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Abstract 

The Role of Land Use in Aedes abundance and Insecticide Resistance in Central 

Africa and an Analysis of Arbovirus Transmission Potentials 

Matthew J. Montgomery 

 

Globally, mosquito-borne diseases are a major source of mortality, with the 

burden focused primarily in the poorest nations. Central to reducing mosquito borne 

disease is an understanding of the biology of those species responsible for 

transmitting disease to humans. Accordingly, this work focuses on the ecology and 

evolutionary biology of two vectors of global importance: Aedes aegypti and Aedes 

albopictus.  

The first chapter examines the role of urbanization and species interactions in 

determining Aedes abundance across a 900km latitudinal range representing vast 

climatic gradients and the major ecotypes of Central Africa. Additionally, we 

performed pathogen screening on over 9,000 female mosquitoes for dengue, 

chikungunya, and Zika viruses. 

The second chapter focuses on the distribution and potential causes of 

insecticide resistance in Aedes across the same broad climatic and ecotype gradient in 

Cameroon. In this chapter we detected significant variation in insecticide resistance 

between cities, habitat types, species, and insecticide class. We applied land use data 

to show the significant effect that urbanization can have on determining insecticide 

efficacy across an area as small as a single city and further revealed the underlying 

genetic and metabolic mechanisms for insecticide resistance.  

The final chapter investigates viral fitness among the primary arboviruses 

transmitted by A. aegypti and A. albopictus: chikungunya, dengue (serotypes 1-4), 
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yellow fever, and Zika. Our innovative approach to comparing relative viral fitness is 

multi-facted, combining field observations of human infection rates with laboratory 

studies of host and vector competence. 
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Introduction 

 Globally, mosquito-borne diseases are a major source of mortality, with the 

burden focused primarily in the poorest nations. In the early half of the 20th century 

major progress was made towards reducing mosquito-borne disease burden through 

improved vector control, vaccines, and the development of new medications. 

However, in recent years emerging pathogens have swept across the globe in 

explosive epidemics, as demonstrated by West Nile Virus in 1999, the 2013 

chikungunya outbreak,  Zika virus in 2015, and dengue’s rapidly increasing global 

burden  (Lanciotti et al. 1999, Shragai et al. 2017, Wahid et al. 2017, WHO 2020).  

Central to reducing mosquito borne disease is an understanding of the biology of 

those species responsible for transmitting disease to humans. Accordingly, my 

dissertation work focuses on the ecology and evolutionary biology of two vectors of 

global importance: Aedes aegypti and Aedes albopictus. Both of these species are 

found in tropical to temperate regions on six continents, and they are the primary 

vectors of chikungunya, dengue, Yellow Fever, and Zika viruses as well as other 

human pathogens.  

 The first two chapters of my dissertation are focused on the biology of A. 

aegypti and A. albopictus in Cameroon, in central Africa. While these studies take 

place in a single nation, they were conducted over a large longitudinal gradient and 

across a range of different ecotypes and climates representative of a wide area of the 

African continent, with habitats ranging from tropical equatorial forests to the dry 

Sahel. The final chapter takes a global approach to the major viruses spread primarily 
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by these species and investigates how our understanding of the factors which predict 

a mosquito-borne disease epidemic correlate with empirical observations of human 

infections across the globe.  

 The first chapter examines the role of urbanization in determining Aedes 

abundance. Urbanization, defined as converting land from natural or agricultural land 

uses to areas built upon by humans, is among the most drastic and consequential form 

of human land use and plays a pivotal role in shaping the biotic and abiotic conditions 

faced by mosquitoes (Gubler et al. 2011). Previous research has shown that 

urbanization can influence mosquito abundance and distributions, and pathogen 

transmission to humans (Alirol et al. 2011). Consequently, it is imperative that the 

ecological factors leading to increased mosquito populations and thus vector borne 

disease risk be better understood.  

 The chapter begins with a literature review of the effects of urbanization on 

Aedes aegypti and A. albopictus abundance from studies outside of Africa. These 

studies show conflicting patterns in the response of A. albopictus to urbanization (and 

consistent increases in abundance for A aegypti). We sought to investigate this highly 

varied response to urbanization by A. albopictus on the African continent. 

Additionally, we wanted to determine if A. aegypti’s abundance in response to 

urbanization would vary  based on climatic factors or the presence of a competitor 

species. To address these questions, we obtained data on mosquito abundance from 

231collections across six cities spanning nearly 1,000km of latitudinal extent over a 

one year period. The six surveilled cities varied vastly in climate and ecotype, ranging 
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from coastal equatorial forests to the Sahel. Our results showed that urbanization 

increases abundance for A. aegypti throughout Cameroon, consistent with global 

patterns. Surprisingly, the slope of  A. aegypti abundance in response to urbanization 

remained consistent across all cities even though the intercepts varied.  Yet for A. 

albopictus there was heterogenous response to urbanization even within a single 

country: A. albopictus abundance increased with urbanization in one city, decreased 

with urbanization in another and showed no trend in a third city. To better understand 

the mechanisms of urbanizations effect on adult mosquito abundance we performed 

further analysis on climatic factors, larval habitat, structures, host abundance, and 

available host community composition.  

 Chapter 1 also included a wide scale effort to detect and identify the major 

viruses transmitted by Aedes mosquitoes (chikungunya, dengue, and Zika) across 

their global range in field caught populations in Cameroon and how urbanization 

could effect mosquito viral infection rates. Our extensive surveillance resulted in only 

a single detection of Zika virus among hundreds of pools containing many thousands 

of individual specimens. As such, our data were unable to address any hypotheses on 

how urbanization could influence disease distribution.  This study supports numerous 

prior instances showing that field-caught mosquitoes generally have exceedingly low 

infection rates, even during periods where surveillance was concurrent with active 

human outbreaks. Reassuringly, our study shows that infection rates for chikungunya, 

dengue, and Zika were exceedingly low even in the absence of active public health 

vector control measures.  
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  The second chapter focuses on the distribution and potential causes of 

insecticide resistance in Aedes across the same broad climatic and ecotype gradient in 

Cameroon. Public health efforts to mitigate vector borne disease often include 

insecticide use to reduce vector populations. However, mosquitoes can rapidly 

develop resistance to insecticides (Hamdan et al. 2005), which reduces their 

effectiveness (Ranson et al. 2011). Furthermore, there are multiple physiological and 

genetic mechanisms to insecticide resistance and these mechanisms can vary both 

between species and within geographically dispersed populations of a single species 

(Kamgang et al. 2011; Dusfour et al. 2019). Lastly selective pressure against 

resistance may occur through reduced mating performance, fecundity, or survival 

(Dusfour et al. 2019; Rigby et al. 2021). This may lead to fluctuations in insecticide 

resistance depending on insecticide usage in a region (Dusfour et al. 2019).  

Understanding the regional and species-specific susceptibility of mosquitoes to 

insecticides of public health importance is vital for converting knowledge of disease 

risk into effective mitigation strategies (Ranson et al. 2011;World Health 

Organization 2012; Lima et al. 2015; Bouzid et al. 2016; Alvarado-Castro et al. 

2017). 

 In this chapter we detected significant variation in insecticide resistance 

between cities, habitat types, species, and insecticide class. We applied land use data 

to show the significant effect that urbanization can have on determining insecticide 

efficacy across an area as small as a single city and further revealed the underlying 

genetic and metabolic mechanisms for insecticide resistance. Our analysis also 
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includes temporal changes of allele frequency for a particular resistance mutation 

which shows increase in resistance allele frequency and distribution over rapid time 

scales across Cameroon, showing the high selective pressure for insecticide resistance 

in A. aegypti. We also detected the first instance of a particular resistance mutation, 

V410L, in central Africa. This mutation is found on other continents, but was only 

detected in Africa in distant (>1,400km) Angola in 2016, which indicates the high 

degree of gene flow between populations or far-reaching human-facilitated 

introduction of populations on the African continent (Ayres et al. 2020).  

 The final chapter investigates viral fitness among the primary arboviruses 

transmitted by A. aegypti and A. albopictus: chikungunya, dengue (serotypes 1-4), 

yellow fever, and Zika. Our innovative approach to comparing relative viral fitness is 

multi-facted, combining field observations of human infection rates with laboratory 

studies of host and vector competence.  

 We first determined the relative transmission intensity of co-occurring 

arboviruses in human populations through the presence of arbovirus antibodies in 

human serosurveys. To obtain this data, we conducted a literature review and 

compiled data from historical serosurveys, which are studies where human blood 

samples are tested for specific disease antibodies. After identifying 213 unique 

serosurveys that simultaneously tested for at least two of our study pathogens among 

over 95,000 individuals across 5 continents, we were able to compare relative 

infection rates among seven arboviruses. Our results show that there are significant 
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differences in transmission intensity of these co-occurring viruses within the same 

human populations.  

 Next, we compiled estimates of relative viral transmission efficacy 

calculations generated from mathematical models using a vast trove of host and 

vector competence data for simultaneous calculations via the calculation of the 

relative reproductive number R0 for each pathogen, which describes the number of 

secondary cases arising from an initial primary case in a fully susceptible population 

(Dye 1992).  

We hypothesized that among these co-occuring pathogens, those with higher relative 

R0 values should infect a larger fraction of a given host population and should have 

higher relative seroprevalence. Surprisingly, our results showed no significant 

correlation between relative R0 and transmission intensity across the global dataset, 

and within continents relative R0  was only significantly correlated with greater 

seroprevalence in Asia. These results indicate a stark disconnect between estimates of 

pathogen fitness and field observations of pathogen infection rates.  

 In this body of research I hope to show how human modifications of the 

environment through urbanization and insecticide use shapes the disease vector 

landscape that we face as humans and to calculate and compare arbovirus fitness 

while simultaneously presenting a new way to evaluate predictions of viral fitness 

using real world observations of human infection rates.  
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Chapter 1: The effects of urbanization on Aedes aegypti and A. albopictus 

abundance across a broad latitudinal gradient in Central Africa  

 

Abstract 

Urbanization shapes the biotic and abiotic conditions faced by many species. The 

effects of urbanization on disease vectors may increase or decrease their abundance 

and disease risk by altering larval habitat, microclimates, and host abundance. We 

investigated the effect of urbanization and species interactions on the abundance and 

disease risk posed by two cosmopolitan mosquito vectors of global health concern, A. 

aegypti and A. albopictus, in Cameroon, Central Africa. We collected adult 

mosquitoes during both the rainy and dry seasons at 63 sites on a rural to urban 

gradient from six cities spanning a 900 km latitudinal range from equatorial forest to 

the Sahel.  We also measured larval habitat, host abundance, multiple measures of 

urbanization, and climate data. Urbanization increased larval habitat, the number of 

structures, and host availability, but a GIS urbanization index was the best predictor 

of mosquito abundance. A. aegypti abundance increased with rainfall and decreasing 

temperatures and increased 2.7% with each 1% of additional urbanization in all six 

cities. In contrast, A. albopictus abundance increased, decreased or showed no 

influence of urbanization in the three cities where this species was present; abundance 

also increased with rainfall and humidity. We found no evidence of interspecific 

competition among these species using adult abundance data, but analyses were 

limited spatially. We screened over 9,000 female mosquitoes for dengue, 
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chikungunya, and Zika viruses but only detected one virus (Zika) in a single mosquito 

pool. Our results show that urbanization consistently increases A. aegypti abundance 

across a broad range of habitats, while urbanization effects on A. albopictus 

abundance varied markedly over a relatively small geographic area. Urbanization is 

thought to increase mosquito abundance through mediating availability of larval 

habitat, temperature, humidity, number of structures, and host availability, yet our 

results showed temperature and humidity at the time of collection were not 

significantly correlated with urbanization and larval habitat, host availability, and 

number of structures were either not significantly correlated with abundance or were 

less effective predictors of abundance than the urbanization index. These results 

indicate that the precise mechanisms of urbanization effect on adult A. aegypti and A. 

albopictus abundance are not fully understood. 

Introduction 

 Urbanization, the conversion of natural and agricultural habitats to urban 

areas, alters the biotic and abiotic conditions faced by organisms and is increasing 

globally (Grimm et al. 2008; Alig et al. 2004; Chen et al. 2022). Urbanization often 

reshapes community composition, with introduced and human commensal species 

replacing native species (McKinney 2006). Urbanization also alters microclimates, 

including increasing temperatures through the Heat Island effect (Chapman et al. 

2017, Deilami et al. 2018), and reducing humidity (McCluney et al. 2017). These 

changes in the biotic and abiotic environment also influence the transmission of 

pathogens (Bradely & Altizer 2007, Gottdenker et al. 2014, Hassel et al. 2017), and 
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especially vector-borne pathogens (Kilpatrick & Randolph 2012). However, the effect 

of urbanization on vector-borne disease depends on both the response of the vectors 

to urbanization and the microclimate effects on pathogen development in the vector, 

and both these factors can increase or decrease with urbanization depending on the 

vectors, the pathogen, and the local climate (Roger & Randolph 2000, Mordecai et al. 

2013, Kraemer et al. 2015, Mordecai et al. 2017). Africa is a key area for 

understanding the effect of urbanization on vector borne disease because it has the 

world’s highest rates of urban growth (OECD/SWAC 2020). Aedes-borne 

arboviruses, including dengue, chikungunya, and zika viruses, are an especially 

important group of pathogens because of recent increases in incidence and outbreaks 

(Bhargavi & Moa 2020, ECDC 2022, WHO 2022). 

 Urbanization can increase larval habitat, especially for key anthropogenic 

species like Aedes aegypti and Aedes albopictus, either through more impervious 

surfaces or through increased refuse, containers, and other objects which retain water 

(Braks et al. 2003; Morrison et al. 2004; Higa et al. 2010; Gubler et al. 2011; Li et al. 

2014; Arduino et al. 2020). Furthermore, urbanization is often associated with storing 

water use throughout the year, which can provide mosquito larval habitat in periods 

with low rainfall, especially in arid climates (Faeth et al. 2005, Gubler et al. 2011; 

McCluney et al. 2017). Urbanization in poorer countries may generate more larval 

habitat compared to more developed nations due to poor sanitation, increased refuse, 

and more personal water storage, thus increasing mosquito abundance and disease 

risk (Service 1992; Gubler et al. 2011; Obenauer et al. 2017).  
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 Temperature increases associated with urbanization can alter mosquito 

community composition and pathogen transmission through multiple mechanisms. 

Temperature tolerance (both minimum and maximum, as well as daily variation) vary 

considerably between mosquito species (Reinhold et al. 2018) and temperature 

influences survival (Bar-Zeev 1957; Couret et al. 2014), biting rate (Christophers 

1960; Scott et al. 2000), development rate (Bar-Zeev 1958; Delatte et al. 2009), 

fecundity (Delatte et al. 2009; Carrington et al. 2013), vector competence 

(Lambrechts et al. 2011; Reinhold et al. 2018) and the extrinsic incubation period 

(Watts et al. 1987; Kilpatrick et al. 2008; Rohani et al. 2009; Reinhold et al. 2018).  

Increased temperature caused by urbanization can decrease larval development time 

and adult survival which can have opposing effects on transmission (Costa et al. 

2010, Kilpatrick & Randolph 2012, Mordecai et al. 2013). In contrast, decreased 

humidity generally reduces mosquito survival without any positive effects on 

transmission (McCluney et al. 2017). Urbanization can also alter interspecific 

competition among mosquito larvae. For example, larval habitat that entirely dries out 

favors A. aegypti over A. albopictus, whereas the inverse is true in larval habitat that 

never entirely dries out (Costanzo et al. 2005). 

 The effect of urbanization on mosquito abundance can vary among species.  

A. aegypti abundance consistently increases with urbanization across its global range, 

with very few exceptions (Table S1). In contrast, A. albopictus abundance increased 

with urbanization in half of 15 previous studies, decreased in six, and had no effect in 

one (Table S2). Specifically, A. albopictus abundance was higher in urban areas than 
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rural areas in China (Li et al. 2014), and Mayotte (Bagny et al. 2012), but abundance 

was highest in suburban/transitional areas in Virginia (Barker et al. 2003) and 

Thailand (Tsuda et al. 2006) and rural areas in Brazil (Honorio et al. 2009) and 

Florida (Hornby et al. 1994). A key area where the effect of urbanization on A. 

albopictus has not been studied is the continent of Africa.  

 Our goal was to examine the effect of urbanization on the abundance and 

arbovirus infection rates of A. aegypti and A. albopictus mosquitoes across a broad 

latitudinal gradient in central Africa. We examined adult mosquito abundance, 

microclimate, and larval habitat at ten sites in each of six cities spanning the 900km 

latitudinal extent of Cameroon and tested Aedes mosquitoes for dengue, chikungunya, 

and Zika viruses which are important arboviruses and all circulate in this region 

(Kuniholm et al. 2006). We studied adult mosquitoes rather than mosquito larvae, 

which have been the focus of some earlier work (Bagny et al. 2012; Higa et al. 2010; 

Honorio et al. 2009; Tsuda et al. 2006), so we could detect pathogens and because 

adult mosquito abundance is often a better predictor for outbreaks than larval indices 

(Leandro et al. 2022). We hypothesized that A. aegypti would increase with 

urbanization, but we predicted the relationship would vary among cities because the 

benefits of urbanization might be counterbalanced in areas that were very hot and dry. 

We hypothesized that A. aegypti abundance might also be influenced by A. 

albopictus, which itself might show increasing or decreasing relationships with 

urbanization. While A. aegypti is native to Cameroon, A. albopictus is an introduced 

species that was first detected in 2000 (Simard et al. 2005). In some regions of the 



 

12 

 

 

world A. albopictus competes with and can displace A. aegypti populations through 

larval competition (Shagrai et al. 2017) and reproductive interference (Tripet et al. 

2011). We examined multiple scales of urbanization on mosquito abundance and 

hypothesized that small-scale measures of urbanization (100-200m rather than >1km) 

would most closely correlate with abundance, based on the short-distance dispersal 

distances of A. aegypti and A. albopictus in mark-recapture studies (Medeiros et al. 

2017, Juarez et al. 2020) . 

 

Methods 

Study area. We collected mosquitoes in six cities spanning a 900 km latitudinal 

gradient in Cameroon (Figure 1) representing five African ecoregions: Atlantic 

equatorial coastal forest (Douala and Kribi), Congolian lowland forest (Yaounde), 

Northern Congolian Forest Savannah mosaic (Ngaoundere), East Sudanese Savannah 

(Garoua), and Sahelian (Maroua) (World Data Base on Protected Areas 2022). 

Average annual temperatures and relative humidity varied between 18°C to 28°C and 

85% to 45%, respectively for our study cities. Cities range in altitude from 2m to 

1200 m (Olivry, 1986). Within each city we surveyed at a minimum of ten sites 

across an urbanization gradient from forest to agrarian to dense urban centers. 

 

Land use analysis. For each site we quantified urbanization at 100m, 200m, 500m, 

1km, and 2km radii using an Urbanization Index (UI) (Gomez et al. 2008), where UI 

= (100% – % vegetation cover + % impervious surface)/2. 
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 We performed spatial analysis using ArcGIS Pro version 2.8.7. We imported 

GPS field coordinates into ArcGIS Pro and spatial landcover data was obtained from 

the European Space Agency’s (ESA) Climate Change Initiative (CCI) – S2 Prototype 

Land Cover 20M map of Africa which included 10 classes of land surface data at a 20 

meter resolution and were classified as follows: "trees cover areas", "shrubs cover 

areas", "grassland", "cropland", "vegetation aquatic or regularly flooded", "lichen and 

mosses / sparse vegetation", "bare areas", "built up areas", "snow and/or ice" and 

"open water” (Figure S1).  We used satellite imagery (Google Earth Pro version 

7.3.4.8642)  to visually quantify the number of structures at the 100m radius for each 

surveillance site.  

 

Larval habitat survey. At each of the ten surveillance sites (with three exceptions) in 

five of the six cities (all except Yaounde) we recorded potential larval habitat within 

50m of adult collection sites. We categorized and sampled any container with 

mosquito larvae present, and any larvae collected were reared to adulthood and 

identified to species for A. aegypti and A. albopictus.  

 

Adult mosquito collection. We collected adult mosquitoes outdoors using two 

stationary human collectors using Modified CDC Backpack Aspirators (John Hock 

W. Hock Company, Gainesville, Florida).  We used human landing catches, rather 

than passive traps, to increase the number of adult Aedes captured and thereby to 

increase our chances of detecting and accurately measuring arbovirus infection rates 
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(Schoeler et al. 2004; Scott & Morrison 2009). We conducted collections for 3 hours 

during daytime at consistent three hour periods (8am-11am and 3pm-6pm) and we 

recorded temperature and humidity at the starting time of each collection. We chose 

collection times based off of previous work in Africa showing both species were 

diurnal and that A. aegypti and A. albopictus activity peaked in both the morning and 

early evening (McClelland 1959; Trpis et al. 1973; Delatte et al. 2010). Collections 

took place over a one week period in each city once during both the dry and rainy 

seasons from September 2020-August 2021. When possible, we repeated collections a 

second time at each site during the same collection week. In Yaounde, we visited sites 

more frequently (ten times between September 2020 and October 2021). At the end of 

each collection period, we knocked down adult mosquitoes  at -20°C or using a 

chloroform solution and identified using them morphological identification keys 

(Edwards, 1941; Jupp, 1996) under a microscope. We grouped Aedes females by 

species and pooled in groups of up to 30 individuals and stored at -80°C in RNAlater 

following the manufacturer’s instructions (LifeTechnologies, 2011) for viral 

detection. The rest were stored at -20°C in silicagel.  

 We analyzed mosquito abundance using generalized linear models (GLM) 

with a negative binomial distribution and log link using the lme4 package in R 

version 3.6.1. We compared models with different urbanization radii, closely 

correlated climatic parameters (e.g. monthly rainfall versus number of monthly rainy 

days), and interactive versus additive effects of variables using Akaike’s Information 

Criterion (AIC).  
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Pathogen detection. We pooled female mosquitoes in Eppendorf tubes and first 

ground them in 200 µL of Leibovitz L15 medium equilibrated at room temperature. 

Then, we centrifuged the sample for 15 min at 15,000 rpm and transferred the 

supernatant to a new Eppendorf tube. We extracted potential total viral RNA present 

in each pool using the Qiagen extraction kit (QIAamp-viral RNA mini kit, Qiagen) 

following the manufacturer’s instructions and stored at -80°C. 

We retrotranscribed extracted RNAs into cDNAs using the High-Capacity 

cDNA Reverse Transcription kit, 1000 reactions (Applied Biosystems, Foster city, 

California, USA). We prepared a mixture of 50 µL final volume, including 25 µL of 

RNA sample, 5 µL of 10X reverse transcription buffer, 2µL of 100 mM dNTPs, 5µL 

of 10X hexa random primers 10.5µL, 2.5 µL of reverse transcriptase, and 10.5 µL of 

RNAse-free H2O. We incubated the samples for 10 min at 25°C and 1 h at 37°C. 

We performed quantitative real-time PCR using TaqMan Universal PCR 

Master Mix reagents (Applied Biosystems, Foster city, California, USA) to amplify 

UTR genes for Zika (Conceição et al., 2010; Grard et al., 2014) and Dengue viruses 

(Leparc-Goffart et al., 2009), and the E1 envelope protein for chikungunya virus 

(Ngoagouni et al., 2017) (Table S3). Each PCR was performed in a 25 µL reaction 

mixture containing 12.5µL of 2x PCR TaqMan Universal PCR Master Mix, 1µL of 

each primer, 1 µL of each TaqMan probe (Applied Biosystems, Foster city, California, 

USA), 4.5 µL of RNAse-free H2O, and 5 µL template of cDNA. The amplification 

program consisted of a pre-activation heat step of 2 min at 50°C followed by 10 min at 



 

16 

 

 

95°C, and the amplification and fluorescence quantification steps of 45 cycles of 15 

sec at 95°C and 1 min at 60°C. All assays were done on the Stratagene MX3005P qPCR 

machine (Agilent Technologies, Santa Clara, California, USA). 

Host availability. In September of 2021 in Douala, Kribi, and Yaounde we counted 

potential hosts using two stationary observers between 8am-11am and 3pm-6pm on 

two separate days at each established surveillance site. We recorded all humans, 

chickens, goats, cows, and dogs visible over a 5 minute period. We counted human 

hosts to a maximum of 100 due to extremely large crowds in some sites rendering 

more accurate counts unfeasible.  

 

Indoor vs outdoor mosquito abundance surveys. We conducted paired surveillance 

of an outdoor site with simultaneous mosquito collections inside 10 nearby homes at 

10 sites in Yaounde in October of 2021 to investigate whether outdoor collections 

correlated with indoor household vector abundance. Outdoor mosquito collection 

took place for 3 hours as described above, while we surveyed the interior of willing 

households within 50 meters of the outdoor sites using the same Modified CDC 

Backpack Aspirators.  

 

Competition between A. aegypti and A. albopictus. We calculated monthly 

population growth rates, (λ = Nt+1/Nt), for each species for the two sites in Yaounde 

from which adequate numbers of both species were simultaneously collected. We 

then examined the potential effects of interspecific competition between A. aegypti 
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and A. albopictus by examining the effect of the abundance of A. albopictus on the 

population growth rate log10(λ) over the following month for A. aegypti, and vice 

versa. We analyzed the effect of mosquito abundance on population growth rates 

using generalized linear models (GLM) with a gaussian distribution and log link 

using the lme4 package in R version 3.6.1. 

 

Results 

Larval Habitat Survey. The number of containers increased with urbanization and 

the urbanization index at 100m (UI_100m) was the best correlate of both containers 

(Log10(containers)=3.04+0.0067 (± 0.0021) * UI_100m, P = 0.0020; Figure 2) and 

larvae-positive containers (Log10(positive_containers)=2.34+0.0078 (± 0.0024) * 

UI_100m, P = 0.0012).  On average a site with UI of 0 would be expected to have 21 

larval containers while a site with a UI of 100 would have 41. There was no 

significant relationship between the Container Index (larvae occupied 

containers/available containers) and UI (logit(CI)=-0.05+0.0028 (± 0.0051) * 

UI_100m, P = 0.57).  

 

Host Availability. Human abundance increased significantly with UI  and 100m was 

the best correlate (Log10(Humans)=2.83+0.0097 (± 0.00085)*UI_100m, P ≤ 0.001), 

while animal abundance was negatively correlated with UI (Log10(Animals)=1.7-

0.025 (± 0.0035)*UI_100m, P ≤ 0.001). On average a site with UI of 0 would be 
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expected to have 17 human hosts present while a site with a UI of 100 would have 45 

(Figure S2).   

 

Mosquito Abundance. We collected 25,853 adult mosquitoes from 231 two-person 

collection sessions from 63 sites across 6 cities (Table S4). Of these mosquitoes, 

15,008 were A. albopictus and 2,633 were A. aegypti. No A. albopictus were found in 

our three study cities above 6° latitude (Ngaoundere, Garoua, and Maroua) (Table 

S5). 

 A. aegypti abundance increased with the UI in all cities (Figure 3), increased 

with rainfall, and decreased with temperature (Figure 4); humidity had no significant 

effect (Table S6). The best fitting model used the UI at 1km (UI_2km: ∆AIC = 4.080; 

UI_500m: ∆AIC = 10.30; UI_200m: ∆AIC = 23.13; UI_100m: ∆AIC = 18.082). The 

slope of the response to urbanization was consistent across cities (an additive model 

was preferred over a city * urbanization interactive model; ∆AIC 2.90), with an 

average 2.7% increase in A. aegypti females for each corresponding 1% increase in 

urbanization. The intercepts for average A. aegypti abundance varied considerably 

between cities, with the greatest average abundance in Douala and the lowest in 

Yaounde. Abundance also increased with rainfall in the month prior 

(Log10(Abundance)=2.69+0.0019 (± 0.00071) * Rainfall, P = 0.0056) (Figure 5) and 

in the city of Yaounde, A. aegypti abundance peaked during the month of highest 

rainfall (Figure S3). 
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 A. aegypti abundance was significantly correlated with the number of 

containers (Log10(A. aegypti Abundance)=0.43+0.017 (± 0.0059)*Containers, P = 

0.0032) and larvae-positive containers (Log10(A. aegypti Abundance)=1.13+0.041 (± 

0.010)*+Containers, P ≤ 0.001), but not the number of structures in a 100m radius 

(Log10(A. aegypti Abundance)=4.85-0.0057 (± 0.0035)*Structures, P = 0.10). A. 

aegypti abundance also increased with human abundance (Log10(A. aegypti 

Abundance)=0.91+0.021(± 0.007) * Humans, P = 0.018). The time of collection had 

no significant effect (Log10(A. aegypti Abundance)=1.17 -0.58 (± 0.36) * Time, P = 

0.10) 

 A. albopictus showed heterogeneity in its response to urbanization in the three 

cities where it was found (Figure 6). The 2km UI was the best performing measure of 

urbanization (UI_1km: ∆AIC = 4.86; UI_500m: ∆AIC = 10.40; UI_200m: ∆AIC = 

8.24; UI_100m: ∆AIC = 4.13). In Yaounde, A. albopictus increased with 

urbanization, but it decreased with urbanization in Douala and there was no 

significant pattern in either direction in Kribi. A. albopictus abundance also increased 

with rainfall, and humidity (Figure 7); temperature had no significant effect (Table 

S7). 

 A. albopictus abundance was not significantly correlated with the number of 

larval containers (Log10(A. albopictus abundance)=-6.74+0.0027 (± 

0.0040)*Containers, P = 0.49), larvae positive containers (Log10(A. albopictus 

abundance)=-6.55+0.0038 (± 0.0074)*+Containers, P = 0.60)  or the number of 

structures in a 100m radius (Log10(A. albopictus abundance)=3.76-0.0025 (± 
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0.0024)*Structures, P=0.29). A. albopictus  abundance increased with human density 

(Log10(A. albopictus abundance)=3.34+0.014 (± 0.0027)*Humans, P ≤ 0.001). The 

time of collection had no significant effect (Log10(A. albopictus Abundance)=3.022 

+0.059 (± 0.22) * Time, P = 0.79). 

 Combined abundance of A. albopictus and A. aegypti positively correlated 

with increased urbanization at the 2km radius in the three cities where both species 

coexist (Log10(Aedes abundance)=-2.99+0.021 (± 0.0035)*UI_2km, P ≤ 0.001). UI at 

2km was the most parsimonious measurement for predicting the response of both 

species’ abundance with urbanization (UI_1km: ∆AIC = 2.25; UI_500m: ∆AIC = 

4.015; UI_200m: ∆AIC = 3.65; UI_100m: ∆AIC = 1.89). 

 The Urbanization Index at any radii was not significantly correlated with 

temperature (Table S8) or humidity (Table S9) in any of our study cities.  

  

Pathogen Detection. We tested 1,660 A. aegypti and 7,771 A. albopictus females in 

402 pools for chikungunya, dengue, and Zika viruses. Zika virus was found in one 

pool of 30 A. albopictus from Yaounde from June of 2021. No chikungunya or 

dengue virus was detected.  

  

Indoor/Outdoor Abundance. No A. aegypti or A. albopictus were caught during 

indoor collections, while simultaneous outdoor collections caught a total of 28 and 

397 respectively across all 10 outdoor surveillance sites.  
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Competition between species. There was no significant effect of A. albopictus 

abundance on the population growth rate log10(λ) of A. aegypti nor was there a 

significant effect of A. aegypti’s abundance on log10(λ) for A. albopictus over the next 

month (Figure S4).   These results remained qualitatively consistent when season and 

rainfall were added as predictors. 

 

Discussion 

 We found that the effect of urbanization on mosquito abundance varied 

depending on the species of mosquito, but urbanization had a positive effect on 

combined A. aegypti and A. albopictus abundance.  For A. aegypti, urbanization 

increased adult mosquito abundance consistently across the extent of Cameroon, 

which is broadly representative of the major ecotypes of sub-Saharan Africa and has 

vast climatic differences between the different cities in our study. We had predicted 

that the increase with urbanization would be smaller in the hottest, most arid 

environments, this hypothesis was not supported. We had based our hypotheses that 

A. aegypti abundance would differ in response to urbanization across cities based off 

of our expectation of finding a heat-island effect which would limit the benefits of 

urbanization in more northern cities, however we found no relationship between UI 

and temperature at the time of collection. We also found no support for competition 

among A. aegypti and A. albopictus, although our analysis was limited to just two 

sites in the city of Yaounde. 
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 We investigated several mechanisms by which urbanization could influence 

mosquito abundance, including larval habitat, host abundance, and microclimates. 

Urbanization increased both larval habitat and host abundance, but the GIS 

urbanization index was more strongly correlated with A. aegypti and A. albopictus 

abundance than all of these predictors, indicating that urbanization influenced 

abundance through additional pathways beyond those we measured. Furthermore, 

adult A. albopictus abundance was not significantly correlated with either metric of 

larval habitat measured in our study. Thus the variability of A. albopictus’s varied 

response to urbanization across cities cannot be explained by differences in larval 

habitat or host availability between cities, nor can climatic factors explain this 

variation given that Kribi and Douala share a comparable coastal climate. In fact we 

have no mechanistic explanation for this pattern despite our study’s robust collection 

of parameters thought to be associated with urbanization or mosquito abundance.  

 The spatial scale of urbanization that best correlated with mosquito abundance 

was relatively large, and varied between species (1km for A. aegypti and 2km for A. 

albopictus). This ran counter to our expectation that the 100m UI would correlate 

most strongly with abundance. These results indicate that urbanization affects 

populations on a scale larger than the typical dispersal distance of an individual 

mosquito. The spatial scales best correlated with other correlates of mosquito 

abundance varied as well, with containers and larvae positive containers best 

predicted by urbanization at 200m, while host availability was best correlated with 

urbanization at 500m. 
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 During our study no Chikungunya or dengue virus was detected in either 

mosquito species, despite 41 documented concurrent human dengue cases in at least 

one city, Douala, at the time our study was conducted (Tchetgna et al. 2021). Zika 

virus was detected in a single pool from an urban area of Yaounde. A single detection 

precluded us from conducting any analysis on species infection rates or the possible 

effects of urbanization on disease positivity rates. Cameroon does not have active 

surveillance for human Zika cases. The most recent data on human incidence of Zika 

was a nationwide serological survey of 1,084 Cameroonian blood donors conducted 

in 2015 which identified Zika antibodies in 5% of the total population, with the city 

of Douala having the highest seroprevalence of 10% (Grake et al. 2015).  Zika 

infection rates from our study were compared with Minimum Infection Rates (MIR) 

([number of positive pools / total specimens tested] x 1,000) from prior entomological 

Zika surveillance studies of A. aegypti and A. albopictus (Table S10). Our results 

show an exceedingly low prevalence among Cameroonian Aedes compared to studies 

which detected Zika virus circulation in other regions. 

Low rates of detection of entomological infection are typical for these pathogens and 

make studies of human disease risk difficult (Kuno et al. 1997; Scott & Morrison 

2004).  We tested a sizable sample of over 9,000 mosquitoes in 465 pools, which was 

a considerably greater number of mosquitoes tested compared with other studies 

which have used ~280-5,000 samples to detect dengue or chikungunya virus in A. 

aegypti and A. albopictus (Chow et al. 1998, Chung et al. 2002, Mendez et al. 2006, 

Edina et al. 2015, Vikram et al. 2015, Cevallos et al. 2018). Our large sample size and 
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no virus detection for Chikungunya or dengue and only one pool positive for Zika 

suggests that these viruses were either absent or circulating at low rates during the 

times and places we surveyed.  

 In Yaounde, we found no A. aegypti and A. albopictus during household 

surveys while simultaneous outdoor surveys captured numerous specimens. This 

supports prior research describing both species as exophilic (Kamgang et al. 2012).  

This calls for public health vector control measures that reduce human outdoor 

exposure to these mosquitoes in order to prevent arbovirus transmission. Based off of 

our findings, indoor measures to reduce mosquitoes feeding on humans, such as 

ITNs, are unlikely to have a significant effect on reducing human infections from 

Aedes transmitted arboviruses.  

 Africa is one of the most rapidly urbanizing regions on earth (Saghir & 

Santoro 2018). Our results, reflective of a broad range of habitats and climates across 

the African continent, suggest that A. aegypti populations will increase, while A. 

albopictus abundance will likely increase in some places and decrease in others. 

Furthermore, our results provide a more detailed investigation of the possible 

mechanisms underpinning urbanizations relationship to abundance. We found that 

while temperature and humidity could be important predictors of abundance, they 

were not significantly correlated with urbanization. Although increased larval habitat, 

host abundance, and the number of structures were significantly correlated with 

greater urbanization, they were less powerful predictors of adult mosquito abundance 

than the GIS based urbanization index. As such our results lead us to conclude that 
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urbanization likely influences adult mosquito through mechanisms that have yet to be 

fully determined.  
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Figure 1.1. Cities surveyed for adult mosquitoes in Cameroon. Above 

approximately 6° latitude A. albopictus is not found.  
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Figure 1.2. Larval habitat plotted against UI at 100m for five of the study cities. 

Line and ribbon shows fitted models with UI at 100m as a predictor and 95% 

CI, respectively. 
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Figure 1.3. A. aegypti abundance on a log scale plotted against the urbanization 

index in a 1km radius around the study site for ten sites in each of six cities. 

Collections resulting in zero specimens were plotted by adding 0.1. Lines and 

ribbons show fitted models with UI at 1km as a predictor and 95% CI, 

respectively. 
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Figure 1.4. A. aegypti abundance on a log scale plotted against temperature at 

the time of collection. Collections resulting in zero specimens were plotted by 

adding 0.1. Lines and ribbons show fitted models with temperature as predictor 

and 95% CI, respectively. 
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Figure 1.5. A. albopictus (95% CI) abundance on a log scale plotted against the 

urbanization index in a 2km radius around the study site for ten sites in each of 

three cities where A. albopictus was found. Lines and ribbons show fitted model 

with UI as predictor and 95% CI, respectively. The slope of urbanization in 

Kribi was not significantly different from zero. Collections resulting in zero 

specimens were plotted by adding 0.1. 



 

31 

 

 

 

Figure 1.6. A. albopictus abundance on a log scale plotted against relative 

humidity at the time of collection. Collections resulting in zero specimens were 

plotted by adding 0.1. Lines and ribbons show fitted models with humidity as 

predictor and 95% CI, respectively. 
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Figure 1.7. Total A. aegypti and A. albopictus abundance in response to prior 

month’s rainfall across all sites. Collections resulting in zero specimens were 

plotted by adding 0.1. Lines and ribbons show fitted models with prior month 

rain interacting with species as predictor and 95% CI, respectively. 
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Figure 1.8. Locations of studies of A. albopictus abundance in response to 

urbanization. Numbers correspond to study referenced in Table S2.  
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Chapter 3: Comparing relative transmission potential to population seroprevalence for 

seven arboviruses: yellow fever, chikunguna, zika, and four dengue serotypes 

 

 

Abstract 

Dengue (DENV), chikungunya (CHIKV), yellow fever (YFV), and Zika virus (ZIKV) 

are mosquito-borne viruses which account for millions of human infections annually, 

primarily in tropical regions. Despite the presence of multiple arboviruses in many 

locations, little comparative work has been done to examine relative transmission 

intensity through seroprevalence, and to what extent this is determined by differences 

in host and vector in competence between viruses. We calculated relative 

seroprevalence estimates for DENV (serotypes 1-4), CHIKV, YFV, and ZIKV from 

204 seroprevalence studies with a total of 95,000 individuals on five continents. We 

then calculated the relative epidemic potential, R0, for  the same seven arboviruses for 

both A. aegypti and A. albopictus using prior clinical and laboratory studies on vector 

and host competence. We hypothesized relative seroprevalence of a virus would be 

positively correlated to its R0 estimates. Globally, CHIKV and YFV had the highest 

relative seroprevalence, followed by ZIKV and DENV-2, DENV-3, DENV-1, and 

DENV-4, whereas in Asia YFV seroprevalence was zero and in the Americas ZIKV 

had the highest seroprevalence and CHIKV was the third lowest. Relative R0 values 

were highest for CHIKV followed by the four DENV and ZIKV, with YFV being much 

lower. Relative R0 values were higher for A. aegypti than A. albopictus.  Relative R0 



 

48 

 

 

for A. aegypti was significantly correlated with higher seroprevalence for the seven 

arboviruses in Asia, but not in other continents or globally. These results demonstrate 

substantial variation in seroprevalence and relative R0 among these arboviruses, but 

also regional variation in relative seroprevalence differences. This suggests that 

predicting relative exposure of different pathogens may require more detailed local 

spatio-temporal estimates of host and vector competence. 

 

Introduction 

 Viruses transmitted by arthropods (arboviruses) are of increasing global 

concern and account for millions of annual cases of human illness and tens of 

thousands of fatalities (Kilpatrick & Randolph 2012, Puntasecca et al. 2021, Yang et 

al. 2021). Increased global trade and travel have led to regular introductions of novel 

pathogens including many arboviruses such as West Nile, Zika, and Chikungunya 

(Dufft et al. 2009, Kilpatrick & Randolph 2012; Possas et al. 2017, WHO 2020a). 

The total fraction of the population infected over the course of an epidemic is 

determined, in part, by the reproductive number of the pathogen, R0, which also 

influences long term steady state seroprevalence (Dye 1992). Despite the presence of 

multiple arboviruses in human populations, little comparative work has been done to 

determine relative transmission intensity through seroprevalence, and to what extent 

this is determined by differences in host and vector in competence between viruses. 

 Arboviruses spread by Aedes mosquitoes, including CHIKV, DENV, yellow 

fever (YFV), and Zika virus (ZIKV) account for the majority of human arbovirus 
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infections (World Health Organization 2020). Most transmission of these arboviruses 

occurs in urban areas by two anthropophillic vectors, A. aegypti and A. albopictus 

(Weaver & Reisen 2010). The urban cycles of these viruses share common vectors 

and a single host, humans. As a result, in most urban areas, relative transmission 

intensity will depend only on differences in host and vector competence among the 

viruses which are key components of R0 (Dye 1992). Host competence depends on 

both the levels of viremia (the concentration of virus in blood) reached within human 

hosts and the duration of infectious viremia. Vector competence, the probability of a 

mosquito transmitting virus after feeding on an infected host, depends on host 

viremia, temperature, and time since feeding, and often differs between vector species 

and populations (Azar & Weaver 2019, Souza-Neto et al. 2019). 

 Our goal was to estimate the relative seroprevalence of these seven 

arboviruses across human populations and compare these to estimates of relative R0 

based on host and vector competence. Antibodies against these viruses persist for up 

to 60 years following exposure (Imrie et al. 2007; Wang & Sekaran 2010), and thus 

provide an estimate of previous exposure of a population (Imrie et al. 2007; Wang & 

Sekaran 2010). We collected a large number of seroprevalence estimates to try to 

average across sources of variation, including movement of people among locations 

and episodic transmission. We then estimated relative R0 across all seven arboviruses 

using measures of human viremia and mosquito vector competence from previous 

studies. Numerous prior studies have estimated R0 for individual viruses or pairs of 

arboviruses in one or two vectors (Chitnis et al 2006, Gardner & Ryman 2010, 
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Lambrecths et al. 2010, Weaver et al. 2015, Manore et al. 2014, Vasilakis & Weaver 

2017, Mordecai et al. 2017, Liu et al. 2020), but none of these studies has estimated 

relative R0 for all seven of the arboviruses transmitted primarily by A. aegypti and A. 

albopictus. We compared relative seroprevalence to relative R0 for the seven 

arboviruses for both A. aegypti and A. albopictus and hypothesized that these would 

be positively correlated. 

 

Methods 

Relative transmission potential, R0  

 We compiled data on host and vector competence for CHIKV, YFV, ZIKV, 

and the four serotypes of DENV for both A. aegypti and A. albopictus (Table S1. 

Human viremia data were reported relative to time since symptom onset or resolution 

and measured in either PFU/mL or viral copies/mL. DENV viremia was converted 

from viral copies/mL to PFU/mL using the equation Log10 PFU/mL = [0.974 * Log10 

viral copies/mL ] - 2.807 (Fernandes-Monteiro et al. 2015). We analyzed six days of 

viremia for each virus after which infectiousness of most viruses decreased to zero or 

near zero (see below). We fit a linear model to compare viremia between viruses for 

each of the six days in R and performed a post-hoc comparison of viremia between 

viruses using the emmeans package (Lenth 2022).  

For vector competence, we collected data on the fraction of A. aegypti and A. 

albopictus mosquitoes that transmitted virus after feeding on infected blood with 

known viremia. The majority of vector competence studies provided infectious dose 
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blood-meal viremia in PFU/mL. For studies which measured viremia in Tissue 

Culture Infectious Dose (TCID50) we converted those data to PFU/mL using the 

equation Log10 PFU mL–1 = –0.567306 + 0.987227 Log10 CID50 mL–1 (Kilpatrick et 

al. 2007) and for studies measuring viremia in Mouse Lethal Dose (MLD50) we used 

1.395Log10 PFU mL–/MLD50 (Freire et al. 2007). 

 We fit models to estimate the fraction of mosquitoes transmitting virus as a 

function of time since feeding and host viremia. We fit empirical data on the fraction 

transmitting on a given day to the cumulative distribution of a gamma distribution 

representing the extrinsic incubation period, in days, using a Bayesian framework via 

the R package rethinking (Ferguson et al. 2016, McElreath 2016). We fit all data for 

three viruses (CHIKV, YFV, and ZIKV) and both mosquitoes simultaneously with an 

additive model of vector species and virus to leverage information for virus-vector 

pairs with limited information. We used vague priors for all parameters (gaussian 

distributions with mean = 0, SD = 20); alternative priors produced nearly identical 

posterior estimates. We performed similar analyses for the four serotypes of DENV. 

We fit separate models for DENV because data for all four viruses for both viremia 

and vector competence came from a single location and set of studies (Nguyen et al. 

2013, Whitehorn et al. 2015) and the units that viremia were measured in differed 

between the DENV studies (copies/ml) and the other three viruses (PFU/ml). 

 We calculated epidemic potential by estimating the infectiousness of human 

viremias for each virus on each day using the vector competence models (estimated 

14 days after feeding) and then summing across six days of viremia for each virus. 
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We estimated uncertainty in relative R0 estimates using both variation in daily 

viremia among people and the uncertainty in the vector-competence-viremia 

relationships. 

 

Seroprevalence estimates. We collected seroprevalence data from the literature by 

searching Google Scholar and Web of Science. Our search terms consisted of a 

pathogen (CHIKV, DENV 1-4, YFV, and ZIKV) or the term “arbovirus”, 

seroprevalence or serosurvey or antibodies, and a location including countries and 

continents. We included articles that simultaneously measured antibodies for at least 

two of the seven arboviruses in the same population so that we could estimate the 

relative differences in seroprevalence among two or more viruses. We excluded 

studies done in response to outbreaks of specific viruses and studies of DENV 

seroprevalence which did not specify serotype. We categorized seroprevalence data 

by continent for Asia, Africa, and the Americas.  

 

Calculating comparative seroprevalence. We compared seroprevalence among 

viruses using a generalized linear model with a binomial distribution with virus as a 

fixed effect and study ID as a random effect using the lme4 package in R version 

4.2.1 (Bates et al. 2015).  We fit models both to all serosurvey data and to data for 

each continent. For Asia, where all YFV studies had a seroprevalence of zero, we fit a 

similar model using both study ID and virus as fixed effects using the brglm2 package 

in R to better estimate the YFV coefficient (Kosmidis 2017). We then used the fitted 
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coefficients for each arbovirus as the response variable and estimates of relative R0 

for either A. aegypti or A. albopictus as the predictor variable using a linear model. 

We performed these analysis for both global and continental seroprevalence data with 

a single estimate for relative R0 for each virus because we had insufficient host and 

vector competence data to estimate continent-specific relative R0 values.  

 

Results 

 

Viremia. Viremia among human patients differed significantly between arboviruses, 

with CHIKV having significantly higher viremia than any other virus. None of the 

other viruses differed significantly from one another in viremia (Figure 1, Table S2). 

 

Vector Competence. Vector competence varied significantly among viruses and 

between mosquito species (Figure 2; Figures S1 and S2, Table S3). Vector 

competence was higher for A. aegypti for all seven arboviruses, with the exception of 

DENV-1 and DENV-4 at titers above 8 PFU/mL (Figure 2).  

 

Relative R0.  Daily human infectiousness to mosquitoes and thus relative R0 differed 

between arboviruses (Figure 3). R0 was greatest for CHIKV, followed by DENV-2, 

DENV-1, DENV-3, DENV-4, ZIKV, and YFV with A. aegypti as the vector. For A. 

albopictus the ranked order of R0 from greatest to least was CHIKV, DENV-1, 

DENV-3, DENV-4, ZIKV, DENV-2, and YFV. 
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Seroprevalence for seven arboviruses. We reviewed 611 articles and identified 80 

which contained 202 unique serosurveys that matched our criteria (Supplemental 

References). Serosurvey data represented 95,000 individual blood samples from 46 

countries (Figure S3). In the full dataset, relative seroprevalence differed significantly 

among arboviruses, with CHIKV and YFV being highest, followed by ZIKV and 

DENV-2, DENV-3, DENV-1, and DENV-4 (Figure 4, Table 1, Figure 5A). However, 

there were substantial differences among the three continents (Tables S4-S6). Patterns 

in Africa were somewhat similar to the global dataset, in part because Africa made up 

a substantial fraction of all studies (Figure S3), but DENV-4 and DENV-1 switched 

places in relative seroprevalence, and ZIKV was relatively lower (Figure 5 A,B). In 

the Americas, ZIKV and DENV-2 seroprevalence was the highest and DENV-4 was 

the lowest. Finally, in Asia, YFV was absent and all YFV seroprevalence estimates 

were 0%, whereas CHIKV and DENV-3 had the highest seroprevalence. The 

differences in seroprevalence among arboviruses were much larger in the Americas 

and Asia than in global and especially African datasets (Figure 6, Tables S4-S6). In 

areas in the Americas with average transmission, ZIKV and CHIKV had very high 

estimated seroprevalence (>80%), whereas the four dengue viruses were much lower 

(<50%) (Figure 6C). In Asia, CHIKV, DENV-3 and DENV-2 had the highest 

estimated seroprevalence whereas YFV seroprevalence was zero in all studies (Figure 

6D).  
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Comparison of relative R0 and relative seroprevalence. Relative seroprevalence 

was significantly positively correlated with relative R0 for A. aegypti in Asia, but no 

other correlations were significant with either species as the vector (Figure 5; Figure 

S4). CHIKV had very high relative R0 and seroprevalence in all regions, and DENV-

4 had a low seroprevalence in all regions and a moderately low relative R0. However, 

ZIKV had the 2nd lowest relative R0 and the highest seroprevalence in the Americas 

and was moderately high in Asia and the global dataset. The four serotypes of DENV 

also showed spatial variation in relative seroprevalence and differences among these 

four viruses was variable and not correlated with relative R0 in most regions (Figure 

5).     

 

Discussion 

 We found large differences among arboviruses in seroprevalence, but 

differences varied substantially among continents, and differences in seroprevalence 

were only correlated with relative R0 for one vector, A. aegypti, in one of three 

regions and not in the global analysis. We also found large differences in relative R0 

among viruses due to both significant differences in viremia as well as vector 

competence. The lack of correlation between relative R0 and seroprevalence for the 

global dataset and for Africa was surprising, because we had a large dataset of 

seroprevalence studies and a relatively large dataset to estimate vector competence. 

However, the analysis only included seven arboviruses and two viruses with low 

relative R0 values played a key role in the lack of a correlation with relative 
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seroprevalence: YFV and ZIKV. YFV had the lowest estimated relative R0, by far, 

but had the second highest relative seroprevalence in Africa and in the global dataset. 

ZIKV had the second lowest relative R0, but had the highest seroprevalence in the 

Americas, and intermediate seroprevalence in Asia and globally. Clearly the relative 

R0 values didn’t match the observed relative seroprevalence for these viruses.  

 The low estimate of relative R0 for YFV was especially puzzling. We had a 

robust dataset for calculating YFV vector competence, but these data suggested that it 

was significantly lower than any other virus for both vectors. Human viremia data 

were limited for YFV, but no more so than for CHIKV or ZIKV, all of which had no 

more than 11 viremia values for a single day post symptom onset.  In any case, YFV 

had the lowest viremia of the seven viruses on 3 of the 6 days and overall were in the 

lowest group with DENV-1, DENV-2 which had much higher relative vector 

competence. The low estimated relative R0 of YFV is surprising in light of its very 

high seroprevalence in Africa.  Human YFV infections were detected in 46 countries 

between 1970-2016 (Shearer 2018), and in 10 African countries and 2 South 

American countries in 2022 (WHO 2022, PAHO 2022). Given the recent and ongoing 

outbreaks of YFV in Africa (WHO 2022) and potential for expansion, more research 

is needed on human viremia data for YFV and to understand the variation in YFV 

vector competence among mosquito populations (Figure 2).  

 The mismatch between relative seroprevalence and relative R0 may arise from 

spatial or temporal variation among viruses, mosquitoes, or human populations and 

their contributions to relative epidemic potential. For example, there are substantial 
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differences between the Asian and Reunion strains of CHIKV in vector competence 

(Tsetsarkin et al. 2007). Similarly, there are clear spatial and temporal differences in 

vector competence among mosquito populations (Gubler et al. 1979, Bosio et al. 

1998, Bosio et al. 2000, Goncalves et al. 2014).  Innate differences in viremia among 

human populations may also contribute to different epidemic potential in different 

populations, but they have not been studied. However, evidence suggest that host 

competence is mediated by prior exposure to related viruses. For example, prior 

exposure to DENV may lead to partial protection against YFV, and been posited as 

one of the reasons for YFVs absence from Asia (Kuno 2020), and patients with 

secondary infections with DENV clear the virus more quickly than primary infections 

(Ben-Shachar et al 2016). Lastly, the lack of correlation between relative R0 and 

seroprevalence could be due to factors influencing seroprevalence, including episodic 

transmission, human migration, or differential waning of antibodies. The variation in 

relative seroprevalence rankings among studies (Figure 4) indicate that there is 

substantial uncertainty in which virus will lead to the highest exposure a given 

population at a point in time.  

 Despite these uncertainties, our results provide predictions about the relative 

likelihood of pathogen establishment among arboviruses.  If the pathogen with both 

the highest seroprevalence and highest relative R0, CHIKV, is unable to become 

established in a given location (e.g. the United States), then our results suggest it is 

less likely that the other arboviruses in this study would be able to become established 

in the same population. There have been no locally acquired cases of CHIKV in the 
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US since 2015, despite numerous travel-associated cases (CDC 2022), suggesting that 

ZIKV, YFV, and the four serotypes of DENV are also unlikely to become established 

unless conditions (e.g. climate, larval habitat, poverty) change.  

 There appear to be substantial differences among the seven arboviruses we 

examined based both on relative seroprevalence and estimates of relative R0. 

However, the lack of a correlation between relative seroprevalence and relative R0 for 

most regions suggests that finer scale data on viruses, vectors and hosts may be 

needed to predict the relative transmission potential of different viruses in a given 

population. Measurements of vector competence and viremia for all seven 

arboviruses in replicated population of mosquitoes and humans would help illuminate 

the differences in relative R0, and may uncover cryptic coevolution between viruses, 

vectors and hosts. 
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Tables and Figures 

 

Table 3.1. Analysis of global seroprevalence data using a generalized linear 

model with a binomial distribution and a logit link with virus type as a fixed 

effect and study ID as a random effect. CHIKV was the reference level.  

 

 
               Estimate  Std. Error  z value  P-value  

Intercept 

(CHIKV)   

-1.27 0.15 -8.61  < 0.001 

DEN-1 -1.33 0.034 -39.41  < 0.001 

DEN-2 -0.64 0.034 -18.67 < 0.001 

DEN-3 -0.82 0.038 -21.79 < 0.001 

DEN-4 -2.21 0.041 -53.29 < 0.001 

YFV -0.047 0.022 -2.16 0.030 

ZIKV -0.65 0.022 -29.51 < 0.001 
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Figure 3.1. Human viremia (PFU/mL) by date of symptom onset.  
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Figure 3.2. Predicted fraction of A. aegypti transmitting virus by blood meal 

viremia. Circles represent vector competence study data with circle size 

corresponding to A. aegypti sample size. Data for CHIKV, YFV, and ZIKV are 

plotted for days 7 and 14 post-feeding. DENV1-4 was plotted for day 14 since 

source study data only measured vector competence on day 14.  
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Figure 3.3. Daily estimates of human infectiousness (±1 SE) for seven 

arboviruses for A. aegypti (top) and A. albopictus (bottom).  
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Figure 3.4. Relative seroprevalence for studies simultaneously comparing 

CHIKV, YFV, and ZIKV (A), CHIKV and DENV1-2 (B) ,DENV1-4 (C), and all 

remaining studies (D) with studies ranked by average seroprevalence along the 

x-axis. Lines represent predicted seroprevalence values based on fitted model 

with virus type and study ID as predictor variables.  
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Figure 3.5. Fitted coefficients of relative seroprevalence plotted against relative 

R0 estimates for A. aegypti for all data (A), Africa (B), the Americas (C), and 

Asia (D). Seroprevalence coefficients were significantly positively correlated with 

relative R0 in Asia (Panel D; Seroprevalence Fitted Coefficients = -5.82 + 2.62 (± 

0.81)* R0, P = 0.023), but not for the global dataset (Panel A; Seroprevalence 

Fitted Coefficients = -0.72 - 0.062 (± 0.48)* R0, P = 0.90), in Africa (Panel B; 

Seroprevalence Fitted Coefficients = -0.51 - 0.080 (± 0.29)* R0, P = 0.80) or the 

Americas (Panel C; Seroprevalence Fitted Coefficients = -0.10 + 0.045 (± 0.69)* 

R0, P = 0.95). YFV was not included in the Americas due to a lack of serological 

data.  
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Figure 3.6. Estimated seroprevalence for each arbovirus for all data (A), Africa 

(B), the Americas (C), and Asia (D) for an intermediate value of average 

seroprevalence. Statistically significant differences between viruses are indicated 

with compact letter display. YFV was not included in the Americas due to a lack 

of serological data.  
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Conclusion: 

 The unifying goal of this research is an improved understanding of the 

ecological factors that affect human disease risk whether through how land use 

influences mosquito abundance, the efficacy of insecticides used to control mosquito 

populations, and how variations in host and vector transmission capabilities of viruses 

determines the scope of epidemics. Better understanding the ecological determinants 

of human disease risk can then be used to devise better control strategies which 

reduce human disease burden. The ongoing urbanization of our planet is one of the 

most drastic changes effecting the natural world and as such a pressing area of study 

in ecology. Urbanization, broadly defined as the process by which land is covered by 

impervious surfaces by humans, is among the most drastic and consequential form of 

human land use and plays a pivotal role in shaping the biotic and abiotic conditions 

faced by many organisms (Gubler et al. 2011). This research provides new insights 

into species abundance in response to urbanization and thus how the process shapes 

disease risk across a grand temporal and spatial scale from two globally important 

mosquito species. While urbanization was strongly correlated with mosquito 

abundance and insecticide resistance, the precise mechanisms of this relationship 

remains largely unresolved. 

 Urbanization positively increases the abundance of one major global vector at 

a constant rate despite vastly different climates and ecotypes, ranging from the arid 

Sahel to lush Equatorial Forests. While simultaneously, urbanization decreases, has 

no effect, and increases the abundance of another species even in cities sharing near 
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identical climates. These results show that while one species’ abundance in response 

to urbanization can be a linear relationship, other species can have completely 

divergent relationships on a city-by-city basis.  

 The correlates of urbanization one would expect to determine mosquito 

abundance, such as host abundance, larval habitat availability, and number of human 

structures, were indeed significantly correlated with abundance, but none were better 

predictors than the broader vague categorization of our urbanization index. Other 

factors important to mosquito abundance which we expected to be mediated by 

urbanization, temperature and humidity, were not significantly correlated with 

urbanization.  

Furthermore, urbanization shapes disease risk by decreasing the efficacy of 

insecticides, the primary public health tool for controlling arbovirus disease 

outbreaks. The mechanisms of the positive relationship between insecticide resistance 

(i.e. increased survival to insecticide exposure) are another large gap in our 

understanding. Generally urbanization takes place at the expense of agricultural land 

where the vast majority of insecticide use occurs. In the absence of public health 

vector control programs (as is the case in Cameroon) what mechanisms then would 

potentially lead to greater resistance with increased urbanization? Does this 

phenomenon hold true for other vectors, or arthropods in general, as urbanization 

increases?  Further elucidating the mechanisms of urbanization’s effects on 

abundance and insecticide resistance is clearly an area in need of more research. 
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Considering our results in the context of climate change, another area of 

urgent focus in the field of ecology, the potential effects of climate change on disease 

risk are unclear as a result of this research. Increased temperatures led to lower 

abundance of A. aegypti across all habitats and increased humidity was significantly 

correlated with greater A. albopictus abundance. Increased rainfall was correlated 

with greater abundance of both species as well. Furthermore, inseciticde resistance 

decreased along a south to north gradient as the climate became hotter and drier. As 

such, as hotter drier climates arise this could likely reduce disease risk by limiting 

vector populations. 

Our estimate of arbovirus transmission potential (relative R0) provide further 

hope that increased burden and spread of vector borne disease to all corners of the 

world is not inexorable. If the pathogen with both the highest seroprevalence and 

highest relative R0, CHIKV, is unable to become established in a given location (e.g. 

the United States), then our results suggest it is less likely that the other arboviruses in 

this study would be able to become established in the same population. These 

calculations provide a plausible explanation for why the ranges of our studied 

arboviruses are considerably smaller than their vector populations.  

Comparing these calculations of relative R0 to human seroprevalence as a 

measure of transmission intensity shows a disconnect between calculated predictions 

of pathogen fitness and the actual transmission intensity of these pathogens in field 

settings. Our results show that a pathogen, such as yellow fever, may have relatively 

poor host and vector competence in some populations and thus have lower predicted 
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fitness, but simultaneously have higher relative levels of host antibodies in field 

observations. Essentially, pathogens which by our measure should have the lowest 

fitness and thus lower infection rates somehow show among the highest level of 

fitness in infecting humans. The potential explanations for this mismatch are a target 

rich area for future research. Our novel methodology of comparing calculations of 

relative transmission potential from laboratory derived data on host and vector 

competences with seroprevalence (or some other measure of prior infection) can be 

applied to other host-pathogen systems to test if calculations of pathogen fitness 

match field observations. 

In our study system, the mismatch between relative seroprevalence and 

relative R0 may arise from spatial or temporal variation among viruses, mosquitoes, 

or human populations and their contributions to relative epidemic potential. In both A. 

aegypti and A. albopictus: vector competence can vary enormously within the same 

mosquito populations over relatively short spatial and time scales (<1 year) (Gubler et 

al. 1979, Kilpatrick et al. 2010, Goncalvez et al. 2014).  Host competence and 

seroprevalence can also be mediated by prior exposure to other arboviruses, possibly 

different rates of waning in antibodies, or perhaps by variations between human 

population in viremia.  The extent to which any of these variations determine 

transmission intensity within a population is largely unexplored. Further studies on 

the factors underpinning host and vector competence are needed to understand if our 

estimates of host and vector competence can be extrapolated beyond any one 

particular place and time. 
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 The ranges of both A. aegypti and A. albopictus are expanding and our 

increasingly interconnected world allows for pathogens to spread quickly (Shragai et 

al. 2017). Understanding and reducing disease risk relies on accurate assessments of 

host and vector competence, knowledge of the environmental factors determining 

vector abundance, and availability of effective means of controlling vector 

populations.  Unlike most fields of ecology, we seek to actively disrupt and destroy 

our study organisms of disease-spreading vectors and hope the knowledge gained 

from this research will be useful in doing so.   
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Appendix 1 

 

 

Figure S1: Example of land use data buffers (100m-2km) generated for 

collection sites in the city of Kribi. 
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Figure S2. Available human hosts observed at collection sites in Douala, Kribi, 

and Yaounde. Lines and ribbons show fitted models with urbanization index as 

predictor and 95% CI, respectively. 
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Figure S3. Monthly rainfall and mosquito abundance for the city of Yaounde. 

Dark circles represent the mean catch rate per hour across all sites (+/- 1SE). 
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Figure S4. Monthly population growth rate of A. albopictus plotted against 

abundance of A. aegypti in the preceding month (A) and vice versa (B) . The 

relationship was not significant for an effect of A. aegypti abundance on A. 

albopictus population growth rates the following month 

(Log(ALBPopGrowth)=0.22-0.011 (± 0.0089)*AEG, P = 0.27) nor for an effect of 

A. albopictus abundance on the following month A. aegypti population growth 

rates (Log(AEGPopGrowth)=0.14-0.0026 (± 0.0059)*ALB, P = 0.66). 
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Table S1. Previous studies on Ae. aegypti abundance and urbanization. 

Study Location Urbanization 

Metric 

Urbanization 

Correlation w/Ae. 

aegypti Abundance 

Braks et al. 2003 Rio de Janeiro & 

Nova Iguacu, Brazil; 

Boca Raton & West 

Palm Beach, FL, 

USA 

Qualitative (Urban, 

suburban, rural) 

Positive 

Carbajo et al. 

2006 

Buenos Aires, 

Argentina 

Quantitative GIS 

Land Cover 

Analysis (100m 

and 300m) 

Positive 

Rey et al. 2006 Manatee, Miami-

Dade, & Palm Beach 

Co., FL, USA 

Quantitative GIS 

Land Cover 

Analysis (100m) 

Positive 

Tsuda et al. 2006 Chiangmai Province, 

Thailand 

Qualitative (Urban, 

Transition, Rural) 

Positive 

Honorio et al. 

2009 

Rio de Janeiro, Brazil Qualitative (Urban, 

Low Vegetation, 

Medium 

Vegetation, High 

Vegetation) 

Positive 

Higa et al. 2010 Vietnam Qualitative (Urban, 

Transition, Rural) 

Mixed (regional 

variation) 

Fatima et al. 

2016 

Pakistan Quantitative GIS 

Land Cover 

Analysis (30m) 

Positive 

Zahouli et al. 

2016 

Cote D’Ivoire Qualitative (Urban, 

Suburban, Rural) 

Positive 

Ndenga et al. 

2017 

Kenya Qualitative (Urban, 

rural) 

Positive 

Overgaard et al. 

2017 

Colombia Qualitative (Urban, 

rural) 

Positive 

Dalpadado et al. 

2018 

Gampaha District, Sri 

Lanka 

Qualitative (Urban, 

Suburban, Rural) 

Positive 

Estallo et al. 

2018 

Cordoba, Argentina Quantitative GIS 

Land Cover 

Analysis (10m) 

Positive 

Talaga et al. 

2020 

Kourou, French 

Guiana 

Quantitative GIS 

Land Cover 

Analysis (70m) 

Moderately 

Urbanized site had 

highest density 
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Table S2. Previous studies on Ae. albopictus abundance and urbanization. Study 

number indicates study location and result in Figure 8.  

# Study Location Urbanization 

Metric 

Urbanization 

Correlation 

w/Ae. 

albopictus 

Abundance 

1 Hornby et al. 1994 Lee County, 

FL, USA 

Qualitative 

(Urban, 

Suburban) 

Negative 

2 Barker et al. 2003 Virginia, USA Qualitative 

(Forest, Yard 

Bordering 

Forest, Yard) 

Positive 

(Unforested 

sites had 

highest 

abundance) 

3 Braks et al. 2003 Rio de Janeiro 

& Nova 

Iguacu, 

Brazil; Boca 

Raton & West 

Palm Beach, 

FL, USA 

Qualitative 

(Urban, 

suburban, 

rural) 

Negative 

4 Rey et al. 2006 Manatee, 

Miami-Dade, 

& Palm Beach 

Co., FL, USA 

Quantitative 

GIS Land 

Cover 

Analysis 

(100m) 

Negative 

5 Tsuda et al. 2006 Chiangmai 

Province, 

Thailand 

Qualitative 

(Urban, 

Transition, 

Rural) 

Negative 

6 Honorio et al. 2009 Rio de 

Janeiro, Brazil 

Qualitative 

(Urban, Low 

Vegetation, 

Medium 

Vegetation, 

High 

Vegetation) 

Negative 

7 Higa et al. 2010 Vietnam Qualitative 

(Urban, 

None 



 

77 

 

 

Transition, 

Rural) 

8 Bagny et al. 2012 Mayotte, 

France 

Quantitative 

GIS Land 

Cover 

Analysis 

(25m) 

Positive 

9 Li et al. 2014 Guangzho, 

China 

Qualitative 

(Urban, 

suburban, 

rural) 

Positive 

1

0 
Samson et al. 2015 Cap-Haitien, 

Haiti 

Quantitative 

GIS Land 

Cover 

Analysis 

(6.5m) 

Positive 

1

1 
Baldacchino et al. 2017 Belluno & 

Trento, Italy 

Quantitative 

GIS Land 

Cover 

Analysis 

(250m) 

Positive 

1

2 
Dalpadado et al. 2018 Gampaha 

District, Sri 

Lanka 

Qualitative 

(Urban, 

Suburban, 

Rural) 

Negative 

1

3 
McClure et al. 2018 Big Island, 

Hawaii, USA 

Quantitative 

GIS Land 

Cover 

Analysis 

Positive 

1

4 
Arduino et al. 2020 Sao Paulo, 

Brazil 

Qualitative 

(Urban, 

Forest, Grass-

Shrubs) 

Positive 

1

5 
Westby et al. 2021 St. Louis, 

Missouri, 

USA 

Qualitative 

(Urban, 

Suburban, 

Rural) 

Positive 

(Urban & 

Suburban 

equal, but 

both higher 

than rural) 
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Table S3: Sequence of primers used for viral detection.  

Primers Sequence (5’-3’) References 

ZIKV-

forward 

nt9271-

AARTACACATACCARAACAAAgTggT929

7 

(Lanciotti et al., 

2008) 

ZIKV-

reverse 

nt9352-TCCRCTCCCYCTYTggTCTTg-9373 

ZIKV-probe nt9304-FAM-CTYAgACCAgCTgAAR-BBQ-

9320 

CHIKV-

forward 

AAGCTYCGCGTCCTTTACCAAG (Pastorino et al., 

2005) 

CHIKV-

reverse 

CCAAATTGTCCYGGTCTTCCT 

CHIKV-

probe 

FAM-

CCAATGTCYTCMGCCTGGACACCTTT-

TAMRA 

DENV-

forward 

AGGACYAGAGGTTAGAGGAGA (Leparc-Goffart 

et al., 2009) 

DENV-

reverse 

CGYTCTGTTGCCTGGAWTGAT 

DENV-

probe 

FAM-

ACAGCATATTGACGCTGGGARAGACC-

TAMRA 

 

 

Table S4: Average hourly mosquito collection rate by city and species.  

City 
A. aegypti 

females/hour 
SD of A. aegypti 

females/hour 

A. albopictus 

females/hour 

SD of A. 

albopictus 

females/hour 

Douala 18.2 29.7 8.9 10.3 

Garoua 2.3 3.1 0.0 0.0 
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Kribi 4.4 11.1 13.2 11.3 

Maroua 1.4 2.1 0.0 0.0 

Ngaoundere 1.2 1.3 0.0 0.0 

Yaounde 0.7 2.4 21.7 30.6 

 

 

Table S5: Hourly collection rate of mosquitoes from each collection site. Urbanization 

indices are included for each location.  

Site City UI 

100M 

UI 

200M 

UI 

500M 

UI 

1KM 

UI 

2KM 

A. 

aegypti 

females/

hr 

A. 

albopictus 

females/hr 

Akwa Douala 96 90 90 85 81 5.3 9.7 

Bepand

a 

Douala 
85 85 87 88 92 

7.2 0.0 

Bonabe

ri 

Douala 
97 93 91 76 64 

21.5 17.0 

Brazza

ville 

Douala 
100 100 98 92 89 

10.0 0.0 

Deido Douala 100 100 98 91 78 67.0 2.3 

Kotto Douala 100 99 98 93 79 2.7 19.3 

Logbes

sou 

Douala 
75 86 88 59 58 

15.7 10.5 

New 

Bell 

Douala 
19 30 70 80 88 

23.7 0.7 

Ngodji Douala 0 0 0 0 5 0.0 5.3 

Yassa Douala 24 25 23 25 22 3.0 29.3 

Bockle-

Siha 

Garoua 
0 0 0 1 1 

0.0 0.0 

Camp-

Chinois 

Garoua 
97 97 74 63 42 

1.3 0.0 

Foulbe

re 

Garoua 
100 98 98 83 54 

6.5 0.0 

Lainde Garoua 56 51 40 50 36 3.5 0.0 

Nassar

ao 

Garoua 
67 54 43 21 14 

1.7 0.0 

Poump

oumre 

Garoua 
35 32 56 61 50 

5.2 0.0 

Rocade Garoua 43 17 7 16 22 3.3 0.0 
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Roumd

e Adjia 

Garoua 
100 96 63 58 61 

0.0 0.0 

Roumd

e-Adja 

Garoua 
100 96 63 58 61 

0.0 0.0 

Sangue

re-Paul 

Garoua 
0 0 0 2 1 

0.0 0.0 

Yelwa Garoua 100 98 85 68 54 0.8 0.0 

Zoologi

cal 

Garden 

Garoua 

53 43 63 70 57 

2.7 0.0 

Bebwa

mbé  

Kribi 
0 5 13 17 20 

0.6 11.6 

Bikond

o 

Kribi 
0 0 0 1 2 

0.0 2.0 

Dombe Kribi 85 77 68 55 32 1.0 11.7 

Kingué

1 

Kribi 
1 14 29 37 32 

0.0 0.0 

Kingué

2 

Kribi 
96 89 75 69 47 

43.7 2.0 

Londji  Kribi 0 0 3 21 25 1.9 21.5 

Mboa

manga 

Kribi 
91 83 60 52 42 

17.0 22.5 

Mokolo Kribi 63 58 61 56 43 1.0 13.3 

Ngoyé Kribi 74 63 57 58 51 1.2 10.5 

Polong

we  

Kribi 
34 12 2 2 6 

1.1 13.9 

Zaire Kribi 100 94 73 57 35 2.2 10.7 

Comice Maroua 88 93 76 55 43 0.7 0.0 

Djaren

gol 

Maroua 
64 56 49 51 43 

3.0 0.0 

Domay

o 

Maroua 
74 55 58 71 52 

0.5 0.0 

Dougoi Maroua 93 88 79 79 62 1.6 0.0 

Florina Maroua 0 0 2 1 8 0.5 0.0 

Louggo

l 

Maroua 
0 0 0 0 0 

0.2 0.0 

Makab

aye 

Maroua 
41 34 19 12 13 

0.0 0.0 

Salak Maroua 16 22 13 10 7 4.3 0.0 

Zaika Maroua 1 0 0 1 8 0.3 0.0 

Bamny

anga 

Ngaoun

dere 
46 31 24 14 18 

1.3 0.0 
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Beka 

Hosere 

Ngaoun

dere 
0 0 2 3 12 

1.0 0.0 

Burkin

a 

Ngaoun

dere 
100 98 82 54 31 

0.3 0.0 

Djakbo

l 

Ngaoun

dere 
60 62 72 61 59 

1.2 0.0 

Gada 

Maban

ga 

Ngaoun

dere 0 0 1 2 12 

0.8 0.0 

Joli 

Soir 

Ngaoun

dere 
100 100 98 87 65 

0.8 0.0 

Mabor

no 

Ngaoun

dere 
50 32 14 10 6 

0.3 0.0 

Madag

ascar 

Ngaoun

dere 
96 98 93 79 54 

0.7 0.0 

Mboun

djere 

Ngaoun

dere 
100 100 88 79 65 

4.3 0.0 

Sabong

ari 

Ngaoun

dere 
93 83 57 53 41 

2.0 0.0 

Afanoy

oa I 

Yaound

e 
0 0 0 1 1 

0.0 5.1 

Afanoy

oa II 

Yaound

e 
25 10 2 1 1 

0.3 8.9 

Essos Yaound

e 
100 100 98 96 91 

0.3 28.2 

Mendo

ng 

Yaound

e 
89 86 85 84 68 

0.0 24.8 

Messa Yaound

e 
79 66 81 86 86 

5.5 16.3 

Mvog-

Ada 

Yaound

e 
100 100 93 95 86 

1.1 24.8 

Nkolbis

son 

Yaound

e 
69 62 43 38 48 

0.1 18.2 

Omnis

port 

Yaound

e 
99 89 85 93 92 

0.1 66.4 

Tsinga Yaound

e 
63 72 58 54 43 

0.2 16.1 

Zamass

i 

Yaound

e 
0 4 1 0 0 

0.1 0.9 
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Table S6: Analysis of A. aegypti abundance with urbanization index (UI), 

temperature, humidity, and prior month’s rain in six cities as predictors using a 

generalized linear model with negative binomial distribution and a log link. The 

city of Douala was the reference level.  

               Predictor  Estimate  SE  Z-Value  P 
(Intercept)     6.075 2.80 2.17 0.030 
UI_1KM          0.026 0.0044 5.80 ≤0.001 

Monthly_Rain (mm) 0.0027 0.0011 2.52 0.012 
City of Garoua      -0.39 0.75 -0.52 0.61 
City of Kribi       -0.98 0.71 -1.39 0.17 
City of Maroua      -1.49 0.73 -2.03 0.042 
City of Ngaoundere  -2.40 0.82 -2.92 0.0035 
City of Yaounde     -3.91 0.64 -6.12 ≤0.001 

Temperature     -0.18 0.070 -2.62 0.0088 
Humidity        -0.0068 0.011 -0.60 0.55 

 

 

 

Table S7: Analysis of A. albopictus abundance with urbanization index (UI) 

interacting with city and temperature, humidity, and prior month’s rain in three 

cities as predictors with a generalized linear model with a negative binomial 

distribution and a log link. The city of Douala was the reference level. 

                   Predictor Estimate  SE Z- value  P 

(Intercept)        -0.314 2.45 -0.13 0.90 

UI_2KM             -0.023 0.012 -1.96 0.049 

City of Kribi          -1.076 0.96 -1.12 0.26 

City of Yaounde        -1.924 0.86 -2.23 0.026 

Monthly_Rain (mm)       0.0013 0.00067 2.0080 0.045 

Temperature        0.072 0.057 1.25 0.21 

Humidity           0.021 0.010 2.015 0.044 

UI_2KM:Kribi   0.021 0.019 1.10 0.27 

UI_2KM:Yaounde  0.047 0.012 3.93 ≤0.001 
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Table S8. Analysis of temperature in response to urbanization index (UI) at 100m 

interacting with city as predictors with a generalized linear model with a negative 

binomial distribution and a log link. The city of Kribi was the reference level.  

                   Predictor Estimate  SE Z- value  P 

(Intercept)            3.33 0.059 56.41 ≤0.001 

UI_100M                -0.00026 0.0010 -0.27 0.79 

City of Douala             0.045 0.14 0.33 0.74 

City of Yaounde            -0.094 0.070 -1.33 0.18 

City of Ngaoundere         -0.11 0.11 -1.06 0.29 

City of Garoua             0.15 0.095 1.55 0.12 

City of Maroua             0.010 0.089 0.12 0.91 

UI_100M:Douala     0.000062 0.0018 0.034 0.97 

UI_100M:Yaounde    0.00050 0.0011 0.45 0.65 

UI_100M:Ngaoundere  0.000046 0.0015 0.030 0.98 

UI_100M:Garoua     -0.00024 0.0014 -0.17 0.87 

UI_100M:Maroua     0.00011 0.0015 0.074 0.94 

 

Table S9. Analysis of humidity in response to urbanization index (UI) at 100m 

interacting with city as predictors with a generalized linear model with a 

negative binomial distribution and a log link. The city of Kribi was the reference 

level. 

 
                   Predictor Estimate  SE Z- value  P 

(Intercept)            4.41 0.076 58.00 ≤0.001 

UI_100M                -0.00034 0.0013 -0.27 0.79 

City of Douala             -0.089 0.18 -0.49 0.62 

City of Yaounde            -0.052 0.090 -0.58 0.56 

City of Ngaoundere         -0.16 0.13 -1.16 0.25 

City of Garoua             -0.25 0.13 -1.92 0.055 

City of Maroua             -0.23 0.12 -1.96 0.050 

UI_100M:Douala     0.0011 0.0024 0.48 0.63 

UI_100M:Yaounde    0.000024 0.0014 0.017 0.99 

UI_100M:Ngaoundere  -0.00077 0.0019 -0.40 0.69 

UI_100M:Garoua     0.00097 0.0020 0.50 0.62 

UI_100M:Maroua     0.0017 0.0019 0.886 0.38 
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Table S10: Compiled Minimum Infection Rates (MIR) for studies which 

detected Zika virus in field caught specimens of A. aegypti and A. albopictus. 

Study Country/

Location 
Species  Zika+ 

Pools 
Total 

Pools 
Specimens 

Tested 
Max 

Pool 

Size 

MIR 

Marchet

te 1969 
Malaysia A. aegypti 1 58 1277 80 0.8 

Grard 

2014 
Gabon A. 

albopictus 
2 91 2130 25 0.9 

Ferreira-

de-Brito 

2016 

Brazil A. aegypti 3 198 550 10 5.5 

Guerbois 

2016 
Mexico A. aegypti 15 55 279 NA 53.8 

Ho 2017 Singapore A. aegypti 

and A. 

albopictus

** 

9 517 1375 5 6.5 

Cevallos 

2018 
Ecuador A. aegypti 2 14 193 10 10.4 

Correa-

Morales 

2019 

Mexico A. aegypti 260 3120 14,145 Data 

Unav

ailabl

e 

18.4 

Correa-

Morales 

2019 

Mexico A. 

albopictus 
7 52 78 Data 

Unav

ailabl

e 

89.7 

Singh 

2019 
India  A. aegypti 3 55 203 10 14.8 

Ali 2020 Malaysia A. 

albopictus 
6 NA 186 25 32.3 

Calle-

Tobon 

2020 

Colombia A. aegypti 98 Data 

Unavail

able 

6585 10 14.9 

Campos 

2020 
Cape 

Verde 
A. aegypti 2 Not 

Pooled 
816 1 2.5 

Kosoltan

apawit 

2020 

Thailand A. aegypti 2 Not 

Pooled 
130 1 15.4 

Phumee 

2020* 
Thailand A. aegypti Data 

Unavai

lable 

Data 

Unavail

able 

Data 

Unavailabl

e 

10 22.4 

Parra 

2022 
Sao Paulo, 

Brazil 
A. aegypti 55 607 1026 10 53.6 

Parra 

2022 
Sao Paulo, 

Brazil 
A. 

albopictus 
1 11 12 10 83.3 
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This 

Study 
Cameroon A. 

albopictus 
1 289 7490 30 0.1 

• Study provided an MIR without number of specimens or pools tested. 

* Study data did not allow for differentiation of A. aegypti and A. albopictus so 

results were combined. 
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The text of this dissertation includes a reprint of the following previously published material: 

Montgomery, M., Harwood, J.F., Yougang, A.P. et al. Spatial distribution of insecticide resistant 

populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. 

aegypti from Cameroon. Infect Dis Poverty 11, 90 (2022). The co-authors listed in this 

publication have approved of its inclusion.  
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Appendix 3 
Table S1. Human viremia data. CHIKV (Appassakij et al 2013, Riswari et al. 2015), 

DENV1-4 (Nguyen et al. 2013), YFV (Nassar et al. 1995, Monath et al. 2012), ZIKV 

(Mansuy et al. 2017).  
 

Day Viremia SE SD N Virus 

1 5.35 0.15 0.21 2 YFV 

2 4.06 0.61 1.84 9 YFV 

3 4.24 0.50 1.41 8 YFV 

4 2.44 0.36 0.80 5 YFV 

5 1.90 0.40 0.57 2 YFV 

6 2.50 0.40* 0.96 1 YFV 

1 8.20 0.35 NA 2 CHIKV 

2 7.81 0.61 NA 11 CHIKV 

3 5.57 1.49 NA 6 CHIKV 

4 4.46 1.40 NA 8 CHIKV 

5 3.15 0.55 NA 3 CHIKV 

6 2.45 0.46 NA 5 CHIKV 

7 2.63 NA NA 1 CHIKV 

11 1.08 NA NA 1 CHIKV 

13 2.98 NA NA 1 CHIKV 

17 1.86 NA NA 1 CHIKV 

-2 5.80 0.63 1.26 1 ZIKV 

0 4.53 0.57 1.13 4 ZIKV 

1 4.91 0.40 0.89 5 ZIKV 

2 4.26 0.35 1.09 10 ZIKV 

3 3.74 0.28 0.69 6 ZIKV 

4 3.65 1.10 1.91 3 ZIKV 

5 3.61 1.08 1.87 3 ZIKV 

7 1.70 NA NA 1 ZIKV 
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10 1.85 NA NA 1 ZIKV 

1 8.56 NA NA 1    

DENV3  

2 7.81 0.30 1.25 18    

DENV1  

2 8.01 0.25 1.13 20    

DENV2  

2 8.74 0.25 0.71 8    

DENV3  

2 6.86 0.74 1.28 3    

DENV4  

3 8.17 0.15 1.24 65    

DENV1  

3 7.59 0.14 1.24 74    

DENV2  

3 7.99 0.26 1.04 16    

DENV3  

3 6.75 0.46 1.66 13    

DENV4  

4 7.79 0.17 1.46 78    

DENV1  

4 6.85 0.16 1.41 83    

DENV2  

4 7.52 0.33 1.65 25    

DENV3  

4 6.06 0.42 1.96 22    

DENV4  

5 6.67 0.18 1.57 78    

DENV1  

5 5.44 0.16 1.41 83    

DENV2  

5 6.33 0.31 1.53 25    

DENV3  

5 4.98 0.40 1.87 22    

DENV4  

6 5.44 0.14 1.19 77    

DENV1  
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6 3.95 0.14 1.24 82    

DENV2  

6 4.77 0.36 1.75 24    

DENV3  

6 3.47 0.24 1.12 21    

DENV4  

7 4.50 0.11 0.87 60    

DENV1  

7 3.01 0.14 1.13 61    

DENV2  

7 3.62 0.34 1.39 17    

DENV3  

7 2.86 0.00 0.00 19    

DENV4  

8 3.77 0.31 0.96 10    

DENV1  

8 2.59 0.40 1.14 8    

DENV2  

8 2.93 0.37 0.99 7    

DENV3  

8 2.86 NA NA 9    

DENV4  

 

*Average SE for prior 5 days of YFV.  

 

 

Table S2. Analysis of viremia with day and virus as predictors. Day 1 and CHIKV were 

the reference levels. 

 Estimate Std. Error t-Value P-Value 

(Intercept)  7.2730 0.4176 17.416  < 2e-16  

VirusDENV1   -1.8500 0.4511 -4.101 0.000289 

VirusDENV2   -1.9128 0.4511 -4.241 0.000196 

VirusDENV3   -1.5284 0.4511 -3.388 0.001983 

VirusDENV4   -1.5085 0.4511 -3.344 0.002227 

VirusYFV     -1.8596 0.4511 -4.123 0.000272 

VirusZIKV    -1.4701 0.4511 -3.259 0.002779 
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 Estimate Std. Error t-Value P-Value 

Day2         -0.5155 0.4176 -1.235 0.226592 

Day3         -1.3048 0.4176 -3.124 0.003931 

Day4         -2.2862 0.4176 -5.474 6.1E-06 

Day5         -3.1883 0.4176 -7.635 1.63E-08 

Day6         -4.7024 0.4176 11.260 2.69E-12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3. Results from a Bayesian model fit to vector competence data. 

Coefficients were fit for the mean extrinsic incubation period (EIP) in days, 

including virus, mosquito species, and viremia, with A. aegypti and ZIKV as the 

reference level. The model also included two additional study ID intercept 

parameters (ID1 for A. albopictus transmitting CHIV, and ID2 for A. aegypti 

transmitting ZIKV) to account for substantial differences among these two 

individual studies and all others in the fraction transmitting. 

 

                Mean EIP SE 95% CI 

Intercept (A. aegypti, 

Zika virus)  

2.64 0.12 2.41 - 2.87 

A. albopictus 0.11 0.052 0.0080 - 0.21 

CHIKV -0.33 0.066 -0.46 - -0.21 

YFV 0.26 0.055 0.15 - 0.37 

Viremia (PFU/ml) 0.18 0.021 0.14 - 0.23 
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                Mean EIP SE 95% CI 

ID1 (A. albopictus 

CHIKV) 

-2.24 0.28 -2.78 - -1.70 

ID2 (A. aegypti 

ZIKA) 

-0.89 0.16 -1.20 - -0.58 

 
 

 

Table S4. Analysis of seroprevalence data for Africa using a generalized linear 

model with a binomial distribution and a logit link with virus type as a fixed 

effect and study ID as a random effect. CHIKV was the reference level. 
 

 

               Estimate  Std. Error  z value  P-value 

Intercept 

(CHIKV)   
-1.47 0.20 -7.24  < 0.001  

DEN-1 -1.40 0.046 30.68  < 0.001  

DEN-2 -0.71 0.053 13.39  < 0.001  

DEN-3 -0.58 0.10 -6.08  < 0.001  

DEN-4 -0.86 0.10 -8.33  < 0.001  

YFV -0.10 0.022 -4.60  < 0.001  

ZIKV -0.81 0.024 33.87  < 0.001  

 

 

 

Table S5. Analysis of seroprevalence data for the Americas using a generalized 

linear model with a binomial distribution and a logit link with virus type as a 

fixed effect and study ID as a random effect. CHIKV was the reference level..  
 

 

               Estimate  Std. Error  z value  P-value 

Intercept 

(CHIKV)   
-1.76 0.61 -2.90 0.0038 

DEN-1 0.031 0.71 0.043 0.97 
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               Estimate  Std. Error  z value  P-value 

DEN-2 0.57 0.71 0.80 0.42 

DEN-3 -0.15 0.71 -0.21 0.83 

DEN-4 -1.28 0.71 -1.81 0.07 

ZIKV 0.70 0.068 10.44  < 0.001  

 

Table S6. Analysis of seroprevalence data for Asia using a generalized linear 

model with a binomial distribution and a logit link with virus type as a fixed 

effect and study ID as a random effect. CHIKV was the reference level. 
 

               Estimate  Std. Error  z value  P-value 

Intercept 

(CHIKV)   
-1.13 0.05 -22.12  < 0.001  

DEN-1 -2.072 0.08 -24.74  < 0.001  

DEN-2 -0.74 0.08 -9.68  < 0.001  

DEN-3 -0.20 0.08 -2.44 0.014 

DEN-4 -2.093 0.09 -23.18  < 0.001  

YFV -6.64 1.31 -5.078  < 0.001  

ZIKV -1.087 0.31 -3.55  < 0.001  
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Figure S1. Predicted fraction of A. albopictus transmitting virus by blood meal 

viremia. Circles represent vector competence study data with circle size 

corresponding to A. aegypti sample size. Data for CHIKV, YFV, and ZIKV are 

plotted for days 7 and 14 post-feeding. DENV1-4 was plotted for day 14 since 

source study data only measured vector competence on day 14.  
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Figure S2. Predicted fraction of mosquitoes transmitting virus by blood meal viremia on 

day 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

95 

 

 

Figure S3. Number of serosurveys and total sample size by country. 
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Figure S4. Fitted coefficient of arbovirus seroprevalence plotted against relative R0 

estimates for A. albopictus. The relationship was not statistically significant in any 

location: global (Fitted Coefficient = -0.61 - 0.21 ( ±0.59)* R0, (P = 0.74), Africa (Fitted 

Coefficient = -0.55 - 0.067 ( ±0.31)* R0, (P = 0.84), the Americas (Fitted Coefficient = -

2.91 + 0.71 ( ±1.59)* R0, (P = 0.68), or Asia (Fitted Coefficient = -4.25 + 2.14 ( ±1.15)* R0, 

(P = 0.12). YFV was not included in the Americas due to a lack of serological data.  
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