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Deep learning enables accurate 
soft tissue tendon deformation 
estimation in vivo via ultrasound 
imaging
Reece D. Huff 1, Frederick Houghton 1, Conner C. Earl 2, Elnaz Ghajar‑Rahimi 2, Ishan Dogra 1, 
Denny Yu 3, Carisa Harris‑Adamson 4,5, Craig J. Goergen 2 & Grace D. O’Connell 1,6*

Image-based deformation estimation is an important tool used in a variety of engineering problems, 
including crack propagation, fracture, and fatigue failure. These tools have been important in 
biomechanics research where measuring in vitro and in vivo tissue deformations are important for 
evaluating tissue health and disease progression. However, accurately measuring tissue deformation 
in vivo is particularly challenging due to limited image signal-to-noise ratio. Therefore, we created 
a novel deep-learning approach for measuring deformation from a sequence of images collected 
in vivo called StrainNet. Utilizing a training dataset that incorporates image artifacts, StrainNet 
was designed to maximize performance in challenging, in vivo settings. Artificially generated 
image sequences of human flexor tendons undergoing known deformations were used to compare 
benchmark StrainNet against two conventional image-based strain measurement techniques. 
StrainNet outperformed the traditional techniques by nearly 90%. High-frequency ultrasound 
imaging was then used to acquire images of the flexor tendons engaged during contraction. Only 
StrainNet was able to track tissue deformations under the in vivo test conditions. Findings revealed 
strong correlations between tendon deformation and applied forces, highlighting the potential for 
StrainNet to be a valuable tool for assessing rehabilitation strategies or disease progression. 
Additionally, by using real-world data to train our model, StrainNet was able to generalize and 
reveal important relationships between the effort exerted by the participant and tendon mechanics. 
Overall, StrainNet demonstrated the effectiveness of using deep learning for image-based strain 
analysis in vivo.

Keywords  Deep learning, StrainNet, Image texture correlation, Biomechanics

Image-based deformation measurement has been utilized in many engineering problems, such as crack 
propagation1, fracture2, and fatigue3. When applied to medical images, these techniques have aided in the dis-
ease diagnostics4–7, assessment of injury mechanisms8–11, and evaluation of disease pathology6,12–14. Interest 
in using non-invasive approaches for tracking deformation in vivo has grown, due to its potential in assessing 
rehabilitation strategies or disease progression15,16.

Specifically, non-invasive approaches for measuring in vivo tissue deformation have relied on magnetic reso-
nance (MR) or ultrasound imaging. MR imaging provides higher resolution images of soft tissues17; however, MR 
scans are costly and require multiple minutes to acquire a single image, which is not ideal for imaging dynamic 
loading. In contrast, ultrasound imaging provides faster, low-cost images, at the trade-off of image resolution. 
Therefore, there is significant interest developing methods to accurately measure tissue strains with ultrasound 
images. For example, high-precision strain mapping has been instrumental for identifying early stages of tendon 
disorders and monitoring their progression, thereby informing preventative and therapeutic strategies4–7. In 
clinical settings, such imaging may be particularly valuable for managing tendinopathy, a condition common 
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among athletes and older adults18. Non-invasive strain measurements may also enable practitioners to evaluate 
rehabilitation protocol effectiveness and forecast patient prognoses19,20. Nonetheless, translation of tissue strain 
measurement techniques to routine clinical practice is hindered by technical difficulties associated with capturing 
images that are not affected by patient movement, noise, or resolution21–34. Therefore, it is important to develop 
strain measurement techniques that can perform well under clinical settings9,35.

Various techniques have been employed to calculate tissue deformations, which is essential for understand-
ing tendon mechanics. Techniques such as digital image correlation (DIC)36 and direct deformation estimation 
(DDE)22 are prevalent for quantifying tendon deformation. These methods have been applied in various in vivo 
studies37–40. Nonetheless, they are challenged in the presence of low signal-to-noise environments and can suffer 
from limited spatial resolution22–34 (Section S1 in the Supplementary Information). Specifically, DIC, DDE, and 
other texture-based image correlation techniques may encounter difficulties in situations with poor contrast 
or images with insufficient intensity gradients. Consequently, researchers are often constrained to point-wise 
strain measurements within the tendon, that limits the spatial resolution of strain mapping, particularly during 
dynamic tendon loading41–44.

More recently, developments in machine learning have shown promise in measuring strains and this approach 
may present benefits over traditional strain measurement methods45–48. In particular, deep learning techniques, 
such as convolutional neural networks (CNNs), have been applied to predict strain maps between successive 
images. These methods resulted in more accurate and robust measurements compared to traditional image 
texture correlation techniques, such as DIC, in controlled in vitro settings46. The training required for deep 
learning approaches also provides an advantage over traditional methods, because training the model with a 
large dataset of known strains allows the model to ignore image artifacts that can reduce accuracy45–48. Thus, 
the technique can be applied to a wider range of images, including those with lower signal-to-noise ratios, 
which can be challenging for traditional image texture correlation methods (Section S1 in the Supplementary 
Information). Overall, the use of deep learning for image-based strain measurement has the potential to greatly 
improve assessment and understanding of in vivo tissue mechanics, particularly in the context of soft tissue 
under dynamic loading conditions.

Here, we propose a deep-learning approach, called StrainNet, specifically designed to maximize perfor-
mance in challenging, in vivo settings. StrainNet utilizes a two-stage CNN architecture to predict full-field 
strain maps from a sequence of images that may be acquired in a medical setting (e.g., ultrasound images). 
The network was trained using a customized dataset, based on observations of tissue deformation and image 
artifacts in vivo, allowing it to overcome image artifacts that hamper traditional methods, such as image noise 
and artifacts, and provide accurate, full-field deformation predictions. We test and validate StrainNet on 
synthetic images with known deformations and real, experimentally collected ultrasound images of the flexor 
tendon in tension. Our results demonstrate that StrainNet outperforms traditional image texture correlation 
algorithms in both synthetic and real in vivo datasets, ultimately revealing strong correlations between tendon 
strains and applied forces as well as between load magnitude and measured mechanical properties in vivo. It is 
important to note that while StrainNet can provide more accurate information in these challenging situa-
tions, it requires significant training to achieve such accuracy. The design and capabilities of StrainNet hold 
immense potential for tracking deformation during both loading and unloading phases, leading to substantial 
progress in assessing soft tissue deformation. Our models and a tutorial for utilizing StrainNet are freely 
available at strai​nnet.​github.​io.

Results
Human flexor tendons undergoing contraction
To evaluate StrainNet’s ability to predict tissue deformation, we designed a custom testing jig that allowed a 
participant to squeeze a dynamometer, providing grip forces, while simultaneously collecting in vivo images of 
their flexor digitorum superficialis (FDS) tendon with an ultrasound probe (Fig. 1a; MicroFET, Hoggan Scientific, 
Salt Lake City, UT, United States). The custom-built testing jig reduced movement of the forearm, and reduced 
out-of-plane movement of the FDS during testing and imaging (Fig. 1a). A high-frequency ultrasound probe 
was used to continuously collect images along the long axis of the FDS throughout the test protocol (Vevo3100 
Ultrasound Imaging System, FUJIFILM VisualSonics Inc., Toronto, Ontario Canada; 21 MHz center frequency 
linear array ultrasound transducer; 15-30 MHz bandwidth; MX250). A participant was then asked to grip the 
dynamometer to their maximal effort to determine their maximum voluntary contractions (MVC). Averaged over 
the three trials, the participant’s MVC was 289.8N. The participant was then asked to contract their forearm to 
three different effort levels—10%, 30%, and 50% of their MVC—in 3 s, hold the contraction for 5 s, and relax in 
3 s (Fig. 1a). Each effort level was repeated five times for a total of fifteen trials (n = 15); however, data from two 
trials were lost due to corruption of the data file. Informed consent was obtained from all participants, and all of 
the trials were performed with Purdue Institutional Review Board approval (IRB-2020-497) and in accordance 
with the Declaration of Helsinki.

The participant maintained the target MVC throughout the 5 s hold period with only a maximum 16% dif-
ference between the desired and measured MVC (Fig. 1b; Section S2 in the Supplementary Information). Over 
the course of the loading period, the tendon elongated and translated upward before returning to its original 
position after relaxation (Fig. 1b). The testing configuration enabled robust evaluation of StrainNet’s per-
formance in predicting tissue deformation under a range of physiological strains, including those that may be 
encountered during daily activities.

https://strainnet.github.io
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StrainNet outperforms traditional techniques in controlled environments
To test the accuracy of our strain analysis method in a controlled environment, five synthetic test cases were 
created by artificially imposing a non-linear strain field onto ultrasound images of the FDS tendon. The test cases 
simulated the experimental procedure with contraction, hold, and relaxation periods, as described above. The 
prescribed non-linear strain field was designed to reflect reported observations of in vivo tendon mechanics. 
Specifically, the strain in the superficial layer of the tendon was set to 75% of the deep layer49, and the tendon 
was modeled as an incompressible material40,50. The five test cases differed in their maximum longitudinal strain, 
ǫmax
long  , which was set to 4%, 7%, 10%, 13%, and 16% to cover the range of reported in vivo strains38–40,49. Noise 

representative of that present in ultrasound imaging was added to all synthetic test cases to emulate challenges 
present in the experimental dataset. A complete description of the synthetic test cases is provided in the Sup-
plemental Information S5. By using synthetic test cases with known deformations, we were able to compare the 
performance and accuracy of our deep learning based approach with existing texture correlation algorithms.

StrainNet was benchmarked against two image-based strain algorithms, digital image correlation (DIC)36 
and direct deformation estimation (DDE)22, using the synthetic test cases. StrainNet significantly outper-
formed the traditional texture correlation algorithms in all synthetic test cases; the median strain error from 
StrainNet was 48-84% lower than the strain error from both DIC and DDE (Fig. 2a; p < 0.001 in all strain 
cases). In addition to the overall performance comparison, temporal analysis of strain error further highlights 
the advantages of StrainNet (Fig. 2b). The accuracy of StrainNet was nearly 90% better than DIC and 
DDE across all test cases (solid lines in Fig. 2b). StrainNet was also 90% more precise than DDE; however, 
DIC was the most precise algorithm tested (filled-in area in Fig. 2b).

StrainNet achieved pixel-wise strain estimation, while DIC and DDE were limited to the central area of 
interest (Fig. 3a). DDE and StrainNet were able to accurately capture the heterogeneity nature of the applied 
strain, whereas the DIC-predicted strain field was homogeneous (Fig. 3a). The DIC analysis area was limited to 
within the boundaries of the tendon whereas DDE and StrainNet cover both the tendon and the surrounding 
soft tissue, revealing large ( ∼10%) spatial strain error at the boundary (Fig. 3b). All three methods exhibited low 
spatial strain error throughout the tendon during contraction and relaxation (Fig. 3b). While training Strain-
Net required nearly 24 h of a computational time, the inference time was less than one minute whereas DIC 
and DDE required approximately 10 minutes and 5 minutes, respectively, representing a 80–90% reduction in 
analysis time once trained.

StrainNet enables accurate in vivo deformation estimation
Both DIC and DDE had difficulties tracking tissue deformations from in vivo images and many pixels were lost 
during analysis. StrainNet, on the other hand, was able to learn around much of the noise and predict the 
longitudinal strain in the tendon, which increased with the effort exerted by the participant (Fig. 4a). There was 
a moderate linear relationship between the StrainNet-predicted longitudinal strain and effort level (Fig. 4b; 

Figure 1.   Experimental protocol, measured forces, and ultrasound images. (a) Custom mount with the 
participant gripping the dynamometer to measure forces while high-frequency ultrasound images were 
collected. (b) Once the participant’s maximum voluntary contraction (MVC) was determined, the participant 
was asked to squeeze the dynamometer to 10%, 30%, and 50% MVC. Data is shown throughout the contraction, 
hold, and relaxation for 10%, 30%, and 50% MVC. Characteristic images of the flexor digitorum superficialis 
(FDS) tendon, represented in teal, during the initiation of the test, during contraction (i.e., hold period), and 
after relaxation.
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R2 = 0.569, p = 0.002). Similarly, there was a strong linear relationship between the apparent modulus calculated 
with the StrainNet-predicted strain and effort level (Fig. 4c; R2 = 0.768, p=0.039).

Discussion
StrainNet was able to accurately measure different strain levels using ultrasound images of the flexor tendon. 
For synthetic datasets, StrainNet detected subtle differences in deformations with a high degree of accuracy 
(< 3% error), outperforming existing approaches (e.g., DIC and DDE) that had median strain errors as high as 
10%. Additionally, when applied to in vivo ultrasound images, StrainNet predicted a strong linear correlation 
between the measured strain and effort level (percentage of the MVC), further validating the performance of 
the model. Finally, full-field deformation predictions were able to unveil stress-strain curves, and thus measure 
mechanical properties within soft biological tissue under physiological boundary conditions. Taken together, 
these findings suggest that deep learning models have the potential to significantly advance the accuracy of 
in vivo biomechanics studies.

StrainNet’s novel two-stage architecture was trained on a combination of synthetic and real in vivo 
images47 to predict full-field strain maps of a sequence of images46. The model was able to accurately predict 
tissue deformation under a range of physiological strains, including those that may be encountered during daily 
activities. However, the strain analysis was limited to a single imaging plane with the aid of a custom mount to 
minimize off-plane motion. Clinical settings often perform ultrasound imaging freehand, potentially introducing 
off-plane motion. Understanding the impact of off-plane motion on model performance or transitioning to a 3D 
imaging environment may make StrainNet more robust to clinical settings. Additionally, while StrainNet 
outperformed traditional image texture algorithms in this study, advances in image-based strain measurement 
have steadily grown51, and it would be beneficial to continue benchmarking them against deep learning models.

There are several limitations to our model that will be addressed in future work. First, the model was evaluated 
on a single tissue type on a single participant. Expanding its application to a wider range of tissue types across a 
larger cohort is a key next step. Additionally, the model is currently to handle only three types of bulk deforma-
tion and the model was trained on a generalized mathematical model of tendon mechanics (Section S3 in the 

Figure 2.   Quantitative evaluation of performance of DIC, DDE, and StrainNet  on synthetic test cases. (a) 
Median strain error calculated over all ultrasound frames. Error bars indicate the first and third quartiles of 
the strain error. The asterisks denote a statistically significant difference between connected groups (p < 0.001). 
(b) Temporal strain error for each synthetic test case. The solid line indicates the median strain error for each 
ultrasound frame and the shadded area shows the first and third quartile range of the spatial strain error. Errors 
were calculated for the region of the ultrasound image where all methods calculated strain.
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Supplemental Information), which is not representative of all biological tissues. The training set would have to 
be expanded and further generalized to be aligned to other biological tissues under different imaging conditions 
and experimental configurations. As such, a tutor​ial on how to customize the training set and its mechanical 
model (e.g., hard-tissue CT, soft-tissue MRI, or a combination of both) was included. Finally, StrainNet was 
trained with a loss function that did not consider the feasibility of the predicted strain field. Future work could 
also incorporate the underlying physics (e.g., conservative equations) into the training process leading to more 
physically accurate strain fields.

The potential applications of StrainNet are vast and promising. StrainNet significantly surpassed 
traditional image texture correlation methods in controlled environments, such as synthetic test cases (Fig. 2). 
Moreover, in more complex settings where image texture correlation is susceptible to errors caused by image 
artifacts, StrainNet consistently delivered accurate and expected tissue deformation levels (Fig. 4), in line 
with previous reports37–39. Furthermore, the measured tissue mechanical properties aligned with those previously 
reported for human patellar and Achilles tendons with similar experimental procedures in vivo (Section S6 in 
the Supplemental Information)37,52–55. Taken together, our results suggest that StrainNet may be aligned to 
a broad array of biomedical applications, such as in vivo imaging studies of muscle function, blood flow, and 

Figure 3.   Qualitative evaluation of DIC, DDE, and StrainNet’s performance on the synthetic test case ( ǫmax
long  

= 10%). (a) From left to right: the true prescribed logitudinal strain followed by DIC-, DDE-, and StrainNet-
predicted strain field during the hold period. (b) From left to right: spatial distribution of strain error for DIC-, 
DDE-, and StrainNet during the hold period.

https://strainnet.github.io/tutorial/
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tissue viability. In summary, the design and capabilities of StrainNet hold immense potential for quantifying 
biomechanical metrics, leading to substantial progress in assessing soft tissue deformation.

Methods
StrainNet architecture and training
The StrainNet architecture was specifically designed to handle the unique challenges present with in vivo 
image analysis. Specifically, StrainNet was developed and trained to predict strain within high-frequency 
ultrasound images of FDS tendons undergoing contraction, as described above (“Human flexor tendons undergo-
ing contraction” section). For each contraction-relaxation cycle, a set of ultrasound images (It)Tt=1 are collected, 
where T represents the total number of frames during the cycle. Therefore, the goal of StrainNet was to pre-
dict the strain field ǫ(t)xx  , ǫ(t)xy  , and ǫ(t)yy  for each frame or time point t. To achieve this, StrainNet was designed 
as a two-stage deep neural network architecture (Fig. 5a).

The architecture was constructed to first classify the image pair as undergoing tension, compression, or rigid 
body motion, and then to apply an appropriate neural network to predict the strain field within the tendon 
(Fig. 5a).

The first stage of the architecture, the DeformationClassifier, was a CNN that classifies the type of 
deformation (e.g., tension, compression, or rigid motion) within each ultrasound image pair It and It+1 (Fig. 5a). 
The cumulative strain is relative to the first image. The DeformationClassifier consisted of a series of 
convolutional layers, max-pooling layers, and fully connected layers. The convolutional layers extracted features 
from the image, while the max-pooling layers reduced dimensionality. The fully connected layers were used to 
make the final classification (Fig. 5b).

Figure 4.   Quantitative and qualitative analysis of StrainNet applied to in vivo images. (a) StrainNet-
measured spatial distribution of longitudinal strain throughout the tendon during the contraction to 10%, 30%, 
and 50% MVC. (b) Linear regression between the bulk longitudinal strain in the tendon and the effort exerted 
by the participant. (c) Linear regression between apparent modulus and effort level. Black cross indicates the 
mean ± standard deviation of the effort level and (b) longitudinal strain and (c) apparent modulus, and the 
dashed line is the linear regression fit.
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Once the type of deformation between It and It+1 was classified, the same image pair was passed to one of 
three neural networks: TensionNet, CompressionNet, or RigidNet (Fig. 5a). These networks predict 
the strain field from the input image pair and were based on the UNet architecture, a popular biomedical image 
segmentation deep-learning architecture56. The UNet architecture has an encoder-decoder structure, with the 
encoder extracting features and the decoder up-sampling feature maps to the original image size. The encoder 
and decoder in TensionNet, CompressionNet, and RigidNet were composed of convolutional layers, 
max-pooling layers, up-sampling layers, and Rectified Linear Unit (ReLU) activation functions (Fig. 5c,d). Skip 

Figure 5.   Architecture of StrainNet. (a) StrainNet includes a deep neural network trained to predict a 
relationship between two ultrasound frames, It and It+1 and tendon strain at frame t, ǫ(t)xx  , ǫ(t)xy  , ǫ(t)yy  . StrainNet 
comprises two stages, where the first stage was the DeformationClassifier and the second stage included 
TensionNet, CompressionNet, and RigidNet. The input to the first stage is a pair of ultrasound 
images, the output is its class deformation type (tension, compression, or rigid). The input to the second stage 
is again a pair of ultrasound images as well as its deformation type, and the output is the full strain field of the 
tendon. (b) DeformationClassifier is composed of convolutional layers, max pooling, and Rectified 
Linear Unit (ReLU) activation functions. The resulting features from the input image pair are flattened and 
passed through a fully-connected neural network to predict the probability of the image pair undergoing 
tension, compression, or rigid body motion. (c) The architecture of TensionNet, CompressionNet, 
and RigidNet included convolutional layers, max pooling, upsampling, skip layers, and ReLU activation 
functions. The input image pair is passed through the corresponding network to predict the full strain field 
( ǫ(t)xx  , ǫ(t)xy  , ǫ(t)yy  ). (d) Blocks in (b) and (c) were connected by ReLU activation functions and utilized batch 
normalization.
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connections between the encoder and decoder were included to help improve strain field prediction quality by 
reducing vanishing gradients57.

Each pair of images in the ultrasound image sequence is passed through both stages, allowing Strain-
Net to predict the full strain field at each time point except T. As a result, StrainNet is able to predict the 
longitudinal, transverse, and shear strain fields across the entire tendon region, providing a full-field strain map, 
(ǫ

(t)
xx  , ǫ(t)xy  , ǫ(t)yy )

T−1
t=1 .

To effectively train StrainNet, a diverse training set was created with image pairs of deformation fields that 
emulated real-world observations and image artifacts commonly encountered in medical imaging (e.g., random 
noise). The training set included 1,250 experimental image pairs from a different participant than the one used for 
the in vivo experiment and 3750 synthetically generated image pairs. Training set generation involved utilizing 
a generalized mathematical model of tendon mechanics, prescribing the non-linear strain fields onto collected 
ultrasound images of the tendon, and adding noise to simulate real-world imaging conditions. Deformation and 
noise parameters were randomly sampled from uniform probability distributions, ensuring a robust dataset for 
learning the strain measurement task. The detailed process of generating the training set, including the acquisi-
tion of experimental data, image preprocessing, and the combination of synthetic and experimental examples, 
can be found in Section S4 in the Supplemental Information.

Following the creation of the training set, the StrainNet model was trained using a combination of loss 
functions tailored to the specific tasks of each subnetwork. For the DeformationClassifier, a cross-entropy 
loss function was utilized and defined as

where p represents the predicted class probabilities, y is the true one-hot encoded class label, and C is the number 
of classes (tension, rigid, and compression).

For the other three models, TensionNet, CompressionNet, and RigidNet, the mean ℓ2 loss func-
tion was used and expressed as

where ǫ̂(n)ij,p and ǫ(n)ij,p denote the ij-th component of the true and predicted (i.e., longitudinal, transverse, and shear) 
at pixel p of the n-th example in the training set, respectively. Here, we are summing over all of the pixels in the 
image P and over the number of examples in the training set N.

The training process began by splitting the training set into 80% training and 20% validation sets. Training 
was conducted for 100 epochs using the Adam optimizer (PyTorch58 1.12.1) on a NVIDIA K100 16GB graphics 
processing unit (GPU) with a learning rate of 0.001. Different batch sizes were employed for the sub-models to 
accommodate their specific training requirements. For the DeformationClassifier, a batch size of 100 was 
used to take advantage of parallel processing and to reduce the noise in gradient updates. In contrast, a smaller 
batch size of 10 was utilized for the TensionNet, CompressionNet, and RigidNet models, allowing for 
more frequent weight updates and improved convergence properties. Training of the DeformationClassi-
fier required 4 h, whereas TensionNet, CompressionNet, and RigidNet needed approximately 8 h to 
train. The combination of these hyperparameters, the GPU, and the optimizer facilitated successful training of 
StrainNet, enabling it to learn the relationships between ultrasound images of tendons and their correspond-
ing strain fields. The trained model reached loss (Eq. (2)) of 2.4% with a 100% classification accuracy from the 
DeformationClassifier on the validation set, demonstrating the model’s ability to accurately predict the 
strain field from ultrasound images.

Strain analysis method validation
StrainNet’s performance and accuracy was compared to two existing texture correlation algorithms, including 
DIC36 and DDE22. All three techniques were applied to all synthetic test cases. Hyperparameters of DIC and DDE 
such as subset size and step size were tuned to maximize accuracy of the strain field prediction, while the shape 
function was linear for both methods. Given the applied strain tensor, the spatial strain error was calculated as

where ǫ̂(t)ij,p and ǫ(t)ij,p represent the true and predicted strain tensor at pixel p and time t, respectively. To robustly 
evaluate the performance, strain error and median strain error were calculated as

where poverlap denotes the median strain ever taken over the shared region of interest for all three methods and 
subscript t denotes the median over time. Therefore, the strain error in (4) represents the error across the image 

(1)LCE(p, y) = −

C∑

i=1

yi log(pi),

(2)Lℓ2(ǫ
pred , ǫtrue) =

1

N

1

P

N∑

n=1

P∑

p=1

2∑

i=1

2∑

j=1

∣∣∣ǫ̂(n)ij,p − ǫ
(n)
ij,p

∣∣∣
2
,

(3)spatial strain error =

√√√√
2∑

i=1

2∑

j=1

(
ǫ̂
(t)
ij,p − ǫ

(t)
ij,p

)2

(4)strain error = median
poverlap

spatial strain error

(5)median strain error = median
poverlap,t

spatial strain error
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the median strain error in (5) represents the error across the images throughout the full contraction-relaxation 
cycle.

To compare the strain error for each synthetic test case between StrainNet and DIC, as well as between 
StrainNet and DDE, permutation tests of the strain errors were conducted for each test case.

Experimental strain analysis and mechanical property estimation
StrainNet, DIC, and DDE were then applied to the experimental images. To quantify the bulk tendon 
mechanical behaviour, the bulk longitudinal strain during the hold period was calculated as the median longi-
tudinal strain over the tendon region

where ptendon and thold represent the region of the image containing the tendon and the time over the hold 
period, respectively. Repeated measures linear regression was performed to examine the relationship between 
the effort level and the corresponding bulk longitudinal strain for each of the three methods (StrainNet, 
DIC, and DDE).

The longitudinal strains were then used to estimate tendon mechanics. First, the longitudinal force in the 
tendon was calculated by related the grip force to the force in the FDS tendon59. Longitudinal stress was calculated 
by dividing the tendon force by its cross-sectional area, which was manually segmented from ultrasound images 
at the beginning of each trial (i.e., in the ’undeformed’ state). Subsequently, the tendon’s apparent modulus was 
calculated as the slope of the linear region of each trial’s stress-strain curve (Supplementary Fig. S5b). A full 
description of the modulus estimation can be found in Section S7 in the Supplemental Information. Finally, 
repeated measures linear regression was performed to examine the relationship between the effort level and the 
corresponding bulk longitudinal strain for each of the three methods (StrainNet, DIC, and DDE).

The significance level for all permutation and linear regression tests was set to 0.05.

Data availibility
The pre-trained models are available on the project page, strai​nnet.​github.​io, as well as a detailed tutorial for 
implementing StrainNet in any desired experimental setup with any biological tissue. The code is publicly 
available at github.​com/​reece​huff/​Strai​nNet. All data and code questions and requests should be addressed to 
R.D.H. at rdhuff@berkeley.edu.
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