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ABSTRACT 

* 

Green's function techniques for studying nonequilibrium quantum processes 

are discussed. Perturbation expansions and'Green's function equations of 

motion are developed for noncorrelated and correlated initial states of a 

system. A transition, from the Kadanoff-Baym Green's function equations of 

motion to the Boltzmann equation, and specifications of the respective limit, 

are examined in detail. 
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1. Introduct ion 

Nonequi1ibrium Green's function techniques, initiated by Schwinger [11 

and Kadanoff and Baym r2], have received in the past much attention, in 

particular in connection with plasma, laser, and chemical reactions problems. 

This study has been motivated by an application of the techniques to 

high-energy nucle~r col.lisions. While some of the results obtained here hav~ 

been derived before, a coherent and systematic presentation of the subject has 

been lacking up to this time. This paper is intended to be a self~contained . 

introduction to the nonequilibrium Green's function techniques; Several new 

formal derivations and results are presented for the first time. 

The nonequilibrium Green's function methods allow one to study a time 

evolution of a many-particle quantum system, and a particular numerical 

example will be pr~sented in a following paper of the series. We solve there 

equations iof motion with self-energies for I-particle Green's fuhctions in an 

idealized nuclear system, and compare the results with a classical Markov'ian 

dynamics from the Boltzmann equation. Knowing the 1-particle Green'~ 

functions one may evaluate 1-particle quantities in a given system. The 

many-particle information about the system is cast into self-energies in'the 

Green's fun~tion equations of motion. Guided by the perturbation expansion' 

for the Green's functions, one may attempt approximations to the self~~nergies. 

In Sect. 2 of the present paper we introduce a generalized GreenO's 

function for a nonstationary quantum state of a system. In the case of a 

noncorrelated initial state of a system, the Green's function possesses a 

perturbation expansion analogous to a ground state perturbation expansion of a 

chronological Green's function. The introduced Green's function coincides, in 

particular ranqes of variation of its arguments, with conventional I-particle 

Green's functions. In Appendices A, B, and C, related to Sect. 2, we discuss 
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respectively the Wick decomposition, a variational derivation of the 

perturbation expansion, and the modified rules of the perturbation theory. In 

Sect. 3 the equations of motion for Green's functions, s,elf-energies, 

lowest-order approximations to the self-energy, and conservation laws are 

discussed. In Appx. 0 it is shown that the self-energy for the generalized 

Green's function may be introduced, and its properties may be studied, without 

a direct reference to the perturbation expansion. In Appx. E we study, basing 

on the equations of motion and the self-energy perturbation expansion, the 

properties of Green's functions in a state of thermodynamic equilibrium. In 

Appx. F, a T-matrix approximation to the self-energy is discussed. 

From the equations of motion for the Green's functions, the so-called 

Kadanoff-Baym equations, the Boltzmann equation may be obtained, at an 

assumption of slow time and space variations in a system. The transition to 

the Boltzmann equation is pres~nted in Sect. 4. For the Boltzmann equation to 

be of use in describing the system's dynamics, the dynamics given by the 

Boltzmann equation must be insensitive to uncertainties in particle energies 

and
l 

momenta. In Appx. G the conditions for the transition to the Boltzmann 

equation are analyzed for a system in thermodynamic equilibrium in the 

Boltzmann statistics limit, with self-energies in the Born approximation. 

In Sect. 5 of the paper, we present the Green's function techniques for a 

correlated initial state of a system, prepared through the imaginary-time 

evolution. In Appx. H, we discuss a perturbation expansion and equations of 

motion for Green's functions for a general correlated initial state. 

'. 

t· 
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2. Green's functions and the perturbation expansion 

W~ shall consider a nonrelativistic system ,of fermions or bosons with a 

hami ltonian 

The field operators satisfy the commutation relations 

"A ofII A 

f{*-)'V{z) ±'f\t)"V{~) = 0 (2.2b) 

The upper signs refe~ to fermions, while the lower to bosons. Spin and 

isospin of particles will be ignored. The reader familiar with the 

ground-state Green's functio~ methods, e.g.,[3], will be able to introduce 

particle spin and isospin indices at any stage of the consideration. 

We are interested in an evolution of a system, which is specified at an 
. ~ 

initial time to "with a denslty operator p. A quantity in which the 

evolution may be studied is a I-particle Green's functidn 

"(2.3) 

The symbol (.> denotes an expectation value with respect to the initial state, 

Tr{~.)/Tr(B), and the field operators in (2.3) are in the Heisenberg pictur~. 

For t2 = t 1, the r.h.s. of Eq. (2.3) is the I-particle density matrix. 

For example, the spatial density of particles is 

(2.4) 

The I-particle density matrix, Fourier-transformed in relative variables, 

constitutes the so-called Wigner function 

(2.5) 
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The Wigner function is an expectation value of the operator that corresponds, 

according to the Weyl IS [4J postulate of quantum mechanics, to a classical 

momentum and space particle density. Let us expand the initial density 

operator in a basis of momentum and energy eigenstates {~A1 

~ =L: 
AAI 

Upon introduction of (2.6) into (2.5) and insertion of the unity-operator 

expansion in between the field operators in (2.5), it can be shown that 

(2.6) 

(2.7) 

The Greenls function (2.3), Fourier-transformed in all its relative 

(microscopic) variables r. = ~l - ~2' t = tl - t 2, at fixed macroscopic 

variables B = (~l + ~2)/2, T = (t1 + t 2)/2, may be considered a 

generalization of the Wigner function to a distribution not only in momentum 

and space but also in energy 

(2.8) 

Here 

and such a simplified notation will be frequently employed in the future. We 

.. 
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have 

f(o:R,T) = (2dlll (+i) G«p,IIl;R,T) 
~ N J W h N 

(2.9) 

The Green's function 

(2.10) 

may be seen as corresponding to a density for an addition of a particle to a 

system (a density of holes) 

(2.11), . 

From the commutation relations it follows that 

(2.12) 
r 

and consequently 

f 2dlll i G> ( p , III : R ,T) = 1 + f ( p; R , T) 
'R' "- ""' - IV 

.. (2.13) 

The consideration of the Wigner function and th~Fourier-transformed'~~~e~~s 

functions (2.8) and (2.11) as densities must be done with care because the 

functions are generally not positive definite. They are, however, always real. 

When working with a ground state of a system, one usually deals with a 

chronological Green'S function 

(2.14) 

where TC is the chronological-ordering operator. There holds 

(2.15) 
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with 

for t > 0 

for t < 0 'I 

and the I-particle density matrix may be obtained from (2.14) in the limit 

+ t2 = tl = tl + E. The hermitian conjugate of (2.14) yields the 

antichronological Green's function 

(2.16) 

(2.17) 

'The spectrally decomposed chronological and antichronological Green's 

functions possess propagator forms. 

We shall now consider an expectation value of an operator with one time 
" argument <OH(t». As a consequence of that consideration we shall 

introduce, for a nonstationary state of a system, a Green's funct10n 

possessing a perturbation expansion analogous to the ground-state 

chronological Green's function perturbation-expansion. In particular ranges 
" 

,of variation of its arguments, the introduced Green's function will coincide 

with the Green's functions (2.3),(2.10),(2.14), and (2.16). 

We have 

A " I/o A 

0H(t) = U(to,t) 0l(t) U(t,to) (2.18 ) 

where 01 is in the interaction picture and U is the interaction picture 

evolution operator. For t > t 
0 

C>o 

(_i)n TCr ( \t (tn)] 
.. r: "1 "I U(t,to) = dt1 dtn Hr(t1) H ' 

n! ... ... I n=O to t 
0 
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=·Tc [exp(-i ( dt' A~ (t'))] , 
. . to. 

(2.19) 

,. 
with H1(t) the interaction hamiltonian in the interaction picture. For t > 

to 

(2.20) 

Let us see how one obtains the conventional Feynmann diagrams for a 

ground state of a system. The Heisenberg and the interaction pictures 
,. 

coincide in that case at time t = 0. The operator H1(t) g~ts a factor 

exp (-£Itl), which switches the interaction on and off at t =:I:~ The 

noninteracting ground state 14» is assigned to the system at t = --, and the 

interacting ground state is obtained on the basis of the Gell-Mann and Low 

theorem: I~> = U(O,-.... )I<P>. For the expec-tation value of an operator we have 

. A A A " " 

= <~IU(-oo,O)U(O, t)OI (t)U(t,O)U(O,-.... )I-P> 

. (2.21) 

.. 
where in the last equalities we exploit a group property of the U operators. 

For a nondegenerate state J'f>, the state U(+oo,_ .... )I~> is up to an (infinite) 

phase factor equal to It>, and into the last expression of (2.21) one can 

insert a projection operator on 19> 

< '!itOH (t )It > 
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I 
II. A" 

<~ U( +0>,-0», t )Or (t) U( t ,-CIII)/(> > 
= '" <<21 u ( +00, -<lO) /(» 

= ---------------------------- (2.22) 

On obtaining the second equality we exploit the fact that 
1\ 1\ 

1 = <~I<I?> = <CP(U(-ao,+OO)U(+'-b,-ClQ)I<p> 
1\ ',' '" 

= <~I U ( -~, +(0) I~ >< ~Iu (+00, -~)/~ > , (2.23) 

and we obtain the last equality in (2.22) by introducing the expansion 

(2.19). For the chronological Green's function we have in analogy to (2.22) 

. c c " II. t 
lG (~l'tl'~2,t2) = <4"!T N/H(,~l'tl)~H(~2,t2)lt~> 

<~ITC[exp(~/i Jdt' A}(t' ) )~I (xl' tl )~r (x2' t 2) ll<p'> 
-~ , 

= ----------~~-------------------------
00 ""1 

<~ITc[exp(-i' J dt'Hr(t' ))ll~> 
(2.24) 

-~ 

Upon application of the Wick decomposition to (2.24) (also to (2.22)), one 

obtains the usual Feynman rules~ the denominator cancels the disconnected 

diagrams. 

The above scheme, however, cannot be aplied to the nonstationary state 

expectation values. The basic reason for that is the fact that, in general, 

within the evolution, no state of a system in future may be identified with 

any of states in the past. 

Let us return to the expectation value of an operator with respect to a 

state specificed at to' 
Ito "1\,, 

<OH(t» = <U(to,t)Or(t)U(t,to» 
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dt 'H; (t·) )]01 (t)Tc[exp(_i fdt 'H; (~'))]> 
.. t· . 

. 0 "(2.25) 

The perturbative evaluation of (2.25) may be put in a form ana,logous to the 

usual Feynman diagrams, when one joins the exponential functions from the left 
.. 

and right of the O-operator, and one introduces a time-ordering operator T 

that recognizes whether the field oper~tors belong to the chronological ~r' 

anti chronological parts of the product. Accordingly we introduce a contour 

running along the time axis, Fig. 1, and a T operator ordering along the 

contour. (In conection with future applications, the contour may be imagined 

as lying in the complex time plane.) We assign the time arguments of the 

fieid dp~ratots-to the contour. The T oper'tor, reduced to the part of the 

contour running forward or bacRw'ard in time, wi 11 become the chronological ot 

anti chronological ordering operator, respectively. The parts 6f the contour 

will be named the chronological and antichrond1ogica1 branches, respectively. 

The T operator wl11 order all operators, from the ant i chrono 1 og i cal branch, to 

the left of operators from the chronological branch. We can rewrite 

Eq. (2.25) in the form 

.. 
<O~(t» = <T[exp(-i (2.26 ) 

to . 

where f . stands for the integral along the. contour, further denoted, by {. 
~o .. 

By inserting extra U operators into (2.25), one may elongate the contour, so 

that it would run beyond the time t (one may also deform the contour). 

We define a Green's function on the contour, i.e., with the time 

arguments from the contour, 

(2.27 ) 

and we have 
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with the contour running above the largest argument of the Green's function. -, 

With Eq. (2.28), the Green's function will possess a 'perturbation expansion 

analogous to the ground-state expansion. The Green's function (2.27) equals 

(2.2Q) 

with the function g(t1,t2) defined on a contour: 

r' if tl is later on a contour than t2 
g(t

1
,t

2
) = 

0, if earlier 

On restricting, the variation of the arguments of the introduced generalized 

Green's function to the separate branches of the contour, one gets the 

conventional Green's functions: chronological, antichronological, and the 
,. " t 

functions with a fixed order of ~ and ~ , G<and G>. 

About the initial state specified at to' we assume that its density 

operator commutes with the particle-number operator. Furthermore, we assume 

that the initial state admits the Wick decomposition (is noncorrelated). The 
" II 

density operators of such states are generally of the form 0 = exp(a)~ with~ 

being a I-particle operator. The vacuum and for fermions the Hartree-Fock 

states, arising from applications to the vacuum of sets of l-particle creation 

operators, correspond to the limiting cases of such density operators. The" 

Wick decomposition is discussed in Appx. A. 

The Feynman rules, which result from an application of the Wick 

decomposition to (2.28), are similar to the conventional ground-state Feynman 

rules. The difference is such that all the time integrations do not run from 

-ooto +<10, but along the contour. The top of the contour must be above or 

t 
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equa,l, to 'the largest'time argument of the evaluated Green's function. More 

precisely, within a chosen part of a diagram, the internal time integrations 

-must run to the largest external time ln that part of a diagram. The 

di sconnecteddi agrams vani sh, because there the i ntegrat ion contours may be 

reduced toto' (1 +d'isconnected diagrams) is an expansion of 

f "1 1 = <1> = <T [exp(-i dt'HI(t'))J> 

When the kinetic energy operator is taken as a I-particle hamiltonian 

defining the interaction picture, then the Feynman rules for evaluating 

iG(~I,tl'~2,t2) are the following: 

1. Draw all topologically distinct connected and directed diagrams. 

Particle lines run continuously: one sequence of lines runs from 

(~2,t2) to (~I,tl)' 

2. A particle line running from (~',t') to (~,t) represents a noninteracting 

Green's function 

(2.30) 

3. To an interaction line there corresponds a factor -iV(x - x') o(t,t'). ,.., .... 

The function o(t,t') is defined on a contour: it is equal to o(t - til on 

the chronological branch and to -o(t - t') on the antichronological / 

branch. 

4. To a single particle line that forms a closed loop or is linked by the 

same interaction line, there corresponds a function iGo<. 

5. For fermions attribute to the diagram a factor (_I)F, where F is the 

number of particle loops. 

6. Integrate all internal vertices over a whole space and in time over a 

directed contour from to to to' 
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One of the possible variational derivations of Feynman diagrams is 

discussed in Appx. B. 

"GC 
1 , 

When evaluating a particular type of a Green's function iG~ ,iGa, or 

it may be convenient to divide the contour into the two branches in the 

perturbation theory rules. The resulting rules are presented in Appx. C • 

( 
. ,'r 
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·3. Greenls function equations of motion 

3.1 Equations of motion and the self-energies 

Using the perturbation expansion, one can define the self-energy Z as an 

irreducible part of the Greenls function. In Appx. D we introduce the 

self-energy in a formal manner and analyze its properties without direct 

reference to the diagrams. The self-energy may also in principle be 

introduced variationally. The Greenls function satisfies equati6ns of motion 

with self-energy 

'q2 
'(" a + 1) 

1 at l 2m (3.1) 

2 

( i a +1l11)' G(1,11) = 6(1,11)+. 'fd2 G(1,2)2:(2,1 1) (3.2) - at11 2m 

which correspond to the Dyson equations 

G(1,11) = G\0(1,1 1) + fd2 fd3 GO(1,2)2"(2,3)G(3,1 1) 

G(1,1 1) = G°(1,1 1) + fd2 fd3 G(1,2)Z"(2,3)Go(3,11) 
. " ~ 

We use here the notations 1 = (~1,t1)' Jdl: fdtl {d~l' 

(3.3) 

(3.4) 

6(1,11) = 6(~1 - ~11)6(tl't11)': Theself-energy has, a f9rm analogous to (2.29) 

(3.5) 

with l6 being a singular part of Z on the contour. 

On fixing the time arguments of the. Greenls function in Eqs. (3.1) and 

(3.2) at opposite sides of the contour, one .finds, with (2.29) and (3.5), the 

equations 



-14-

( 
V21) ~ 

• a + 2"m1 ·6 (1,11) -1 at
11 

= J d~2 6~(1'~2,tll) LHFt~2'~1' tIl) 

tl 
+ ~ d2 (6)(1,2) - 6<(1,2))l:)i(2,1 1) 

to 

(3.6) 

(3.7) 

The function rHF , exhibited here, corresponds to the singular part of the 

self-energy, which may in principle be found diagramatically. The time 

integrations in (3.7) run along the time axis and the limits are explicitly 

indicated. Equations (3.7) are actually the hermitian conjugates of Eqs. 

(3.6). Equations (3.6) and (3.7) are known as the Kadanoff-Baymequations. 

With the use of the advanced and retarded functions (see Appx., 0) 

(3.8) 
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equations (3~6-) and (3.7)' may be'written as . 

V?". -
( 

i _a_ + 1) 6 >( (1 1') 
at 2m " 1 . 

2 

(- i .ll' + ~!) G~ (1,1') 

00 00. 

= } d2 6)( (1,2)2 - ( 2 , 1 ,) + . J : d2 6+(1,2) Z)< (2, 1 I ) 

to to 

',' On subtracti'ng Eq. (3.9) for 6< from Eq. (3.9) for '6>;, one finds the 

equation satisfied by the retarded and-ad'vancedfunctions. 
. 00 

(i '~I +~!)G"(t'I') - J d2Z"(l,2)G"(2,1') = ~(l -I') 
" 0 

Analogously, from Eqs. (3.10) one finds. 

(3.9) 

(3.10) 

(3.11) 

(-i '~I' + :!,) G"(1:I') - Jd2 G"(!,m:(2,1') '~~(!-'1')'(3.12) 
o 

With Eqs. (3.11,- and (3.12), a general solution of Eqs. (3.9) and (3.10) may 

be wri tien as 

e>o 00 

6>t.(1,11) = J d2 f d3.6+(l,2)~)~(2,3) 6-(3,1') 
to to 

(3.13) 
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where the second term accounts fQr the initial conditions. EquatiQIl (3.13) 

may be considered a generalized fluctuation-dissipation theorem, as will be 

seen below. ; , 

Let us consider the field-operator equation of motion 

(3.14 ) 

On evaluating the commutator one finds 

2 

(; '~l + f..) ~H(!) = h'2 V(~l - ~21~ ~(~~.tl) "'H(~' t 1) ~H(l) 
(3.15) 

On taking the side-by-side time-ordered product of Eq. (3.15) with its 

hermitian-,conJugate, making use of Eqs. (3.1),(3.2), ,and the definition of the 

Greenls function, one is able to ,show that ,:"!-

II "t II " t 
<T(jH(1) jH(lI)]> + i l'i{tl,t11)<rjH(1)''+'H(II)J~> 

= i Z (l, 11) + i 1 d2 {d31 (1,2) G (2, 3) Z (3,1 1 ) (3.16) 

where r· , -1: stands for the anticommutatori ri the fermion case and the 

conmutator in the boson case. From Eq. (3.16) we can identify the divergent 

part of the self-energy 

Z6{1,I I ) = 6{tl'tll)<[jH{1),f:U~11,tl)]:> 

{3.I7} 

where the last equality f61lowsfrom the differentiation of the equal-time 

field-operator commutation relation. On inserting the value of the current 
'I. 

jH into (3.17), we find 

t 
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At .. 
X <fH(~2' t 1) f H(~2' t 1» + V(~l - ~11) 

" t • 1 
X <'I-' H (~11 , t 1) If' H (~1 ' t1 ) >J 

:. <5 (t1 ' tll ) l HF (~1 '~11 : t1 ) (3.18 ) 

The self-energy (3.18) is the Hartree-Fock self-energy, with the first term 

being a direct (Hartree) term and the second the exchange term. For the 

self-energies l\, it follows from (3.1~) that these are the irreducible parts 

of the current-product expectation values 

(3.19 ) 

(3.20) 

Irreducibility means here that one excludes from the expectation values those 

diagrams that can be cut in between the end-points in such a way that the cut 

passes only through a single particle line. If we define the expectation 

values in the presence of an ~xternal current J coupled to the field operators 

(3.21) 

with 

(3.22) 

and J being a Grassman current in the fermion case, then 
I 

G+(l,l l) =(<5J(l') <+H(l»J) J=O ' (3.23) 

and 

(3.24) 
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The variational derivatives in (3.2~) and (3.24) are carried out as if the 

current were the same or both branches of the contour. With Eqs. 

(3.23),(3.24), and (3.19), we can rewrite Eq. (3.13) for G< (similarly for 

G» into the form 

(3.25) 

1\ "1 " I\t 
With jH and jH being the sources of the fields ~H and ~H' 

the expressions (3.19) and (3.20), similar to the definitions of the functions 

G~ , sugggest that ~il< and iI> correspond respectively to the particle 

production (scattering~in) and absorption (scattering-out or hole production) 

rates. The condition of irreducibility may be considered as a removal of the 

effect of the repeated ·interactionsin the medium. We have in fact, 
1 

respectively, for tl on theconto.ur earlier and later than t 1, 

jd2 {d3 Z(1,2)G(2,3) ~(3,11) 

00 -

= f d2 { d3 !l(1,2) G-(2,3)!. -(3,1 1) 
to to 

00 00 

+ r d2 f d3 r+(l,2) G"i (2,3) r-(3,1 1) 
to to 

00> 00 

+ r d2 f d3 1+(1,2) G+(2,3) ~)«(3,11) 
to to 

(3.26 ) 

, 
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cf. Eq. (3.16). On taking the expectation value of Eq. (3.15) in the presence 
~ . 

of the external current, and making a variation with respect to the current, 

one finds 

and from comparison with Eq. (3.11) 

IS<J H(1»J 
ISJ (11) 

00 

I = f d2 L+(1,2) G+(2,1 1
) 

J=O to 

'00 

=J o 

From the above follows 

. Similarly one has 
fX) 

r d2 G-(1,2) Z-(2,1 1
) = 

to 

and 

"t . 
lS<jH(11 ) > J 

ISJ*(1 ) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

The functions with which we are dealing in this section obtain simple 

forms in a uniform system in equilibrium. Results, following from the Greenls 

function equations of motion, for a system achieving a uniform equilibrium are 

discussed in Appx. E. Before reading the Appendix, we advise the reader to 

get acquainted with Appx. C and the next subsection. 
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The Green's function equations of motion ,Eqs. (3.6) and (3.7), were 

first obt~ined by Kadanoff and Baym [2J, by means of an analytic continuation 

of equations satisfied by temperature Green's functions in the imaginary time 

corresponding to the temperature. A contour method has been applied by 

Schwinger [lJ to study the equations of motion of a quantum oscillator in an 

exernal field. Schwinger employed a matrix notation for functions and their 

multiplications on ~the contour. The Kadanoff-Baym equations have been 

independently derived with a contour method by Keldysh [5J and by Fujita [6,7J. 

Other papers concerning Green's function equations of motion under different 

hamiltonians, transition from the equations to kinetic equations (Sect. 4 of 

the present paper), application of Green's function methods to various 

problems, are Refs. [8-17J. 

3.2 Perturbative evaluation of self-energies 

The two lowest order diagrams for the self-energy are presented in Fig. 2. 

The perturbation theory rules give for these diagrams 

(3.32 ) 

The approximation to the self-energy, relying on the noninteracting Green's 

functions, may seem reasonable only for times close to the initial time to. 

On replacing the functions GO by G in (3.32), one sums a whole class of 

diagrams, and one obtains the expression for the self-consistent Hartee-Fock 

energy, Eq. (3.18). 

Next-order self-energy diagrams, Fig. 3, are named the Born diagrams, 

direct and exchange. The dlrect diagram gives the following contributions to 

the self-energies: 

.' 
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(3.33) 

~ while the exchange diagram contributions are 

.~. 

(3.34) 

where we already use the functions G instead of GO. The self-energies 

(3.33) and (3.34) correspond to the lowest order scattering with particles of 

the medium. 

A self-energy approximation, in which diagrams of all orders in a 2-body 

scattering with particles of the medium are summed, is called the T-matrix 

approximation~ Thi~ approximation is presented in Appx. F. 

The RPA approximation, which will not be discussed in detail, consists in 

the summation of bubble diagrams in the interaction. Besides the particle 

Green's function equations, one deals with equations of motion of a 

polarization insertion that describes phonons (density fluctuations). The 

physical picture is such that the particles induce an emission and absorption 

of phonons. 

3.3 Conservation laws 

In many physical processes, an essential role is played by cortservation 

laws. When approximating the Green's function equations of motion, on 

choosing diagrams for the self-energy, one may obtain equations that violate 

conservation laws. The problem of conservation laws, in a system of particles 

with a potential interaction, has been considered by Baym and Kadanoff [18J~ 

We shall summarize here the results of these authors, by presenting the 

approximations to the equations of motion that yield the conservation laws for 

particle number, momentum, and energy. 
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From Eq. (3.15) there fbllows an equation for the Green's function on a 

contour 

(
. _a_ + CYi) G (1 1')' 
1 at 2m -,. 

1 

= ~(1,1') + i r d~2 V(~l - ~2)G2(1'>i2' tl :1' '~2' t;) 

where the 2-particle Green's function is 

and ti denotes a time infinitesimally later on a contour than t i . The 

hermitian conjugate of Eq • .,(3.15) yields another equation 

- 2 

(-1 a~1' + :! )6(1,1') 

= ~(l,1') +" i f d~2 G2(1'~2,tl,;1"~2,t~,) V(~2 - ~1') 

From the definition of the function G2 it follows that 

+ + - + + 
G2(1,2:1 ,2 ) = G2(2,1;2 ,1 ) 

(3.35) 

(3.36) 

(3.37) 

(3.38 ) 

If the approximate Green's function obeys both an equation of the form (3.35) 

and an equation of the form (3.37), and the approximate function G2 
satisfies the condition (3.38), then the conservation laws are satisfied. 

For the density of particles (2.4), one finds from (3.35) and (3~37) 

(3.39 ) 

where the particle flux is 

(3.40) 
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Momentum and energy conservation laws cannot strictly be written in a local 

form. For the total momentum 

(3.41) 

1\ 

one. finds from (3.35),(3.37), and (3.38), d<eH(t»/dt = 0.' 'BY' using the '. 

Green's function equations of motion (3.35) and (3.37), the expectation value 

of the hamiltonian (2.1) may be expressed in·terms of the I-particle Green's 

fu·nct ion. 

" <HH(t1» 

=} J d~l [(i 3:
1 

- i 3:
1
.)- ~m (Vi + v~ 1)1 (;i) G<(1,l')'\ 'J . 11=1 

(3.42 ) 

For the hamiltonian expectation value-(3.42), one finds from (3.35),(3.37), 
. " 

and (3.38), d<HH(t»/dt = O. 

What conclusions, concerning self-energy, can one draw from Eqs. 

(3.35},(3.37), and (3.38H One may confront the equations with self-energy 

(3.1) and (3.2) with Eqs. (3.35) and (3.37). In order that the conservation 

laws be satisfied, Z must be such thai a termiG can be writien as iiVG2 and 

G! as +iG2V, with the same G2 in both cases. G2 must satisfy the 

condition (3.38). Typical approximations to the self-energy, like Hartree, 

Hartree-Fock, Born, T-matrix, and RPA, yield the conservation laws FI8,2J. 

However, when one includes an arbitrary diagram in the self-energy, then the 

conditions (3.35),(3.37), and (3.38), generate a numberpfother graph~ of the 

same order and similar topological structure, which must be .. simultaneousJy . 

included to comply with the conservation laws. It may be worth mentioning, . -

that the conservation laws enforce the use of the full Green's functions G in 
'. 

the construction of self-energy. (O~e takes into account sk~leton diagrams, 

irreducible with respect to the self-energy, in the construction.) 
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Under proper conditions, the Boltzmann equation for the Wigner function 

can be derived from the Kadanoff-Baym equations. We shall as~ume that the 

temporal and spatial changes in a system are small, and the evolution does not 

differ much from a free evolution of a uniform system. 

On subtracting Eq. (3.7) from Eq. (3.6) for G<, with t1 = t11 = T, 

and on taking a Fourier transform in spatial microscopic variables, we find an 

equation 

-inr e s: .... (dr ' L (r - r':R + r ' /2,T)G«r ' :R - (r - r_' )/2,T) J: -.I HF IV -' 'V - - - '-

e- iP!: (dr. ' ! (r - r'~R - r'/2 T)G«r'~R + '(r - r ' )/2 T) ) - HF "'" ",-. ........ ....' - -~ -...... ' 

~d(" 2:>([ - r l ,_tl:~ + r..' 12, T + t ' /2) 

x G«r',t':R - (r - r ' )/2, T + t ' /2) 
_ N IIw -

+ (dr ' 'r'>(r - rl -t>'R - r'/2 T - t ' /2) ).-oJ L ~ _, '"", ""'" ' 

X G«t:I,tl;~ + (r:,-r.' )/2, T - t ' /2) 

- ( < > G • •• ) 

where we have introduced relative variables in the functions and we have 

adopted to ~ -eo. The omission of the fourth microscopic variable in the 

l.h.s. Green's function is an abbreviation for 

(4.1 ) 
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We have not written explicitly the last two terms at the r.h.s. of (4.1), 

which enter the r.h.s. with a "_" sign, have the same structure as the third 

and fourth r.h.s. terms, but containl~ and G> instead Of'i'> and G<. 

In a freely evolving uniform system the functions have no dependence on 

macroscopic variables, and the Green's functions 

We shall evaluate the r~h.s; of Eq •. (4.1), whic~makesthe evolutiDn different 

from a free one, on ignoring the depende~ce of the functions on macroscopic 

variables, with the Green's functions as for a freely evolving uniform system 

~() ( 0 ~ G E,w = 2w 6 W - wp)G (e:!,T). In that case the terms with IHF 

cancel out. T~e third and fourth terms may be combined, similarly the fifth 

and the sixth, and the r.h.s. of Eq. (4.1) takes a form 

X e 

x 

in'r'-iwo tl 
~ - ' pi -- ( dr I ~< (r - r I' - t I • R T) J '" L. '" '\., "-' 

(4.2) 

Upon completion of the integrations over microscopic coordinates and times in 

(4.2), we obtain an equation 

i (_a + R.V )G«P:R,T) 
aT m - B ... "" 

(4.3) 



-26-

With (2.9) and (2.13),~q. (4.3) becomes 

(:T + ;·~E) f l~:~,T) 

which is just the Boltzmann equation. 

In the Fourier-transformed variables the sum of Born diagrams for 

self-energy, Eqs. (3.33) and (3.34), gives 

~ .. 5 del dW1 ~ dE' dw' 
LB (~,w:~,T) =:i: . 4. .4 

.. (2w) (2w) 

x [(V(e - e.,))2.+: V(e. - E.' )V(~ - Ri)]. 

(4.5) 

Upon introduction of t~e Wigner functions we find , ;' 

(4.6) 

and 
: 

(4.7) 
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A convective derivative of the ~ist~ibution function constitutes the 

l.h.s. of Eq. (4.4), and the r.h.s. of the equation accounts for changes in 

the distribution caused by interactions. With i!> a scattering-out rate and 

f a density o~ initial states~ the second r.h.s. term in (4.4) atcounts for 

scattering-out from .e~ with :riZ< a scattering-in rate and (1 + f) a density 

of final states, the first term accounts fo~ scattering-in. Equation (4.7) 

for· il.> sums over 2-body scattering processes, a symmetrized cross section .' 

is in a. Born approximation, the 0 functions correspond to momentum and energy 

conservation in collisions. With respective densities of states, integrations , 
run over particles with which scattering occurs and over final states. i~>' 

is a collision frequency of a particle with mornentume.. Equation (4.6) 

describes inverse processes with. respect to those .in (4.7), in which particles 

of the medium scatter and one of them emer,ges with a momentum 2 •. 'See also the 

form of self-energy in the T-matrix approximation Eq. (F.25). 

In the equilibrium the r.h.s. of the Boltzmann equation must vanish, and 

a detailed balance equation is~satisfied 

(4.8) 

If we disturb the equilibrium by adding or removing particles of momentum ~, 

we have for the assoc i ated di sturbance of( e,:~, T) an equation 

with r= (i2:>:I: (;i)1<) = i(Z>- Z<) • 

from (4.9) follows 

(4.9) 

For a disturbance independent of R, 
, 'V 

(4.10 ) 
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and this equation Fourier-transformed in macroscopic times reads 

1Sf'(e;.Jl) = of(.p.;~ == .0) 
, . r(e,W

p
)-l1l. 

(4.11) 

The function r sets the rate at which equilibrium is reached. 

When a local equilibrium is established in a system, i.e. Eq. (4.8) is 

approximately satisfied at every (R,T) (cf. r.h.s. of Eq. (4.4)), then the 
'" 

rate of changes of a local distribution f may be arbitrarily small. The 

time-rate will depend on the scale of spatial inhomogeneities L, .12. - v/L, 

where v is a characteristic particle velocity. A system in a local 

equilibrium can be described with a set of hydrodynamic equations, local 

conservation laws of particle number, momentum, and energy. 

Before we proceed further let us note the following. On using the 

function r, a formal solution to the Boltzmann equation (4.4) in a homogeneous 

system may be written as 

f(e;T) = f(e;T = 0) exp (- ( dT ' r(!?"w~:T')) 
o 

(T 0 .. . fT 0 
+ ) dT ' (~i)!«P,wp;T') exp (- dT" r(p,wp:T II

)). 

0' - T' ''' 

In the low-density limit i~'» +i1< and r~ iZ>. At high occupations 

of states, the quantities iZ> and i1< may be comparable. For bosons, 

(4.12 ) 

when iI.< is larger than ;:z:>, the function r is negative (from Eq. (4.8) it 

follows that this may not occur at equilibrium). From Eq. (4.12) it follows 

that in case of a negative r' function, the occupation of a state increases 

exponentially; we may call this a laser effect. 

An assumption leading to the Boltzmann equation was the slow variation of 

the functions with the macroscopic variables. If it were possible to obtain 
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the Boltzmann equation, variation in macroscopic variables away from 

equilibrium would be set by magnitude of the function r. When we p'ass from 

Eq. (4.1) to (4.2), the variations in macroscopic variables must be compared 

with variations in microscopic variables: the latter are determined by 

energies and momenta in the system. 

Upon sketching the transition to the Boltzmann equation, we shall now 

rederive the equation in a more formal manner, so that ,the approximations 

involved will become explicit. 

4.2 Derivation of the Boltzmann equation reassessed, 

We start with the Kadanoff-Baym equations in forms (3.9) and (3.10), 

, whi ch can be written as 

00 00 

f d2 G~ (1,2)(G-1)-{2,1 1) = f d2 G+{1,2) Z~(2.11) 
to to 

(4.13) 

(4.14) 

We take a limit to ~ -~, and in a moment it will become clear how this limit 

should be understood. Each side in the above equations is of the form 

and upon' introducing x = xl - xII' X = (xl + xII )/2, Xl = x2 - xII' we may 

rewrite (4.15) into 

fd4X'f(X - XI~ X + x l /2)u(X'I:X + (Xl - x)/2) (4.16) 

We shall Fourier transform the sides of Eqs. (4.13) and (4.l4),'and we shall 

average the results over a certain range of frequencies: i.e., we evaluate 

expressions of the form 

(dw F (w) 
) 21T 

iwt -ipr e e ...... 
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x f (t - (.1, t - t I; ~ + ~I /2, T +,;t I /2 ) 

x uJ t I , t I ; ~ +( t;,. - r:.1) /2, T + . (t - t I ) /2) (4.17) 

where ,F is a f~nction used for the averaging. We take the width of the 

function F small in comparison with characteristic energies in the system and 

sufficiently large that 

is sharp ly peaked around t = 0 in compari son with the vari at ion of the 

functions f and u in macroscopic times. (In connection with the spatial 

variables, an extra averaging over momenta in (4.17) may be indispensable in a 

low-temperature system.) We shall assume that the properties of the functions 

f and u are such that the dominant contribution to the integral (4.17) comes 

from small values of r, (r - r l
), and t l

, small in comparison with the - ....... '-

variation of the functions f and u with the macroscopic variables. We provide 

a certain analysis of the function properties in Appx. G. Under the above 

assumptions we may expand the functions 

. 1 a f (x· - X I : X + x I /2) ~ (1 + "2 x I ax ) f (x - X I ; X) , 

U(XI:X + (x - x' )/2) J::: (1 + ~ (x - x') :X)U(XI~X) 

Upon expansion of the functions f and u in (4.17) and introduction of the 

Fourier transforms of the functions, we find for (4.17) 

(4.18 ) 
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where for a while we omit the averaging function over frequencies. Use of an 

identity 

x e- ipx = i a -ipx 
-ape 

integration by parts, and integrations over x and Xl lead to the expression 

( .) (. )+.!..(!.!(.)!!!. af·. au . ) f P.X u P.X 2 ap p,X aX (p,X) - ax (p.X) -ap (p.X) . 

In connection with (4.19) we define a generalized Poisson bracket 

[ ] af au af au 
f,u =-apax-ax-ap • 

( 4.19 ) 

(4.20) 

Upon application of the above procedure to each side of Eqs. (4.13) and (4~14) 

and subtraction of the equations from one another, one finds a so-called 

generalized Boltzmann equation (see the properties of the functions, Appx. D) 

For the sake of clarity we have omitted the variables (p:X). Implicitly, to 

each side of (4.21) an averaging is applied over a range of frequencies large 

in comparison with the rate of change of the functions. However, the range of 

averaging in frequencies must ~e small in comparison with characteristic 

energies in the system, so the equation can be closed. A connection between 

(4~21) and (4.3) may be seen when one notices that 

(4.22) 

and applies (4.20) to the first term at the r.h.s. of (4.21). 

In the above derivation, we have obtained the generalized Boltzmann 

equation by retaining the lowest terms in a certain expansion. The role of a 

small parameter in the expansion is played by (characteristic time of 
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variations)-1 /e , where e corresponds to characteristic energies. When a 

system is away from equilibrium, or when we ask about deviations from 

equilibrium, the rate of variations from the Boltzmann equation is of the 

order of r. (The magnitude of r may even be considered a lower bound for the 

rate of temporal changes, because nonhomogeneity of the system or the presence 

of an external potential in the self-energy may enforce higher rates.) A 

different situation occurs when we consider the evolution of a local 

equilibrium, but we postpone the discussion of thai case until the end of the 

subsection1. According to the above, on obtaining the generalized Boltzmann 

equation, terms of second order in r/e are omitted. Consequently one can 

disregard such terms in Eq. (4.21), which otherwise consists of the 

first-order terms. Of second order is the second term at the l.h.s. of 

(4.21). Further, the Green's functions appearing in Eq. (4.21) and used in 

construction of self-energies can be taken in the zeroth order. When 

establishing a zeroth order, one should cautiously deal with Rel+~ there 

occur- situations when ReI+ »r, e.g. for long;..range interactions (problem 

considered in the T-matrix approximation at the end of Appx. F), further when 

ReL+ contains an external potential or for fermions close to zero 

temperature. For a strong short-range potential, when special effects due to 

Pauli principle are absent~ we may expect ReL+ - P. In the latter case, the 

zeroth-order equation for the Green's function is (from (4.13) and (4.19)) 

(Ill - p2 /2m ) G)< (1l.,1ll;~, T) = a 

which together with (2.13) and (2.9) gives 

2w ~(Ill - III )f(n;R,T) e. .~N 

IThe author is grateful to Prof. G. Baym for pointing out the two cases. 

(4.23) 

(4.24a) 

(4.24b) 
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with 00 = p2/2m. Upon insertion of the functions (4.24) into Eq. (4.21) B , 
and-integration over 00, one finds Eq. (4.4). 

If Re~ »~, it may be necessary to retain Rez+ in the zeroth-order 

equation for Green1s functions 

·2+ ~ 
(00 - p 12m - Re2 (e"w;B,T)) G "(I?"w;B"T) = 0 . (4.25 ) 

If one can ignore the dependence of Rel+ on 00, ReI+(~,w;~,T) = 

Rel+Ce,;Ii,T), then from (4.25) follow the fo~ms of Greenls functions (4.24) 

with we = p2/2m + Re·t(~;~,T). Upon insertion of the functions into 

(4.21), one finds 

+ + 

(
L + g a + aRe! ('p;R,T) .L _ aReI (12:R,T) .L)f( ·R T) 
aT m 3[ a2 aR a8. ae e, .... , 

= (.i) I.«o,w ;R,T)(1 + f(o;R,T)) - iZ>(o,w ;R,T)f(n:R,T} "- B'" 1;..... ~~...~-
(4.26) 

An equation of this form, written for fermions close to zero temperature, for 

momenta close to the Fermi surface, is known as a Landau-Silin equation. A 

Vlason equation emerges from (4.26), when one neglects the r.h.s., and for the 

self-energy takes the Hartree term, independent of e. 
In the case when it is not possible to ignore the dependence of Rel+ on 

00, but r is small around Re(G-1 )+ = 0, we may introduce. an occupation 

number corresponding to the zero of Re(G-1}+, and obtain akinetic 

equat ion for the number. We parametri ze the behav ior of G ~ in 00, around a 

solution w~ of Re(G-1)+ = 0, with 

;iG«e,w;E,T} = 2w 6(Re(G-l)+(~,w;B,T))n(e:E,T) 

= Z(e;!,T) 2w 6(00 - w
B

)n(e;8,T) (4.27) 

and 

(4.28 ) 
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where 

= 1 _ aRez+(Q,w:B,T) 
aw (4.29 ) 

We rely in this parametrization on the equality G> - G< = G+ - G- (see 

Appx. D) and the forms of G± following from (3.11) and (4.19) in the zeroth 

order with respect to r/e 

± 1 
G (12" w; B, T) = --....,.2:-------,+~-----

p 12m - ReI (E.,w ;8" T). :I: Le: 
, (4.30) 

w -

We insert the function G< into (4.21)~ in the form given by the first of .: 

equalities in (4.27), so the 6-function can be removed from under the Poisson 

bracket. In subsequent steps we exploit the fact that with 

'2 + 
e(£,w:B,T) = p 12m + ReI (e,w:R,T) 

and x = e,~,T, we have 

( RT)\ 
ae(l2.,we:E.,T) aw ( DT) ae p,w; , = ... _ ~ ae Q,w;~, 

ax w=w
ll 

ax ax aw 

-1 aWJl 
- Z -- ax· 

Upon integration over frequencies-we find the equation 

= Z(E:~,T)(+i) L«I?"wl?,;~,T)(l + n(e.:~,T)) 

- Z(£;~,T)iZ >(£,wE;~,T)nCI2:~,T)) 

Let us now turn to the evolution of local equilibrium. The rates of 

.temporal variations of the Green's functions will be set by a scale of 

nonhomogeneities in a system and may be arbitrarily small .. The 

Fourier-transformed Eqs. (4.13),(4.14),(3.11), expanded according to Eq. 

(4.31) 

-. 
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(4.19), provide us (Eq. (4.21)) with the conditions for a local equilibrium 

and the form of the functions (see Appx. E). -Apart from the limitations on 

the rate of temporal variations inherent to the ordinary Boltzmann equation 

(next subsection and Appx. G), it follows that the rate must be much smaller 

than r. (Note that since r now does not fix the rates of macroscopic 

variations, there is no need for r being small.) Depending on the smoothness 

of the expected equilibrium functions and the rates of macroscopic variations, 

the averaging in (4.17) may be lifted. As far as the evolution is concerned, 

the following occurs. The forms of the local equilibrium functions depend on 

a few parameters, which can be determined from the local particle, momentum, 

and energy densities. Although the evolution can be studied by using the 

kinetic equations, it is more convenient to use the local conservation laws, 

the hydrodynamic equations. These equations may be deduced from Eqs. (3.35) 

and (3.37), and in the momentum and energy cases the derivation involves an 

expansion of G2 over the interaction range (cf. Refs. [18,19J). The G2 in 

the equations (in the pressure) can then be perturbatively expressed in terms 

of the I-particle equilibrium Green's functions. Apart from the case of the 

ordinary Boltzman equation, the derivation of the conservation laws from a 

kinetic equation may be quite involved, especialy in case of a full 

generalized Boltzmann equation (4.21). One has to trace down the 

correspondence between Eqs. (4.13),(4.14), and (3.35),(3.37), in the procedure 

leading to the kinetic equation. The effort is not necessarily rewarding, 

because in general the' part of the pressure explicitly depending 6n~ih~ 

interaction cannot be directly expressed in,terms of the actual G- and L. 

4.3 Conditions leading to the Boltzmann equation 

From the derivation of the Boltzmann equation and analysis of the 

rejected terms, it follows that use of the Boltzmann equation in a homogeneous 

medium is conditioned by a weak sensitivity of the Boltzmann equation dynamics 
, 
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to uncertainties in energies of the order of r. In a nonhomogeneous medium, 

with r setting also the rates of spatial variations, use of the Boltzmann 

equation would be additionally conditioned by weak sensitivity of the dynamics 

to uncertainties in momenta of the order of rm/p. 

The Boltzmann equation limit can be directly seen when considering a 

disturbance of an equilibrium, by an addition or removal of particles of a . 

momentum~. For a uniform disturbance, it follows from the Kadanoff-Baym 

equations that 

(4.32 )" 

Equation (4.32) Fourier-transformed in microscopic and macroscopic times reads 

(see (E.4)) 

+ = of(~;T = 0) G (E.,w + fl/2) G-(I2,w -fl/2) 

of(2;T = 0) (G-(,Q,w -n/2) - G+(E,w + Il./2)) 

1 

1 
= ofCe; T = 0) ( 2 + 

w-!l/2-p /2m-Ret: Ce,w-.l2/2)-i r(£,w-.i2/2)/2 

1 
2 + w+.nJ2-p /2m-Rel. (~,w+.a/2)+ir(e.,w+.a/2)/2 

x . 1 
+ + 

.!2.-Rel (e;w+Jl/2 )+Re! (e,w-.a/2 )+i (rCe,w+12./2)+ r( rJ."w-fl./2)) /2 

If details in the w-dependence of oG< within the range of r are not 

important, and the self-energies vary weakly within that range, we can 

approximate the r.h.s. of (4.33) with 

(4.33) 

(4.34) 

: 
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x 

(4.35) 

with the auxiliary function 

- G < (e., t; T) G< (g,1 ' t ; T) G > ( Il.i. ' - t; T) G > ( Ri ' -t ; T) (4.36) 

Proceeding toward the Boltzmann equation we approximate the function F with 

where 

and 

= (1 ~ f(e.;T))(l ~ f(e.1;T)) f(~';T)f(l1i:T) 

- f(e.;T)f(l?l;T)(l :j: f(I2;;T))(l ~ f(ei;T) 

o 
- W I 

~1 

(4.37) 

(4.38 ) 

(4.39 ) 

We shall look under what circumstances we can ignore theQ/2 terms in the 

denominators at the.r.h.s. of (4.35), and replace the respective expresion in 

the bracket with 2~6(w). (The r.h.s. of (4.35) corresponds then to the r.h.s. 

of Eq. (4.21); the' fi rs t-order terms in the 12.s from denomi nators correspond to 

the terms at the l.h.s. of (4.21).) With IL- r, the accuracy of the 

approximation w·i~'ll reveal the accuracy of the Boltzmann equation (the 

frequency structure of the function F, Eq. (4.37), will be valid with an 

accuracy of the order r). With (4.37) we may rewrite the r.h.s. of (4.35) into 
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in the most involved case of Rer+. Equation {4.34} occurs to represent a 

solution to the kinetic equation {4.31} {with an adequate boundary 

condition}. For the simplercas\s of Re~+, proper approximations to {4.33} 

represent solutions to Eqs. {4.26} or {4.4}. 

If r is comparable with particle energies in a given system, the dynamics 

may not be described with the Boltzmann equation. 
! 

This is to be attributed to 

the time-energy uncertainty principle because of the appearance of ~ in the 

comparison of particle energies with the time of variations in a system. A 

situation like that occurs in high~energy nuclear collisions which are the 

topic of a following paper of the series. Let us mention that in the 

low-den~lty limi~ r~ i2:> and flr-1 constitutes a mean time between 

succesive particle-particle collisions. In the Born or T-matrix approximations 

to the self-energies ~r-1 is of the order of l/(ncrv}, where n is a density 

of particles, cr - an average total particle-part1cle cross-section, and v - an 

average particle velocity. 

In judging the applicability of the Boltzmann equation to a given system, 

one has not only to take into account the magnitude of particle energies. The 

possibility of describing a system with the Boltzmann equation can be further 

limited by the properties of an interaction. In Appx. G we examine values of 

microscopic variables that give dominant contributions to integrals (4.17) of 

Green's functions with self-energies. The values of variables correspond to 

energy and momentum dependence of self-energies. The analysis of Appx. G is 

performed for a system in thermodynamic equilibrium with self-energies in the 

Born approximation. Below, we analyze the equation of motion for the Wigner 

function, Fourier-transformed in macroscopic time. 

Equation (4.1), with the self-energies in the Born approximation, 

Fourier-transformed in the macroscopic time, yields the following equation for 

the momentum distribution in a homogeneous system: 
,~ 

) 

/ 

) 

, 
/ 
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• __ ~/2-iE ) 

(4.40 ) 

The dependence of the remaining part of (4.40) on Ae will be decisive in 

replacing the dfference in the hracket by 2w6{Ae). The dependence will be set 

by properties of the particle distribution and properties of the potential. 

From (4.40), it follows that for the Boltzmann equation we must have pAp/m » 

r, with p a characteristic particle momentum and AP a scale of variation of 

the particle distribution in momentum. The same condition must also be 

satisfied when AP is taken as the scale of variation of the potential with the 

mOlTlentum transfer. For a potential with a spatial range 11, the condition 

reduces to p/nm »r. The condition states that the interaction time. 

evaluated as the time of flight through the potential range, must be much 

smaller than the time between the collisions. The condition related to the 

potential is classical, as opposed to the condition related to the particle 

distribution. 

In Appx. F we present an analysis similar to the above, for self-energies 

in the T-matrix approximation. Conditions for the Boltzmann equation, related 

to the interaction, read pAp/m » rand Aw »r, with AP and Aw scales of 

variation of the scattering matrix with momentum transfer and energy, 

respect i ve 1 y •. 
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5. Dynamics for a correlated initial state. 

The perturbation expansion and Green's function equations of motion, 

outlined in Sects. 2 and 3, apply to initial states that admit a Wick 

decomposition. This is a considerable limitation when the evolution starts at 

a finite time. If one wanted e.g to include a strong repulsion in the nuclear 

interaction at small distances, then the thus-far obtained results would be of 

a little use. In Appendix H we present a perturbation expansion and Green's 

function equations of motion for a completely general initial state. Below we 

shall discuss a practical method of switching on the correlations in the 

initial state. 

A correlated initial state may be prepared from a noncorrelated state 

through an imaginary-time evolution. The technique is applicable when the 

initial state can be defined as a lowest'eigenvalue state of certain operator 
,.. 
~_,(also when the initial state is defined with the equilibrium density 

operator). In contrast to the perturbation expansion of Appx. H, the 

resulting perturbation expansion will not contai~ correlation matrices 
..... 0 
Gk. It should be noted that, when the noncorrelated state is a 

,.. 
nondegenerate lowest eigenvalue state of an operatorx,°, and when the 

imaginary-time evolution lasts infinitely long, then the Goldstone expansion 

may be obtained for the correlated state. Implementation of the 

imaginary-time evolution into the nonequilibrium Green's function method has 

been suggested in Ref. [20J; see also Ref. [21J. 

Let us take a certain state I~> and expand it in a basis of eigenstates 
,.. 

[IL 1- of an operator J{, LIn) 

\ii'>= L a I'l!. > n n n 

Then 

(5.1 ) 
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(5.2) 

1\ 

are the eigenvalues oflt, and If a > is the normalized projection 

of \~> onto the lowest eigenvalue subspace onto which the projection does not 

vanish. According to (5.2), a projecting out of the lowest eigenvalue state 

corresponds to an imaginary-time evolution from it = i<bto it = O. On 

assigning the resulting state to a system at a time to we put itt = t - to. 

When evaluating an expectation value at a time to 

ti A ti 
<4

0
101'0> = lim <~Ie- .. 0 e-,. It> (5.3) 

, t'~oa ~I _Crt -'t)(,/.:F. 
-. <I;r e e ~> 

we deal with an evolution running along a ~ontour from Fig. 4. When 

eval~ating expectation values of Heisenberg picture operators at tl > to' 

we deaf with the evolution contour extended along the real time axis, Fig. 5. 

If the pure state expectation values at the r.h.s. of (5.3) are replaced by 

those with respect to a general density operator, then the imaginary-time 

evolution occurs to project out, similarly as for a pure state, a part of the 

density operator within a subspace of a lowest £. An initial state of a n . 

real evolution, specified with an equilibrium density operator of a 

temperature T = (kB~)-l, corresponds to an imaginary evolution that starts 

from a un ity operator 1 

(5.4 ) 

Because of a cyclic property of the trace, it is not important how the 
, 

imaginary evolution interval ;s positioned with respect to the real time axis: 
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contours corresponding to (5.4) and to an expectation value of a Heisenberg 

picture operator are presented in Fig. 6. In the zero-temperature limit a ~ 
A ~ 

~, one obtains, starting from the operator I, a projection operator onto the U 

lowest eigenvalue subspace. This procedure is more slowly convergent than 

starting with an imaginary evolution from an adequately chosen state, e.g. a 
~ 

lowest eigenvalue state of a I-particle operator ~o. In the numerical 

calculation of the next paper of the series we start from such a state, and 

the imaginary evolution lasts a finite time. The contours from Fig. 7 

correspond to the finite time imaginary evolution. 

We shall now find a Green's function perturbation expansion. We begin 

(with a consideration of the expectati"on vallie of an operator with one time 

argument. The operator expectation value, with respect to a state obtained at 
,. 

to through an imaginary evolution, will be denoted by «OH(t»>. We have. ~ 
A ~ A ~ 

«OH{t»> = «uS(to,t) ° US(t,to»> (5.5) 

where the Schr?dinger picture evolution operator 
" 

US(t,tl) = e-iH{t-t ' ) 

From the method of preparation of the state at t , it follows that o 

= ,. 
<US(t -it .t +it » 

000 0 

(one mlght eventually introduce at once the limit t ~ .... ). The evolution o 
operator for imaginary times is 

A 

Us(t,t l ) = e-iJt(t-t ' ) 

The expectation values <.> in (5.7) are taken with respect to a state from 

which the imaginary evolution starts. With a notation 

(5.6) 

(5.7) 

(5.8) 
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A 

.. = {~H H(t) 
for imaginary times 

for real times , 

the evolution operator on a contour from Fig. 7b is 

~ith the integral running along the contour interv~l from tl to t. The 

expectation value (5.7) may be written as 

,. 

(5.9) 

(5.10) 

(5.11) 

We write the index S at the ° operator to stress that this is a Schrodinger 

picture operator--most ofte~ independ~nt of ti~e. The time argument of the 

operato~ dete~mines the position in- the operator product, where the operator 

istb beplac~d by the t~me~ordering operator on the contour. We may 
~ A 

generalize the expectation value of an ° operator ata time t, «O(t»>, to 

imaginary times, by defining the expectation value with a r.h.s. of (5.11). 

" We shall assume a partition of H(t) 

with AO(t) a I-particle operator. The free evolution operator is 

(5.13) 

There holds 

+ (5.14) 
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Equation (5.14) may be verified by ascertaining that the r.h.s~ of (5.14) 

satisfies the same differential equation on a.contour as (5.10), with the same 

boundary condition at t = t'. Accordingly we have, for an expectation value 

defined with the r.h.s. of (5.11), 

" «O(t)>> 

AO , "1 " 
<T[U (to-ito,to+ito) exp (-i 1 dt1HS(tl))Os(t))J> 

= --<-T[-::. 0:-;0;0'-( -t o---i-( o-,-t-
o

-+ ,-. '[-0-) -e-x-p-(---i -~:--d-tl--:A:-:r~-( t-
1
-)-) -, >- (5.15) 

" 
We shall assume that the operator ~ and a density operator of the initial 

state of the imaginary evolution both commute with a particle-number 

operator. Further, we shall assume that the initial state of the imaginary 

evolution admits the Wick decomposition. I.e., we shall assume that 

noninteracting many-particle Green's functions (defined by expectation values 

of the type «"» with ~1(~) 5 0) factorize into I-particle Green's functions 

iGo(l, 1') = «T[~(1) q/(l') ,»0 

<T[UO(to-ito' to +i\) q,s(1)~ 1S(1' )]> 
= 

<UO(to-i~o,to+ito» 
(5.16) 

The problem of the Wick decomposition within the imaginary-time evolution is 

discussed in Appx. A. 

If both il and Al are the same 2-body potential interaction, and the 

difference between the evolution generators in real and imaginary times lies 

only in the I-particle parts of the generators, then the Feynman rules for 

evaluating the Green's function 
" At 

iG(l, 1') = «T[\II(1)lV (1')J» 

= " <US(t -it ,t +i1 » 
000 0 

(5.17) 
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are such as in Sec. 2. The time integrals are carried along the contour from 

Fig. 7b. The contour must extend above the largest of the real times of the 

evaluated Green's function. A reduction of a contour may occur only for real 

times, and a mi.nimal contour is the one from Fig. 7a. The disconnected 

dia~ram~ dQ not now v~nish, but are cancelled by the denominator in (5.17). 

With, 

and the function h for real times 

the Green's function equations of motion on the contour have a form 

i a~ G(1,li) - Jd~2 h(~1'~2;t1) G(~2,t1,11) 
1 

= 0(1,11) + fd2 L(1,2)G(2,1 I) 

- i a~ll G(l,l l
) - Jd~2 G(1'~2,t11) h(~2'~11;t1 I) 

= 0(1,11) + 1d2 G(1,2) L(2,1 I) 

The function 0(1,11) = 0(t1,t1I )o(ol- ~11)' and the function 

0(t1,t1I) is defined on a contour in the complex time plane 

jdt1Io(t1,t1I)F(t1I) = F(t1) 

(~.18) 

(5.19 ) 

(5.20a) 

(5.20b) 

(5.21 ) 

For real times, the Kadanoff-Baym equations have similar forms to (3.6) and 
, 

(3.7), but they contain extra contributions from imaginary parts of a 

contour. An equation for G«1,1 1
), where t1 is real, has e.g. the form 



t -it' o 0 
+ J d2 r«1,2)G>(2,ll) 

tll 
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(5.22 ) 

In Ref. [2J the Kadanoff-Baym equations have been derived for an initial 

state of a real evolution specified with an equilibrium density operator (Fig. 

6). A nontrivial evolution for the real times has been achieved by disturbing 

the system with an external potential. 

". 
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6. Final remark 

The:,lnvestl gat; ng thJ~.Green I s funCtion methods in -the paper has lead to 
-, 

several new result's. We have clarified the transition from the Green's 

function~quation~ to the kinetic equations, and the an~lysis of the 

thermodynamlc equlibrium on the basis of the Green's function 'equations of 

motion~We developed :the Green's function methods on a: contour in the complex 

time plane, and the perturbation expansion arid Green's function equation~ for 

a general initial state. The results should be of use in problems of nuclear 

physics, as well as in other branches of physics. 
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Appendix A. Wick decomposition 

The consideration will be confined to initial states specified by density 

operators commuting with a particle-number operator. For such states, an 

expect~tion value of a field-operator product vanishes, if the ptoduct 
", ~:i ',' " ' ", '" 

contains a different number of the If operators from a number of 'Itt. 

A state admitting the Wick decomposition is a state for which expectation 

values of products of the interaction-picture field-operators (many-particle 

Green's functions) factorize into expectation .values of pairs of operators 

(I-particle Green's functions) 

,.." "" ",,, ,,1\ A ,.. ,.. A 

<AB ... / YZ> = A·B· ..• Y··Z·· + A·B·· Y·Z·· + ••• 
",'. 

= sum over all possible contracted products, (A.l) 

where the contraction 
". " ,," 
A·B· = <AB> (A.2) 

For the fermion· operators, when one rearranges the ~rder of the operators in a 

given term of (A.I), with intention tG bring a contracted pair of operators 

next to one another, the term is to be multiplied by the sign of the performed 

permutation. In Eq. (A.2) the operators are in the same order as they appear 

in (A.I).· When deriving Feynman diagrams, one applies the Wick decomposition 

to operators which are in a specific time~order at the l.h.s. of (A.I). 

We shall show that states specified by density operators of the form 
,. 

.... 
exp(4t') (A.3) p = 

" with Jt bei ng a I-particle operator, admit the Wick decomposition. The l.h.s. 

of Eq. (A.l ) wi 11 satisfy the same differential evolution equations in every 

, field-operator argument, as the r.h.s. Therefore the'consideration of the 

factorisatiori (A.I) may be limited to a one set Of times, e.g. when all the 

interaction-picture operators are taken ,at the initial time \j. 
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We have 

(A.4) 

"t with lj real and aj being creation operators of the 1-particle basis, 
,. 

that diagonalizes Jt. Let us expand; in a basis of the Hartree-fock states 

l£nj1> - the states that arise from applications to the vacuum of sets of 

1-particle creation operators 

1 "tnjl Iln.» = {1]~ (a.) )0> 
J J 'n.! J 

J 

We have 

and 

~ = ;L,. exp(~JLn.}I{n.~><{ni~1 
Injl J J J J J 

In the boson case, in order that the state gives a finite particle-number 

expectation value, we must have Aj < O. Let us note that an unoccupied 

I-particle state jo corresponds to JS ~ -00. The vacuum corresponds to 
. 0 . 

all ~ ~ -00. For fermions, a projection operator onto the Hartree-Fock 

state mat be obtained from S/Tr(p} in the limit of Aj ~ -00 for the 

unoccupied states j, and "t ~ + 00 for the occupied states. For fermions 
J 

.... ,. I't ,.. "t . "tl\ I't" o/Tr(o) =T;Tr<a.a.>a.a. + <a.a.>a.a.] 

At" with <a.a.> 
J J 

J"JJJJ JJJJ 

-it. -1 
= (e J + 1) 

11 

(A.5) 

(A.6) 

We shall prove that for a density operator (A.3) and a set of anihilation~ 
,. " 

••• ',ay ' a z ' there holds and creation dperators ~a' ~b' 

Tr(~~a~b} Tr(p~c ... ;y~z) 
= Tr(6) Tr(p) 
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Tr(~~a~c) Tr(~~b~d ••. ;y;z) + 

~ Tr{·Ii) Trf 0) . 
+ Tr(~~a;z) Tr(~;b;c~'~ ~y) 

Tr(S) Tr(8) . 
(A.7) 

The subsequent applications of (A.7) lead to Eq. (A.l) for the annihilation 

and creation operators. The latter implies Eq. (A.l) for the field operators, 

since these are linear combinations of annihilation and creation operators. 

We have 

Let uS.take 

and for fermions let: us anticommute, and for boson~'commute, the .operator Qa 
to the right. Upon· application of (A.B) we find< 

Tr{o) = i:l:: 3 Tr ( (i) . a 

[ ~ ~ J T (.. • 4 ) aa,ab-:I:: r pa ••• a a 
. C Y z 

+ ••• + , (A.9) 

where [. ,-'+ denotes an anticommutator, and [. , . J a commutator. For two 

operators (A.9) takes form 

Tr(o~a;b) 
Tr(~) 

; A combination of (A.9) and (A.I0) yields (A.7). 

(A.10) 

Upon arriving at (A. I) or (A.7), one may take limits OfJLj ~ -00, and in the 

fermion case.R.j ~ +00, proving thereby the Wick decomposition for the 

limiting forms of ~/Tr(;). It should be pointed out, however, th~t for the 

vacuum state, or the fermion Hart~ee-Fock states, a more direct proof of the 

Wick decomposition may be obtained through the introduction of an operator 
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normal-product and an application of the Wick's theorem r31. 

Now we shall show that all states which admit the Wick decomposition are 

described by the density operators of the form (A.3), involving eventuallY the 

limiting forms of n/Tr(o) with ~j ,) :l:oo. Let us take a state that admits 

the Wick decomposition and is described by a density operator ", n • We want to 

show that there exists a density operator of the form (A.3) such that 

~'/Tr(5') = 3/Tr(~) (A. 11 ) 

When taking expectation values of arbitrary field-operator products from the 

sides of Eq. (A.Il), we have by assumption-the Wick decompositions for the 

both sides. In order to prove (A.ll) it is sufficient to show that there 

exists an operator ~, of the form (A.3), such that the expectation values of 

pairs of- the operators agree with those from ~'. The I-particle density 
lOt" "t 1\ 

matrix <0/ (~')'VC~» = Tr(o'\jI (~')"'(~))/Tr(p') is hermitian and may be 

diagonalized. Generally 

(A.12) 

" where aj are annihilation operators of a basis of states with wavefunctions 

!i.(x). For a basis that diagonalizes (A.l2), <a!,a.> = <~~a.>o., .. For 
Jrv _ - J J J JJ J 

lit ,. 
fermions <a.a.> ~ 1, which holds for any state of the system and any 

J J 

l-particle state~ as can be seen by expanding the density operator in a 
II 

Hartree-Fock basis. We construct the operat6r~, Eqs. (A.3) and (A.4), using 

the operators of the basis ihat diagonalizes (A.12), with 

It. 
J 

1 ( 1 :<:1) = - 09 -"1-"- ~ 
<a.a.> 

J J 

(A.B) 

,.t,. 
The case of <a.a.> 

J J 

lit ,. 
= 0 is to be understood as Jl. ,) -00, and <a.a.> = I for 

J J J 

fermions as J\.. ,) +60. With Eq. (A.I3), the expectation values of the pairs 
J 

of the field operators, obtained from ~, agree with those from ;', and this 
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completes the proof. 

Let us now discuss a Wick decomposition in connection with an 

imaginary-time evolution (·Se.<;:t., 5). In that case a Wick decompositi.onwill 

stand for a factorisation of a noninteracting expectation value of· a 

field-operator~product: 

It. A".,,, • 0 ,." ~ 

«AB .·.~yz»= A·B~ 
".'" A ,. y··zo· + A·B·· 

= sum overall possi6le corit~acted products 

with the contfaction' 

A·B· = «A8»0 

A A 
y·Z·· + 

The operators at the l.h.s. of (A.14) are to be ordered according to the 

(A.14) 

(A.lS) 

time-arguments from a contour in the complex time plane .. The contour may be 

arbitrarily deformed along the real axis (but not alons the imaginary axis), 

running back and forth, as is in fact in general occuring with an evolution 

contour appropriate for the l.h.s. of Eq. (A.l):' When all operators have real 

time-arguments, then Eqs. (A.14) and (A.IS) reduc~ to Eqs. (A.l) and (A.2). 

Expectation values in (A.l) and (A.2) are to be taken with respect to the 

density operator 

(A.16) 

where 'ito is the generator and t the duration of the imaginary evolution, and 
~ o specifies the initial state of the imaginary evolution. The real-evolution 

part of an operator ~o from (A.14) and (A.IS), ~emaining upon extraction of 

the imaginary part into (A.l6), corresponds to the interaction'~ictureof the 

operators in (A.l) and (A.2). 

The l.h.s. of Eq. (A.14) will satisfy the same differential evolution 

equations on a contour, in every field-op~rator argument ~s the r.h.s. A 

consideration of the factorisation may therefore be limited to one set of 

times, and we shall take for convenience all operators at an initial time of 
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the real evolution to' From the previous discussion it follows that the 

density matrix (A.16) must be of the form (A.3) with (A.4). 

Equation (A.16) and the Baker.-Campbe11-Hausdorff (BCH) formula [22J, imply 
A 

then that ~ must also be of the form (A.3). With (A.16) and (A.3) for ~, the 
A 

BCH formula will express the density operator; as an exponential of an 
A A "" 

infinite series of commutators of Jt and 1<.0. With A and 1<,.0 being 

I-particle operators, the series will consist of l-partic1e operators. Let 
. .. 
p = exp(e.) 

,. 
; = exp (Jt) 

with 

A. 

and in a basis that diagona1izes jLo 

and 

;. At ,. 
1l=2:Jt bb I/l ,mn mn m n 

Then, on studying matrix elements of p between I-particle states, one finds 

that the matrix A equals 

-t(hm + hn)L; * (1 . 
!t = 10g(e 1 a1ma1ne ) 

The logarithm of a matrix in the bracket is well-defined, because the matrix 

is hermitian and positive definite. 
" . 
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Appendix B. Variational derivation of the perturbation expansion 

We introduce a Green's function in the presence of an external potential 

(B.1) 

where 

(B .,2) 

Here 1=(~1' t 1 ), 5d1 ={dt~ f d~l. When a given expression wi 11 be varied 

wjtr respect to the potential U, we shall assume that U is different on each 

branch of the contour. In the final results the potential U is to be put equal 

to O. 

It ca'n be sh'own (see Eqs. (3.14), (3.15-), (3.35), and (3.36)) that the 

Green'~'function (B.1) satisfies the equation 

2 

" (i: t + 2~ -'" U(l))G(1,l'J U = 6(1,1') =t ifd2 V(1,2)G2(1,2:1,,2~)U " 
1 

with the 2-particle Green's function 

Here 6 (1, 1') :: 6 (~1 - ~1') 6 (t1 ' t 1, ), V (1, 1') = V (~1 - ~1') 

x 6(t1,t1,) . 

Next we introduce a noninteracting Green's function 

where 

(B.3:) 

(B.4 ) 

(8.5 ) 

(B.6) 
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The noninteracting Green's function satisfies the equation 

(B.7) 

Equat ions (B. 3), (B. 7), and the identity 

(B.8) 

imply an equation for the Green's function 

G(1,l')U = G°(1,l')u + ifdl" 1d2 G°(l,1")uV(l",2) 

x(:U(2) '~(lll,l')u ~ G(11l,1')uG(2,2+)u) (B.9) 

From (B.9) a perturbation expansion for G may be obtained. The 

first-order terms arise from replacement of G on r.h.s. with GO. The 

second-order terms emerge from insertion of the first-order terms into the 

r.h.s., and the procedure may be continued. In the first step a knowledge of 

5Go/5U is necess~ry. Commonly one would conclude, from an equation 

following from (B.7) 

2 
.a 'VI 0 ° ° (lat

l 
+ 2m - U(1)) oU(2) G (J.,l')U = o(1,2)G (2,1')U (B.lO) 

and Eq. (B.7), that 

(B.11) 

The subsequent insertions into Eq. (B.9) and use of Eq. (B.ll) yield the 

perturbation expansion known from Sect. 2. 

Since we never referred to the properties of an initial state, the above 

would indicate that the perturbation expansion relies always on the 

noninteracting I-particle Green's functions GO, independent of the 

properties. In fact an eventual error arises when one concludes Eq. (B.ll) 
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from Eq. (B.10), and one 'ignores the possibility of adding a solution of the 
." . . 

homogenous differenti aT equal ion. The presence of a homogenous equat ion 

solution is set by the initial conditions at to. From the definition (B.5) 

it follows that 

and th~ higher variational de~ivatives of GO introduce the higher 

nonin'teracting many-particle Green's functions into the expansion. The 

( B .12 ) 

adopti6n of (B.11), instead-of the more general (B.12), corresponds to the 

assumption of the factorisation of all initial many-particle Green's functions. 

(The r,eadfng of Appendix H may clarify this aspect of the problem.) 

.', . 
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Appendix C. Perturbation theory rules upon separation of the contour into 

branches 

The rules serve for the evaluation of a specific Green's function type: 

'G< 1 , 'G> 'Gc 
1, 1 , (The rules may also be employed in evaluation 

of a specific type of self-energy or other functions.) 

1. Draw a line dividing the plane into two parts that will correspond to the 

two time-branches - chronological and antichronological. ' Place the 

points, corresponding to the function arguments, at one branch or the 

opposite branches, according to the type of the evaluated function. Draw 

all topologically-distinct connected and directed diagrams. The diagrams, 

which are differently cut by the division line, are distinct. The 

division line may not pass through the potential. 

2. A particle line represents iGo<, iGo>, iGoc,or iGoa , depending on 

the line start and end positions. 

3. To an interaction line there correspo~ds a factor -iV(~1 - ~2) 

x 5(t1 - t 2). 

4. To an interaction line at the antichronological branch there corresponds a 

factor (-1). 

5. To a single particle-line, that forms a closed loop or is linked by the 

same interaction line, there corresponds a function iGo<. 

6. For fermions attribute to a diagram a factor (_l)F, where F is the 

number of particle loops. 

7. Integrate all internal vertices over a whole space, and in time from to 

to the maximum argument of the evaluated function. 

8. To every anti chronological-side time-integration there corresponds a 

factor (-1). 

Jointly the rules 4 and 8 give a factor (-1) for every antichronological-branch 

interaction which gets both vertices integrated. The rule 7 necessitates a 
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complement. Let the division line into branches be a dashed line and let us 

introduce a vertical time-axis, see Fig. 8. Then the diagrams from Fig. 8 

give expressions that differ only with a sign. Generally it is sufficient to 

carry the internal time-integrations in a given part of a diagram up to the 

maximum external time, because jointly the integrations above that time cancel 

out. 
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Appendix D. Functions on a contour 

Let us take a contour with a top at a time t max ' see Fig. 9. The 

Green's function on a contour possesses the following symmetry property: when 

tl > t2 then G(tl,t1'~2,t2) = G(~1,tI'~2,t2)' where tI has the same time-axis 

value as t 1, but lies at the opposite side of the contour ((ti)T:: i 1). The 

same occurs for the second argument of the Green's function, when t2 > t l . 

We shall use below the following notation: 1 = (~l,tl)' IT = (~l,ti), 1dl: 

1dtl(d~1' ~(l,l') = o(~1. - ~J.,hl)(t1,tll). If the functions F and C, that have 

no singularities for equal time-variables on the contour, possess the above 

symmetry, then the function 

E(l,l l ) = fd2 F(1,2)C(2,11) (D.l) 

also possesses the symmetry. Only the time-integration is relevant here. Let 

e.g. tl > tIl' then for t2 > t1 F(I,2)C(2,1 1) = F(1,2T)C(2T,1 1), 

and the sides of this equality enter the integral with opposite signs. The 

integration above t1 cancels out. With F having no singularity, only the 

values of F for t2 < t] enter the integral, and from the symmetry of F 

follows the symmetry of E in t l . The value of E depends only on values of F 

and C for t < t l . Let us consider a possibility of singularities in F or C 

for equal time-variables on the contour. In order that E possesses the 

symmetry, the effect of a singularity must not depend on the side of the 

contour at which the singularity is placed. Generally such singularities are 

of the form 

(D.2) 

If both F and C possess singularities of this type, then the singularity of E 

is also the type (D.2) •. From the symmetry property of the functions, it 

follows that the considered functions are of the form 
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',' F(l,?) = F6(1,2} + G(t1,t2)F>(1,2) + G(t2,t1)F<(1,2)' , (0.3) 

with F6 the singular part of the function (of the type (0.2)), and with the 

functio~s F~ defined on the time-axis. 

The space of the functions having the symmetry prope~ty, and supplemented 

with the form (0.2) of singularities, is closed with respect to the operation 

defined by (0.1). We assume that Ghas an inverse in that space 

(0.4 ) 

From (0.4) and the symmetry of the functions, it follows, that G-l does not 

depend on the choice of contour (i.~~,t , Fig. 9) and that G-1 with , ",max 

;';ti~e-arguments <t depends only on G with time-arguments <to 

The inverse of GO, Eq. (2.30), is 

. : ,. " , \]2, " 

( i ~ t + 2~) 0 (1 , 2 ) 
1 

(0.5) 

which follows from the equations of motion of the interaction-picture 

'field-operators, and Eqs. (2.29) and (2.12). The (proper) self-energy will be 

defined by 

FromEq. (2.27), .it follows that under complex conjugation we have 

[iG(1,2)]*=iG(2T,IT), and further 

(0.6) 

(0.7) 

For the functions iG< , Eqs. (2.3) and (2.10), we have [iG>~'(1,2)Jt =iG)<' (1,2),' 

i.e. the functions iG~ ar~ hermitian. Let us study the properties of G- l 

under conjugation. Upon taking hermitian conjugates of the sides of Eq. 

(0.4), we find, with (0.7), 

5d2 (_)G(IT,2T)[G-1(2,1,)]t = 0(1',1) 
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We change the sequence of integration of the sides of the contour, i.e. in the 

functions we change the argument 2 into 2T, and simultaneously we change the 

overall sign, 

Changing 1 and I' into IT and 1,T and using 

we find 

jd2G(1,2)[_G-1(2T,1,T)]T = 0(1,1') 

which implies 

compo (0.7). 

We shall consider functions of the form (0.3), for which 

[iF(1,2)]t = iF(lT,2T) 

To th i s class belong the funct ions GO, G, Go-I, G-1, Z, and other 

(0.8) 

(0.9) 

(0.10). 

functions with which we shall deal in this series. From Eqs. (0.10), (0.3), 

(0.2), (0.8), and the equality g(t2,t1) = g(tI,t~), it follows 

that 

We shall define, on the time-axis, the retarded and advanced functions 

(0.11 ) 

(0.12a) 

(0.12b) 

where the singular part is taken such as on the chronological branch. We have 

the relations 

(0.13 ) 

and 

(0.14) 
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.; '~ 

We may define the hermitian functions 

+ 1·+ ..:. 1 > <) I mF (1 , 2) == 2 i ( F (1, 2) - F ( 1 , 2)) = 2 i (F (1, 2) - F (1, 2) , 

whe~e €(t1-t2) = Q(t1-t2)-Q(t2-t1). We have 

ReF+(1,2) = F~(1,2} + ~€(t1-t2)ImF+(1,2) • 

We shall show that a Fourier-transform in relative variables, of a 

. hermitian function, is real (see Eqs. (2.5), (2.8), (2.11)). We use a 

4-dimensional notation 

We have 

H*(P:X) = Jd4x e- ipxH*(X+X/2,X_X/2) = Jd4x e- ipxHt (X_x/2,X+X/2) 

(D.15) 

(D.16) 

(D .17) 

(D .18) 

=fd4X e- ipxH(X-x/2,X+X/2) = H(p;X) . (D.19) 

For the further purposes of the paper, we shall define the hermitian 

functions 

A(l,2) = -2ImG+(1,2) = i(G>(1,2) - G<(1,2)} 

r(1,2} = -2Im~+(1,2) = i(~>(1,2) - Z«1,2)) 

From (2.12) follows 

~ ~~ A(e,w;~,T) = 1 

According to (D.15), upon identification of the singular part of the 

self-energy (Sect. 3), 

,,+ + (dw' rCQ,w' :E,T) 
ReL (,!,w:~,T) = !HF'c~;B,T} J2tr w _ w' • 

(0.20) 

(D .21 ) 

(D.22) 

(D.23) 
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Appendix E. Thermodynamic equilibrium 

We shall discuss a system that has achieved a uniform equilibrium. The 

functions G and l will depend only on differences of the arguments, and we may 
. 

introduce Fourier transforms 

) 

We write the Fourier-transformed functions G ~ in the following way 

+iG«2,w) = f(E,w)A(e,w) 

iG>(E,w) = (1:;: f(e"w))A(e;w) " 
with A = i(G> - G<) (Eq. (0.20)), and !tIe define with Eqs. (E.2) the 

function f. For a freely evolving system 

o '2 A '(R,w) = 2w~(w -p 12m) 

From the Fourier-transformed Eq. (3.11) (t ~ -00) we obtain o 

and we find that A has a Lorentzian shape 

A(e,w) _ r(Q,w) 
- (w - p2/2m - Re[+(e,w))2 + (r(e,w)/2)2 

(see the end of Appx. 0). We have 2 

(E.I) 

(E ',2:a) 

(E.2b) 

(E.3) 

(E.4 ) 

(E.5) 

f ~~ A(!?-,w) = 1 (E.6) 

2 In connection with convergence problems encountered in a nuclear 

application of the Green1s function method in Ref. [231, we would like to 

mention that there exists a normalization condition for the function r. The 

condition can be deduced from Eqs. (3.19) and (3.20), and the form of the 

current. The condition. relatin~ the width-function r to the bare interaction 

and the particle-hole fluctuation-function, has a form 
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and 

+. ti>Jdw ' r(R,w ' ) . ReI (p,w) = lHF(p). + J -2-··' I 
'V "" 'If W.,.. W 

(E.7) 

The function A(Q,w), the 's'o~cal1ed spectral function, may be interpreted as a 
. ~ , ; 

function weighting the frequencies w for a given momentum E. The total weight 

of A is equal to 1. With +iG«R,w) and iG>(~,w) respectively 

distributions of particles and holes in momenta and energles, the function 

f(e,w) obtains an interpretation of the occupation of states (~,w). 

A sum of the Born diagrams for the self-energy, Eqs. (3.33) and (3.34L 

gives in a stationary uniform system 

- .1.<. ) JdE1dWl Jd£'dw ' fd~idwi (2'1f)4 6 (n + D _ pi ) 
+ 1 B (e" w =. 4 4 (2 'If) 4 ~ 'N1 IV - ~i ' (2'1f) (2'1f) 

x 6(w + wI - Wi -,wi) }(V(~_~I)"+ V(~_~i))2A(e,1,w1)A(B"w') 

x A(lli,wP(1-.: f(~l'wl))f(rL"I1)')f(l{i'wP (E.8a) 

(L8b) 

In (E.8b) we do not write explicity that part of the r.h.s. which is the same 

as in .Eq. (L8a). The expression (E.8a) accounts for scattering of particles 

We shall quote here only the direct term,which may be written as 

Pd = f dQ'

3 (V(l2,,))2 0(R.' ) = J ~ij'3 fdw ' (V(~,))20(1l"W') 
(2w) . (2w) 2 'If 

where 0(1,2) = <gH(1)~H(2», and ~(l) = ~(1)- <~(1». (Camp. Eq. (2.11) 

of Ref. (24 J . ) 

I 



-66-

Born-approximation scattering cross-section. The function ~il~(£,w) is 

seen as a scattering-in rate into (~,w) due to these processes. Equation 

(E.8b) accounts for the inverse processes, and describes the scattering-out 

rate from (p,w). See also the forms of self-energies in the T-matrix - . 

appro~imation~ Eq. (F.22). 

On Fourier-transforming Eqs. (3.9) and (3.10), and subtracting the. 

resulting equations from one another, one finds the detailed balance equation 

r«e,w)G>(e,w) = Z>(~,w)G«e,w) (E.9) 

Equation (E.g) expresses the equilibrium between the scattering-in of 

particles into (e,w) and the scattering-out from (~,w). The detailed balance 

equation will allow us to find a form of the function f(p,w). We shall 
~ 

present below an argumentation which generalizes an argumentation given 

sometimes in considerations of the Boltzmann equation. 

The self-energy Z may be expreised solely in terms of the Green's 

functions G, on using skeleton (irreducible) diagrams, see Ref. [2S]. 

Examples of such diagrams are the Hartree-Fock and Born diagrams. Diagrams 

for -iZ~ , obtained ac~brding to Appx. C in the space-time rep~esentation, 

possess the following, important for the subsequent discussion, properties in 

the Fourier-transformed variables (the top of the contour is pulled to + ~ 

before introducing the transforms): energy and momentum are conserved in the 

vertices, an interaction line corresponds to -iV(~), at an antichronological 

branch we have for a particle line iGa(e,w), for every interaction a factor 

(-1), for every internal interaction-vertex a factor (-1) (jointly a factor 

(-1) for every internal interaction), at a chronological branch a particle 

line corresponds to iGc(~,w), particle lines crossing the division line 
) 

correspond to iG z (~,w), all independent momenta and energies are to be 

integrated over. From the relation [iGc(1,1')l t =iGa(1,1'), follows 

[iGc(p,w)l*=iG a(p,w), according to Appx. D. 
~ ~ 
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Let us take a certain 'diagram that gives a contribution to -i~<. From 

the fact that -il< is real (Appx. D), it follows that some other diagram 

gives to -i2.< a conjugate contribution, which differs from the previous in a 

replacement of all iGa with iGc, iGc with iGa, and -iV with iV, 

without affecting iG< and iG>. Let us analyze a conversion of -i!< into 

-i1::>., In a given contribution the conversion cpnsists in replacement of all 

iGa with iGc and iGc with iGa, in change of signs in potentials (in 

principle excluding the extreme potentials, but there are exactly two of those 

in every diagram of _iIt), and in replace~ent of all iG< with iG>, and 

iG> with iG<. 

In every term of -i!<, the number of iG< is larger by one than the 

'. number of iG>, and an opposite holds in-if>. The total momentum and 

energy carried through the division line are equal to (R,w)in every term of 

-i '2~(.(p,w). Let us assume that we insert the expressions for the 
"" 

self-energies into the microscopic-balance equation. We shall have terms 

originating from various diagrams, differing in structure. However, it 

follows from the above discussion, that for each l.h.s. term we shall have 'a 

'respective r.h.s. term, that will differ only in the replacement of G\ with 
'-

G). It seems natural that the equality should hold separately in every 

corresponding pair,and that a certain relation between G> and G< should 

be responsible for the equality. Upon separating-out integrations and factors 

containing Ga, GC, and V, the postulated equalities have the forms 

whi le 

, 

= G«I1,w)G«~l,wl) ... G«Iln,wn)G>(g:,w ' )G>(e.l,wi) ... G>Ce~,w~) 
(E.I0) 
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+ °nl 
- (p. + A. ",1 

00 = 001 + wi + 

i.e. 

+pl = P + P + 
",n "" .... 1 

001 + wi + 

+ p ) ",n 

+ 00 ) 
n 

+ P ",n 

+ 00 
n 

From (E.10) it follows that G> and G< should be related by a factor, and 

with the conse~vation laws (E.11) the most general form of the factor is 

a(w _vn - 11) e .... "'-

where we r~adily use a conventional notation. From 

we-find for ,the occupation 

f( ) _ 1 
~,w - exp(a(w - ~e - 11)) % 1 

(E.ll) 

(E.13) 

Results of the present Al?pendixrefer to a system whose noncorrelated 

initial state has been specified at t ~ -00. For an equilibrium system, o 
" .. " specified with a density operator ~ ~ exp(-a(H - vP - l1N)), the form (E.13) of 

""'" 
the f function follows direttly from the Greenls function definitions. The 

remai ni ng results of the Appendi x may be obtai ned for such a system with an 

evolution-contour method in the complex time plane (Sect. 5). 

At the end, we would like to mention that a uniform equilibrium may not 

exist within the constraints put on the system. One encounters such a 

situation when one finds singularities in the retarded or advanced functions 

in regions where the functions should be analytic according to their 

def in it ion s . 
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Appendix F. T-matrix approximation 

We shall formulate the T-matrix approximation to the self-energy starting 

from Eqs •. (3.35),(3.36). On comparing (3.35) .with (3.1.), we find a relation 

-i2:(l,l l ) ~ rfd21d1"(-i)V(1,2)i2G2(1,2:1",2+)(~i)G-1(111,11) , (F.I) 

where V(1,2) = V(~1-~2)~(t1,t2)" 

The rules for evaluating i2G2 are essentially the same as the rules 

for iG. One needs only to make a sign change of the diagram in cases when the 

lines running between the end-points of a diagram cross. In the T-matrix 

approximation we sum for i2G2 the ladder diagr~ms which correspond to 

repeated interactions between particles, Fig. 10. We define the T-matrix with 

the diagrams presented in Fig. 11 

-i<I,2ITI1 1,2 1> = -iV(1,2)~(1,11)~(2,21) + jd1 11 fd2 11 (-i)V(1,2) 

x 'i G ( 1. , 111 ) iG ( 2, 2 II ) ( - i) < 111 ,211 IT r 1 I ,2 I > = - i V ( 1 ,2 ) ~ ( 1 , 1 I ) ~ ( 2 ,2 I ) 

+ fd1 11 ~d211(-i)<1,2ITIIII,211>iG(111,11)iG(211,21)(-i)V(11,21) (F.2) 

where we use the notation as in r21. Then 

i2G2(1,2:1 1,2 1) = iG(1,1 1)iG(2,2 1) ; iG(1,2 1)iG(2,1 1) 

+ {dIll {d2 11 fd11/1 fd2'''(iG(1,111)iG(2,211) +- iG(1,2 11 )iG(2,P)) 

x (-i )<1" ,2 11 I Tl1111 ,t' >iG(1111 ,11 ) iG(2111 ,2 1) (F.3) 

and from (F.1) we find 

Z(t,11) = fd2 fd2 I iG(2 1,.2)(<1,2ITr2 1,1 1> + <1,2 T 11,2 1» (F.4) 

compo (3.18). 

The time arguments of the scattering matrix pairwise coincide for a 

potential interaction 

ci,2ITlll,2 1> = ~(tl,t2)~(tll,t21)<~1'~2/TI~11'~21> . (F.5) 

With the notation 

(F .6) 
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we have from (F.2) 

<~1'~2IT(tl' tIl) IZl"~ I> = V (~1-~2 H o(t1, tIl )o(~I-~11 )o( ~2-~21 ) 

(F.7} 

With the definition 

we have from (F.6) and (0.7) 

ri<~1,~~I~(tl,tll)I~1"~21>Jt i<~I'~2\~(tI,tr')\~1"~21>' (F;9) 

and from.(F. 7) 

From"(F.4) and (F.5) follows 

2(1,1 1) = Jd~2 fd!2IiG(~2 .. t11'*-2,t1) 

x «~l'l<2IT(tl,tll)I~21'~I'> -; <~1'~2IT(tI,tll))~I"~21» 

and further 

r}( (l, 11) = ~d:52 Jd~21 iG 5 (~?" tI"~' t 1) 

x «~1'~2IT)l: (t1,tll)I~21'~11>"+ <~1'~2IT}((tl,tl')1~1"~21» 

Proceeding similarly as in the case of the 1-particle Green's function 

equations of motion (Subsect. 3.1), one finds from (F.7) the equations 
00 

<~1 '~2IT>.((tl' t I, )\ ~11 '~21> = VC~I-~2\{ dl" ~d<S211 
o 

(F.ll) 

. 
(F.12) 



-. 
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schematically T'>(. = VfT~" + V~)i. r, and 

<~1'~2IT%(t1,t1,)1 ~1"~2i> 

, ~ 

From (F.l3) and (F.14) it follows that T~ 

may be written in the form of a generalized optical theorem T~ = T+9)(T-, 

i.e. 

, :. . . . 

If we inserted (F.15) into (F.12), then with (F.6) we would obtain an 

expressio~ for!><. similar to the sum of Eqs. (3.33) and (3.34) with the 
, ± " 

matrices T instead of the respective potentials V. 

(F.l3 ) 

(F .14) 

(F .is) 

In below we shall use the Fourier-transformed 2-particle functions, which 

we introduce in the following way' 

<gIF(e"w:B,T)\g'> = ld(t_t')eiw(t - t') 

1 -i~·}((~1+!2) - (!1'+!2')) 
x Jd[2((2S1+~2) - (~1'+*-2,))le , 

(F.16) 

where ~ = (~1 + ~2 + ~1' + ~2,)/4 , and T = (t + t')/2. From (F.1D) 
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it follows for the Fourier-transformed T-matrices that 

ri<9IT~ (E,w:~,T)\~'>J* = i<9'IT~ (~,w:~,T)19> 
and also 

(F .17) 

(F .18) 

Let us see what form the T-matrix approximation res~lts take in a uniform 

equilibrium. For the self-energies, Eq. (F.12), we find 

~ JdEI dWI ~ . l2-el ) e.-e.l L (p,w) ="+ 4 G (Pl,wl)l«--·IT'L. (P+Pl,w+wl)I--> 
":' . (21T) .. 2·" .. 2 

{F.19} 

From (F.17) and the symmetry under the interchange of particles, it follows 

that the symmetrized· matrices iT>( in (F.16) are real. Equation (F.19) may be 

understood in the following way. In the 2-particle Green's function equation, 

the function T plays a somewhat similar role to l in the I-particle Green's 

function equation~ We may expect that iT~ in (F.19) constitute 

scattering-out and -in rates into noncorrelated 2-particle states. Then the 

integral and a Green's function in (F.19) are the summation over initial or 

final states of a remaining particle. The generalized optical theorem, Eq. 

(F.15), takes in the momentum-energy representation a form 

<PiTl(P,w)\ pi> = ~ 3 - 3 <piT (P,(,,)! Pl> . ) J dPl f dpi + 
IV ......, (21T) (21T) .. ... ... 

x <~ll~~q~,w)l£i><riIT-(E,(jj)I~'> (F.20) 

For the ~ymmetrized matrices T occuring in (F.19), one finds from the optical 

theorem, with (F.6), 

-. 
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(F.21) 

which confirms the conjecture concerning iT~. From (F.21) and (F.19),w1th 

(E.2), 

1 il«p,w) = JdE1d:1 Jd~'d;' (deid;1(21f)4~(Jl + Pl - p' - Dn 
'. ... (2w) .. (21f) J(21f) ~ - - ~J. 

If P-~l P-Pl 
x 6(w + ~1 - .w' -. wi' "2" <T-IT+(R.+~I'W+Wl ,\ T-> 

P-Pl PI-P 12 
<-2'" IT+(e.+El ,w+wl )I-=-T> A(~l,wl)A(e.' ,Wi )A(ij ,wp 

x (1 • f(E.l,wl))f(e.',w')f(r!J.,wP (F.22a) 

(F.22b) 

compo (E.8). 

The T% matrices satisfy in an equilibrium system the equations, from 

(F. 14) , 

:i: '., . J de.l f d~i <PiT (P,w)\p'> = V(p-p" + • 3' . 3V(P-Pl) 
.... "'''' oJ ow (2w) (21f)" ..... 

x <ell~:I:(e.,w)leixei\T%(~,w)I~'> . (F.23) 

Upon omitting the self-energies in the I-particle Green's functions in~, Eqs. 

(F.23) become 
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:I; f dPl <piT (~,w)lnl> = V(p_pl) + ., 3 V(n-Pl) 
'" ... ,..,,,, (21T) 1;; ... 

(F.24) 

Let us now discuss the T-matrix approximation in connection with the 

Boltzmann equation. In theT-m,atrix approximation, the scattering-in rate in 

the Boltzmann equation would have a form 

l2.-lh +' OQ'· . ~l-~ \2. " 
~ <-2-/T (Jl.+~l ,wp +w

Pl 
:B, T)I----y-> (l + f( I?,l :8, T)) f( ~I : B, T) f( I?,i :~, T) , 

(F .25 ) 

and the scattering-out rate an analogous form to (F.25). In the Boltzmann 
.' . 

equation limit, we would demand that the scattering matrix T+ satisfies Eq. 

CF .24), with all functions in the equation referring to an (!3"T) lOcation in 
~ 

macroscopic variables. Let us see what must be the properties of the 

T-matrix.., in order that the.~_adanoff-Baym equations can be approximated with 

the Boltzmann equation. We take for simplicity a homogenous system, and 

proceed in an analogous manner to Subsect. 4.3. Eq. (4.1), and Eqs. (f.12), 

(F.15) (to ~ -00), yield an equation for the distribution function· 

. ( ) S dw (i i) -,n..f e:,Q = 2:; W + !l/2+ ie: - W -.a12 - ie: 

x fdQ' fda' (dnIIlJdLlIll21T5(!l._.Q.' -il" -12111 -Jl.''') 
·21T 21T J21T' 21T '. 

f dPl ~P' f d~ 3 x ,., 3"" 3 (21T) 5 (Q + Pl - P' - PI') 
(21T) (21T) (21T) 'Y N "'- ,. 

• 
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'Jdw ' (t- [tIl + al 

- ~i 
x 2,t""< 2 T (Il.+el'w 1 +(0."+ n"') /2 :Q"') 2 > 

x' (F'>(,!, I?l ,w+w 1 ~.ll.1 ) F< U~: ,e.i ,w 1+( .Q1'I-Jl'II) /2 ~.Q") 

F< (~, ~l ,w+w 1 ;!t! ) F > (R,I ,e.i ,w 1 + (n'V -.Q"") /2: Itl ) ) 

with the auxiliary functions 

'F>' (p""e.l,t:T) = ~G'L(IL,t;T)G')' (~I,t;T) 

for which we shall use 

with 

F>(Il,I2.I:T) = (1'+ f(Il.:T))(l+ f(~l ;T)) 

F«~'~l ;T) = f(I?;T)f(~I:T) 

The Boltzmann equationfol16w~ f~om (F.~6), when one ignores all the 

macroscopic-frequency contributions to the microscopic frequencies. The 

(F .26) 

similar occurs for Eq. (F.24) and Eq. (F.14) written in the Fourier-transformed 

variables. The approximations are possible when pl1p/m »r holds both for I1P 

being a scale of variations of particle distribution dn momentum, and for I1P 

being a scale of variation of T+ in a momentum transfer.' Also Aw »r must 

hold, where I1w _ a scale of variation' of a r+ matrix in frequency, following 

from Eq. (F.24). These are the conditions for the Boltzmann equation, within 

the T-matrix approximation. 
+ On deriving the kinetic equations, we have considered the cases ReI -

Iml+ and Rel+ »Iml+. We shall now examine Rel+ and Iml+ in the 

T-matrix approximation, in the low-density limit. From Eq. (F.16) written 
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schematically as 1')"= +iG~T)( , follows ReZ+ = .iG<ReT+ ~ iReG+T<' 

and Im't = iG<ImT+:I: iImG+T<. In the low-density limit G< - n, 

T< - n2, and the T+-matrix becomes a free-scattering matrix. We shall 

discard the exchange term of th~ scattering matrix. ,On evaluating!, we take 

a forward element of the T-matrix, which we shall denote in a simplified way 

as T(O). Taking the scattering matrix for a certain characteristic relative 

momentum p, we get the estimates in the low-density limit Re·t ~ ~ReT+(O)' 

and Im'f" ~ nImT+(O). Parametrizing the scattering matrix with a gaussian 

in the momentum transfer q 

1. 2 2 
+ + -4 n q 

T (q) = T (O)e 
'" ' 

we find from the optical theorem a condition for IReT+(O)1 » I ImT+(O)1 in 

the form 

(F.27) 

The parameter 'n has a meaning ,Of an interacti,on range, and IT+(O)I of a full 

interaction strength. Fora weak long-range interaction satisfying (F.27), 

Re2:.+ », Im~+ . 

-. 
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Appendix G. Thermodynamic equilibrium analysis of conditions for the Boltzmann 

equation 

The conditlons for passing from the Kadanoff-Baym equations to the 

'Bolt~mann equation can be analyzed in some detail in a state of equilibrium, 

in the Boltzmann-statistics limit. As in Subsect.4.1 we shall assume 

well-defined free energies for particles. We shall examine the v~lues of the 
, , -; , 

microscopi~ variables entering the integrals of t~e self-energies l~' with the 

Green's functions in Eq. (4.1) (see also .(4.17)) . 'The values of the 

microscopic variables, as compared with the scales of macroscopic variations 

in a system, determine the order ,of magnitude of the terms neglected in th~ 

Bo 1 tzm~n,n, ,equ,a t ion. 

The equilibrium distribution function is of the form f(p) ,=" ' 
, ~ 

exp(-B(p'2/2m~ u)), where JJ is the chemical potential, and B =T-l, wifh!T" 

the temperature (k B = 1). The conditions for the Boltzmann equation which 

we shall find will be valid for distributions whose behaviour with momentum 

does n'ot depart much from that of the equilibrium distribution. We shall use 

the direct Born approximation to the self-energies, in which approximation it 

is possible to obtain analytic expression for the self-energies. We have 

fiG«p,t)::: e-B(p2/2m - u) - i(p2/2m)t 
.., 

\ For a gaussian poten~ial V(r)=V exp(_r2/n2), one finds in the direct Born 
'" 0 

approximation 

(G.l ) 

(G.2 ) 

(G.3) 
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(G.4) 

Let us at first assume that the integrations over space coordinates are 

already completed in the integrals of the self-energies with Green'sfunctions 

in (4.1), and only the integrations over the microscopic times tl remain. Our 

task will be the determination of the values of tl that enter the tl 
. (.. 

integrations of ~:'((p,'-tl)G'7 (p,tl). The vaiues of tl entering'the .... ... 
integrations correspond to the frequency dependence of the self-energies, . 

close to the energy shell. and simultaneously the values of tl define the time 

in which the energy conservation is being realized in particle interactions. 

We have 

L~d(e,-t I )G< (R, t I) 
1 ..' ap2 t,2(amn2 + t,2) + 2ist,3 

a ---=-2 ---=2,..---......,3~/,.,..2 exp [- -2 - 2 2 2' 2 2 1 , ( G .5 ) 
(smn + tl - 2it ' S) m (amri + tl ) + 4a tl 

[~d(e.'-t I )G>(e., t I) 

(G.6 ) 

For momenta p £ (m/a)1/2, the main contribution to the tl integrals, both of 

(G.5) and (G.6), will come from the times It'l k (smn2 + a2)1/2. The 

quantity n(am)l/2 corresponds to an average interaction time defined as a 

time of flight through an interaction range. The mean momentum in the system 

equals approximately {3/2){m/a)1/2. (The mean kinetic energy eq~als 3/2a.) 

In the high-temperature limit defined with smn2 » a2, for momenta p~ 

(m/a)l/2 (in case of (G.6) p « nm/a), the main contribution to the tl 

integrals will come from the times It'l f nm/p. In the opposite limit of 
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temperatures, the analysis of the tl integrations of (G.5) and (G.6) is 

hindered for large momenta by the oscilatory factors in (G.5) and (G.6). Upon 

putting smn2 = 0, the author has performed an analysis of the integrals in 

the complex time plane. One can estimate that for momenta 2/n » p » 

(m/s)1/2 the main contribution to the tl integral of (G.5) will come from 

the times \t'l £ 2m/p2, and for momenta p »211 from the times It'l f nm/p. 

'Tn the case of (G.6),· for momenta p » (m/s )1/2, one finds that the times 

It'l f s will always contribute to the integral. The analysis of the integrals 

of (G.5) and (G.6) may be summarized with -a statement that the condition for 

the Boltzmann equation is a slow variation of the functions in macroscopic 

times, as compared with n(sm)1/2 and s (more specifically as compared with 

(smn2+s 2)1/2). ,. 

We ~~y next study the values of microscopic spatial coordinates that 

enter the integrals of self~energies with Green's functions. It is necessary 
.' 

to find- the values of r:.::'r,1 andc: that ent~r the inteqrals 

fdr e-ier- (dr', Z)( .(r-rl _tl)G>' (rl tl) 
IV J;..j Bd,.., -.J' . I'V , 

(G.7) 

for the times t l , which we have determined earlier. The variables r - rl 
"" '" 

entering the integral correspond to the momentum dependence of the 

self-energies, and the variables define the range in which the momentu~ 

conservation is being realized in particle interactions. The variables rl 
"" 

entering the :integrals correspond to the dependence of distribution functions 

on momentum, and indirectly also correspond to the dependence of self-energies 

,on frequency. (To the variables r: a meaning can be attribu,ted, of a range in 

which a particle feels interaction.) The analysis of (G.7) is simplified by 

the fact that Green's functions and self-energie~, possesing gaussian ,forms in 

momentum, (G.1)-(G.4), posses also gaussian forms in spatial coordinates 
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2 < '[ m 3/2 . mr iG (r,t) 1 exp[a ] '" = ·21f(a + it)- - U - 2(13 + it) (G.8) 

2 
iG>(~,t)· = r. m ,3/2exp [_ mr J - .2";Tt. m (G.9) 

< __ v2r m
3
n
4 

. ,3/2 
:j iL Bd ( r:, t ) 2 2 2 2 2 2 

°81f(2at + a mn + it(amn - a + t )) 

(G.lO) 

(G.ll ) 

In the limit amn2 » 13 2, one finds that for momenta p ~ (m/a)1/2 the 

main contribution to the .integrals (G.?) comes from variabl~s ~n, while for 

small momenta (m/a)1/2~. p ~n-l from variables ~np(a/m)1/2. In the 

limit 13 2 » amn2, the main contribution to the integrals, for momenta pf 

(m/a)1/2, will come from variables ~(a/m)1!2. For large momenta p » 

(m/s)1/2, the main contribution to the integral (G.7) of functions ~< and 

G> will come from the variables £ps/m. In case of the integral of!.> and 

G< , the main cont'ributionfor momenta p » (m/a)1/2 will come from values 

of the variables I rll 6 palm and It - t: 1
\ ~ p-l. From the above analysis it 

follows that condition for the B6ltz~ann equation is the slow variation of the . 

functions in macroscopic spatial coordinates, as compared with n and pam, 

where p corresponds to particle mome~ta in consideration (for p ~ (m/s)1/2 a 

quantity (a/m)1/2 shou;d be taken for comparison). 

The conditions, of small n(am)1/2 and n in comparison with macroscopic 

variations in a system, are classical, because these conditions do not involve 

~. The conditions will determine the possibility of describing the dynamics 
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of a system with the Boltzmann equation in the limit ~m"2 » a2, which is 

the 1 imit o'f small interaction time and range inverses in comparison with 

variation of a particle distribution in momentum. The conditions, of small a 
"\ ~. " 

and palm in comparison with macroscopic variations in a system, are purely 

quantum. The quantities a· and palm ~re related solely to the particle 

distribution. 
. , -, ,~:" ", 

The cond i t ions of sma 11 a and pa 1m wou 1 d h ave emerged independent 1 y of 
".,: 

the 'approximation used for the self-energy. The value a ofa macroscopic ti'me 

must appear in thermodynamic equilibrium for an arbitrary momentum, 

. irrespective of the particle statistics~ irrespective whether a problem is 

nonreTativistic or relativistic, whether particle production andanihilation 

is taken into consideration. This is a consequence of the relations between 

self-energies and Green's.fundionsin a state, of thermodynamic equilibrium 

(see Appendix E: also a third paper of the series). Due to these relations 

the 'expressions corresponding to scattering-in and -out from a given momentum 

(such as (G.5) and (G.6)) are shifted in the complex time plane by ia. The 

first moments of the expressions would differ by ia. The statement concerning 

the value of amacrriscopictime is subject to the fact that one of the 

processes can be ignored: e.g. scattering-in for large momenta, for fermions 

close to zero-temperature - the scattering-out below the Fermi surface, and 

scattering-in above the surface. 
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Appendix. H., Perturbation expansion .andGreen's function equations of motion 

for a general initial state 

~Perturbation. theory rules for a general initial state have been outlined, 

whitout a full derivation, by Fujita in Refs. [14,151. In the opinion of the 

present author, the rules given by Fujita are errorous. 

About the initial state we shall only assume that its density 

operator commutes with· a partic.le number, operator. For the Green's function on 

a contour we have an equality (2.28). We define a time-ordered contraction of 

" " two operators A and B by 

" A A ~ A "1\ 

A'S' = T(A B) - N(A B) . (H.I) 

where a normal operator-product·N(· ) is defined with respect to the vacuum. 

Upon writing an ~xponenti~l in (2.28) in a form of a series, we apply the Wick 

theorem··to every term of the series. 

We have 

,..",. Ito".", I'lAA A A,. ""I/o A,." "'''A 

t(ABC •.• XYZ) = N(ABC ... XYZ) * N(A·B·C ... XYZ) + N(A·BC· ... XYZ) 
-. ,. A """ " + ... +·N(A·B·C·· ... X··YZ) + 

,.. "" ""'''' 
+ N(A·B··C···~ .. X·Y··Z···) + (H.2) 

If we were taking a vacuum expectation value of the time-ordered product, then 

only a sum over all combinations of contractions, of the fully contracted 

products, would remain at the r.h.s. of (H.2). If we take an expectation 

value with respect to a certain initial state, then the expectation values of 

noncontracted operators in the normal products may be expressed through 

many-particle Green's functions 
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(H.3) 

for ak~particle Green's function we adopt a decomposition into products of 

I-particle Green's functions and correlation matrices 

(H.4) 

S is an operator symmetrizing Green'S function arguments according to particle 

sta.tJ.stics" and Eq. (H.4) de(ines a k-particle correlation matrix G~. 

For a 2-partiele Green's function, Eq. (H.4) has e.g. a form 

",(l~~(1,2:1,,21:) = GO«1,I')Go«2,2 1)" GO«1,2 I )Go<(11,2).,· 

+ G~ (1, 2 ~ 11 ,2 I ) (H.5) 

Upon app ly:i ng the Wi ck 105 theorem to every term of the sed es from (2.28), we 

express expectation values of noncontracted operators through functions 

ikG~<,and to the functions we apply (H.4). In the resulting 
" .. t 

decomposition, to every term in .which a pair of operators 'VI and '\II is 

contracted according to (H.l), there corresponds a term, in which a function 

iGo<with this pair of operators replaces the contraction. ··.If ~/e sum the 

corresponding terms with one another, we get a function iGo, Eq. (2.30), for 
, 

the pair of operators. Upon consequent application of the procedure to all 

terms of the series, the only I-particle functions remaining in the 

decomposition are the functionsiGo. We may say that we dress the vacuum 

functions with a medium. The Feynmanrules that' follow are such as in Sect. 2 

( 
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- an additional rule reads: 

Each k vertices (k ~ 2), into which previously particle lines were 

running in, may be connected with k vertices, from which particle lines were 

running out, through a k-particle correlation matrixikG~. For 

fermions, upon assigning specific correlation"':matrix arguments to ihte'raction ' 

vertices in a diagram, assign to the diagram a factor (_1)F, where F - a 

number of particle loops in the diagram. The number of loops evaluate by 

joining the correlation-matrix argument~ with (unctions iGo, i.e. o~ having 

ikGk(1,2, •.• ,k;11,21, .•. ,kl) join I I with 1, 21 with 2, . . . , kl with k . 

The connected I-order di agrams foriG (1,11) are now of the form presented 

in Fig. 12. The function i2G~ is denoted by a bubble with directed 

lines. Let us mention, that correlation matrices may not be directly 

connected with one another. From a \'iay in which correlation matrices were 

defined, a value of a matrix does not depend on an assignment of the 

time-arguments to the branches of a contour. Due to this, ~hen determining a 

maximum time for 'internal time-integrations in a subdiagram, there is no need 

to take into account, arguments of correlations matrices connected to a 

subdiagram. Further if certain subdiagram is connected solely to correlation' 

matrices, as in Fig. 12e or 12f, then the whole diagram vanishes, bacause 

internal time-integrations' ina subdiagram may be reduced to t'.3 If a 
o 

diagra:m may be cut between the end-points in such a way that the cut passes 

onlY through correlation matrices, then the diagram does not depend upon 

3· Let us mention, that for that reason, on reffering to Ill-particle 

correlation-matrices ll iGo<, a cancellation occurs for the f4 terms in the 

Bolt~mann collision integral. AnalogouS c~ntellations octur in collision ~" 

integrals for emission and absorption of bosons - third paper of this series. 



assignment of the end-points to the branches of a contour. 

In the above expansion we need to know the correlation matrices for all 

times larger than to .. There holds 

!, 4I(~,t) = JdZ~(t)(~I(~,.t)<o/\~):I:. , .. (H.6 ) 

which follows from the fact that the r.h.s. satisfies the same differential 

equation as the l.h.s., with the same boundary condition at t = to. Equation 

(H.6),may be written as 
. ,., . 

I~ ( l~J . • 0> . 
'fI(~,t) ~ J~ 'r{r)(lG (~~t,.t,to) - iGo«~,t,t,to)) (H.7) 

The hermitja~' conju~ation of (H.7) yi~lds 

~'It(~,t) == (dy ~t(y)(iGo>(y,t ,x,t) - iGo«y,t ,x,t)) - J"" _ ..,0.... ....0 ... 
(H .8) 

Fro~ (H.5),' (H.7) and (H.B), there follows 

and analogous identities hold for higher correlation matrices. The 

correlation matrices in the existing rules may be replaced by the correlation 

'matrices at to and the iGo~ lines running to the correlation-matrix 

arguments at to. A rule referring to correlation matrices may be now 

modified in the following way: 

Draw two horizontal marginal lines t< and t>, which correspond o 0 

to the two ends of a time contour. At this lines mark the correlation 

matrices occuring in a diagram. 
I 

Each matrix occurs simultaneously at t< o 

and at t~. To particle lines running to t~ and from t~ there 

correspond functions iGo<, and to lines running in the opposite direction 
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functions iGo>. To a line running downward, iGo<, there corresponds an 

extra factor (-1). 

A diagram from Fig. 1.2d decomposes now into 24 diagrams, some of which are 

presented in Fig. 13. Changing the order of summation of diagrams we may 

o ~ dress the li,nes iG ru~ning to and from to. We have a possibility of 

introducing a self-:energy. 

A self-energy will be defined diagrammatically as an irreducible part of 

the Green's function. We single out a self energyLc' which begins with a 

correlation matrix and ends with a potential. The functionZ C begins with a 

potential and ends with a correlation, while Z begins and ends with a 

potential. There exists no self-energy that would begin and end with a 

correlation, because respective diagrams vanish. A Dyson equation for the 

Gr~en's f~nction is tif the form 

and we have on a contour 

and 

I C(1,2) = ZC(1'~2)(~(t~,t2) - ~(t~,t2)) 

= -ZC(1'~2)~(to - t 2) 

(H.IO) 

(H.ll ) 
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ZC(1,2) = (6(tl,t~~):.- 6'(tl~t~))LC(~1'2) , 

= '6 (t1 - to )lc (~1 ,2) , 

Upon applying GO- 1 to both~ides of (H.IO) and exploiting Go-IGo~ = 0, 

we get 
L',·", 

On restricting, at the l.h.s. of (H.13), the variation of the function 

arguments to oPPosite branches of a contour, we obtain the following 

generalized Kadanoff-Baym equations 

,,(H.12) 

(H.i3) 

tl' ' 
- tJ d2(f'( + LC)(I,2)(G> - G<)(2,1') 

o (H.14) 

Let us mention, that from the Green's functions in the last terms of Eqs. 

(H.IO), (H.13);and (H.14), one should in principle exclude the parts of the 

functions that end with a correlation. However respective contributions from 

the functions at t~ and t~ cancel out. A procedure analogous to the 

above leads to a second pair of equations 

tl 
+ t~d2(G> - G<)(1,2)(~~ + lC)(2,1') 

o 

tl' 
t~ d2G><'(J. ,2 )(!> - 2:.<)( 2, I' ) 

o (H.15) 

In the Kadanoff-Baym equations (3.6) and (3.7), for tl = t 1, = to' 

the Hartree-Fock energy yields a sole contribution to the Green's function 
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evolution. The correlations (scattering) built up only with time. In Eqs. 

(H.14) and (H.15), at tl = tIl = to' the extra r.h.s. contributions come 

respectively from ~C and ZC. At an initial moment, from diagrams, 

which inserted into (H.14) yields a result that agrees with (3.35), as it 

should. 

(H.16) 
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Figure Captions 

Fig~ 1. -: Contour along the time axis for an evaluation of the operator 

expectation value. 

Fig. 2. ~Lowest-order diagrams for the self-energy. 

Fig. 3. Born diagrams for the self-energy. 

Fig. 4. Contour in the complex time plane corresponding to the 

evaluation of an operator expectation value with respect to a 

state of a lowest En' 

Fig. 5. Contour corresponding to the evaluation of an expectation value 

of a Heisenberg picture operator at tl > to' 

Fig. 6. Contours corresponding to the evaluation of expectation values 

with respect to the equilibrium density operator. 

Fig. 7. Contours corresponding to the evaluation of the operator 

expectation values, for a finite time of the imaginary 

evolution. 

Fig. 8. Diagrams that yield expressions which cancel with one another. 

Fig. 9. Conto~r along the time ax~s. 

'. 
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Fig. 10. Ladder diagrams for the 2-particle Green's function. 

Fig. 11. Diagrams defining the T-matrix. 

Fig. 12. First-order diagrams for a l-particle Green's function.'-

Fig. 13. Some of the diagrams corresponding to the diagram from 

Fig. 12d, upon modification of the additional perturbation 

theory rule. 



-94-

, ""." 

... 
t 

Fi g. 1 

t' 

XB L829-4644 

."; 

. 
• 



" • 

.. ji.;, .. ;:; 

-95-

Fi g. 2 

, 
t 

XBL 8211-3423 



-96-

/ 

1 -2 1 2 

2" 
XBL 8211-3417 

Fi g. 3 



-97-

1m t 

~I • 

Re t, 

XBl 8211-3422 

. . 
0 

I~ 

'. 
7 

Fig. 4 



-98-

1m t 

._.r'._' 
,"e', 

Fig. 5 

.J. . 

.. ".' 

t1 
:' 

Re t 

XBL 8211-3419 

. . ' 



J,.' 

., . 

...... 
E 

E 

-99- , 

...... 
. , 

..... 
C\I 
.;t 
C'? 
I 

..... 

,--...--

.... .... 
C\I 
co 
..J 
m 
x 

.1 
o ..... 

.- .. 
I 
o ...... 

0) .,.. 
u. 



1m t to+ito 1m t 

to 

Re t 

.to - i to 

a 

Fig. 7 

e r I!~' 

to+ito 

to 

~ ..... "'.". 
to ~··i t6 '., 

b 

Re t 

XBL 8211-3429 

... 

o 
o 
I 



~f'\i 

~ 

. . 

.. ) 

-101-

..... 

..... 

<0 
N 
"=t 
C") 

I 

..... 
C\I 
co 
-I 
m 
x 

co 

. ... 
1-1-



-102-

(V) 

....... 
<:::t" 
(V) 

I ....... 
....... 
N 
ex) 

....J 
co 
>< 

• 

, 
-(, 



-103-

0 

• '" .... 
M 

I 

\~ --• '" <Xl 

+ -' 
'" >< 

+ 

+ 

+ . 
en 
.r-
u.. 

+ 

+ 

+ 

( 

• • 
~" 

( + 
", 
j.. 



-104-

• 
• 
• 

+ 

+ 

+ 

II 

+ .... : . 

II 

..... 
N 

""" M 
I ..... ..... 

N 
co 
-' co 
>< 

• ", 

. . ~ 



,. 
~ 

I 
t~, 

~,L 

& • 

1 

l' 

a b 
1 

1 

l' 
e 

-105-

c d 
1 1 

1 ' l' l' 

1 

1 ' 
f 

XBL 8211-3428 

Fi g. 12 



-106-

-~ 

-~ 

~ 
1 

11.:31 

<!" 
N 
<!" 
M , --N 
a:J 

...J 
m 
x 

I~C> 

! ,..~ 

a • 



, 
• 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



~1~' "...:.. :_ 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

-;--

.~ _. ,~ ... ' "';'-




