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Transcription initiation mapping in 31 bovine tissues
reveals complex promoter activity, pervasive
transcription, and tissue-specific promoter usage

Daniel E. Goszczynski,1 Michelle M. Halstead,1 Alma D. Islas-Trejo, Huaijun Zhou,
and Pablo J. Ross
Department of Animal Science, University of California, Davis, California 95616, USA

Characterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expres-

sion. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was re-

leased; however, the functional annotation of the bovine genome lacks precise transcription start sites and contains a

low number of transcripts in comparison to human and mouse. By using the RAMPAGE approach, this study identified

transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel tran-

scription start sites attributed to promoters of protein-coding and lncRNA genes that were validated through experimental

and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to

the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for anti-

sense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed

the quantitative aspects of RAMPAGE to produce a promoter activity atlas, reaching highly reproducible results compara-

ble to traditional RNA-seq. Coexpression networks revealed considerable use of tissue-specific promoters, especially be-

tween brain and testicle, which expressed several genes in common from alternate loci. Furthermore, regions

surrounding coexpressed modules were enriched in binding factor motifs representative of each tissue. The comprehensive

annotation of promoters in such a large collection of tissues will substantially contribute to our understanding of gene ex-

pression in cattle and other mammalian species, shortening the gap between genotypes and phenotypes.

[Supplemental material is available for this article.]

With the advent of new sequencing technologies, genomics has
emerged as one of the most promising fields in biology. Since its
implementation in breeding schemes, livestock industries have
seen enormous improvements in productivity (Van Eenennaam
et al. 2014), and genomics is expected to play a key role in im-
proving animal welfare, protecting the environment, and secur-
ing high-quality food for a growing human population (Britt
et al. 2018). For genomic approaches to succeed, high-quality ref-
erence genomes are essential. The first bovine genome was pub-
lished in 2009 (The Bovine Genome Sequencing and Analysis
Consortium 2009). Its publication and the improvements that
followed have allowed the application of genomic technologies
aimed at genetic improvement (Null et al. 2019), the study of
molecular and physiological mechanisms of animal health and
disease (Ju et al. 2020), and the development of genome engi-
neering approaches (Bevacqua et al. 2016). Recently, a new ver-
sion of the bovine genome, ARS-UCD1.2, was assembled using
single-molecule sequencing, increasing the continuity, accuracy,
and completeness compared with its predecessor (Rosen et al.
2020). With a more reliable reference genome available, the focus
now transitions from genome sequence to genome features. The
annotation of functional regulatory elements in cattle, as well as
other important livestock species, is one of the main objectives of
the international Functional Annotation of Animal Genomes

(FAANG) Consortium (The FAANG Consortium et al. 2015;
www.faang.org).

A key step to study transcription regulation is the elucidation
of transcription start sites (TSSs), as these loci harbor transcription
factor binding sites that drive gene expression and integrate the
inputs from other cis-regulatory elements (e.g., enhancers).
Generally, TSSs are amid an epigenetic landscape that involves
chromatin accessibility (Meers et al. 2018) and H3K4me3 and
H3K27ac histone marks (Ernst and Kellis 2017). These epigenetic
characteristics can be used to differentiate promoters from other
gene regulatory regions, such as enhancers, which are typically en-
riched in additional histone marks such as H3K4me1 (Ernst and
Kellis 2017). Methods to identify 5′-ends of transcripts have been
based on the capture of 5′ caps or the preferential ligation of adapt-
ers to them (Kodzius et al. 2006; Salimullah et al. 2011; Yamashita
et al. 2011; Batut et al. 2013), as opposed to RNA-seq methods, in
which 5′-ends are frequently underrepresented due to premature
termination of reverse transcription (RT), especially when oligo
(dT) primers are used. The RNA annotation and mapping of pro-
moters for the analysis of gene expression (RAMPAGE) technique
is an accurate 5′-complete cDNA sequencing approach that allows
for ab initio identification of TSSs at single-base-pair resolution
and quantification of their expression (Batut et al. 2013). Briefly,
RAMPAGE evaluates statistical enrichment (peaks) of 5′ signal
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across the genome and merges peaks in close proximity to each
other into TSS clusters (TSCs). It is worth mentioning that the
TSC term was used in the original RAMPAGE publication to refer
to the pipeline output, but TSCs are conceptually equivalent to
TSSs; in this paper, wewillmaintain the use of the original nomen-
clature. In comparison to other protocols, RAMPAGE is simple and
scalable, requires low inputs, and allows for discrimination of non-
specific signal caused by incomplete cDNAs and of PCR duplicates
(Batut et al. 2013).

Considering the start coordinate of an annotated transcript as
the TSS, the ARS-UCD1.2 bovine genome annotation from the
Ensembl database (release 95) includes 39,705 TSSs for protein-
coding or lncRNA transcripts: a low number in comparison to
the 139,158 TSSs annotated in human (GRCh38) and the 81,573
TSSs annotated in mouse (GRCm38). Even though small system-
atic differences are expected in the number of promoters between
species, experimental evidence indicates that several bovine tran-
scripts remain to be characterized and annotated (Weikard et al.
2013; Tong et al. 2017). Moreover, studies in mouse and human
have shown that a significant proportion of TSSs are enriched in
evolutionarily conserved regions (The FANTOM Consortium and
the RIKEN PMI and CLST (DGT) 2014; Abugessaisa et al. 2019),
suggesting the number of TSSs in the bovine genome should be
higher.

As part of the FAANG Consortium, our main objective was to
contribute to the bovine transcriptome annotation by identifying
TSCs in a large collection of tissues using the RAMPAGE approach.
Identified TSCs were validated through several strategies that in-
cluded experimental evidence from chromatin accessibility assays
(ATAC-seq) and histone modification profiling (ChIP-seq), which
included H3K4me1, H3K4me3, H3K27ac, and H3K27me3. In
addition, we evaluated sequence enrichment for typical promoter
elements such as TATA-, GC-, and CCAAT-boxes in regions sur-
rounding TSCs, and known tissue-specific transcription factor
binding motifs. The RAMPAGE signal was implemented into a
promoter activity atlas that contemplates transcription initiation
in each tissue. To evaluate the quantitative aspect of the tech-
nique, we compared it to conventional RNA-seq, which revealed
highly consistent and reproducible expression quantification.
Unassigned RAMPAGE peaks with insufficient evidence for gene
assignment were screened through a set of bioinformatic tools to
evaluate their potential as unannotated mRNAs, pre-miRNAs,
and ncRNAs. Some of these peaks were particularly interesting
due to their antisense activity. Lastly, expression values derived
from the RAMPAGE signal were used to generate coexpression net-
works and to characterize the use of alternative TSCs across tissues.

Results

Data set complexity

A total of 111 biological samples corresponding to 31 different tis-
sues from two male (M) and two female (F) individuals were se-
quenced in nine batches, resulting in 2.72 billion fragments.
Most fragments from each library mapped uniquely to the refer-
ence genome, yielding a total of 2.39 billion (88%) uniquely
mapped fragments (Supplemental Table S1). After duplicate re-
moval, the number of fragments decreased to 673 million (29%
of uniquely mapped), with an average of 6.1 million (SD 3.8 mil-
lion) fragments per sample (Supplemental Fig. S1A). A preliminary
evaluation by hierarchical clustering based on gene expression (in-
dependent of peak calling) allowed us to identify seven outliers:

abomasum-M1, bladder-F2, colon-F1, esophagus-M1, esophagus-
M2, lung-M1, and trachea-M1 (Supplemental Fig. S1B). All outliers
were discarded from further analyses. Noise level, measured as the
proportion of first reads outside RAMPAGE peaks, was below 20%.

Identification of TSCs by RAMPAGE

The analysis of 104 samples from 31 tissues from four individuals
(twomales, two females) identified 93,767 TSCs between the com-
bined data set (87,553) and single-tissue data sets (6214). TSC size
varied from a single base to intervals as broad as 1089 bp, with
most elements falling in the range of 5–25 bp (Fig. 1A). TSCs iden-
tified in the combined data set were supported by a minimum of
22 independent RAMPAGE tags (Fig. 1B), as opposed to tissue-spe-
cific TSCs, which were supported by a minimum of three
RAMPAGE tags but were conserved between biological replicates.

The bovine genome annotation (Ensembl release 95) consid-
ered for this study comprised 33,019 and 31,052 different TSSs and
transcription termination sites (TTSs), respectively, associated
with 23,328 protein-coding or long noncoding (lncRNA) genes.
To account for nonspecific transcription initiation, TSSs were de-
fined as annotated start coordinate ±50 bp. The annotation con-
tained 99 TSSs overlapping with TTSs, 1676 TSSs overlapping
with intron–exon boundaries, and 850 TSSs overlapping with
exon–intron boundaries. It is worth mentioning that 662 of the
latter overlapped with boundaries at the end of the first exon
due to short exon length.

Most of the TSCs identified in this study were absent from the
Ensembl annotation. In fact, only 12,072 (13%) of the TSCs over-
lapped with previously annotated TSSs (Fig. 1C). To determine
whether the remaining 19,781 annotated TSSs were undetected
or shifted with respect to our findings, we first evaluated their
gene expression, and when their expression level was higher
than 3 counts per million (CPM), we mapped their location rela-
tive to RAMPAGE TSCs. No expression was detected for 3620
(16%) of the annotated genes, which corresponded to 3718 anno-
tated TSSs. The location of the remaining 16,063 nonoverlapped
TSSs around TSCs suggested that 44% of these elements were shift-
ed by a margin of 200 bp (Supplemental Fig. S2). No TSC enrich-
ment was observed in the vicinity of TTSs (Fig. 1D). On the
other hand, several TSCs were found to overlap with internal an-
notated intron–exon (2148) (Fig. 1E) and exon–intron boundaries
(299) by at least one base (Fig. 1F).

To evaluate the possibility that boundary-associated TSCs
surged as a consequence of transcript fragmentation or capture
of partial splicing products, we investigated chromatin accessibili-
ty and histonemark profiles in tissues where TSCswere active. This
analysis revealed the presence of transcriptional activation marks
(H3K4me3, H3K27ac) and accessible chromatin (ATAC-seq) at
the TSCs, whereas control intron–exon and exon–intron boundar-
ies showed no enrichment for these marks (Supplemental Fig. S3).

Assignment of TSCs to genes by sequence evidence

Identified TSCs were assigned to genes based on the alignments of
their fragments. We associated 46,708 “genic” TSCs with 18,312
protein-coding and lncRNA genes, accounting for 78% of the
23,328 annotated genes. In addition to these highly associated
TSCs, we identified 3789 elements weakly associated with
3176 genes (fewer than three reads), 308 of which were absent
from the previous list. Undetected genes were enriched
in Gene Ontology (GO) terms associated with olfaction
(Padj = 2.6 × 10−165), taste (Padj = 1.3 ×10−7), phototransduction
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(Padj = 9.5 × 10−2), and defensins (Padj = 1.0 ×10−4). In addition,
undetected genes were strongly enriched in homeobox terms
(Padj = 3.9 ×10−18), which evidenced the underrepresentation of
embryonic and fetal genes in the data set.

The number of genes detected in each biological sample
(CPM of genic TSC>3) varied from 7841 (muscle-M1) to 11,281
(trachea-M2), with an average of 10,009 genes per sample. Based
on the Ensembl annotation, 36% of the genic TSCs were located
<2.5 kb upstream of annotated TSSs, 31% were in exons, 23%
were in introns, and 10% were in intergenic loci (>2.5 kb from an-
notated TSS) (Fig. 2A). Similar to the global set of TSCs, the size dis-
tribution of genic TSCs showed a narrow peak at 1 bp and a broad
peak between 5 and 25 bp (Fig. 2B).

The assignment of TSCs to genes revealed that 61% of the de-
tected genes were transcribed from more than one site (Fig. 2C).

We found an average of 2.6 TSC/gene, which was twice the value
calculated from the Ensembl annotation (1.3 TSS/gene).
Comparatively, our TSC/gene value was between the GRCm38
mouse annotation (2.3 TSS/gene) and the GRCh38 human anno-
tation (2.9 TSS/gene). It is worth mentioning that because
RAMPAGE TSCswere identified bymerging peakswithinwindows
of 150 bp, we merged annotated TSSs within 150 bp to make com-
parisons fair.

Identification of novel promoters

As mentioned previously, most of the genic transcripts in our data
set (34,649) originated from TSCs that were hundreds or thou-
sands of base pairs away from the nearest annotated TSS. To char-
acterize and validate these “novel” genic TSCs, we studied their

A B

C D

E F

Figure 1. Identification of promoters by RAMPAGE. (A) Tag coverage in TSCs identified in the combined data set. (B) TSC size distribution for the whole
data set. (C) Histogram of the distance between TSCs and their nearest annotated TSS. (D) Histogram of the distance between TSC and the nearest an-
notated TTS. (E) Histogram of the distance between TSCs and intron–exon boundaries. Only intron–exon boundaries not overlapping with any annotated
TSSs were considered. (F) Histogram of the distance between TSCs and exon–intron boundaries. For visualization, exon–intron boundaries corresponding
to the end of the first exon were ignored, as TSCs tended to group immediately upstream of these boundaries and interfere with the visualization.
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location based on gene annotations and their distance to genic
TSCs also found in the annotation. Then, we evaluated the pres-
ence of typical promoter binding motifs and epigenetic marks
for transcriptional activation in regions surrounding TSCs.

According to gene annotations, most of the novel genic TSCs
were in exons (38%), followed by introns (30%), regions <2.5 kb
upstream of annotated TSSs (18%), and intergenic regions (14%)
(Fig. 3A). Novel genic TSCs were abundant within 1 kb upstream
of and 2 kb downstream from annotated TSSs (Fig. 3B), constitut-
ing new alternative sites for transcription initiation in such genes.
In terms of expression, novel TSCs contributed substantially to the
transcriptome, with half of them driving >20% of the total gene
expression (Fig. 3C).

We then evaluated the characteristics of sequences surround-
ingnovel TSCs (Fig. 3D).We found ahigh abundance of TATA-box-
es 25 bp upstream of novel TSCs, especially for narrow TSCs (Fig.
3E). In general, broadTSCs includedmore thanoneTSS, explaining
the presence of additional TATA-boxes downstream from the zero
coordinate. GC-boxes were highly abundant in broad TSCs and lo-
calized mainly at the TSC site and 40 bp upstream. On the other
hand, the abundanceofCCAAT-boxeswas relatively lowcompared
with the other marks, but when present, they localized 10–70 bp
upstream of broad TSCs. Binding motif enrichment showed these
threemotifswere significantlyenriched in regions300bpupstream
of to 100 bp downstream fromnovel TSCs comparedwith other se-
quences from the genome (P-valueTATA = 1×10−61, P-valueCCAAT =
1× 10−178, P-valueGC =1×10−183), as well as regions surrounding
internal exons (300 bp upstream to 100 bp downstream;
P-valueTATA=1×10−14, P-valueCCAAT=1× 10−14, P-valueGC=1×
10−5). These data indicated that regions immediately upstream of
novel genic TSCs have typical promoter characteristics, validating
their identity as TSSs.

By evaluating the chromatin landscape surrounding TSCs, we
observed a consistent co-occurrence of enriched chromatin acces-
sibility, H3K4me3, and H3K27ac around novel genic TSCs, indi-
cating these TSCs were associated with an epigenetic signature
characteristic of transcriptional activation (Fig. 3F). On the other
hand,we detected low signal for H3K4me1 (enhancers) and no sig-
nal for H3K27me3 (silencing), which are typically found in en-
hancers and transcriptionally silent promoters, respectively.
Additionally, we observed that the 5′ signal at the closest annotat-
ed TSS was generally lower and hundreds of base pairs away from
the RAMPAGETSCs (Fig. 3F). Complementarily, we analyzed these
epigenetic marks in subgroups of novel genic TSCs classified ac-
cording to their genic location (exon, intron, intergenic, and pro-

moters), which showed chromatin accessibility, H3K4me3, and
H3K27ac enrichment in all subgroups (Supplemental Fig. S4).
Overall, the analyzed epigenetic information obtained from chro-
matin accessibility assays (ATAC-seq) and chromatin immunopre-
cipitation assays (ChIP-seq) from 12 of the analyzed biological
samples indicated that the novel TSCs associated with known
genes represented functional TSSs (Fig. 3G).

Some of the novel TSCs in exons showed low epigenetic sig-
nal, especially for H3K4me3, suggesting they could represent arti-
facts produced byRNAdegradation or incomplete cDNA synthesis.
By generating histograms of the epigenetic signal at these TSCs, we
noted a bimodal distribution that separated TSCs into groups with
high and low epigenetic signal. By calculating the local minimum
of signal, we estimated that ∼30% of the novel TSCs in exons were
in the latter group and could be potential artifacts (Supplemental
Fig. S5). These TSCs were labeled as such in Supplemental Table
S2 (see below).

Unassigned TSCs

Many of the TSCs (n= 44,125) showed no associations with any
annotated lncRNA or protein-coding genes, which could have
surged as a consequence of pervasive transcription (Wade and
Grainger 2014). Pervasive transcripts are easily distinguished as
they are noncoding, not limited by gene boundaries, and frequent-
ly antisense, so we proceeded to evaluate such aspects. Unassigned
TSCs localized mainly to intergenic (58%) and intronic regions
(38%) and were particularly abundant in the vicinity of genic
TSCs, but on the opposite strand (Fig. 4A), representing antisense
RNA likely generated by bidirectional transcription (Engström
et al. 2006). The search for antisense elements in regions 1.5 kb up-
stream of and downstream from genic TSCs revealed 6946 anti-
sense TSCs associated with genic TSCs from 5247 genes. Sixty
percent of these cases occurred within 500 bp upstream of genic
TSCs (Fig. 4B), which is consistent with previous observations in
the mouse (58%) (Lepoivre et al. 2013). Some of these antisense
TSCs were highly correlated with their sense complements, sug-
gesting they were regulated by the same promoter (Fig. 4C). In
terms of expression, antisense TSCs generally contributed substan-
tially fewer transcripts than sense TSCs (Fig. 4D). In addition to an-
tisense TSCs in proximity to sense TSCs, we identified 6342
antisense TSCs in gene bodies, resulting in 13,942 antisense
TSCs in total and accounting for 30% of the unassigned TSCs.

To further characterize the remaining unassigned TSCs, we
generated partial transcript models (Supplemental File S1) and

A B C

Figure 2. Genic TSCs identified by RAMPAGE sequencing. (A) Location of genic TSCs according to gene annotations. (B) Histogram of TSC size. (C) Use of
multiple TSCs for the same gene. Genes with more than 10 TSCs were excluded from the plot as they were likely affected by technical artifacts.
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Figure 3. Novel promoters identified by RAMPAGE. (A) Location of novel TSCs according to gene annotations. (B) Histogram of the distance between
novel TSCs and annotated TSCs. (C ) Relative expression of novel TSCs. (D) Profiles ofmotif occurrence for TATA-, CCAAT-, andGC-boxes around novel TSCs
(±200 bp). (E)Motif density maps for TATA-, CCAAT-, andGC-boxes around novel TSCs (±200 bp). TSCs are ordered ascendingly by size; that is, upper rows
represent narrow TSCs. The zero coordinate represents the 5′-end of the TSC. Narrow TSCs were particularly enriched with TATA-box motifs and broad
TSCs were enriched with GC-box motifs. (F) Epigenetic marks at reported and novel TSCs. The co-occurrence of chromatin accessibility and transcriptional
activation marks (H3K4me3, H3K27ac) at novel TSCs, as well as the absence of poised enhancer and repressive marks (H3K4me1, H3K27me3), suggested
these TSCs constituted promoter regions. The fuzzy signal observed around the closest annotated TSSs evidenced the absence of annotation for these novel
elements. The data shown in the figure correspond to the lung-M2 sample (>3 CPM). Heatmaps are colored according to CPM values. (G) Novel TSCs for
the LIPE and CREM genes. Most of the new variants are supported by annotations from other species. Antisense TSCs were marked with blue to distinguish
them from sense TSCs (orange).



predicted their coding potential based on k-mer frequencies, co-
don usage, and open reading frame (ORF) coverage. As a result,
we identified 2306 TSCs associated with potential lncRNAs
(Supplemental File S2) and 259 TSCs associated with potential
mRNAs (Supplemental File S3). Lastly, we predicted pre-miRNA
structures among the remaining models and identified 11,266
TSCs for candidate miRNA genes (Supplemental File S4), which
is slightly over the estimated number of humanmiRNA candidates
(Alles et al. 2019). After identifying TSCs for potential mRNAs,
lncRNAs, and pre-miRNAs, the number of remaining unassigned
elements decreased to 18,259. The epigenetic marks at these loci
showed unclear patterns (Supplemental Fig. S6), and the
RAMPAGE signal failed to cluster samples by tissue except for a
few cases (Supplemental Fig. S7), suggesting the remaining TSCs
represented technical artifacts. However, we could not discard
the possibility that these TSCs corresponded to unannotated small
RNAs, other types of RNAs, or repetitive elements.

Analysis of promoter activity and specificity

As RAMPAGE relies on the quantification of 5′ signal frommature
transcripts, this technique also provides useful information for
gene expression and promoter activity studies. To show this as-
pect, we first analyzed our samples by hierarchical clustering

(Fig. 5A). Samples grouped according to tissue and higher-order
structures, proving that the method was quantitative enough to
separate samples appropriately. All the RAMPAGE information, in-
cluding peak location, gene assignment, quality of the gene assign-
ment, peak status by epigenetic signal, and other features, as well
as the number of tags in each sample, was implemented into a
TSC atlas (Supplemental Table S2). Genic TSCs are also available
as GTF file (Supplemental File S5). To evaluate the complexity of
the data set and to identify groups of potentially coregulated ele-
ments, we generated a coexpression network based on the number
of RAMPAGE tags in each sample (Fig. 5B). The resulting network
comprised 34 modules of coexpressed TSCs with different degrees
of tissue specificity, which varied from single tissues, such as tra-
chea or thymus, to high-level structures, such as brain or digestive
epithelium (Fig. 5C; Supplemental Table S3). The largest module
was highly correlated to testis and comprised 6854 TSCs, followed
by the brain module with 3194 TSCs and the intestines module
with 1888 TSCs. These numbers were consistent with studies in
human and mouse, which have shown that the testis expresses
the largest number of tissue-specific genes (over twice as many as
the second-ranked tissue, the brain cortex) (Guo et al. 2005;
Djureinovic et al. 2014). Promoters from each module were signif-
icantly enriched in binding motifs for transcription factors associ-
ated with their respective tissues (Supplemental Fig. S8). For

A B

C D

Figure 4. Identification of unassigned TSCs through bioinformatic approaches. (A) Distance between unassigned TSCs and their nearest genic TSCs. A
high number of elements localized within 500 bp upstream of genic TSCs but on the opposite strand. (B) Correlation of expression from antisense TSCs
(CPM>3) with expression from sense TSCs. (C) Expression of the antisense variant (CPM>3) relative to the sense variant. (D) Putative roles attributed to
unassigned TSCs.
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instance, the esophagus–heart–muscle module was enriched in
binding motifs for all members of the myocyte enhancer factor 2
(MEF2) family, which are known to regulate muscle-specific genes
and muscle development (Gossett et al. 1989).

After evaluating data set complexity and validating the quan-
titative aspects of our data, we proceeded to evaluate the use of al-
ternative promoters across tissues and the composition of each
network module. Expression profiles from alternative TSCs of

A

C

B

Figure 5. Promoter activity detected in 31 cattle tissues by RAMPAGE. (A) Sample dendrogram based on RAMPAGE signal. Samples grouped according
to tissue, system, and higher-order structures. (B) TSC-to-TSC network generated based on Pearson’s correlations. This network shows the diversity of tis-
sue-specific promoters in our data set. Figure was generated using a minimum correlation of 0.75 in the Graphia v2.0 software (Freeman et al. 2020).
(C ) Modules of coexpressed TSCs indicating Pearson’s correlations to each tissue and P-values. To validate the RAMPAGE signal from a quantitative per-
spective, we compared RAMPAGE counts to conventional RNA-seq gene counts in seven tissues from the same two male individuals. Estimates of gene
expression by RAMPAGE were highly reproducible between biological replicates (average Pearson’s R = 0.94, SD=0.03) (Supplemental Table S4,
Supplemental Fig. S9), consistent with the reproducibility of conventional RNA-seq (average Pearson’s R = 0.98, SD=0.01) (Supplemental Fig. S10).
Absolute quantification of gene expression was comparable between the two techniques (average Pearson’s R = 0.76, SD=0.03) (Supplemental Figs.
S11, S12), and detection of differentially expressed genes was strongly correlated between RNA-seq and RAMPAGE (average Pearson’s R = 0.9, SD =
0.05) (Supplemental Fig. S13). Overall, these results suggest slight differences in global transcriptomemeasurement by RAMPAGE and RNA-seq, although
both assays captured highly similar levels of differential gene expression.
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the same gene across the data set were generally independent, as
evidenced by the low correlation coefficients obtained in pairwise
comparisons (Fig. 6A). This observation suggested that most of the
alternative TSCs were regulated by different biological mecha-
nisms.Most of the TSCswere expressed in only one or a few tissues,
with about 6000 ubiquitous TSCs (Fig. 6B). It is worthmentioning
that some tissues, such as that of the lung and trachea, expressed
even more genes than the testis and brain but showed few tissue-
specific TSCs in comparison (Fig. 5C). To evaluate the expression
of genes from tissue-specific TSCs, we analyzed expression from
3336 genes detected in at least two coexpression modules.
We found 601 genes whose transcripts originated from alternative
promoters in either testis or brain, which represented the highest
use of alternative promoters between modules (Fig. 6C–E). The
GO analysis of genes shared by testis and brain revealed a signifi-
cant enrichment in terms related to cytoskeleton components,mi-

crotubule binding, ATP-binding kinase activity, synapse, cell–cell
adhesion, microtubule-based movement and transport, and kine-
sin activity (Supplemental Table S5). We also found statistical en-
richment in synapse pathways, including GABAergic synapse,
cholinergic synapse, glutamatergic synapse, and serotonergic syn-
apse, as well as critical pathways from the hypothalamus–pitui-
tary–gonad (HPG) axis, such as GnRH and GABA signaling. The
high number of members and use of alternative promoters found
in these two tissues evidenced the complexity they acquired
throughout evolution. Following the testis–brain combination,
we found testis–intestines, with 357 genes, and testis–liver, with
325 genes, using alternative promoters in each tissue. Genes
shared by testis and intestines were highly enriched in GO terms
related to cell cycle and division control, GTPase activity regula-
tion, kinase activity, and additional groups of processes with lower
enrichment (Supplemental Table S5). Genes shared by testis and

A

B

D E

C

Figure 6. Usage of promoters across bovine tissues. (A) Correlation between pairs of alternative TSCs from the same gene (>5 CPM). Alternative TSCs
were generally independent from each other. (B) Usage of TSCs across tissues. Most of the TSCs were expressed in only one or a few tissues, whereas about
6000 TSCs were ubiquitously expressed. (C) Use of alternative TSCs between pairs of tissues. Sphere size represents the number of TSC members in the
module, and edge thickness represents the number of common genes expressed from alternative (tissue-specific) TSCs. (D,E) Examples of tissue-specific
promoters in brain and testis. The GABRG2 and GABRA1 genes are members of the GABAergic synapse pathway.
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liver, on the other hand, were slightly enriched in terms related to
acyl-CoA-binding, mitochondrial components, and steroid and
lipid metabolism (Supplemental Table S5).

Discussion

In this study, we analyzed a large collection of bovine tissues from
both sexes using the RAMPAGE approach, identifying thousands
of TSCs associated with protein-coding and lncRNA genes. The
diversity of analyzed tissues captured the expression of 18,312 pre-
viously annotated genes. However, no expression was detected for
5016 genes, likely reflecting the absence of embryonic/fetal devel-
opmental genes in our collection of tissues from juvenile/adult an-
imals. Thus, an additional analysis of samples at different stages of
development should be performed to generate an even more com-
prehensive TSS annotation of the bovine genome. It is worthmen-
tioning that samples from this study belonged to the same closed,
inbred herd as the Line 1 reference cow. The genetic proximity be-
tween our samples and the reference genome likely contributed to
the high mapping rates, whereas the low genetic variation provid-
ed by the inbred background of Line 1 likely contributed to the
high correlations between samples.

Our data set allowed us to identify several known and novel
TSCs with a broad range of sizes. Size variation was expected as
mammalian promoters are known to allow transcription to start
from both well-defined positions (TATA-box-enriched promoters)
and broad intervals (CpG-rich promoters) (Carninci et al. 2006). In
fact, we found that regions upstreamof narrowTSCswere enriched
with TATA-box elements, whereas regions upstream of broad TSCs
were enriched in GC-box and CCAAT-box elements. In addition,
novel TSCswere supported by experimental evidence that revealed
the presence of chromatin accessibility and transcriptional activa-
tion marks (H3K4me3, H3K27ac) and near absence of H3K4me1,
an epigenetic mark historically used for enhancer annotation
(Heintzman et al. 2007), which implicated these novel TSCs as
part of promoters. In addition to TSCs associated with annotated
genes, we found many unassigned TSCs that supported the exis-
tence of pervasive transcription. A considerable number of unas-
signed TSCs were upstream of genic TSCs and seemed to be a
consequence of bidirectional promoter activity. As shown in
mouse (Lepoivre et al. 2013), transcripts from bidirectional pro-
motersweremore correlated to each other than transcripts fromal-
ternative TSCs of the same gene, suggesting a common regulatory
mechanism. Furthermore, antisense transcripts presented low ex-
pression levels in comparison to their complementary sense tran-
scripts, supporting the concept of pervasive transcription by
erratic behavior of the polymerase.

Even though the RAMPAGEmethodhas important advantag-
es over other 5′-seq techniques for TSC identification (Adiconis
et al. 2018), including CAGE (Takahashi et al. 2012) due to exten-
sive use of paired-end information, false TSCs were expected to
arise as products of incomplete cDNA synthesis and mRNA degra-
dation.We estimated that∼30%of the 13,209 novel TSCs in anno-
tated exons could be false positives as shown by the lowH3K4me3
signal. These elements could have been caused by recapping,
which has been reported in RNAs with truncated 5′-ends (Otsuka
et al. 2009) and within the body of mRNAs (Affymetrix/Cold
Spring Harbor Laboratory ENCODE Transcriptome Project 2009).
However, due to the low number of tissues with epigenetic infor-
mation in comparison to the RAMPAGE data set, our evidence
was insufficient to identify and discard all potential artifacts. A
global estimation based on the assumptions that artifacts are

most frequent in exons (downstream from the strongest TSC), ex-
pressed to a lower extent (<25%), and correlated to the strongest
TSC for being part of the same transcript (Pearson’s R >0.5) sug-
gested that 4059 (8.7%) of the genic TSCs could be false. This esti-
mation supported our initial estimation by epigenetic signal in the
reduced validation data set. However, the identification of these
sites needs to be corroborated by additional epigenetic informa-
tion from other tissues.

The analysis of coexpression networks revealed a high num-
ber of genes expressed in both brain and testicle under different tis-
sue-specific TSCs. The high similarity between brain and testis
expression profiles was reported years ago in mouse and human
(Guo et al. 2003, 2005). The mechanisms and epigenetic factors
contributing to the projection of the brain expression program
on the testis are unclear, although intriguing. It has been proposed
that the HPG could be implicated in the maintenance of this sim-
ilarity, given the importance of the brain expression program for
human speciation and transmission to the offspring (Guo et al.
2005). Our study, however, showed that although brain and testis
share a high number of genes, transcripts are expressed from tis-
sue-specific promoters. These promoters could be generating iso-
forms with different and unique functions. This information
could be valuable to understand the regulatory mechanisms oper-
ating behind tissue-specific expression profiles.

With our set of new TSCs, the bovine ratio of TSS to genes
reached a level comparable to the human and mouse genomes.
Hopefully, this annotation will improve our understanding of
the genetic control of complex livestock traits, complementing
studies from other members of the FAANG community. In addi-
tion, our data will improve the connection between genotypes
and phenotypes to exploit predictive models in the breeding field,
provide new biological explanations for genetic diseases reported-
ly unexplained based on other annotations, and contribute to the
study of genome evolution through comparative studies with oth-
er species.

Methods

Sample collection

Samples from abomasum, adipose, bladder, brain cortex, bone
marrow, cecum, cerebellum, colon, duodenum, esophagus, heart,
hypothalamus, ileum, isthmus, jejunum, kidney, liver, lung, skel-
etal muscle, mammary gland, omasum, ovary, reticulum, rumen,
skin, spleen, testis, thymus, trachea, uterine endometrium, and
uterine myometrium were collected from two female and two
male 14-mo-old Line 1 Herefords provided by the Fort Keogh
Livestock and Range Research Laboratory. Samples belonged to
the same closed, inbred herd as the original Line 1 reference cow.

Sample collection was performed with all the necessary per-
missions, following Protocol for Animal Care and Use 18464, ap-
proved by the Institutional Animal Care and Use Committee
(IACUC), University of California, Davis. Cattle were slaughtered
by captive bolt under USDA inspection at the University of
California, Davis, and samples were collected within 1 h post eu-
thanasia. Collected tissue samples were flash-frozen in liquid ni-
trogen and stored at −80°C until processing.

RAMPAGE library preparation

Frozen tissues kept at −80°C were homogenized with amortar and
pestle in liquid nitrogen. Total RNA was extracted using TRIzol
(Invitrogen) followed by a column clean-up using the Direct-zol
RNA mini prep plus kit (Zymo Research) and performing an
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in-columnDNA digestion. Integrity of the DNase-treated RNAwas
verified on the Experion electrophoresis system (Bio-Rad). The
RNA quality indicator (RQI) varied from 7.5 to 9.7, indicating
good-quality RNA, excepting liver from male A, which had a bor-
derline RQI of 6.9.

Following the method described by Batut and Gingeras
(2013), DNase-treated RNA was subjected to terminator digestion
(TEX enzyme, Epicentre) to degrade 5′-monophosphate RNA
(16S and 18S ribosomal RNA). Randomprimers bearing an adapter
sequence overhang were annealed to the RNA, which was then
subjected to RT, leaving a string of terminal cytosines. Template-
switching oligonucleotides (TSOs) containing the library identifi-
cation barcodes were then hybridized to these terminal cytosines,
prompting the reverse transcriptase to switch templates and add
the TSO sequence to the end of the newly synthesized cDNA.
The TSO bears an Illumina adaptor sequence, such that only
5′-complete cDNAs are amplifiable, whereas non-5′-completemol-
ecules are not. Libraries were then quantified by qPCR to poolmul-
tiple samples for sequencing.

Libraries were pooled in equimolar amounts, and 5′ caps were
oxidized with sodium periodate. To prepare for cap trapping,
5′ caps were biotinylated, and RNA molecules were pulled down
using streptavidin magnetic beads. Finally, pooled libraries were
PCR-amplified and size-selected using AmPure XPmagnetic beads.
Final pooled libraries were quantified in the NanoDrop spectro-
photometer (Thermo Fisher Scientific) and the Bioanalyzer 2100
high-sensitivity DNA chip (Agilent Technologies). Libraries had
the expected size range of 300–1000 bp and were sequenced on
an Illumina HiSeq 4000 system, generating paired-end reads of ei-
ther 100 or 150 bp.

RNA-seq data analysis

Data for RNA-seq (Kern et al. 2018) were downloaded from the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm
.nih.gov/geo/) (accession number GSE158430). Reads were
trimmed using Trimmomatic (v0.33) to remove Illumina se-
quencing adapters and low-quality bases. Settings for adapter re-
moval included a maximum of two mismatches, a palindrome
clip threshold of 30, and a simple clip threshold of 10. Leading
and trailing bases of quality less than three were removed.
Sliding window trimming was conducted using a window size
of four and minimum average quality of 15. After processing,
reads <36 bp were discarded. Samples were aligned to the ARS-
UCD1.2 Bos taurus reference genome using STAR v2.6.1 (Dobin
et al. 2013) with options ‐‐outFilterScoreMinOverLread 0.85 and
‐‐seedSearchStartLmax 30.

RAMPAGE data analysis

Samples were aligned to the ARS-UCD1.2 B. taurus reference ge-
nome using STAR in two-pass mode. The first 6 nt of the first
read (barcodes) were removed before alignment as part of the
demultiplexing step. The last 15 nt of the second read correspond-
ed to the RT primer; thus, they were soft-clipped using the
‐‐clip5pNbases option during the alignment step. Only uniquely
mapped reads were kept for subsequent analyses. To improve the
specificity of the peak calling and the accuracy of transcript quan-
tification, duplicatesweremarked and removed based on the align-
ment coordinates and the last 15 nt of the second read (random
primer), which were used as a pseudorandom single-molecule bar-
code to distinguish true duplicates. Alignments from the same
sample were merged before peak calls. A preliminary assessment
of data quality was performed using hierarchical clustering of
gene counts generated by featureCounts v1.6.2 (Liao et al. 2014)

before peak calling. Samples showing anomalous expression pro-
files compared with other biological replicates from the same tis-
sue were discarded from subsequent analyses.

RAMPAGE peak calling

The 5′ coordinate of each cDNAwas recorded and compiled into a
single wiggle file as a quantification of every possible TSS in the
data set. Then, the samewas performed for every genomic position
covered by downstream reads to create a signal background for the
peak calling algorithm. Peak calling was conducted using the
Python script developed by Batut et al. (2013) with a dispersion pa-
rameter of four, a backgroundweight of 0.6, and an FDRof 1 ×10−8

in the combined data set (Supplemental Code S1). Briefly, the algo-
rithm works as a sliding window that, for each position in the ge-
nome, assesses the statistical enrichment of 5′ signal against a
negative binomial background distribution. The coverage by
downstream reads in such window is used to subtract a pseudo-
count from the 5′ signal so that significance is harder to achieve
at highly transcribed exon positions. Then, neighboring windows
are merged and trimmed at the edges down to the first base with
signal.

To increase the sensitivity for tissue-specific peaks, each tissue
was also analyzed separately using a dispersion parameter of 0.2, a
background weight of 0.8, and an FDR of 1 × 10−8. Tissue-specific
TSCs undetected in the combined data set, supported by at least
three independent RAMPAGE tags, located outside exons, and
conserved in at least two biological replicates, were incorporated
into the global list of TSCs.

Gene assignment

TSCswere assigned to genes using featureCounts in strandedmode
(-s 1) and the Ensembl v95 annotation. Gene associations support-
ed by fewer than three independent fragments were considered
weak associations. To exclude spurious associations generated by
run-off transcription, namely, transcription that failed to termi-
nate at the right site and continued over a downstream gene, asso-
ciations to alternative genes supported by fivefold fewer reads than
the most supported gene were disregarded. For quantification pur-
poses, the RAMPAGE signal was normalized by library size (total
number of reads associated with TSCs). Genes were considered as
expressed when their expression (normalized with respect to all
the RAMPAGE tags assigned to genes) reached a minimum of
3 CPM.

Expression quantification by RNA-seq and RAMPAGE

For comparison between RAMPAGE and RNA-seq, RAMPAGE gene
expression was quantified using the number of 5′ tags in TSCs at-
tributed to each gene. Geneswith fewer than 10 total counts across
all samples were removed from the analysis before normalization
by DESeq2 (Love et al. 2014) to eliminate background noise.
Normalized counts were log-transformed and used to calculate
Pearson’s correlations between biological replicates for each tissue.
Log-transformed normalized counts from all tissues were then
pooled to calculate the overall Pearson’s correlations between
male replicates in all tissues and female replicates in all tissues.
Gene expression was evaluated from RNA-seq data for a subset of
seven tissues. Raw expression values for genes in the B. taurus an-
notation (Ensembl v95) were calculated from uniquely mapped
reads using the SummarizeOverlaps function from the
GenomicAlignments R package (Lawrence et al. 2013) with the
“union,” paired-end, and stranded options. Genes with fewer
than 10 total counts across all samples were removed from the
analysis before normalization to eliminate background noise.
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Gene counts were then normalized by DESeq2 and log-trans-
formed. Log-transformed normalized counts from all seven
tissues were pooled to calculate the overall Pearson’s correlation
between male replicates. For the seven tissues for which RNA-seq
data were available, log-transformed normalized counts were
used to calculate Pearson’s correlations between RNA-seq and
RAMPAGE. Finally, differential gene expression was compared be-
tween RNA-seq and RAMPAGE. From RNA-seq counts, differen-
tially expressed genes (DEGs) were identified for each pair of
tissues using DESeq2 and lfcShrink (type=”apeglm,” lfcThreshold
=1), given an s-value< 0.005. The log fold change (logFC) of these
DEGs was then calculated by DESeq2 according to RNA-seq and
RAMPAGE signal and used to calculate Pearson’s correlations.

ATAC-seq and ChIP-seq data analysis

ChIP-seq and ATAC-seq data (Kern et al. 2018) were downloaded
from the NCBI Gene Expression Omnibus (GEO; https://www
.ncbi.nlm.nih.gov/geo/) (accession number GSE158430). ATAC-
seq reads were trimmed with Trim Galore! v0.4.0 (-q 20 -a CTGT
CTCTTATA -stringency 1 –length 10) (https://github.com/Felix
Krueger/TrimGalore) and aligned to the ARS-UCD1.2 genome
with BWA-MEM (Li and Durbin 2009). Duplicate alignments
were removed using Picard Tools v2.9.1 (https://broadinstitute
.github.io/picard/). Low-quality alignments (q <15) were removed
with SAMtools v1.9 (Li et al. 2009). ChIP-seq reads were processed
following themethod of the original study (Kern et al. 2018). To vi-
sualize signal, the bamCoverage function of the deepTools
v3.2.0 software (Ramírez et al. 2016) was used to calculate normal-
ized coverage (CPM) in 10-bp windows genome-wide. For ChIP-
seq, signal from input libraries was first subtracted with
deepTools bigwigCompare. Normalized signal from ATAC-seq
and ChIP-seq libraries was plotted alongside RAMPAGE 5′ signal
on the UCSC Genome Browser. The deepTools computeMatrix
and plotHeatmap functions were also used to plot normalized epi-
genetic signal at TSCs, plotting the median signal above heatmaps
and using the interpolationmethod “bilinear” for smoothing. The
average epigenetic signal (CPM) at TSCs was calculated with
the bigWigAverageOverBed function from the UCSC Genome
Browser utilities.

Identification of binding motifs

The abundance of TATA-, GC-, and CCAAT-boxes in regions 200
bp upstream of to 200 bp downstream from novel TSCs was visu-
alized using the seqPattern R package (https://bioconductor.org/
packages/release/bioc/html/seqPattern.html). The search was per-
formed using the TATA-box binding protein (TBP) model included
in the package, the MA0079.2.pfm JASPAR model for Sp1 tran-
scription factor (SP1), and the MA0060.3.pfm JASPAR model for
nuclear transcription factor Y (NFYA).

Statistical enrichment was evaluated using the
“findMotifsGenome.pl” tool from HOMER v4.10.4 (Heinz et al.
2010). Background consisted of either random sequences from
the rest of the genome or sequences from the rest of the gene
body depending on the location of the TSC evaluated (promoters
and intergenic regions, or exons and introns, respectively). The
search was conducted on sequences 300 bp upstream of to 100
bp downstream from the TSCs using binding motifs for TBP,
SP1, and NFYA available in the HOMER database.

Attribution of unassigned TSCs

Unguided partial transcript models were generated for RNAs de-
rived from unassigned TSCs using StringTie v2.0.4 (Pertea et al.
2015) in ‐‐fr stranded mode, a minimum isoform fraction of

zero, a minimum assembled transcript length of 30, a minimum
of one read per base pair coverage, and trimming based on cover-
age disabled. Antisense RNAsmapping to the gene bodywere iden-
tified using featureCounts in the opposite stranded mode (-s 2).
Putative protein-coding and lncRNA genes were predicted based
on k-mer frequency, codon use, and ORF coverage using the
FEELnc software (Wucher et al. 2017). Lastly, prediction of pre-
miRNA candidates was performed using the miRNAfold tool (Tav
et al. 2016) with a sliding window size of 60 bp and FASTA files
containing the remaining partial transcripts as input.

Evaluation of alternative promoter usage

Correlations between alternative TSCs from the same gene were
evaluated considering highly expressed genic TSCs (>5 CPM nor-
malized with respect to the number of RAMPAGE tags assigned
to genic TSCs) through the Pearson correlation coefficient.

The use of alternative promoterswas analyzed through signed
coexpression networks generated by the WGCNA R package
(Langfelder and Horvath 2008). To reduce noise, networks were
constructed for TSCs with a minimum expression of 3 CPM in at
least two samples of any tissue. The adjacency matrix was generat-
ed using variance-stabilized counts as input, biweight midcorrela-
tions, and a soft-thresholding power of 12. Modules were
determined using the dynamic hybrid tree cut algorithm with a
sensitivity (deepSplit) of two and PAM mode activated.

GO analysis

Functional annotation clustering was conducted using official
gene symbols in DAVID bioinformatics v6.8 (Huang et al. 2009).
We used the Homo sapiens model as background due to its
more comprehensive pathway annotation. The analysis was per-
formed using the default categories (OMIM_DISEASE, COG_
ONTOLOGY, UP_KEYWORDS, UP_SEQ_FEATURE, GOTERM_
BP_DIRECT, GOTERM_CC_DIRECT, GOTERM_MF_DIRECT,
BBID, BIOCARTA, KEGG_PATHWAY, INTERPRO, PIR_SUPER
FAMILY, SMART) and medium stringency.

Data access

All raw sequencing data generated in this study have been submit-
ted to the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number PRJNA630504. As sam-
ples were submitted using their FAANG nomenclature, sampleM1
is found asM08, sampleM2 is found asM22, sample F1 is found as
F05, and sample F2 is found as F12. The Python script used to iden-
tify RAMPAGEpeaks is available as SupplementalMaterial (Supple-
mental Code S1). Additionally, we generated a GTF file with partial
transcripts (Supplemental File S1), a BED file with TSCs associated
with lncRNAs (Supplemental File S2), a BED file with TSCs associ-
ated with unannotated genes (Supplemental File S3), a BED file
with TSCs associated with pre-miRNAs (Supplemental File S4),
and a GTF file with genic TSC annotations (Supplemental File S5).
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