally distinct compo-
nents, surface area (CSA) and apparent thickness (CTH) (Paniz-
zon et al. 2009; Winkler et al. 2010; Jernigan et al. 2011), which
have shown different associations with individual variability
in cognition. Positive associations with cortical surface area
(CSA) and cognition have been consistently reported (Schnack
et al. 2015; Walhovd et al. 2016; Schmitt et al. 2019; Grasby
et al. 2020); however, associations between cortical thickness
(CTH) and cognition have been less consistent (Sowell et al.
2004; Shaw et al. 2006; Brouwer et al. 2014; Burgaleta et al.
2014). This is likely due to limited statistical power to identify
replicable associations, differences in neuroimaging processing
protocols and cognitive assessments used to estimate general
cognitive ability, and the age of the participants. Few studies
have measured individual differences in the regionalization of
cortical morphology (i.e., the relative increase or decrease in CTH
or CSA within a particular region relative to mean CTH or total
CSA, respectively). Complex patterns of positive and negative
associations of relative CSA and CTH have been associated with
general cognitive function (Fjell et al. 2015; Vuoksimaa et al.
2016; Reardon et al. 2018), as well as with more specific measures
of cognitive performance (Fjell et al. 2012; Newman, Jernigan,
et al. 2016a; Newman, Thompson, et al. 2016b; Curley et al. 2018).
However, many previous studies have been underpowered to
detect significant effects of relative cortical configuration across
the whole cortex particularly when using univariate statisti-
cal methods with stringent control for multiple comparisons
(Vuoksimaa et al. 2016). However, we know that during embry-
onic development, the relative areal expanse associated with
different functional regions occurs via the graded expression
of transcription factors across the cortical plate (O’Leary et al.
2007; Rakic et al. 2009). Individual variability in this patterning
could therefore result in subtle changes to the whole config-
uration of the cortex, which may in turn influence cognitive
development.

In the current study, we used a multivariate analysis to
measure the association between the regionalization of CSA and
apparent CTH in a large sample (n = 10 145) of 9–11-year-old chil-
dren from the Adolescent Brain and Cognitive DevelopmentSM

(ABCD) study. This large-scale study of 11 880 9 and 10-year-old
children, uses neuroimaging, genetics, and a multidimensional
battery of assessments to investigate the role of various biolog-
ical, environmental, and behavioral factors in brain, cognitive,
and social/emotional development. Given the biology of cortical
development and growing evidence that models encompass-
ing distributed behavioral associations across the brain better
predict behavioral outcomes (Reddan et al. 2017; van der Meer
et al. 2020; Zhao et al. 2020), we used a multivariate approach to
assess the significance of the effects of the brain phenotypes
on behavior when aggregated across all cortical vertices. We
subsequently examined the degree to which the distributed
cortical patterns associating with cognitive performance mea-
sured with the fluid and crystallized composite scores from the
NIH Toolbox exhibited effects of a common underlying corti-
cal architecture or distinct patterns of cortical regionalization.
These composite scores generated from the toolbox have been
validated against gold standard measures of intelligence in both
adults and children (Akshoomoff et al. 2013; Hodes et al. 2013;
Heaton et al. 2014).

The ABCD study sample was recruited to resemble the
population of the United States of America as closely as possible;
therefore, the participants are from diverse racial, ethnic,
and socioeconomic backgrounds. Confounding associations
between these sociodemographic variables, brain structure
and cognitive performance complicate the interpretation of
model results that control for demographic covariates. We have
therefore performed our analyses with and without controlling
for these important sociodemographic variables in order to
highlight the implications of this for the interpretation of our
findings. This is an important aspect of analyzing individual
differences in large population-based samples such as the ABCD
study.

Materials and Methods
Sample

The ABCD study is a longitudinal study across 21 data
acquisition sites enrolling 11 880 children starting at 9–11-years
old. This paper analyzed the baseline sample from release 2.0.1
(NDAR DOI: 10.15154/1504041). The ABCD study used school-
based recruitment strategies to create a population-based,
demographically diverse sample, however, it is not necessarily
representative of the US national population (Garavan et al.
2018; Compton et al. 2019). Due to the inclusion of a wide
range of individuals across different races, ethnicities and
socioeconomic backgrounds, it is important to carefully consider
how to control for these potentially confounding factors and
the implications of this on our effects of interest. Sex and age
were used as covariates in all analyses. Only subjects who
had complete data across all of the measures analyzed were
included in the neuroimaging analyses creating a final sample
of 10 145 subjects. Additional sample details can be found in
the Supplementary Material. Supplementary Table 1 displays
the names of each variable used in these analyses from data
release 2.0.1. Supplementary Table 2 shows the demographic
characteristics of the sample.

10.15154/1504041
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data
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Neurocognitive Assessment

The ABCD study neurocognitive assessment at baseline
consisted of the NIH Toolbox Cognition Battery (NIHTBXCB),
the WISC-V matrix reasoning task, the Little Man Task (LMT),
and the Rey Auditory Verbal Learning task (RAVLT). All of the
tasks were administered using an iPad with support or scoring
from a research assistant where needed. The NIHTBXCB is a
widely used battery of cognitive tests that measures a range
of different cognitive domains. It includes the Toolbox Oral
Reading RecognitionTask (TORRT), Toolbox Picture Vocabulary
Task (TPVT), the Toolbox Pattern Comparison Processing Speed
Test (TPCPST), Toolbox List Sorting Working Memory Test
(TLSWMT), Toolbox Picture Sequence Memory Test (TPSMT),
Toolbox Flanker Task (TFT), and Toolbox Dimensional Change
Card Sort Task (TDCCS). Details of each task can be found in
Supplementary Materials. In the current study, the uncorrected
scores for each task were used for statistical analyses. Compos-
ite scores estimating crystallized intelligence (mean of TPVT and
TORRT), fluid intelligence (mean of TPCPST, TLSWMT, TPSMT,
TFT, and TDCCS), and a total cognition score (mean of all tasks)
are also provided by the NIHTBCB (https://www.healthmeasu
res.net/explore-measurement-systems/nih-toolbox/intro-to-ni
h-toolbox/cognition) and were also analyzed. These measures
have been validated against “gold standard” measures of general
cognitive ability, and the constructs referred to as crystallized
and fluid intelligence in adults (Heaton et al. 2014) and children
(Akshoomoff et al. 2013). To address remaining concern that the
total composite score may not adequately reflect estimates of
“g” as a global latent factor, we conducted a principal component
analysis (PCA) to generate a latent factor for “g,” including all of
the tasks administered in the ABCD neurocognition battery.

MRI Acquisition and Image Preprocessing

The ABCD MRI data were collected across 21 research sites
using Siemens Prisma, GE 750 and Philips 3T scanners. Scan-
ning protocols were harmonized across sites. Scanner ID was
included in all analyses to control for any differences in image
acquisition across sites and scanners. Full details of all the
imaging acquisition protocols used in ABCD are outlined by
Casey et al. (2018). Preprocessing of all MRI data for ABCD was
conducted using in-house software at the Center for Multimodal
Imaging and Genetics (CMIG) at University of California San
Diego (UCSD) as outlined in Hagler et al. (2019). Cortical surfaces
were constructed from T1-weighted structural images for each
subject and segmented to calculate measures of apparent corti-
cal thickness and surface area using FreeSurfer v5.3.0 (Dale et al.
1999; Fischl et al. 1999, 2004; Fischl and Dale 2000; Jovicich et al.
2006). Cortical maps were smoothed using a Gaussian kernel
of 20 mm full-width half maximum (FWHM) and mapped into
standardized spherical atlas space. Vertex-wise data for all sub-
jects for each morphometric measurement were concatenated
into matrices in MATLAB R2017a and entered into general linear
models (GLM) for statistical analysis using custom written code.
More details can be found in the Supplementary Materials.

Statistical Analysis

Behavioral Analysis
All behavioral variables were standardized (z-scored) prior to
analysis. Linear mixed effects models were used to residualize
all behavioral variables for age, sex, and a random effect of
family ID prior to pairwise analysis. Partial pairwise Pearson’s

Table 1 Univariate and multivariate test statistics measured

Univariate Tippett (Min-P) Min (P)

Multivariate MOSTest z′R̂
−1

z
Multivariate Fisher −2

∑
ln(P)

Multivariate Stouffer
∑ |z|/√V

correlations were conducted to determine associations between
all of the cognitive tasks. This analysis was then repeated addi-
tionally residualizing all behavioral variables by race/ethnicity,
household income, and highest parental education to determine
the impact of controlling for these sociodemographic factors on
the pairwise associations. We additionally ran a PCA across all
single cognitive tasks. A scree plot of eigenvalues demonstrated
that the first unrotated principal component (PC1) explained
substantially more variance across the tasks than the subse-
quent components. The loadings of each single task with PC1 are
shown in Supplementary Figure 1 alongside the scree plot. PC1
encompasses the shared variance across cognitive tasks, which
is often described in the literature as an estimate of “g”: gen-
eral cognitive ability. This was also included in the correlation
matrices.

Vertex-wise Effect Size Maps
Vertex-wise data were standardized (z-scored) prior to analysis.
We applied a GLM univariately at each vertex (n = 1284) associat-
ing a given behavior from a set of covariates (age, sex, scanner ID,
race/ethnicity, household income, and parental education) and
the vertex-wise morphology data. Mass univariate standardized
beta surface maps were created showing the vertex-wise associ-
ations for each analysis. Vertex-wise effect size maps were cal-
culated for all of the 13 cognitive measures predicted by relative
CSA (controlling for total CSA) and relative CTH (controlling for
mean CTH) separately resulting in N = 26 independent vertex-
wise analyses. Models determining the association between CSA
and behavior included total CSA (sum of CSA across vertices)
as an additional predictor and models analyzing CTH included
the mean CTH across vertices. These analyses were repeated
with and without including race/ethnicity, income, and parental
education covariates.

Determining the Significance of the Effect Size Maps Using an
Omnibus Test
In order to determine whether there was a significant asso-
ciation between vertex-wise cortical morphology (controlling
for global measures) and cognitive task performance, we
employed a permutation test using a univariate statistic (min-
P) and three multivariate statistics (MOSTest, Stouffer, and
Fisher). Using the least-squares estimates βv from each GLM
at each vertex, we computed the V × 1vector of Wald statistics
z = (z, . . . , zV)′across the whole cortex and accompanying P-
values: P = 2normcdf(−|z|). Using these values, we calculated
four different test statistics for the permutation test outlined in
Table 1.

The univariate statistic, min-P was defined as the most sig-
nificant (smallest) P-value across the cortex. This is a commonly
used neuroimaging omnibus test, but does not take into account
the distributed nature of many brain-behavior associations. The
multivariate statistical omnibus test (MOSTest) (Shadrin et al.
2020; van der Meer et al. 2020) is a more pertinent omnibus

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data
https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox/intro-to-nih-toolbox/cognition
https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox/intro-to-nih-toolbox/cognition
https://www.healthmeasures.net/explore-measurement-systems/nih-toolbox/intro-to-nih-toolbox/cognition
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data
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test, as it determines the significance of the whole pattern of
effects across the cortex taking into account the covariance
structure across vertices. χ2

MOST was calculated as the estimated
squared Mahalanobis norm of z. The Fisher and Stouffer meth-
ods are additional alternative multivariate methods for aggre-
gating effects across the cortex, but do not take into account the
covariance across vertices. These are likely less optimal statis-
tics, but do not rely on the regularization of a high-dimensional
matrix, therefore, were included to show convergence of results
across multiple methods. Extended methodological details can
be found in the Supplementary Materials.

To correctly estimate the null distribution from permuta-
tions, subject labels were shuffled according to exchangeability
blocks (EBs) defined based on the family structure within ABCD
(Winkler et al. 2015). This permutation procedure was used to
determine the distribution of each test statistic under the global
null hypothesis H0. We rejected H0 if the observed test statistic
was greater than the value of the permuted test statistic at the
critical threshold corresponding to an alpha level of 0.0038 (0.05
corrected for the 13 cognitive tests analyzed).

Comparison Across Associations Maps
To determine the shared variance between the effect size maps
for the fluid (F) and crystallized (C) composite scores for each
imaging phenotype, additional maps were created controlling
for the other composite measure by including that measure as
an additional covariate within the design matrix. This produced
a vertex-wise standardized beta effect size surface map for F
independent of the association between cortical morphology
and C (FC) and C independent of F (CF). Surface maps of the
difference between the vertex-wise beta coefficients as well as
vertex-wise Pearson’s correlation coefficients were calculated
for the following contrasts: F – C, F – FC, and C – CF. The magnitude
of effects across the cortex for each map was calculated using

the following formula: =
√

β2. In order to determine the relative
size of the effects across the difference maps compared with
the individual maps, we calculated a root mean square (RMS)
ratio using the following formula: RMSDIFF/( RMS1+RMS2

2 ), with
RMSDIFF representing the RMS of the difference map and RMS1

and RMS2 as the RMS for each individual map used to produce
the difference.

Quantifying the Magnitude of the Association Between Brain
Structure and Cognition Using a Mass Univariate Polyvertex Score
Univariate polyvertex score (PVSU) were calculated for the fluid
and crystallized composite scores to quantify the behavioral
variance explained by the vertex-wise cortical morphology. The
method used here was the mass univariate PVSU method out-
lined in detail by Zhao and colleagues (Zhao et al. 2020). In
contrast to the Bayesian-PVS highlighted in their paper, the
mass univariate PVSU method does not take into account the
covariance structure of the imaging phenotype across vertices.
For vertex-wise structural imaging measures, the Bayesian-PVS
does not increase predictive power (unlike for functional MRI),
therefore, for parsimony, the mass-univariate method was used
here. PVSU were calculated within a 10-fold cross-validation
framework, such that each model was trained on 90% of the
sample and scores then calculated by predicting the behavior
using the estimated model in the remaining 10% until a PVSU

was calculated for each subject. All behavioral and imaging data
were preresidualized using the covariates of no interest within
each cross-validation fold prior to model estimation. PVSU were

calculated with and without controlling for sociodemographic
variables. Global CSA and CTH measures specific to each modal-
ity were included in the preresidualization as covariates. This
allowed us to determine the unique association between relative
cortical morphology and cognition and compare this with the
predictive power of global measures. The association between
the relative imaging phenotype and behavior across the whole
sample was calculated as the squared correlation (R2) between
the observed behavior and the predicted behavior (the PVSU).

In order to explore the proportion of shared variability in
cognitive performance explained by brain structure and the
sociodemographic variables, we generated several linear models
with differing predictors. These models were generated sepa-
rately for each imaging modality (when these were included)
and with either the fluid or the crystallized scores as the depen-
dent variable. Each model was trained on 90% of the sample and
tested in a 10% hold-out set within a 10-fold cross-validation
framework to produce a robust, out-of-sample R2. The models
are outlined in Figure 7.

Additional models were run to estimate the out of sample
variance in PC1 predicted by the relative and global imaging
variables as well as the fluid and crystallized PVSU in order
to understand the overlap in variance across these behavioral
measures. Outside of the cross-validation framework, partial
correlation coefficients were estimated across the whole sample
by preresidualizing both the dependent and independent vari-
ables by the covariates of no interest and/or sociodemographic
variables and then correlating the residuals. All out-of-sample
R2 estimates and partial correlation coefficients can be found in
Supplementary Table 3.

Results
Behavioral Data

Figure 1A displays pairwise Pearson’s correlation coefficients
describing the phenotypic relationship between all of the cog-
nitive tasks measured at baseline in the ABCD study, the com-
posite scores and the latent g-factor (PC1) controlling for age,
sex, and a random effect of family ID. As expected, performance
across all tasks was positively correlated. Reading recognition
and picture vocabulary performance were most highly corre-
lated with each other (out of the single task measures; r = 0.45).
These scores were averaged to produce the crystallized compos-
ite score, therefore, show a high correlation with this measure
(r = 0.82–0.87). The Toolbox measures used to produce the fluid
composite score (flanker, dimensional card sorting, pattern pro-
cessing speed, picture sequence, and list working memory) were
less correlated with each other (r = 0.13–0.39), therefore, showed
slightly lower correlations with the fluid composite measure
compared with the tasks contributing to the crystallized com-
posite score (r = 0.59–0.68). The total composite score (mean of
fluid and crystallized) was more highly correlated with the
fluid measure (r = 0.90) compared with the crystallized measure
(r = 0.73). The matrix reasoning task showed similar correlations
across the composite scores (r = 0.36–0.43), which were lower
than expected given that matrix reasoning is often used as a
measure of fluid intelligence. As expected, the RAVLT showed
the highest correlations with the verbal and memory related
tasks from the NIH Toolbox. The LMT showed low correlations
across all the cognitive tasks (r = 0.12–0.22). PC1 derived from
all single cognitive tasks showed a strong correlation with the
total composite score from the NIH Toolbox as expected (r = 0.95)

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data
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Figure 1. Phenotypic correlations between all of the cognitive measures at baseline in ABCD. (A) Partial Pearson’s correlation coefficients for all cognitive tasks,

composite scores, and the latent factor (PC1) controlling for age, sex, and a random effect of family. (B) Correlations after additionally controlling for sociodemographic
covariates (race/ethnicity, household income, parental education). Cognitive performance was preresidualized for all covariates and then correlated using a Pearson’s
correlation. Darker colors indicate a higher correlation coefficient. The composite scores and PC1 are highlighted in bold. The other cognitive measures are single
tasks. Correlation coefficients among the single task measures decreased after controlling for the sociodemographic variables demonstrating that these additional

measures explained a proportion of the variance in cognitive performance among these tasks.

and similar correlations with all of the other tasks as the total
composite score.

Figure 1B shows the same correlation matrix after addi-
tionally preresidualizing all of the cognitive measures for
sociodemographic measures (race/ethnicity, household income,
and parental education) in order to show the partial phenotypic
correlations after controlling for these confounding factors.
There was a slight decrease across the correlation coefficients;
however, the overall pattern of these relationships remained
consistent.

Determining the Association Between the
Regionalization of Cortical Morphology and Cognition

We used a MOSTest (Shadrin et al. 2020; van der Meer et al. 2020)
to measure the association between the regionalization of CSA
and CTH and individual differences in cognitive performance
on the fluid and crystallized composite scores from the NIH
Toolbox. This multivariate approach aggregates effects across
the entire cortex, and therefore is better able to detect associ-
ations that are distributed compared with a standard univariate
neuroimaging omnibus test that assumes effects are sparse and
localized. The MOSTest also takes into account the covariance
across the brain. This statistical procedure implements a per-
mutation test with 10 000 permutations to determine statisti-
cal significance. For all associations, the observed multivariate
statistic fell beyond the null distribution of permuted statistics
(P < 0.0001; Table 2). To calculate a more precise P-value for the
associations, we extrapolated beyond the null distribution (see
Supplementary Methods). All associations were also significant
when using more widely used univariate omnibus statistics
(Min-P; P < 0.0005), but were smaller in magnitude than when
using the MOSTest. This suggests that the distributed signal
across the cortex may be important for predicting cognitive

performance. The regionalization of CTH showed greater asso-
ciations with cognitive performance than CSA. All of these anal-
yses controlled for all sociodemographic factors (race/ethnicity,
household income, and parental education) as well as the global
parameter (total CSA or mean CTH), age, sex, and scanner ID.
In addition, we measured all associations using two alternative
multivariate statistics, Stouffer and Fisher, to determine method
invariance of these brain-behavior associations. All of these
methods converged (Supplementary Fig. 2).

Distinct Patterns of Association Between the
Regionalization of CSA and the Fluid and Crystallized
Composite Scores

After establishing significant associations between cortical mor-
phology and cognitive performance, we aimed to measure the
similarity across the estimated effect size maps for these asso-
ciations. Interestingly, on visualizing the estimated effect size
maps of the associations between the regionalization of CSA
(controlling for total CSA) and the fluid and crystallized com-
posite scores, we saw an unique structural pattern of asso-
ciation for each composite score (Fig. 2A,B). Indeed, similarity
maps demonstrated very little overlap between these vertex-
wise associations (Supplementary Fig. 4A–C). Figure 2C shows
the difference between the beta coefficients for the fluid (F) and
crystallized (C) surface maps. To quantify the magnitude of these
vertex-wise differences relative to the original associations, we
calculated a ratio of the variance (root-mean squared) of the
beta coefficient differences divided by the variance (root-mean
squared) of the average beta coefficients across the F and C
estimated effect size maps (RMS ratio for F – C = 1.21).

In order to determine the unique pattern of association
between the relative configuration of CSA and the fluid and
crystallized composite scores, we generated a vertex-wise

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data
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Table 2 Cortical morphology was significantly associated with both fluid and crystallized composite scores

Permuted P-values Extrapolated P-values

Min-P MOST Min-P MOST

CSA ∼ fluid score + covariates 5.00E-04 1.00E-04 1.29E-04 2.93E-10
CSA ∼ crystallized score + covariates 1.00E-04 1.00E-04 9.34E-06 1.53E-07
CTH ∼ fluid composite score + covariates 1.00E-04 1.00E-04 3.96E-05 5.59E-19
CTH ∼ crystallized score + covariates 2.00E-04 1.00E-04 4.13E-08 8.71E-18

Notes: Permuted P-values demonstrate statistical significance based on the rank of the observed statistic in the distribution of permuted statistics. For all associations,
both the observed univariate (min-P) and multivariate (MOST) test statistics were in the extreme of the respective null distributions, therefore, we rejected the null
hypothesis that the observed statistics came from the empirical null distribution. Extrapolated P-values provide an estimate of the likelihood of the observed statistics
beyond the range that can be directly estimated from the permutations. The magnitude of effects was larger using the multivariate test statistic and for associations
between cognitive performance and CTH (controlling for mean CTH)

association map between the regionalization of CSA and the
fluid composite score controlling for the crystallized composite
score (FC; Fig. 2E), and the crystallized composite score control-
ling for the fluid composite score (CF; Fig. 2H). The pattern of
associations was almost identical to that obtained when the
respective composite score was not included as a covariate in
the model. Indeed, the surface map of the vertex-wise “differ-
ences” between the associations for each composite score and
that composite score controlling for the other were very small
in magnitude compared with the original F − C effect size maps
(Fig. 2F,I; RMS ratio for C – CF = 0.27; RMS ratio for F – FC = 0.38).

Moreover, the vertex-wise correlation between the estimated
beta coefficients for F versus FC was high (r = 0.92) as was the cor-
relation between the beta coefficients for C versus CF (r = 0.95).
In contrast, the vertex-wise correlation between the beta coef-
ficients for F versus C was much lower (r = 0.30). This further
implies that there was minimal shared variance between the
associations for the fluid and crystallized scores and the region-
alization of CSA. The minimal overlap in the cortical configura-
tion associated with these measures supports that the config-
urations of relative CSA associated with these measures were
relatively distinct.

Distinct Patterns of Association Between the
Regionalization of CTH and the Fluid and Crystallized
Composite Scores

Estimated effect size maps showing the vertex-wise associa-
tions between the relative configuration of CTH and the fluid
and crystallized composite scores are shown in Figure 2J,K.
The structural pattern of association between these composite
scores and CTH were more similar than with CSA, particularly
on the medial surface and similarity maps highlighting overlap
in (same direction) associations showed a moderate degree
of overlap (Supplementary Fig. 4D,F). However, there were key
regions with distinct differences in relative CTH associations
between the fluid and crystallized composite scores. Figure 2L
shows the difference between the beta coefficients for the F and
C surface maps, which were relatively large compared with the
original estimated effect sizes (RMS ratio for F – C = 0.92). In order
to determine the unique pattern of association between the
regionalization of CTH and F and C, we generated a vertex-wise
map of the association between the regionalization of CTH and
FC (Fig. 2N) and CTH and CF (Fig. 2Q). As with CSA, the pattern
of associations was almost identical to when the respective
intelligence measure was not included in the model. Indeed,
the estimated effect size map of the vertex-wise differences
between the associations for each composite score and each
composite score controlling for the other were very small in

magnitude (Fig. 2O,R; RMS ratio for C – CF = 0.31; RMS ratio for
F – FC = 0.30). The vertex-wise correlations between the map
of associations for each composite score and that composite
score controlling for the other were high (F vs. FC: r = 0.94; C vs.
CF: r = 0.95); whereas the vertex-wise correlation between the
maps of association for the fluid and crystallized composite
scores was much lower (F vs. C: r = 0.40). The minimal overlap
in the cortical configurations associated with these measures
supports that the configurations of CTH associated with these
measures were relatively distinct.

Distinct Patterns of Association for the Regionalization
of CTH and CSA Across Cognitive Tasks

Visualizing the effect size maps between each cortical mea-
sure and each cognitive task revealed relatively distinct pat-
terns of association across the cognitive tasks (Fig. 3). This was
further supported by the low vertex-wise correlations across
these associations (Fig. 4). The estimated beta coefficients for
the regionalization of CTH and cognition were more correlated
across tasks than for the regionalization of CSA and cogni-
tion. Effect size maps were more similar for tasks using sim-
ilar underlying cognitive processes and the composite mea-
sures appeared to reflect mixtures of the patterns of associa-
tion for each of the tasks that were averaged to produce the
composite scores. Estimated effect size maps for each cortical
measure and each cognitive task and composite score without
controlling for the sociodemographic variables of race/ethnicity,
household income, and parental education were more highly
correlated (Fig. 4C,D). This shows that variance in the sociode-
mographic factors is shared with the cognitive and structural
measures. The association maps for PC1 and the total composite
score from the NIH Toolbox were remarkably similar further
validating the total composite score as a measure of general
cognitive ability.

Association Maps When Not Controlling
for Sociodemographic Variables

We computed the estimated effect size maps for the F and
C composites scores associated with the regionalization of
CSA (Fig. 5A,B) and CTH (Fig. 5D,E) without controlling for
the sociodemographic variables (but controlling for age, sex,
and scanner). For both morphology measures, the vertex-
wise correlation between the F and C maps increased (CSA:
r = 0.69; CTH: r = 0.89). However, the F − C difference maps were
remarkably similar to when the sociodemographic variables
were controlled for as shown by a vertex-wise correlation
between the F − C difference maps with and without controlling
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Figure 2. Distinct estimated effect size maps of association between the regionalization of cortical morphology and fluid and crystallized composite scores. All maps

display the vertex-wise mass univariate standardized beta coefficients unthresholded for CSA (left) and CTH (right). A+D) The association between relative CSA and
the fluid composite score and (B+G) the crystallized composite score. C) The difference in standardized beta coefficients between A+B. E) The association between
relative CSA and the fluid composite score controlling for the crystallized composite score. F) The difference in standardized beta coefficients between D+E. H) The
association between relative CSA and the crystallized composite score controlling for the fluid composite score. I) The difference in standardized beta coefficients

between G+H. J+M) The association between relative CTH and the fluid composite score and (K+P) the crystallized composite score. L) The difference in standardized
beta coefficients between J+K. N) The association between relative CTH and the fluid composite score controlling for the crystallized composite score. O) The difference
in standardized beta coefficients between M+N. Q) The association between relative CTH and the crystallized composite score controlling for fluid composite score.
R) The difference in standardized beta coefficients between P+Q. The estimated effect size maps showing the association between cortical morphology and the fluid

and crystallized composite scores have distinct patterns. These behavioral measures show very little overlapping variance with the regionalization of CSA and CTH.

for sociodemographic factors (CSA: r = 0.96; CTH: r = 0.94). This
strongly suggests that these confounding variables in aggregate
index common shared variance between cortical morphology
and cognition across domains that is not specific to a particular
task performance. Estimated effect size maps for the association
between the regionalization of CSA and CTH and cognitive per-
formance across tasks without controlling for sociodemographic
factors can be found in Supplementary Figure 5.

Partitioning the Variance Between Brain Structure
and Cognition

In order to quantify the variance in each composite score pre-
dicted by the vertex-wise imaging data for the regionaliza-
tion of CSA and CTH, we calculated a mass PVSU. Much like
a polygenic risk score, the PVSU represents a linear weighted
sum of the vertex-wise associations, which are projected from
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Figure 3. Distinct patterns of association for the regionalization of CTH and CSA across cognitive tasks. Estimated effect size maps showing the mass univariate

standardized beta coefficients for the association between each cognitive task and (A) the regionalization of CSA and (B) the regionalization of CTH. Performance on
all of the cognitive tasks and the composite scores showed significant associations with the regionalization of cortical morphology across the whole cortical surface
using the MOSTest as shown in Palmer et al. (2019).

a training set to an independent hold-out set within a cross-
validation framework. A comparison of the subject-wise PVSU

with cognitive performance therefore provides a conservative,
out-of-sample, lower bound estimate of the unique variance in
behavior predicted by the regionalization of cortical morphology
independent of the global brain measures. When controlling
for age, sex, and scanner, the regionalization of CSA explained
a similar proportion of the total variability in cognition com-
pared with the regionalization of CTH (for fluid scores: total
CSA = ∼2.59%R2; CSA PVSU = ∼1.27%R2; CTH PVSU = ∼1.88%R2; for
crystallized scores: total CSA predicted ∼7.15%R2; CSA PVSU

predicted ∼2.39%R2; CTH PVSU = ∼3.85%R2; Fig. 6). Mean CTH
was not predictive of cognitive performance. Total CSA predicted
more variance in crystallized scores than fluid scores.

Without controlling for brain structure, but whilst control-
ling for age, sex, and scanner, the sociodemographic factors
collectively predicted more variance in crystallized (∼23%R2)
compared to fluid scores (∼10%R2). Across imaging measures,
the sociodemographic variables accounted for ∼70–90% of the
variation in fluid and crystallized scores that was predicted
by brain structure. CTH measures (mean CTH and CTH PVSU)
explained ∼22% of the association between the sociodemo-
graphic variables and the crystallized score and ∼27% for the
fluid score, whilst CSA (total CSA and CSA PVSU) explained
∼37% of the association between the sociodemographic vari-
ables and the crystallized score and ∼44% for the fluid score.
This shows that the relationship between brain structure and

cognition was strongly related to the sociodemographic factors
of race/ethnicity, parental education, and household income.

We additionally estimated the variance in PC1 predicted by
regional CSA and CTH measures using the PC1 PVSU when
controlling and not controlling for sociodemographic variables.
Cross-validated R2 estimates were greatly reduced when con-
trolling for sociodemographic variables (Supplementary Table 3).
When controlling for sociodemographic variables in particular,
the fluid and crystallized PVSU predicted less variance in the
behavior they were not trained on highlighting key differences
in the associated regionalization patterns. Moreover, a model
predicting PC1 from both the fluid and crystallized PVSU (for
CSA and CTH independently) explained a similar proportion of
the variance to the sum of R2 across separate models with the
fluid and crystallized PVSU predicting PC1. This was less clear for
CTH due to the greater similarity in relative association patterns.
When not controlling for sociodemographic variables, the over-
lap in the variance in PC1 explained by the fluid and crystallized
PVSU was much greater. This emphasizes that much of the
shared variance between cognitive tasks and associated region-
alization patterns is associated with sociodemographic factors.

Discussion
In this study, we have shown that the regionalization of
cortical morphology, independent of global brain measures, was

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab054#supplementary-data


3864 Cerebral Cortex, 2021, Vol. 31, No. 8

Figure 4. Similarity of regionalization association patterns across cognitive tasks is modulated by demographic factors. Pairwise vertex-wise correlations between
the estimated beta coefficients across all cognitive tasks, the composite scores and PC1 predicted by (A) the regionalization of CSA and (B) the regionalization of
CTH controlling for the sociodemographic variables of race/ethnicity, household income, and parental education. (C, D) Pairwise vertex-wise correlations for all of the

cognitive tasks and (C) the regionalization of CSA and (D) the regionalization of CTH “not” controlling for the specified sociodemographic variables (but controlling for
age, sex and scanner). The correlation among associations was larger when these demographic variables were not included in the GLMs used to produce the estimated
effect size maps.

significantly associated with individual differences in cognitive
performance in a large sample of 9–11-year-old children
(N = 10 145). Moreover, we showed that individual differences
in composite scores of fluid and crystallized performance
were associated with distinct maps of relative cortical areal
expansion and apparent thickness. This suggests that regional
cortical architecture relates differently to these two types
of cognitive performance variability. The relatively distinct
association maps for the single tasks used to generate these
composite measures provide evidence that patterns of cortical

morphology differ among individuals and can explain individual
variability across different cognitive processes. These patterns
do not appear to represent a single, neural construct that could
explain the positive manifold. Furthermore, we have shown that
sociodemographic diversity impacts the association between
cortical morphology and cognition similarly across cognitive
domains, which suggests these factors are likely explaining
confounding variance to the relationship between brain struc-
ture and cognition. Since the treatment of sociodemographic
variables in these models led to substantial differences in the
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Figure 5. Similar estimated effect size maps for the association between the

regionalization of cortical morphology and the fluid and crystallized composite
scores when “not” controlling for sociodemographic factors. All maps display
the vertex-wise mass univariate standardized beta coefficients unthresholded
for each association. The top part of the figure shows the association between

the regionalization of CSA and the fluid composite score (A) and the crystallized
composite score (B). (C) The difference in standardized beta coefficients between
A + B. The bottom part of the figure shows the association between the regional-
ization of CTH and the fluid composite score (D) and the crystallized composite

score (E). (F) The difference in standardized beta coefficients between D + E.
The demographic variables of race/ethnicity, household income, and parental
education were not included in the mass univariate GLMs to produce these esti-
mated effect size maps. The exclusion of these confounding factors increased

the magnitude of the estimated beta coefficients and the similarity between the
maps for the fluid and crystallized composite scores. However, the difference
maps (C + F) closely reflect the pattern of differences seen in Figures 2C and L

respectively.

magnitude of effects of interest, users of ABCD data should
select covariates carefully and discuss any sociodemographic
factors potentially related to both explanatory variables
and outcomes.

Relative Cortical Configuration is Relevant
for Understanding Individual Variability in Cognition

There is a high degree of individual variability in the regionaliza-
tion of the cortex, however, the extent to which that can explain
individual variability in behavior is not well understood. A num-
ber of studies have highlighted associations between regional
differences in cortical morphology, controlling for global imag-
ing measures, and cognition, however, they have lacked the
power to measure associations based on the entire configura-
tion of cortical morphology (Vuoksimaa et al. 2016). Individual

differences in the regionalization of CSA and CTH have been
associated with distinct, continuous gradients of genetic influ-
ences across the cortex (Chen et al. 2011; Chen, Fiecas, et al.
2013a; Chen, Gutierrez, et al. 2013b) that coincide with the gene
expression patterns that dictate specialization of the neocortex
during embryonic development (O’Leary et al. 2007; Rakic et al.
2009). Individual differences in this molecular signaling could
therefore lead to subtle alterations in this cortical configuration,
which could lead to variability in behavior. Here, we have used
a multivariate statistical approach to measure the significance
of distributed effects, which reflect the graded and distributed
nature of the biology of regionalization.

We have shown that individual variability in cortical region-
alization is robustly associated with individual variability in per-
formance across multiple cognitive tasks. For both morphology
measures, there was a clear pattern of positive and negative
associations with cognitive performance, which suggests that, at
this developmental stage, “relative” differences in the size and
thickness of cortical regions mirror individual difference vari-
ability in cognition. Although we have corrected for age in all of
our models, we are only measuring associations at a single time-
point, therefore, phase differences in cortical maturation may be
contributing to variability in regionalization. Nevertheless, the
regionalization of CSA predicted additional unique variance in
cognition not explained by total CSA. By partitioning the vari-
ance in this way, we can determine the relative importance of
these components of CSA for cognition. This appeared to differ
depending on the cognitive task, with more language-related
measures having a greater association with total CSA compared
to the regionalization of CSA. Comparatively, the proportion of
variance in behavior explained by regional CTH was relatively
similar across the different measures. Consistent with previous
studies (Vuoksimaa et al. 2015, 2016; Schmitt et al. 2019; Grasby
et al. 2020), mean CTH did not predict cognitive performance
across any measures.

Distinct Associations Between Cortical Morphology
and Different Cognitive Domains

The estimated effect size maps between the regionalization of
CSA and the crystallized composite score (comprised of reading
and vocabulary measures) showed that greater areal expansion
in regions previously associated with language functions, such
as the left temporal and middle frontal regions (Brown et al.
2001; Hickok and Poeppel 2007; Martin et al. 2015), was asso-
ciated with higher crystallized scores; whereas, greater areal
expansion in a different set of regions, previously implicated
in cognitive control mechanisms required for the fluid tasks,
such as the anterior cingulate and insula cortices (Botvinick
et al. 2004; Taylor et al. 2009; Menon and Uddin 2010; Fjell et al.
2012; Curley et al. 2018), was associated with higher fluid scores.
The patterns of apparent CTH associated with these measures
were more similar, however, there were key differences in lateral
frontal, insula, superior medial, and entorhinal cortices.

Interestingly, the areas most strongly associated with the
total composite score were a combination of those most strongly
associated with either the fluid or the crystallized composite
scores and were very similar to the association maps for PC1.
Consistent with previous literature, the CSA and CTH maps for
our measures of general cognitive ability were very similar to
those observed by Vuoksimaa et al. (2016) despite the difference
in age between the two samples. In particular, negative associa-
tions with relative CTH and general cognitive ability were found
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Figure 6. Controlling for sociodemographic factors reduces the variance in cognitive performance predicted by cortical morphology. These bar charts show the
percentage R2 in the fluid (left column) and crystallized (right column) composite scores predicted by several models including sociodemographic and brain measures.
Model 1 shows the total variance in behavior explained by the full model including the covariates of no interest (age, sex, and scanner), the sociodemographic variables

(parental education, household income, and race/ethnicity) and either the regionalization of CTH and mean CTH (A; top row) or the regionalization of CSA and total
CSA (B; bottom row). Model 2 shows the unique variance in behavior explained by the sociodemographic factors after preresidualizing both the dependent (DV) and
independent (IV) variables for the covariates of no interest. Additionally, preresidualizing for the imaging phenotypes (model 3) lead to a reduction in this R2. Conversely,

model 4 shows the unique variance in behavior explained by the structural measures (global and regionalization) after preresidualizing for the covariates of no interest
only. Additionally, preresidualizing for the sociodemographic factors (model 5) lead to a large decrease in the variance explained by these structural measures, again
showing the shared variance between brain structure, cognition, and sociodemographic factors. Controlling for the sociodemographic factors reduced the variance
explained in the composite scores by ∼4–5-fold for CSA and ∼4–8-fold for CTH.
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in medial and lateral frontal cortex and positive associations
around the central gyrus; and for relative CSA, we observed
similar positive associations across the temporal lobe, medial
frontal and anterior cingulate cortices. Our results also mirror
some associations in highly evolutionary and developmentally
expanded regions, namely the frontal cortex, which has been
shown previously to associate with general cognitive ability
(Fjell et al. 2015; Reardon et al. 2018). The maps of association
between both the regionalization of CSA and CTH and the total
composite score (and PC1) represent a mixture of the fluid and
crystallized associations. Indeed, the same can be seen for the
fluid and crystallized composite score maps, which appear to
represent a mixture of the association maps for each of the indi-
vidual tasks that contributed to those scores. This is reflected
within the correlation matrix of the vertex-wise associations
(Fig. 4A,B). This observation has implications for theories of
intellectual development.

Implications for Theories of Intellectual Development

Factor analyses of cognitive measures frequently reveal a higher
order general latent factor “g” that can explain (statistically)
individual differences in cognitive performance. However, this
observation alone does not necessarily reveal anything about
neural underpinnings of “g.” There is a pervasive view within
society that “g” represents a single causal underlying trait that
influences performance across multiple domains. GWAS have
begun to reveal some genetic loci associated with general cog-
nitive ability that exhibit pleiotropy with structural brain phe-
notypes, which point to biological pathways from our genes to
“g” via brain phenotypes (although the direction of causality is
not clear) (Davies et al. 2018; Savage et al. 2018; Grasby et al.
2020). However, this does not necessarily suggest that there is a
unitary pathway underlying the development of cognitive func-
tion across individuals. Indeed, polygenic scores for educational
attainment and general cognitive ability differentially predict
cognitive performance in different domains (Elliott et al. 2019;
Loughnan et al. 2019; Mitchell et al. 2020). Here, we do not find
that there is a single pattern of regionalization that could repre-
sent a causal neuroanatomical substrate underlying “g.” Indeed,
we find that, on average, individuals with one regionalization
pattern perform better on more language-related tasks, while
individuals with a different regionalization pattern perform bet-
ter on more executive function-related tasks. Therefore, this
reveals important heterogeneity among children with compa-
rable levels of performance on measures of general cognitive
ability. Our results do not test any causality between brain
structure and behavior and do not rule out that a single or global
neural phenotype underlying (or contributing to) “g” could be
represented within a different neural modality, such as func-
tional connectivity or latency of neuronal signaling; however,
there is a lack of supporting evidence for a dominant neural “g”
phenotype when measuring cortical morphology in the current
study.

Total CSA was modestly associated with cognitive perfor-
mance in the current study; however, before controlling for
sociodemographic factors, total CSA only predicted ∼7% of the
variability in crystallized scores and ∼2% in fluid scores. Due
to the unprecedented statistical power in this study, we can
infer that total CSA is unlikely to account for substantially
more individual variability in cognitive scores in children of
this age. Indeed, this effect is much smaller than the shared
variance across cognitive measures that has been attributed to

“g” (∼37% in the current sample) and is of a similar magnitude
to that observed by Reardon et al. (2018; 1%). Moreover, the
relative importance of this measure for predicting individual
variability in cognition differed as a function of the type of
intelligence measured, which is inconsistent with this being a
global mediator of “g.”

Our results may be more compatible with alternative
models of intellectual development in which a single structural
phenotype is not necessarily required to produce the latent g-
factor. For example, according to the mutualism model (Van Der
Maas et al. 2006, 2017), at the beginning of development, indi-
viduals start with initially uncorrelated, differentially weighted
resources that underlie different cognitive processes. Over time,
these resources interact in a mutually beneficial way such
that high performance of one system aids the development of
another system leading to the positive manifold in performance.
This is an important distinction from the more conventional
“g” model as here individual differences in mature cognitive
performance emerge from different combinations of these
resources in early development, such that, for example, the
same general cognitive performance score later in development
could arise from high initial memory resources in one individual,
but high initial processing speed in another individual. Given the
development of the positive manifold throughout childhood,
we would not necessarily expect to see a large influence
of these initial biases on individual variability in cognitive
performance at 9–10-years old. Indeed, we can see that multiple
environmental and experiential factors contribute to differences
in cognitive performance across individuals. It is possible
that the small, dissociable variance across cognitive domains
associated with cortical regionalization, after controlling for
sociodemographic factors, reflects these initial biases in
resource allocation. Only in tasks that disproportionately recruit
specific cognitive processes can we really detect the small
differences in performance across individuals related to cortical
regionalization. This may explain why we see such a small
association between cortical regionalization and individual
variability in cognitive performance.

Given this hypothesis, it is possible that this variability in
regionalization is mediated by genetic variability in cortical are-
alization. Indeed, the regionalization of the cortex is moderately
heritable (Winkler et al. 2010; Chen et al. 2011; Eyler et al. 2011,
2012; Chen, Gutierrez, et al. 2013b) and during early embryonic
development, gradients of morphogens dictate the expression of
transcription factors across the dorsal proliferative zone, which
determines the eventual spatial location and functional special-
ization of cortical projection neurons (O’Leary et al. 2007; Rakic
et al. 2009). Small biases in the arealization process, reflected in
variability in cortical regionalization, may influence developing
cognitive functions in individuals in ways that advantage some
functional domains relative to others, which creates important
diversity within our population. Although the current study
does not measure genetic variation directly, this hypothesis
supports the magnitude of the observations here. Exposure to
different environments, such as access to good education, can
then disproportionately enhance specific genetic effects as has
previously been shown (Dickens and Flynn 2001; Harden et al.
2007; Kan et al. 2013; Loughnan et al. 2019) and contribute to
individual differences in cognitive function. We have not directly
tested this theory in the current paper; however, our observa-
tions are in line with what we would expect based on these
models. Alternative models such as sampling models and hier-
archical factor models could also explain the observations here.
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Longitudinal, developmental studies are required to tease apart
the predictions of these different models at different develop-
mental stages.

It is unclear how heterogeneous the regionalization of cor-
tical morphology is, however, if there is a mixture distribution,
as we expect from the given observations and the mutualism
model, then this would also reduce the estimated effect size
from the mean association maps across the full sample. Future
analyses should use data-driven approaches to classify individ-
uals based on similarity in cortical architecture and determine
subsequent associations with behavior. This would also eluci-
date the extent to which these small associations are driven
by subgroups of individuals who may have occult or prodromal
pathology.

Understanding Individual Variability in Cognition
Related to Both Brain Structure and Sociodemographic
Factors

After controlling for age, sex, and scanner, but before controlling
for sociodemographic variables, the proportion of variance in
the composite measures of cognitive performance shared with
the brain phenotypes in aggregate was ∼9% for the crystallized
scores and ∼4% for the fluid scores. Overall, the full model
including all the phenotypes together accounted statistically
for ∼32% of the variance in crystallized scores and ∼20% of
the variance in fluid scores. These results suggest that many
factors relating to individual differences in cognitive test scores
remain unaccounted for in these statistical models. However,
the results are sufficiently powerful to constrain future hypothe-
ses by restricting the range of plausible causal effects of well-
measured variables, such as total CSA.

The regionalization of CSA and CTH both accounted for
additional unique variance in cognition independent of global
measures. Even after preresidualizing for sociodemographic fac-
tors that could index cultural, environmental, and other expe-
riential effects on cognitive test scores, as well as global brain
measures, the associations between the cortical regionalization
phenotypes and cognitive test scores were statistically robust;
but only explained ∼0.1% of the residual variation. Here, we
have used a very conservative, out-of-sample effect size; we are
therefore providing the lower bound for the estimated effect
size between regionalization and cognition, which is not influ-
enced by any confounding measures. Given the above hypoth-
esis regarding what would be predicted from the mutualism
model, it is perhaps unsurprising that we see such a small brain-
behavior association, particularly as we are measuring individ-
ual variability in typically developing children and not pathol-
ogy. Here, much of the individual variability in regionalization is
attributable to environmental factors, such as sociodemographic
variables, although gene–environment correlations may also be
contributing to this shared relationship. Moreover, small effects
are common-place among samples of this size where effect
sizes are not inflated by sampling variability or publication bias
(Dick et al. 2020). Large brain-behavior associations in smaller
studies with less precision around effect size estimates should
be interpreted very cautiously.

Our results show that the sociodemographic variables
accounted for a substantial proportion of the shared variance
between the brain phenotypes and composite measures of
cognitive function. This may result from many small effects
of factors indexed by these variables, such as nutrition, limited

access to healthcare and education, untreated prenatal com-
plications, systemic racism, high levels of stress, or exposure
to environmental toxins. These factors may affect both brain
and cognitive development, however, it is not clear to what
extent these follow overlapping or independent pathways, and
therefore, to what extent these sociodemographic factors are
mediators versus confounders in the relationship between
brain structure and cognition. However, the finding that these
sociodemographic factors predicted similar variance across
cognitive tasks, and the association maps were more similar
across tasks when not controlling for these factors, suggests
that these variables are more likely to be confounding. Only by
controlling for these measures do we remove that confounding
variance and reveal specific associations, which may more
closely represent causal relationships between brain structure
and cognition, however, importantly, we cannot infer any
causality from the current analyses.

Conclusions
The graded and distributed nature of the neurobiology underly-
ing the regionalization of the cortex supports the importance of
studying the whole configuration of cortical morphology associ-
ated with behavior using multivariate statistics and continuous
pattern comparison methods. Here, we have shown a robust
association between cortical regionalization and cognitive per-
formance and have highlighted key differences in the variability
of cortical regionalization that can explain individual variability
across different components of cognition. Using the unprece-
dented ABCD dataset, we now have the power to discover novel
brain-behavior associations and understand individual variabil-
ity in behavior among a diverse sample of participants. With
future releases of the ABCD data, we will aim to better under-
stand the heterogeneity of cortical regionalization across the
sample and track how the relationship between regionalization
and cognitive performance may change over time within an
individual.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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