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Quantum Theory of Nonequilibrium Processes. 1

P. Dam‘elewicz1
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT
Green's function techniques for studying nonequi]ibrium quantum processes

are discussed. Perturbation expansions and:Green's function equations of

motion are developed for noncorrelated and correlated initial states of a

: system; A transition, from the Kadanoff-Baym Green's function equations of

motion to the Boltzmann equation, and specifications of the respective limit,

are examined in detail.

* This work was supported by the Director; Office of Energy Research,
Division of High Energy and Nuclear Physics of the U.S. Department of Energy
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1. 'IhtkoduCtion‘_

Nonequi1ibridm Greeh's function techniques, initiated by Schwinger [1]
ahd Kadanoff and Baym 2], have received in the past much attention, in
particular in connection'with plasma, laser, and chemical reactions problems.:
This study has been motivated by an application of the techniques to
high-energy nuclear collisions. While ‘some of the results obtained here have -
been derived before, a coherent and systematic presentatiqn of the subject has
been lacking up to this time. This paper is intended to be a self=contained ..
introduction to the nonequilibrium Green's func@ion techniques. Several new
formal derivations and results are preéented for the first time.

The nonequiTibrium Green's function methods allow one to study a time.
evolution of a many-particle quantum system, and a particular numerical
example will be presented in a fo]]owing paper of the series. We solve there
equations iof motion with self-energies for l-particle Green's functions in an
idealized nuclear system, and ébmpare the results with a classical Markovian
dynamics from the Boltzmann equation. Knowihg the l-particle Green's
functions one may evaluate 1—partic1e.quantities in a given system. The
many-particle information about’tﬁe system is~ca§t into self-energies in:the:
Greén's function equations of motion. Guided by the perturbation expansion * ..
fo? the Green's functions, one may attempt approximations to the self4énefgies.

In Sect. 2 of the present paper we introduce a generalized Green's
function for a nonstationary quantum state of a -system. In the.case of a
noncorrelated initia] state of a system, the Gréen's function possesses a
perturbation expansion analogous to a ground state pérturbation expansion of a
chronological Green's function. The introduced Green's function coincides, in
particular ranges of variation of its arguments, with conventional l-particle

Green's functions. In Appendices A, B, and C, related to Sect. 2, we discuss



-2-

respectively the Wick.decomposition, a variétiona] derivation of the
perturbation éxpansion, and the modified rules of the perturbation theory. 1In
Sect. 3 the equations of motion for Green's functions, gelf-energies,
lowest—order approximations to the self-energy, and conservation laws are
discussed. In Appx. D it is shown that the self-energy for the generalized
Green's function may be introduced, and its properties may be studied, without
a direct reference to the perturbationvexpansion. In Appx. E we study; basing
on the equations of motion and the self-energy perturbation expansion, the
properties of Green's functions in a state of thermodynamic equiiibrium. In
Appx. F, a T-matrix approximation to the self-energy is discussed.

From the equations of motion for‘the_Green's functions, the so-called
Kadanoff—Baym equations, the Boltzmann equation may be obtained, at an
assumption of slow time and space variations in a system. The transition to
the Boltzmann equation is presented in Sect. 4. For the Boltzmann equation to
be of use in describing the system's dynamics, the dynamics given by the
Boltzmann equation must be insensitive to uncertainties in particle energies
and, momenta. In Appr G the conditions for the transition to the Bpltzmann
equation are analyzed for a system in thermodynamic equilibrium in the
Boltzmann statistics limit, wifh self-energies in the Born approximation.

In Sect. 5 of thé paper, we present the Green's function techniques for a
correlated initial state of a system, prepared through the imaginary-time
evolution. In Appx. H, we discuss a perturbation expansjon and equations of

motion for Green's functions for a general correlated initial state.

(59
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2. Green's functions and the perturbation expansion
We shall consider a nonrelativistic system of fermions or bosons with a

hamiltonian -

A

L st 2y ‘ | A 4 .
H= (dx Y(x) (—_ v_) Y (x) +%— Jdgs Jdg ‘V1(>~<) ‘Vf(x) vix -y Y Yx)

~

The.field operators satisfy the commutation re1atiohs»

Vi « Yip ¥ =stx-p) . (2.2)

P by VY =0 . (2.2b)
The upper signs refer. to fermions, while the lower to bosons., Spin and
isospin of particles will be ignored._”The reader familiar with the
’grgunp—state Green's function methods, e.g.-[3], will be able to introduce
:particle.spin and‘isospfn indices at any stage of the consideration.

We are fhtereétéd in’ an evolhtién of a system, which is specified at;an'_

initial timé to'with a density operator 0. A guantity in which the |

evolution may be studied fs'a l-particle Greenis'functidn
s < _ Af A _
¥ G (Z(-l’tl’&Z’tZ) = <‘¥H()’(’2,t2)wH(£1’t1)> . . (2.3)

The symbol <:> denotes an expectation value with respect to the initial state,
Tr(6-)/Tr(3), and the field operators in (2.3) are in the Heisenberg picturé.
For t2 =t the r.h.s. of Eq. (2.3) is the l-particle density matrix.

For example, the spatial density of particles is
A . < ) |
The l1-particle density matrix, Fourier-transformed in relative variables,

constitutes the so-called Wigner function

R+ 1r/2,T)> . (2.5)

F(RiR,T) = [dr e 'BE (R - p/2, 1Y (
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The Wigner function is an expectation value of the operator thaf corresponds,
according to the Weyl's [4] postulate of quantum mechanics, to a classical
momentum and space particle density. Let us expand the initial density
operator in a basis of momentum and energy eigenstates {?A&

6 =2 o0 ¥ < (2.6)

A
~ Upon introduction of (2.6) into (2.5) and insertion of the unity-operator
expansion in between the field operators in (2.5), it can be shown that

F(RRT) = 15y 2 opne (21)% s(p — (B, *+ B, )72 - By))

°7 a1
X <‘I’)‘.f @L(&’T)IQV <‘P][\IAJ H(I&,T)II\I‘ > - (2.7)

The Green's functioﬁ (2.3), Fourier-transformed in all its relative
(microscopic) variables =% - % t = t1 - t2, at fixed macroscopic
variables R = (51 + 52)/2, T = (t1 + t2)/2, may be considered a
generalization of the Wigner function to a distribution not only in momentum
and ‘space but also in energy

#16%(p,wiR,T) = fqr [at e RXMIWT (24)6%(, t:R,T)
1

T TIr(5) é: o' (2")3 s(p - ((R, * EA')IZ - 31))

>

2ns(w - ((E, + E,,)/2 - Ey))

x

G PRI VL RTHE > (2.8)
Here

< . = <
G (xst,BaT)" G (5191219),5291:2) s

and such a simplified notation will be frequently employed in the future. We

4

<



. have
f(R:B,T) = }153 (1) G<(p,m;R,T) . ‘ | (2.9)
The Green's function

a

.
> t
6 (51,t1,;2,t2) = <Wy(x7,t) Py(250t5)> . (2,10)
may bhe seen as corkesponding to a density for an addition of a'particle to-e

system (a density of holes)

. | 3 |
I (RoRT) - wg:] e (Bl - (B - (8 2 8072
X 27 8(w - ( 1 (E + E )/2))
X <‘P)‘..,(|>H(B~_,T)[V\P]><~P]|@I'(R~,T)I‘PA> - , o (2.11).

From the commutation relations it follows that

CE -t s sy - ) (2.2)
and consequent]y
fg% i6”(p,0:R,T) = 1 F f(p:R,T) . o (2.13)

The tonsideratien of the w%gner funct1on and the Four1er transformed Green S

functions (2.8) ehd (2.11) :as dens1t1es must be done with care because the

functions are generally not positive definite. They are, however, always real.
When working with a ground state of a system, one usually deals with a

chronological Green's function
. ~C Crd Wil -
where TC is the chronological-ordering operator. There holds
) : _ N =
67(x1051:200Tp) = ofty = 1) 67(xyutu%p0t)

*alt, - t)) 85(x)tyx5,t) (2.15)



with
1, fort >0 ,
o(t) =

0,f0rt<0~.

and the l-particle density matrix may be obtained from (2.14) in the limit

t2 = t{ = tl + ¢. The hermitian conjugate of (2.14) yields the

antichronological Green's function
Ay : 'y ¢! |
63Xy, ty,%Xa,t,) = 00ty = £.)65(Xq,t,%,t,)
~10T10R20v2’ T 1 2 ~1 1202
>
+ e(t2 - tl)G (§l,t1,§2,t2) (2.17)

“The spectrally decomposed chronological and antichronological Green's
functions possess propagatgr forms.

We shall now consider an expectation value of an operator with one time
argument <6H(t)>. As a consequence of that considefation we shall
introduce, for a nonstationary state of a system, a Green's functioh?;'f;w
possessing a perturbation expansion analogous to the ground-state
chronological Green's function perturbation-expansion. In particu]ar{ranges'”
of variationvof its arguments, the introduced Green's funcfion‘wil]lcbihéide
with the Green's functions (2.3),(2.10),(2.14), and (2.16). -

We have

0

H(t) = U(to,t) OI(t) U(t,to) , (2.18)

where 0I is in the interaction picture and U is the interaction picture

evolution operator. For t > to

[J(t,to) = Z (_1'gn

t t
c . a1 A]._
Z = Tv[ oty oo | oat fnee) oo/l



~ 1 fewp (=i | ar Bl eny (2.19)

with HI(t) the interaction‘hami]tdnian-in the interaction picture. For t >
t
t

. 0 A -
U(t,,t) = T° Texp (i X. dt' Hp ()1 . | (2.20)
t /

4Let us see how one obtains the conventionQJIFeynmann diagrams for a
'gkound state of a system. The Hejsenberg'and the interaction pi;ﬁures
coincide in that case at time t'=v0. The operator'ﬁr(t)'gets a factor
exp (-€lt]), which switches fhe interéction on and off at t = te2  The
noninteracting ground state |$> is assigned to the system‘at t'; -, and the
interacting ground étate is obtained on the basis of the Gel1-Mann and Low

theorem: |¥> = U(0,-=)]$>. For the expecfation value of an operator we have

<<HU -°°00 (t .-”N»

<\PI6H(t)]‘{’>

<}]0(-=,0)0(0, £)0, (£)0(t,0)0(0,-)I$>

<<ﬂU —oo, t 0 (t\U t,-e) P>

<¢‘ﬁ(-’°9+°°)0(+°°at)61(t)‘l“i(t;°°’)‘¢> s (2°21)

where in the Jast equa]1t1es we exp]o1t a group property of the U operators
For a nondegenerate state |¥>, the state U(+”-»°l¢> is up to an hnf1n1te)
phase factor equal to l¢>5 and into the last express1on of (2.21) one can

insert a prOJect1on operator on |§>

<lP[O t)|p>
= <|U(=e,+o|d ><P|U(+ t)O t)U )00 |<ﬁ>
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<Bli(+o,-,£)0, (£)(¢,-mID>
<@l(+o0, ) (0>

<@ TTexp (-1 f dt'ﬁ% t) 1o
-0 ’ . .
- (2.22)
<G| T Texp(-i ] dt’ H N®>
—0o
On obtaining the second equality we exploit the fact that
’ A
1 = <QIQ> = <Q(G(_aa,+00)U(+ﬁ>,_%)lQ>
- <<p|ﬁ(_ao,+oo)|@;éepjﬁ(m,_os)kp> , o o (2.23)

and we obtain the 1ast equa11ty in (2.22) by introducing thé expansidh

(2.19). For the chrono]og1ca1 Green s funct1on we have in ana1ogy to (2.22’, '

i6© (x5t i Xosts) = <€P|T b e le Xpst) P>

Ty m :
@rtens Jadlenhop g bo e
N = ) (2.24)
<7 Lexp(-i- Jdt ”‘i”

m .

Upon application of the Wick decomposition to (2.24) (also to (2.22)), one
obtains the usual Feynman rules: the denominator cancels the disconnected
diagrams. | '

The above scheme, however, cannot be aplied tq the nonstationary state
expectation values. The basic reason for that is the‘fact that, in general,
within the evolution, no stéte of a system in future may Se identified with
any of states in the past .. | | |

Let us return to the expectat1on va]ue of an operator with respect to a
state specificed at to,

<0H(t)> = <U(t0,t)OI(t)U(#,to)>



a. o""Al o «.ﬂ"-c ' '1 t .,
- <T[exp(-1 ( at* R (£))0; (£) T Texp (- I at'il(t)]>
o B ©(2.25)
The perturbative eva]uation»of (2.25)7may be put in a form analogous to th@v 3
usual Feynman diagrams, when one joins the exponential functions from the Jéft i
and right of the 6-operator,‘and one introduces a time-ordering opérato; T“
that'reéognizes whether the field operators be]ong to the chrond]ogicai'br'
antichronological parts of the product. Accordingly we introduce.a contour
running a1ong the time axis, Fig. l;land a T operator ordering along the
contour. (In conection'wffh future Appifcations, the contour may be imagined
as lying in the complex time pléne.) We assign thé time arguments of the
field operators to the contour. The T operator, reduced to the part of the
contour running forward or backward in time, will become‘the-chrohological or
antichrbno1ogica1 ordering operétor, respectively. The parts of the contour -
will be named the chrono]og%ca] and antichronological branches, respectively.
The T operator will order’al1'opérétors, from the antichronological branCh;vto
thé left of operators from the chronological branch. We can rewrite -

Eq. (2.25) in the form

A 0 A a B '
<OH(t)> = <Tlexp(-i 'g dt'H%(t'))OT(t)]> R S (2.26)
PR o o
t, ‘ , :
where § - stands for the integral along the contour, further. denoted.by f,

to A !
By inserting extra U operators into (2.25), one may elongate the contour, so

that it would run beyond the time t (one may also deform the contour).

We define a Green's function -on the contour, i.e., with the time

N\

arguments from the contouf;

y ' . Vilo !t , :

and we have



16(x)t10%p0t,) = <Tlexp(- fdt H ‘V(xz, )1> , (2.28)

with the contour running above the largest argument of the Green's function. ~
With Eq. (2.28), the Green's function will possess a perturbation expansion

analogous to the grouhd-state éxpansion. The Green's function (2.27) equals

8(215%152%p0 %)

. | .
= Q(tlatz)G (’)‘('1’t1")~(-2’t2) + g(tzatl)G ( 1~t1a§_29t2) ’ . (2.20)

with the function e(t1 t2) defined on a contour:

1, if t; is later on a contour than t,
ot

st)=
1”2 0, if earlier

On restricting. the variation of the arguments of the introduced generalized
Green's function to the separate branches of the contour, one gets the
conventional Green's functions: chrono1og1ca], ant1chrono]og1ca1 and_the
functions with a fixed order of ¥ and ¥, G< and G”. |
About the initial state specified at to’ we assume that its density
operator commutes with the particle-number operator. Furthermore, we assume
that the initial state admits the Wick decompositionr(is noncorre]ated)._ The

density operators of such states are generally of the form & = exp(f), with §

being a l-particle operator. The vacuum and for fermions the Hartree-Fock

- states, arising from applications to the vacuum of sets of l-particle creation

dperators, correspond to the limiting cases of such density operators. The -
wick decomposition is discussed in Appx. A. |

The Feynman rules, which result from an application of the Wick
decomposition to (2.28), are similar to the conventiona] ground-state Feynman
rules. The difference is such that all the time integrations do not run from

-o2to +%, but along the contour. The top of the contour must be ahove or

(x4
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equal to the largest time argument of the evaluated Green's function. More

precisely, within a chosen part of a diagram, the internal time integrations

© -must run to the largest external time in that part of a diagram. The

disconnected d1agrams vanish, because there the integration contours may be

reduced to to. (1 + disconnected d1agrams) is an expansion of

1 =<1>=«<T rexp { dt

When the kinetic energy operator 1s taken as a l-particle hamiltonian
defining the interaction picture, then the Feynman rules for evaluating
G(~1,t1,§2,t2) are the fo110w1ng.
1. Draw all topologically distinct connected and directed diagrams.

Particle Tines run continuously; one sequence of lines runs from
2. A particle line running from (x',t') to (x,t) represents a noninteracting

Green's function

169(x,t,x',t") = <T ¥ (x, 09 (x',t)]> | (2.30)

3. To an interaction line there corresponds a factor -iV(x - x') s(t,t').
The function &(t,t') is defined on a contour: it is equal to &(t - f')‘on
the chrono]ogical.branch and to -s(t - t') on the antichronological '
branch.

4. To a single particle 1ine that forms a closed loop or is linked by the

| same interaction line, there corresponds a function i6%<,

5. For fermions atfribute to the diagram a factor (-I)F, where F is the
number of particle loops.

6. Integrate all internal vertices over a whole space and in time over a

directed contour from to to to.
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One of the possible variational derivations of Feynman diagrams is
" discussed in Appx. B.

When evaluating a particular type'of a Green's function i62 ,iGa, or
iGc, it may be convenient to divide the contour,into'the two branches in the

perturbation theory rules. The resulting rules are presented in'Appx. C.

[
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:3{ .Gréen;é fuﬁction equaiions of motion
3.1 Equat1ons of motion and the se]f-energ1es _

Using the perturbation expans1on, one can def1ne the se]f-energy Z as an
irreducible part of the Green's function. In Appx. D we 1ntroduce the
elf -energy in a formal manner and ana]yze its propert1es w1thout d1rect
reference to the diagrams. - The self-energy may also in pr1nc1p]e be
jntrqduced variationally. The Green's function satisfies equatiOns of motion

with self-energy

(i 7%1—+7’1ﬁ) 6(1,1) = S(1.1) + faz 21,2621 (.
10y "
& = D) s = s ¢ e sz, L G2)

which correspond to the Dyson equations - ‘ | |
6(1,1') = q°(1,1') + fdz f&3 6%(1,2)2(2,3)6(3,1') , < (3.3)

| 6(1,1') = 6°(1,1') + fd2 3 6(1,2)2(2,3)6°(3,1") (3.4)
We use here the notations 1 § (51,t1), fdl ? fdtlfdgl,
5(1,1‘) = 5(41 - X Vet 1’ 1,)._ Thepse]f—energy has a fprm analogous to\(2.29)
7(1,2) = 25(1 2) + o(ty,t )z (1,2) + e(tz,ti)zf(l,z) , o (3.5)
with g8 being a singular_part bf Z.on the contour.
On fixing‘the time arguments of the Green's function in Egs. (3.1) and

(3.2) at opposite sides of the contour, one finds, with (2.29) and (3.5), the

equations
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e

(1

V2
+ -2-%) G)‘(l,l')

dx 22 (xl,x 1)) 6 6% (x2 tl,l )

1
d2 (2>(1,2) -2°(1, 2))6 (2,1")

+

O""’"‘d— —

1 ‘
_ § d2 2¥1,2)(6%(2.1') - 65(2.1")) ., o (3.8)
t0
v?l ‘ .
("' 3%1‘.*?%.—'3 (1,1 -
- jd L%yt ) Z e (X00% 5t )
1 .
+ S d2 (6”(1, 2) - 6 <(1,2))Z%(2,1")
ty :
- tS @ 6* (1 (1,2)(Z>(2,1') - I%(2,1")) . (3.7)
0 ' " .

The funétﬂanhF, exhibited here, cdrresponds‘to the singular part of the
self-energy, which may in principle be fopnd diagramatically. The time
integrations in (3.7) run along the time axis and the limits are explicitly
indicated. Equations (3.7) are actual1y the hermitian conjugates of Egs.
(3.6): Equations (3.6) and (3.7) are known as the Kadanoff—Baym.equations;

With the use of the advanced and retarded functions (see Appx.- D)

F7(1,2) = F*(1,2) * o((t; - t,))(F7(1.2) - F(1,2)) , (3.8)
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equation%”(3(6) and (3.7) may be written as

| P
(1‘ ?§—+7%) 6 (1,1')

1
= S d2 2(1,2) 6% (2,1') + sz‘?(l,ﬂme'(z,l-) : (3.9)
t t - :
2
. v . >,
(iag, o) o
oo ' oe.
X _ . . P ¥ .
= g d 6 (1,2)Z27(2,1') +- J 2 6 (1,2)Z " (2,1') . (3.10)
t, t
0o

)

" On subtracting Eq. (3.9) for 6< from Eq. (3.9) for 67, one finds the . = -

equation satisfied by the retarded and-advanced functions.

(1‘ Tal +—,1n-) 6 (1,1') - [ d23%(1,2)65(2,1') = (1 - 1') (3.11)
t - v ' .

Analogously, from Eqs. (3.10) one finds

| AN o - TR T e e
(—i ;2—1— * 71,—) 6*(1,1') - J d2 6%(1,2)2%(2,1') = s(1 - 1') (3.12)
0 - - A .

With Eqs. (3.11) and (3.12), a geheral solution of Eqé. (3.9) and (3.10) may

 be written as

: O ©0
st - [ e f 63 6'(1,2) 2%(2,3) 67(3,1)
. to to

+ Idgz jd53 G+(1,52,t°) G ‘(52,t0,§3,t0) G_(§3,to,1f) . (3.13)
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where the second term accounts for. the initial conditions. Equatien (3.13)

may be considered a‘generalized fluctuation-dissipation theorem, as will be
seen below.

Let us consider the field-operator equation of motion

) - KACOR I e (3.14)

On evaluating the commutator one finds

2 -
L2 N V(1) fd v Wl ot ¢ £y

e

A

ERM . S (3.15)

On taking the side-by-side time-ordered product of Eq. (3.15) with its

hermitian-conjugate, making use of Eqgs. (3.1),(3.2), and the definition of the

Green's function, one is able to .show that

: AL . vrs v
<T[‘JH(.1,) Jp(13> + 4 c(tl,tl.)<[JH(1),‘VH(1v R

= 121,10 + i fd2 fa3 21,2) 6(2,3)2(3,11) (3.16)
where [+,-], stands for the anticommutator in the fermion case and the

~ commutator in -the boson case. From Eq. (3.16).wé can identify the divergent

part of the self-energy

78(1,11) = a(ty,ty <Dy 0t 1

6ty M%), 3508 081> o Ean

where the last equality follows from the differentiation of the equal-time
field-operator commutation relation. On inserting the value of the current

A
jH into (3.17), we find

(X4
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is(i,l')‘= s(t tl.) [s(x - X de V(x - x2)
At ‘A -
X <‘4'H(52,t1)‘(/H(§2,t1)> FV(y - X 1)
x ! HESTR: )@H(zl,tlbl

s

G(tl’t].').ZHF(Zl’vz-(l':tl) . _ (3.18)

~ The self-energy (3.18) is the Hartree-Fock self-energy, with the first term

being a direct (Hartree) term and the second.the exchange term. For the
self-energies E%, it follows from (3.16) that these are the irreducible parts

of the current-product expectation values

FES(LLY) = <G S0 - (3.19)

12’(1,1') ;<3H( 1) j (1 )>s (3.20)

1rred

Irreducibility means here that one excludes from the expectation values those
diagrams that can be cut in between the ‘end-points. in such a way that the cut
passes only through a single particle 1ine._ If we define the expectation

values in the presence of an external current J coupled to the field operators

n <T[6H§H]> : ‘
Oy = ——— ' o (3.21)
' <T[SH]>
with
- . ‘\t C % A .
S, = exp (-1 §d1(wH(z)a(2) + 3@, 2) | (3.22)

and J being a Grassman current in the fermion case, then

6*(1,1) =gy H0y) o | (3.23)

and

G7(1,1') =(W‘?Tr <@J(1')>J) J=0. . | (3.24)
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The variational derivatives in (3.23) and (3.24) are carried out as if the
current were the same or both branches of the contour. With Eqgs.
(3.23),(3.24), and (3.19), we can rewrite Eq. (3.13) for G (similarly for

G”) into the form

a

(1%, (1)>

J=0.<JH(2)JH(3) irred 6Ji35

o o 6<WT(1')>
[ @ [ & 5o
o % ‘

0

t

A 6<‘V|_|(1)>J

W, | |
+ ;d')sz de3 —__(_J* X 't )‘ <\P (~29 )Y(53’t0)> —7———”] 25,39to J=0- (3.25)

n A

With j, and jg being the sources of the fields @H and @T,
the expressions (3.19) and (3.20), similar to the definitions of the functions
G%', sugggest that Fi2< and iZ” correspond respectively to the particle
production (scattering-in) and absorption (scattering-out or hole production)
rates. The condition of irreducibi]ity may be considered as a removal of the
effect of the repeated ‘interactions in the_mediﬁm. . We have in fact,

. N L
respectively, for tlvon the contour earlier and Tater than tl’

a2 {d3 2(1,2)6(2,3) Z(3,1')

1

“8
(=8
nN

d3 $%(1,2) 67(2,3)5£7(3,1")

-+
o+

d3 25(1,2) 6% (2,3)Z7(3,1")

-+

(a8
N

d337(1,2) 67(2,3) 2¥(3,1') , (3.26)

Q.
N
(as +
O\———-ss Ob—\s O"‘""s

o»——\g o"“‘“s e}

ot

-
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cf. Eq._(3;16).v On taking the expectation value of Eq. (3.15) in the presence

of the external current, and making a variation with respéct to the current,

one finds
s, Vi . . 5<J'H(1)>J '
i aTl >m G (1,1') B 165 B 120 = s(1,1') - (3.27)
and from comparison with Eq. (3.11)
A oo
8<j. (1)> S
H_J - f d2Z%(1,2) 67(2,1") ' " (3.28)
5:](1 ) . J=0 tO .
eo . A
. [ 42 Z%(1,2) ———ﬂ—,—KtS’(z?)J
to J=0
From the above follows
+ &J‘H(l))‘]l
z (lfz) = 3,275, 13=0 (3.29)
~Similarly one has
. 00 a .
{ 42 67(1,2) Z7(2,1") s<dyl1)>, © (3.30)
to ’ S CO R P '
and
At
7 7(1,2) r3y2) | ' ' (3.31)

The functions with which we are dealing in this section obtain simple
forms in a uniform system in equilibrium. Resu]ts; following from the Green's
function equations of motion, for a system achieving a uniform equilibrium are
discussed in Appx. E. Before reading the Appendix, we advise the reader to

get acquainted with Appx. C and the next subsection.
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The Green's function equations of motion ,Eqs._(3.6) and (3.7), were
firsf obtained by Kadanoff and Béym [2], by heansvof an analytic continuation
of equations satisfied by tempeféture Green's functions in the imaginary time
corresponding to the temperature. A contour method has been applied by
Schwinger [1] to study the equations of motion of a quantum oscillator in an
exernal field. Schwinger employed a matrix notation for functions and their
multiplications on the contour. The Kadanoff-Baym equations havé been
independently derived with a contour method by Keldysh [5] and by Fujita [6,7].
Other papers concerning Green's function equations of motion under different
hamiltonians, transition from the equations to kinetic equations (Sect. 4 of
the present paper), application of Greeh's function methods to various
problems, are Refs. [8-17].

3.2 Perturbative evaluation of self-energies

.The two lowest order diagrams for the self;energy are presented in Fig. 2.

The perturbation theory rules give for these diagrams

L

Z (1,1

)

| - (014 .
X (4'1)_ G (’)‘(‘Z’tl’z‘(’Z’tl) + V(')"(‘l - %]1|

x

: ~0<
167 (x5t 5%0,8)] (3.32)

The approximation to the self-energy, relying on the noninteracting Green's
functions, may seem reasonable only for times/ciose to the initial time to‘
On replacing the functions 6° by G in (3.32), one sums a whole class of
diagrams, and one obtains the expression for the self-consistent Hartee-Fock
energy, Eg. (3.18).

Next-order self-energy diagrams, Fig. 3, are named the Born diagrams,

direct and exchange. The direct diagram gives the following contributions to

the self-energies:

[
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| 'Z)L lvl' + \d d FV ‘V V ?}“1 1)
CLgg(L1) = Lk, Ydxo, VX - X)) VX, - %) G (1,1Y)

3 $
X G ({23t1952|at1l) G (&2I9t1l9£29t1) * (3°33)

while the exchange diagram contributions are

% 1 _ ‘ ><
ZBe(l,l ) == Sdéz gd,),(,zl v(ll - )12) V(),S_ [ )osll) G (19)5,2!’1:13)
X G}(x t,,1') Gg(x' £, X0, ty) o 4(3.38)
=2 19 ~2|9 1|9~23 1 ’ .

where we already use.the functions G instead of G°. The Self-energies
(3.33) and (3.34) correspond to the lowest order scattering with particles of
the medium. |
A self-energy approximation, in which diagrams of all orders in a 2-body
scattering with particles of the medium are summed, is called the T-matrix
approximation. This approximation is pfesented in Appx. F.
The RPA approximation,’which will not be discussedvinvdetéil, consists in
the summation of bubble diagrams in the interaction. Besides the particle’
-Green's function equations, one deals with equations of motion of a
polarization insertion that describes phonons (density fluctuations). The
physical picture is such that the particles indﬁté an emission‘and absorption
of phonons.
3.3 Conservation laws
| ~In many phxsical processes, an essential role is played by conservation
1aws; When -approximating the Green's function equations of motion, on
choosing diagrams for the self-energy, oﬁe may obtain equations that violate
conservation laws. The problem of conservation laws, in a system of-bartic]es
with a potential interaction, has been cqnsidered by Baym and Kadanoff [18].
We shall summarize here the results of these authors, by presenting the

approximations to the equations of motion that yier the conservation Taws for

particle number, momentum, and energy.
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From Eq. (3.15) there follows an equation for the Green's function on a

v
. 3 1 :
<1 it m)G(l’l')

contour

1
Y > 4 e + ) '
= 6(1,1') ¥ i gd§2 V‘{l - 52)Gz(l,§2,t1.1 ,52,t1) s (3.35)
where the 2-particle Green's function is

126,(1,2:1',2") = <T[“A’H(1)“A’H(2)\L

) Nk . (3.36)

and t; denotes a time infinitesimally later on a contour than tl. The

hermitian conjugate of Eq..(3.15) yields another equation

, LT,
- ?c'i'._+7ri)6(1’1')

= s(111) ¥ i [ dx, 6Lty il akont] ) Vixy = %))« (3.37)

From the definition of the function G, it follows that

GZ(

If the approximate Green's function obeys both an equation of the form:(3.35)
and an equation of the form (3.37), and the approximate function 62
satisfies the condition (3.38), then the conservation laws are satiSfied.

For the density of particles (2.4), one finds from (3.35) and (3.37)

(1)> + ¥+ <jy(1)> =0 , R (3.39)

<y(1)> = - 5= (9] - 9,0 (31) 6°(1,1") . (3.40)

1,2:1%,2%) - 8,(2,1:2",1%) . (3.38) -

-
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~ Momentum and energy'conservation laws cannot strictly be written in a local

form. For the total momentum

Ryt = fayy 3@ -7 0ED 650, N 1 . (3.81)

one. finds from (3.35),(3.37), and (3.38), d<§H(t)>/dt = 0. By using the .
Green's function equations of motion (3.35) and (3.37), the eXpectation value
of the hamiltonian (2.1) may be expressed in-terms of the l-particle Green's
_function

<H (t1)>

For the haﬁi1toniahvexpectation value (3.42), one finds from (3.35),(3.37),
and (3.38), defi, (t)>/dt =

~ What conc]usions,/concerning self-energy, can one draw»from_Eqs.
(3.35),(3.37), and (3.38)? One:may conffont the equations wifh se]?-energy
(3.1) and (3.2) with Egs. (3.35) and (3.37). In order that thekconservation
laws be sat1sf1ed 2 must be such that a term ZG can be written as +1V62 and
GZ as +1sz, with the same 62 in both cases. G, must sat1sfy the
condition (3.38). Typical approximations to the self-energy, like Hartree,
Hartree-Fock, Born, T-matrix, and RPA, yield the con;ervation 1&Qs rig,2].
However, when one includes an arbitrary diagram in the se]f-enérgy, then the
conditions (3.35),(3.37), and (3.38), generate a number of other graphs of the
‘same order and similar topq]ogica] structure, which must be simultaneously
.included to comply with the conservation laws. [t may be worth mentioqﬁng
that the conservation laws enforce the use of the full Green's functions G in
the construction of self-energy. (One takes into accOunt‘skélétdh diagrams,

irreducible with respect to the self-energy, in the construction.)
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4. Boltzmann equation
4.1 Boltzmann equation
Under proper condifions,'the Boltzmann equation for the Wignef function

caﬁ be derived from the Kadanbff-Baym equations. We shall assume that the
temporal and spatial changes in a system are small, and the evolution does not
differ much from a free evolution of a uniform system.

. On subtracting Eq. (3.7) from Eq. (3.6) for G, with ty =ty =T,
and on taking a Fourier transform in spatial microscopic variables, we find an

equation

Ir rt 2,c(e - £hR + 2t/2, 65 (0 R - (k- 2')/2,T)

~ o~ —~

= far e (de T (r - r'sR = ¢ 72,T)GS(r R *+ (r = r')/2,T)
HF'A 7 ~ 2 7 & ~ ~

. 0 ' o
dr e 2L (gt Sdp' I2(r - rt-tR A2, T+ t12)

- oo

X GS(r',t' R - (r-r')/2, T+1t/2)

+

. +o0 '
Sdr e”'PL Jdt' Sdr"z>(r; SrtR -2, T - t)2)

65(r',t R+ (r - 1')/2, T - t'/2)

>

v

(... S..6 .Y, S (4.1)

where we have introduced relative variables in the functions and we have

adopted to > —ew. The omission of the fourth microscopic variable in the

1.h.s. Green's function is an abbreviation for

6<(piR,T) = g—— 6(p,wiR,T) = G<(p,t = O:R,T)

4
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We have not written explicitly the last two fefms at the r.h.s. of (4.1),-}'
which enter the r.h.s. with a "-" sign, haVe the_éame structure aé fhe third
and fourth r.h.s. terms, but contains< and 6> instead ofiED'and Gé.
In a freely evolving uniform system the functions have ﬁo depéndence on/
macroscopic variables, and the Green's functions

2 %. :
6% (p.u) = 2n8(w - wp) G (p) with uj

- p%/2m

We shall evaluate the r.h.s. of Eq. (4.1), which makes the evolution different

from a free one, on ignorihg the dependence of the functions on macroscopic

- variables, with the Green's functions as for a freely evolving uniform system
2 _ 06X (peR. th 5.

6% (p,w) = 2n 6(w - wp)G (p:R,T). In that case the ter@s with ZHF

cancel out. The third and fourth terms may be combined, simi]arTy the fifth

and the sixth, and the r.h.s. of Eq. (4.1) takes a form

t ) o - AN o
far eer {at: -fdr:- 2(r - £t iR,T) g(—"&)g 6%(p':R,T)
I (2n v

-00
s 4 3 O ad -
dp'r'—ie _,t L ; ‘ _
xe B~ T de e™'RL ‘fdt- Sdn'z% - rt-t'iR,T)
— o

o ) .0

. 1E'r'-1m Wt

x [ _epwR,T)e -~ P : (4.2)
fA(23)3 E ~ . . . .

Upon completion of the integrations over microscopic coordinates and times in .

(4.2), we obtain an equation

. {3 D < .
i (ﬁ + EYB)G (p:R,T)

= T(poagiR. TG (B:R.T) - £5(p,u0sR, TIG(p:RLT) ~ - (4.3)
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With (2.9) and (2.13), Eq. (4.3) becomes

which is just the Boltzmann equation.
In the Fourier-transformed variables the sum of Born diagrams for

self-energy, Eqgs. (3.33) and (3.34), gives

- dE dw. dp'dw' : dE'dm"
ZJ‘ (p,wsR,T) = % 11 S ~ 171
x (2n)* o(p + Py - p' - p;) s(w +;m1’v- o' - wp)

x [(v(p - Q'))z.: V(p - p")V(R - )] ..

x 65 (py.up:R,T) 6% (p',0':R,T) G* (pf,0{:R\T)

Upon introduction of the Wigner functions we find

do, . dp' , dp
Tif<( ,mO;B,T) = 1 L (21r)4 s(p*py-p
B'R>p g(2w)3 g(2")3 g(2n)3 SRTR TR
X 8w +w1—mg.—wgi)%(V(Q-Q')IV(Q“Ei))Z
x (17 f(py:R.T))F(R":R,T)F(Ry3R,T)
and
_ dp dp' dp
iZ2(p, 0 :R,T) = g 1 S S L (2 )4 s(p+py -p'
B'R>“p 203 Jend Jend T TR R TR
x 5(® * 0¥ -2 -u0) L (ip-p)gvip-p!))?
P “py T % T’ 2 ~ 0 E TR TR

(4.5)

=
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A'cdnvective,derivative of the distfibution function constitutés the
1.h.s. of Eq. (4. 4), and the r.h.s. of the equat1on accounts for changes in
the distribution caused by interactions. With i2> a scatter1ng out rate and
f a density of. initial statés;~the_second r.h.s. term in (4.4) accounts for
scattering-out from p: with 7iZ° a scattering-in rate and (1 ¥ f) a density
of'final‘states, the first term accounts for scattering-ih. Equatidn_(4.7)
for iZ”> sums over 2-body scattering processeé, é symmetrized cfoss section -
is in afBorn approximatipn, thers functions correspond to momentum and energy-
conservation in collisions. With respective densities of states, infegrations
run over particles with which scattering occurs énd over final statés. iz>
is a collision frequency of a particle with momentum p. Equation (4.6)
describes inverse processes withwkespectvto thosefin‘(4.7), in which particles
of the medium scatter and one of them emerges'with a momentum'Q.A*See é]so the
form of self-energy in the T-matrix approximation £q. (F.25). |

In the equilibrium the r.h.s. of the Boltzmann equat1on must van1sh, and

a detailed balance equat1on is sat1sf1ed

TIZ(p,u) (1 7 £(p)) = i27(p,u))f(R) | (4.8)

If we disturb the equilibrium by adding or removing particles of momentum p,

we have for the associated disturbance sf(p:R,T) an equation

e ] S
(aT -3 B) sF(R:R,T) = F(g, sf (p: R.T) | - (4.9)
with ['= (i5” £ (7i)L°) = i(z> - Z%). For a disturbance independent of R,

from (4.9) follows

sf(p:T) = 6f(p;T=0) e L ~ (4.10)
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and this equation Fourier-transformed in macroscopic times reads

Cosf(pip) < S@T=0 0 | (4.11)
. ! . r(Q,wp)—'i.Q. . . : . B

The function I" sets the rate at which equilibrium is reached.

When a local equilibrium is established in a system, i.e. Eq. (4.8) is
app?oximaté]y satisfied at every (R,T) (éf. r.h.s. of Eq. (4.4)), then the
rate of changes df a local distributioh‘f may be arbitrarily small. Thé
time—rate will dépend'on the scale of spatial inhomogeneities L, £ ~ v/L,
where V»is a characteristic particle veldéity. A system ih a local
equilibrium cah be described with'a'setvOf hydrodynamic equations, local
conservation 1awsvof particle nuhber, momentum, and energyﬂ

Before we proceed further let us note the following. On using the
function r, é formal sdlution to the Boltzmann equation (4.4) in a'homogeneous
system may be written as | | |

T
f(p:T) = f(p;T = 0) exp (- I dT! r(g,wg:Tf))
' 0

T o |
+§ T’ (:i)z<(g,wg:T') exp (-'Tfl dt* Mp,w_;

In the ]ow—dens%ty Timit i3> »>> 7i2< and [~ iZ>. At high occupatiohéf
of states, the quantities iZ”> and i< may be comparable. Fbr bosons,
when fI< is larger than iI”>, the function ["is negative (from Eq. (4.8) it
follows that -this may not occur at equilibrium). From Eq. (4.12) it follows
that in case of a negative P'function, thevéccupation of é state increaées
exponentially; we may call this a laser effect.

An assumption leading to the Boltzmann equation was the slow variation of

the functions with the macroscopic variables. If it were possibie to obtain
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the Bo]tzmann equat1on, variation in macroscop1c variables away from

equ111br1um would be set by magn1tude of the funct1on|1 when we pass froh
Eq. (4.1) to (4.2), the variations in macroscopic var1ab1es’must be compared
with variations in microscopic varfabies: the 1attef are determined by |
energies and momenta in the system, | | - |
Upon‘Sketching the transition to the Boltzmann equatiOn, we‘shall ﬁow
rederive the equation in a more formal manner, so that the épproximétions
involved will become explicit.
4.2 Derivétion of the Boltzmdnn-equétion reaséeésed i

We start with the Kadanoff Baym equat1ons in forms (3 9) and (3. 10),

" 'which can be written as

d2,(G“1)+(1,2)G»:(é,1')- @2 I¥N1,267(2,1) , o (4.13)

t

a2 6% (1,206 1) (2,1 = | a2 6 *(1,2) Z‘(z 1) . (4.14)

t

-We take a Jimit to‘a -%, and in a moment it will become clear how this limit

should be understood. Each side in the above equations is of the form
fatxyf 0 xpdulxpx; 1) o | (4.15)
271072 2°"1! ’ _ S
and upoh‘introducing X o= Xy = Xqus x = (x1 + xl.)/2, x' = X5 -.xl., we may
rewrite (4.15) into
j&4x'f(x S XX x2)ulx' X+ (X! - x)/2) . | (4.16)

We shall Fourier transform the sides of Eqs. (4.13) and (4.14), and we shall
average the results over a certain range of frequencies; i.e., we evaluate

express1ons of the form

fg—: Fw) Sdt [dr ei,wt e"i.?f gd.tlsd.r’n
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x fr - ' t - tR+ /2, T+1'/2)

xu(p R+ (n- )2, TH (b - th)/2) (4.17)
where F is a function used for the averaging. We take the width of the
function.F small in comparison with characteristic energies in the system and

sufficiently large that
g%‘g Flo)e'™®

is sharply peaked around t‘; 0 in comparison with the variation of>the '
functions f.and.u in macroséopic times. (In connection with the sbatia];
variables, an extra averag%ng over momenta in (4.17) may_be 1ndispénsab1e in a
1ow-temperaturé‘system.) We shall assume that the properties of the functions
f and u are such that the dominant contribution to the integral (4.17) comes
from small values of r, (g -r'), and’t', small 1n‘comparison with the
variation of the functions f and u with the macroscopic variables. We provide

a certain analysis of the function properties in Appx. G. Under the above

assumptions we may expand- the functions

Flx - x':X + x‘/2) = (1 + %ix‘ %7 ) f(x - x';X),

u(x':X + (x = x')/2) = (1 + % (x - X')'%i) u(x';Xx)

Upon expansion of the functions f and u in (4.17) and introduction of the
Fourier transforms of the functions, we find for (4.17)
' | 4 4 .
. d'p -ip, (x=x') (d'p —ip,x'
4 Sd4x e'PX gd4x' S '14 e ; S 2 e 2
. ' (2)

X [f(plzx) u(pz;X) * %-x 37 (P13X) u(p2:X):

EACEEDR(CIIE JUCH I | N (4.18)

e
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where for a while we omit the averaging function over frequencies. Use of an

identity

integration by parts, and integrations over x and x' lead to the expression

F(p:x) u(esx) + 5 (2 (psx) 2 (pix) - g; (b:X) 24 (p:x) ) . (4.19)

In cdhnection with (4.19) we define a generalized Poisson bracket
mﬂgﬁﬂ;ﬁﬂ; o - . (4.20)

Upon app11cat1on of the above procedure to each side of Eqs (4.13) and (4,14)
and subtraction of the equat1ons from one another one f1nds a so-called

generalized Boltzmann equat1on-(see the propert1es of the funct1ons, Appx. D)

‘[Re(G-1 ,1G 1 - [12‘ ReG ] - é>z<'_ . : (4.21)
For the sake of clerity we have omitted the variables (p:X). Implicitly, to
each side of:(4.21) an averaging is abp]ied over a range of'frequeneies large
in‘comparison‘with the rate of change of the functions. However, the rahge of
averaging in frequencies must pe small in comparison with characteristic'
energies in the'system, so the equatfdn can be closed.‘ A connectidn between

(4.21) and (4.3) may be seen when one notices that

+

Re(6™1)" (p,wsR.T) = w - pP2m - Re¥ (p,wsR,T) (4.22)

and applies (4.20) to the first term at the r.h.s. of (4.21).
In the above derivation, we have obtained the geneha]ized Boltzmann
equetion by'reta%ning the lowest terms in a certain expansion. The role of a

small parameter in the expansion is played by (characteristic time of
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variations)‘lle, where e corresponds to characteristic energies. When a
system is away from equilibrium, or when we ask aboutvdeviations from
equilibrium, the rate of variations from the Boltzmann equation is of the
order of I'. (The magnitude of r may even be considered a lower bound for the
rate of temporal changes, because.nonhomogeheity of the system or the presence
of an external potential in the self-energy may énforce higher rates.)‘ A
different situation occurs when we consider the evolution of a local
equilibrium, but we postpone the discussion of thaf case until the end of the

subsection1

. According to the above, on obtaining the generalized Boltzmann
equation, terms of secondvorder:in /e are omitted. Consequenf]y one can
disregard such terms in Eq. (4.21), which otherwise consists of the
first-order terms. Of second order is the second term at the 1.h.s. of
(4.21). Further, the Green's functions appearing in Eq. (4.21) and used in
construction of self-energies cgn be faken in the zeroth order. When
establishing a zeroth order, one should cautiously deal with ke2+; there
occur- situations when Reif >>[", e.g. for long-range intéractions (problem
considered in the T-matrix appkoxima;ion at the end of Appx. F), further when
ReT  contains an exferna] potential or for fermions close to zero \
temperature. For a stroné short-range‘pbtential, when special effects due to

Pauli principle are absent, we may expect ReZ" ~I'. In the latter case, the

zeroth-order equation for the Green's function is (from (4.13) and (4.19))

(0 - p?/2m) 6% (p,wiR,T) = 0 , (4.23)
which together with (2.13) and (2.9) gives

16”(p,0iR.T) = 2n 8(w - w))(1 3 F(R:R,T)) (4.242)

+16%(p,wiR,T) = 27 8(w - wg) FRRT) ~ (4.24b)

Lthe author is grateful to Prof. G. Baym for pointing out the two cases.
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with mB = p2/2m.' Upon insertion of the functions (4.24) into Eq. (4.21)
and” integration over w, one finds Eq. (4,4).
- If Reif >> ', it may be hecessary to retain Rel' in the zeroth-order

equation for Green's functions

(o - pPrem - ReZ (guiR.T)) 6% (RoiR,T) = O . @)

If one can ignore the dependence of Reif on w, Rer(Q,w;g,T) =
ReIf(Q;&,T), then from (4.25) follow the forms of Green's functions (4.24)

R

with v_ = p2/2m + Reff(R;E,T). Upon 1hsertiqn of the functions into
'-(4,21), one finds |

5 .0 o ., aReZ'(p:R,T) 3  aReZ (p:R,T) 8 \.f..
(ST+E R’ P AR T T R °3_Q)f(B’B"T)

-~

- (zi)zf('g,we;g,n(l ® F(piR,T)) - iZ>(R,mB;I3_',T)f(Q:B_,T) . (4.26)
An equation of this form, written for fermions close to zero temperatufe, for
momenta close to the Fermi surface,\is known as a Landau;Si]in eduatfon. A
Vlason equation emekges from (4.26), when one neglects the r.h.s., and for the
sé]f-energy takes the Hartree term, jndependent Qf p.

In the case when it ié'not possib1e to ignore the dependence of Rer on
w, but " is small around Re(G‘l)+ = 0, we may introduce an occupation
1)+

number corresponding to the zero of Re(G™") , and obtain a kinetic

equation for the number. We parametrize the behavior of G in W, arodnd a

solution mB'of Re(c~1)* = 0, with |
#16%(p,wiR,T) = 2v s(Re(6™1) " (p,wiR,T)In(p:R,T)
= 2(R:R,T) 20 6w - w n(RRT) L | - (a.27)

and

iG’(g,m:B,T) = Z(p:R,T) 2n &(w - mE)(l.: n(p:R,T)) , (4.28)
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where

aRer(g,w:B,T)

w w=w

R

p:R,T) = 1 - (4.29)

We rely in this parametrization on the equality 6> - 6< = G - G~ (see
Appx. D) and the forms of G following from (3.11) and (4.19) in fhe zeroth
order with respect to P/e

1

+
G ( sw;B’T) =
o w - p2/2m - ReZ*(Q,w;g,T), £ le

+(4.30)

We insert the function Gf into (4.21), in the form given by the first of -~ -
equalities in (4.27), so the s-function can be removed from under the Poisson

bracket. In subsequent steps we exploit the fact that with

E(E,N:E,T) = bzlzm + Rez+(E9w;R9T) s

and x = p,R,T, we have

se(p,wiR,T) _22(RugiReT) 30y 4o(p 4iR,T)
3X w=w_ ax ax 3w w=w
R . R
_1 3(»2
=1 %
Upon integration over frequencies-we find the equation
aReY ( R,T) aReY ( R,T)
s IR, s R, :
2. R.2 ., el N W 2 3 Y a(piraT)
3T m 3R ap R 3R ap 2
= Z(Q:B,T)(ﬁ)Z<(g,wE;B,T)(11 n(p:R,T))
- Z(E;B,T)iZ>(g,wB;5,T)n(E;5,T)) (4.31)

Let us now turn to the evolution of local equilibrium. The rates of
.temporal variations of the Green's functions will be set by a scale of
nonhomogeneities in a system and may be arbitrarily small. ' The

Fourier-transformed Eqs. (4.13),(4.14),(3.11), expanded according to Eq.

”
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(4.19), pkovidevus (Eq. (4.21)) with the conditions for a local equi]ibriuh
'and the form of the functions (see Appx. E). 'Apart.frbm the limitations on
the rate of temporal vériations inherent to thebordinary Boltzmann equation
(next subsection and Appx. G), it-follows that the rate must be much smaller
than F. (Note that since I' now does not fix the rates of macroscopic
variationé, there 15 no”heéd for I" being small.) Depending on the smoothness
of the expected equilibrium fﬁhctions and the rates of.macroscopic variations,
the averaging in (4.17) may be 1ifted. As far as the evolutibn'is concerned,
the following occurs; The forms of the local equilibrium functions depend on
'avféw pafameters, which can be determined from the local particle, momentum,
and energy densities. Although the evolution can be studied by using the '
bkinetic equations, it is moré_convenient to use the local conservation laws,
the hydrodynamic equations. .These equations may be deduced from Egs. (3.35)
and (3.37), and'in the momentum and energy cases the deriVation involves an
expansioh of G2 over the interaction range (cf. Refé. [18,191]). The‘G2 in
the equations (in the pressure) can then be perturbatively expressed in terms
of the i—particle equilibrium Green's‘functions. Apart from the case of the
ordina%y Boltzman eq&ation, the deriVafion of the conservation laws‘from a
kinetic equation may be quite involved, especialy in case of a full
generalized Boltzmann equation (4.21). One has to trace down the

correspondence between Egs. (4.13),(4.14), and (3.35),(3.37), in the procedure
leading to the kinetic eqﬁation. Thé effort fs not necessarily réwarding,
because in general the part of the pfessure éxp1icit1y depending'bnthé
interaction cannot be directly expressed in.terms of the actual G and Z.
4.3 Conditions leading to the Boltzmann equation |

.qum the derivation 6f the Boltzmann equation and analysis of the

rejected terms, it follows that use of the Boltzmann equation in a homogeneous

medium is conditioned by a weak sensitivity_bf the Boltzmann equation dynamics
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to uncertainties in energies of the order of I'. In a nonhomogeneous medium,
with r1setting also the rates of spatial variations, use of the Boltzmann
equation would be additionally conditioned by weak sensitivity of the dynamics
to uncertainties in momenta of the order_of Pm/p.

The Boltzmann equation limit can be directly seen when considering a
disturbance of an equilibrium, by an addition or removal of particles of a v
momentum p. For a uniform disturbance, it follows from the Kadanoff-Baym

equations that

Fis6%(p:t,t') = G (pit - 0) sf(p:T = 0) G7(ps0 - t') . (4.32)

Equation (4.32) Fourier-transformed in microscopic and macroscopic times reads

(see (E.4))
$166°(p,w;R)
= 6f(p:T = 0) 6 (pw +0/2) G (pow -2/2)

0) (6™ (psw -2/2) - G (pow + /2))

1
Raw+0/2) - (G—)—

sf(psT

.X + ]_(

(6%)" Y

p,wtQ/2)

1 .
8f(p;T = 0) (
£ w-0/2-p? [2m-ReT" (p,w-/2)-1M(p,u-0/2)/2

1
wt/2-p% [2mRe3’ (p,wt0/2)+iMp,utR)2) /2

| 1
Q-ReT (p,ut/2)+ReT (p,u-0/2)+1(M(p,w+Q/2)+ M p,0-0/2)) /2

X (4.33)

If details in the w-dependence of §G< within the range of M are not
important, and the self-energies vary weakly within that range, we can

approximate the r.h.s. of (4.33) with

Z(p)2ns(w - wy) f(p,T=0)

, 7 (s34
P T'(B,wg)-iz_l(g)ﬂ | ( )
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. dw i i
-1 f(p:) = g'z‘; (m+_(2/2'+1'e T w-gl2-Te )

dp1 dp' Sdg'i 3
’ = 2n) + - p' - p,q

2 . |
x [(V(p - p'))" 3 V(p - p" V(g - pg)] x Flp,pg,p'spg,0:@) ,  (4.35)
with the auxiliary function |
F(p,py,0'»Ry,t5T)
> . > . <t . nt .
= G7(p, t:T)67(py»t3T)67 (R »-t:T)6" (g »-t:T) -

- 65(R,t:T)6 (s, t: T)G7(R],-tsT)G” (R],-t:T) (4.36)

Proceeding toward the Boltzmann equation we approximate the function F with

F(R’RJ’E"Ei’w;T)“= 2n8(w — Ae)F(E}E1’E"Ei;T) , | (4.37)
where
| F(R.RR'5Ry3T)
= (1% f(p; M1+ ™)) flr'sT)f(Ry:T)
Cf DT F FRETI(LT FRiT) . (4.38)
and
se = up +wgl - wps -wﬂgi : | | (4.39)

We shall look under what circumstances we can ignore the /2 terms in the
denominators at the r.h.s. of (4.35), and replace the respéctive expresion in
the bracket with 2xs(w). (The r.h.s. of (4.35) corresponds then\to the rfh.s.
of Eq. (4.21); the first-order terms in the Qs ffom denominators correspohd tb
the terms at the 1.h.s. of (4.21).) With £~[7, the accuracy of the
approximation wﬁﬁ] reveal the accuracy of the Boltzmann equation (the

frequency structure of the function F, Eq. (4.37), will be valid with an

accuracy of the okdgr M. With (4.37) we may rewrite the r.h.s. of (4.35) into
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in the most involved case of ReS*. Equation (4.34) occurs to'represent a
solution to the kinetic equation (4.31) (with an adequate boundary
condition). For the simp]er'cagés of ReZ+, proper approximations to (4.33)
represent solutions to Eqs. (4.26) or (4.4).

If " is comparable with particle énergies in a given system, the dynamics
may not be described with the Bolfzmann equation. This is to be attributed to
the time-energy uncertainty princip]e.because of the appearance of £ in the
comparison of bartic]e energies with the time of variations in a system. A
situationllike that occurs in high-energy nuclear collisions which are the
fopfc~of a following paper of the series. Let us mention that in the
16w—deﬁ$ity 1imff M= 12> and AP! constitutes a mean time between
succesive partic]e—partic]e co]]isions; In the Born or T-matrix approximations
to the sé]f—energies ﬁr'l.is of the order of 1/(nov), where n is a density
of particles, o - an average total particle-particle cross-section, and v.- an
average particle velocity..

| In judging the applicability of the Boltzmann equation to a given system,
one has not only to take into account the magnitude of particle energies. The
possibility of describing-a system with the Boltzmann equation can be further
- 1imited,by the properties of an interaction. In Appx. G we examiné values of
mickoscopic variables that givé dominant contributions to integrals (4.17) of
Green's functfonsvwith self-energies. The values of variables correspond to
energy and momentum dependence of self-energies. The analysis of Appx. G is
performed for a system in thermodynamic equilibrium with self-energies in the
Born approximatibn. Bélow, we analyze the equation of motion for the Wigner
function, Fourier-transformed in macroscopic time;

Equation (4.1), with the seif—energies in the Born approximation,
Fourier-transformed in the macroscopic time, yields the fbl]owing,equation for

rd

the momentum distribution in a homogeneous system: /

o
4

‘n p



g (9 (9 i
20)° V(2 V2n)® \ser Qrz+ic  se- @y2-ic |

2

X (2w)3 st gy - - RV -0 V(R -0 V(- p;)

x F(p.pysp'spiz2) o | | (4.40)

The dependence of the remainipg part of (4.40) on ae wi)] be decisive in
replacing the dfference in the braéket by, Zws(Ae).. The dependence will be set
by“properties of the particle distributfon and propertie§ of the potentia1;
From (4.40), it follows that for the Boltzmann equation we must have pap/m >>
P, with p a characteristic particle momentum and ap a scale of variation of |
the parfic]e distribution in momentum. The same condition must aiso be
satisfied when ap is taken as the scale of variation of the potentia1 with the
momentum transfer. For a poteﬁtia] with a sbatia]brange n, the conditioﬁ
reduces to p/nm >>T'. The condition states thatvthe interaction time, |
evaluated as the timg,of f]ightvthrough the potential range;_must be much
‘smaller than the time between the collisions. The}cpnditioh‘re1ated to the
potential is classita], as opposed to_the cdndition-re]atédlto>the particle
distribution. | | N |

~In Appx. F we present»an analysis similar to the above, fof self—enefgfes
in the T-matrix approximation. Conditions for the Boltzmann équatioﬁ,nfeiééeq
to the 1nteréction,'read pap/m >> I and aw >> 7, with ap and Bw scales df u
variation of the scaftering matrix with momentum transfer and energy,

respectively..
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5. Dynamits for a correlated initial state. v

The perturbation expansion and Greeh?s function equations of motioh,
outlined in Sects. 2 and 3, apply to initial states that admit a Wick
decomposition. This is a considerable limitation when the evolution starts at
a finite time. If one wanted e.g to inc]ude a strong repulsion in the nuclear
interaction at small d1stances, then the thus- far obtained results would be of
a little ﬁse In Appendix H we present a perturbat1on expansion and Green's
function equat1ons of motion for a completely genera] initial state. Below we
shall discuss a pract1ca1 method of sw1tch1ng on the correlat1ons in the
initial state. | 5

A correlated initial state'may be prepared'from a noncorrelated state
through an imaginary-time evolution. The‘technidue'is applicable when the
initial state can be defined as a 1OWést‘éigeﬁva1de state of certain operator
éi(a]so when the initial state is defined with the equilibrium density
operator). Ih-contrést fo the perturbétion expanéion of Appk. H; fhe
resulting perturbation expansion will not contain correlation matrices
EE. It should be note& that, when tﬁé noncorrelated State is a
nondegenerate Towest eigenvalue state of an operatoriﬁo, and when the
imaginary-time evolution 1ésts infinite]y long, then the Goldstone expansion
may be obtained for the corre]ated state. Imp1eméntatioh'of the
imaginary-time evo]ut1on 1nto the nonequ1]1br1um Green s function method has
been suggested in Ref. [20] see also Ref. [21]

Let us take a certain state |§> and expand it in a basis of eigenstates

A

?PAE of an operator ¥
=2z 2> - - (5.1)

Then
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L A . v “n
“TH 2 ane |‘? >
Vim & & _ qjp N = 7z - @o , (5.2)

where {?ﬁ% are the éigenva]ues of)z, and-lT6> is the normalized projection
of’l§>»ohtovthe Towest eigenvalué subspace onto which the projectioﬁ does not
VanishL:lAccordfng to (5.2), a projecting out of the lowest eigenvalue state
corresponds to_én imaginary;time evolution from it = i®to iT=0. On
assigﬁing ;He resulting state to a systeh at a time t, we put Tt - t,

When evaluating an expectation vaiue'at a time t0
| W th, |
<4|o[9>_ Jin Ble” moexﬁ” o (5.3)
4 _\, ‘
" <Ble &>

I~

we deal with an evolution running along a contour from Fig. 4. When
‘evaluating expectation values of Heisenberg picture operators at t1 >ty

we deal with the evolution contour extended along the real time axis, Fig. 5.
If the pure state expectation values at the r.h.s. of (5.3)vare }ep1aced by
those with respect to a general density operator, then the imaginary-time
evo]utibn océUrs to project out, similarly as for a pure.state, a part of the
density operator within é subspace of a lowest €pt An initial state of a

real evolution, specified with an equilibrium density operator of a
temperature T = (kBs)’l, corresponds to an imaginary evolution that starts

"

from a unity operator 1

, -eft A ' .
<0> =‘Iﬁi§___:9l . , (5.4)
Tr(e"BK)

Because of a cyclic property of the trace, it is not important how the

imaginary evolution interval is positioned with respect to the real time axis;
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contours éorresponding to (5.4) and to an expectation value of a Heisenberg
picture operator are presented in Fig. 6. In the zero-temberature limit 8 »
oo, one obtains, starting from the operator i, a projection operator onto thefﬁ
lowest eigenvalue subspace. This procedure is more slowly convergent than
starting with an imaginary evolution from an adequately chosen state, e.g. a
1owe§t eigenvalue state of a_l-partic]e operator ﬁp. In the numerical
calculation of the next paper of the séries Qe start from such a state, and
the imaginary evolution lasts a finité time. The contours from Fig. 7
correspond to the finite time imagirary evolution.

We shall now find a Green's function perturbation expénsion. We begin
With a consideration of the expectation value of an operator with one time
argument. The operator expectation vé]ue, with respect to a state obtained at
té through an imaginary evolution, will be denoted by <<6H(t)>>. We have . :

'<<0H(t)>> = <<Us(to,t) 0 Us(t,to)>> . - SR (5.5)

where the Schrﬁdinger bictUre evolution operator

Ug(t,t") - e H(t-t) T (5.8)

From the method of preparation of the state at to’ it follows that

<<6H(t)>>
3 <Us(t0—1to,to)US(to,t) 0 Us(t,tO)Us(to,t0+ito)> (5.7)
<US(tO—1EO,tO+1t0)>

(one might eventually introduce at once the limit TO >e=). The evolution
operator for imaginary times is

Gs(t,t') = e‘iﬂ(t‘t') . " (5.8)

The expectation values <-> in (5.7) are taken with respect to a state from

which the imaginary evolution starts. With a notation
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A

{3L for imaginary times
H for real times ,

the evolution operator on a contour from Fig. 7b is

A

| . o |
Ug(t,t') = Trexp(-i 5' at,fi(e, )1 (5.10)

~with the integral running along the contour interval from t' to t. The

expectation value (5.7) may be written as

)

J) 0s(t)2>

t~iT,,t*iT))>

A ,. <T[U

~it,t +iT
<<0H(t)>> = :

s(t
<0

o (5.11)
(

S
We write the index S at the 0 oberator to stress that this is"a Schrodinger
picture operétdr—-most'ofteh independent of time. The time argument of the
dbékatof determines the position in the operator product, where the operator
Ts”t&ﬂbé:pIACéd by the time;orderjng operator on the contour. We may
generalize the expectation value of an 6 operator at a time t, <<6(t)>>; to
imaginary times, by defining the expectation value with ar.h.s. of (5.11).

| We shall assume a partition of ﬁ(t)'

ety = 10(t) + Al - (5.12)

with ﬁo(t) a l-particle operator. The free evolution operator is

a ) . t . -
Ottt = Tlexp(-i § ot 27 . . (5.13)
t! .
There holds
a ' AO , . gt d Al . ]
Us(t,t Y = T[U (t,t') exp (-1 J 3 HS(tl))

a t A0
SOty + (=) ) an, 00,

a Ao \
! ) H () UP(E )

1

§t1 RN

tl

L ‘0 a AO .
(t,tl)H (tl)U (tl’tZ)H (tz)U (t,,t")

2 2’

PO (5.14)
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Equation (5.14) may be verified by ascertaining that the r.h.s. of (5.14)
satisfies the same differential equation on a contour as (5.10), with the same
boundary condition at t = t'. Accordingly we have, for an expectation value

defined with the r.h.s. of (5.11),

<<6(t)>>
TTUO(t ~1T, Lt T ) exp (i fdtlﬁé(tl))f)s(t))b 551
o <T00(t ATt T ) exp (<1 K dtifit(e)) > o

We shall assume that the operator ﬁfand a density operator of the initial
state of the imaginary evolution both commute with a particle-number
operator. Further, we shall assume that the initial state of the imaginary
evolution admits the Wick decomposition. 1I.e., we sha11 assume that -
noninteracting many-particle Green's functions (defined by expectation,va]ues

of the type <<:>> with Al(t)s 0) factorize into 1-particle Green's functions
§60(1,1") = <<TMW(1)@Y11)155°

20 . . o ‘1 o
<TIUY(t -3T _,t +iT ) Y ()Y (1) >

" 0 . j
<U (t0-1To,tO+1to)>

The problem of the Wick decomposition within the imaginary-time evolution is
discussed in Appx. A.

If both ﬁ} and ﬁl are thé same 2-body potential interaction, and the
difference between the evolution generators in real and imaginary times lies
only in the 1-particle parts of the generators, then the Feynman rules for
evaluating the Green's function |

«TIVMW(1 ) 15>

]

iG(1,1")

<TMUG (- 1T, +1T,) ¥ (¥ (101

= » — (5.17)
- +
<US(t0 j O,t0 1L0)>
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are such as in Sec. 2. The time integrals are carried along the contour from
Fig. 7b. The contour must extend above the largest. of the real times of the
evaluated Green's function. A reduction of a contour may occur only for real
times, and a minimal contour'is the one from Fig. 7a. The disconnected
diagrams_do not now vanish, but qre cancelled by the déndminator in (5.17).
o) = Jax, fax, Wlx) by xg it )@( D  (5.18)
and the function h for real tihes

v | .
h(ﬁl,ﬁl.:t) = - > s(x1 - 51.) R (5.19)

d

the Green's function equations of motion on the contour have a form

i 561,11 - fax, (X 0%p3tp) Bltpty, 1" )

1 .
- s(1,1') + fd2 2(1,2)6(2,1") , (5.20a)
i aill G(1,1') - jd,)f,z G(1, X2» 1-) h({z,),&ln:tlu)
- s(1,1) + $d2 6(1,2) 22,1 . (5.200)

The function s(1,1') = s(tl’tl')s(él-' &J.), and the function ~
s(tl,tl.) is defined on a contour in the complex time plane

Jdt  s(t by OF () = F(t)) . | (5.21)

For real times, the Kadanbff—Baym equations have similar forms to (3.6) and
(3.7), but théy contain extra contributions from 1maginaryvparts of a |
contour. An equation for G<(1,1‘), where tl is real, has e.qg. thé form
NN N
(‘ at; Zﬁ) 6(1,17) = §dx2 Zyp(xyatpity) 6 (xp0t,1")

t . £

1
- S e raaeer f d2 2°(1,2)6%(2,1")
to+tﬁ0 _ 1] .
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. to'ué
+j d2 7%(1,2)6%(2,1") . | - (5.22)
t
ll

In Ref. [2] the Kadanoff-Baym equations have been derived for an initial
state of a real evolution specified with an equilibrium density operator (Fig.
6). A nontrivial evolution for the real times has been achieved by disturbing

the system with an external potential.
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6. Final remark o | - < ’

The “investigating tﬁélGreen'é-fUnétion methods in the paper has lead to
severa1'new results. We have c]arifiedwthe transition from the Green's
funétion'équations to the kinetic equations, and the analysis of the -
thermodynamic equlibrium on the basis of the Green's function equations of
motion. "We‘devéfoped ‘the Green's fdnctidn methods on a contour in the complex
time plane, and the perturbation expansion and Green's functionvequationé for
a'general initial state. Thé results should be of use in problems of nuclear

physits, as well as in other branches of physics.
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Appendix A. Wick decomposition |

The consideration will be confined to initial states specified by density
operators commut1ng with a particle-number operator For-such-states an
expectat1on value of a f1e1d operator product van1shes, if the product :

A

conta1ns a d1fferent number of the ‘Voperators from a number of WY
A state adm1tt1ng the W1ck decomposwt1on is a state for wh1ch expectat1on

va]ues of products of the interaction-picture f1e1d—operators (many—part1c1e

Green's functions).factorize into expectationiualues offpairs of operators

(1-particle Green's functions)

<A§ ../9£> = A'é‘ cee 9"2" + A‘é" . oo ?'2" +
= sum over all possib]e contracted products, ' (A.1)
where the contract1on
A'B* = <AB> . . ' o _ _ (A.2)

For the ferm1on operators when one rearranges the order of the operators in a
g1ven term of (A. 1), w1th 1ntent10n to br1ng a contracted pa1r of operators
next to one another the term is to be mu]t1p11ed by the S1gn of the performed_
permutat1on. In Eq.b(A 2) the operators are in the same order as they appear
in (A. i).- When deriving Feynman diagrams one app]ies the Wick decomposition
to operators which are in a specific t1me order at the 1. h S. (A 1).

We sha11 show that states spec1f1ed by dens1ty operators of the form

~

o =exp(f) , o / | (A.3)
with fibeing a 1-particle operator, admit the Wick decomposition. The 1.h.s.
of Eq. (A.1l) will satisfy the same differential evolution equations in every
" field-operator argument, as the r.h.s. . Therefore the'consideration of the
factorisatton (A.1) may be 1imited to a one set of times, e.g. when all the.

interaction-picture operators are taken .at the initial time td.
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We have
l\- Z " A. .
\R_J. RjajaJ , . | (A.4)

. at
with ﬁj real and aj

that diagonalizesf. Let us expand p in a basis of the Hartree-fock States

being creation operators of the l-particle basis,

Knj3> - the states that arise from applications to the vacuum of sets of

l1-particle creation operators

‘ AT
|inj‘j> = (G[GITT, ‘])|0>

J

We have

<s“mJ' J'lj) = G{mj';,{nj‘jexP(JZ &J'nJ') » : (R.5)

and

{§:5 exp l{n §><{n Bl . | (A.6)

In the boson case, in order that the state gives a fihite partic]e-number
expectation value, we must have ﬂj < 0. Let us note that an unoccupied
l1-particle state jo corresponds to ﬁj > -00. IThe vacuum corresponds to
all 5% > —o0. For fermions, a projection operatpr onto the Hartree-Fock
state mat be obtained from S/Tr(a) in the limit of\ﬂj > ~oo for the

unoccupied states j, and ﬁj > +% for the occupied states. For fermions

A rt I\fA

A » I\TA
R +
p/Tr o) T;Tf< j >aJaJv <aJ J>aJaJ] .
-R. -1

. *Tk J
ith <a.a.> = (e +1
W < i J> ( )

' n
We shall prove that for a density operator (A.3) and a set of anihilation.

and creation operators &a’ &b’ e . ;y’ 22,
Tr(Rd 8, «-0 &3,)  Tr(Gagdy) Tr(sd; ... &.4,)
Tr(6) - Tr{s) Tr (%)

there holds




_ Tr(OQaac) Tr(pabad oo ayaZ)L+ '; Tr(ouauz) Tr(pabac;.u ay)
¥ ooIr{s) Tr(5) - RO T )] Tris) . - .
S : (A.7)

The subsequent applications of (A.7) lead to Eq. (A.1) for the annihilation
and creation operators. The latter implies Eq. (A.1) for the field operators,

since these are linear combinations of annihilation and creation operators.

We have
&aa ‘= Ba’é&a . .v | o ’ ) ’ } . . (A.B)
\ﬂa cg A AL —ﬁ'a lep M- -

Where 3a=er< N 1f Ga=aa'-, and 5a=e : ]f. C!a=aa-'.

Let us .take - .

Tr(aagdy e B8,

and for fermions. let us anticommute, and for bosons-commute, the operator &a

to the right. -Upon-application of (A.8) we find: .

Tr(pa ey e &8, 380, TG ... &8,

y*z2! %c ¥’z
Tr(a) N 3. - Tr(s)
B, [aa,aC]i‘TP(nabad ves ayaz) . . [aa,az]# Tr(oab ces ) (2.9)
- .J.i3a .. Tr(3) S "7- 1 *Ba ~Tr(3) > 0

where [+,:7, denotes an anticommutator, and [ 01 a commutator. For two

operators (A.9) takes form

AA A

Tr(oaaab) . [aa’&b]i
Tr(p) .~ 1 % Sa

| (A.10)

A combination of (A.9) and (A.10) yields (A.7).

Upon arriving at (A.1) or (A.7), one may take limits ofJ{j > -2, and in the
férmion case ﬂj > *+oo, proving thereby the Wick decomposition for the
limiting forms of 5/Tr(s). It should be pointed out, however, that for the

vacuum state, or the fermion Hartree-Fock states, a more direct proof of the

Wick decomposition may be obtained through the introduction of an operator
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normal-product and an application of the Wick's theorem r3l.

Now we shall show that all statés which admit the Wick decomposition are
described by the density operators of the form (A.3), involving eventually the
limiting forms of A/Tr(4) with ﬂj > *oo, Let us take a state that admits
the Wick decdﬁposition and is described by a density operator_S'. We want to
show that there exists a density operator of the form (A.3) such that

BUITR(5Y) = BITr(R) . | (A1)
wﬁen taking expectation values of arbitrary field-operator products from the
sides of Eq. (A.11), we have by assumption-the Wick decompositions for the
both sides. In order to prove (A.11) it is sufficient to show that there
exists an operator n, of the form (A.3), such that the expectation values of
pairs of the operators agfeé with those from n'. The l-pafticle density
matrix <¢n(§'ﬂi(5)>.= Tr(S'Gﬁkg')@(5))/Tr(6') is hermitian and may be

diagonalized. Generally

l\f a z: AT A * ’
! = T Q. .y i . \ . . .]2
<V (x W(x)> i< aJ><[’J (x') 4 (x) (A.12)
where Qj are annihilation operators of a basis of states with wavefunctions
. . . A‘r " At A
(x). d . 3> = Q838 e
qB(N) For a basis that 1§gona11zes (A.12), <ay aJ> <aJaJ>§J f For

fermions <3;$j> £ 1, which holds for any state of the system and any
l-particle state, as can be seen by expanding the density operator in a

. _
Hartree-Fock basis. We construct -the operator &, Eqs. (A.3) and (A.4), using

the operators of the basis that diagonalizes (A.12), with

R, = -109( 1 1) . (A.13)

Y R t-
The case of <a§3j> = 0 is to be understood as«ﬂj » —o0o, and <3jaj> =1 for

fermions asﬁj > +00, With Eq. (A.13), the expectation values of the pairs

of the field operators, obtained from 3, agree with those from »', and this
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completes the proof.
Let us now discuss a Wick decomposition in connection with an
imagfnary—time evolution (Sect. 5). In that case a Wick decomposition will
stand for a'factorisation’of a noninteracting expectation value of a

field-operator-product:

a

<PB iu ¥Z50 = ABY Lo Wl e ACB L VI 4

= sum over all posSib]e contracted products = - T (AL14)
with the cohtfactioh;

AB = <chB>® . B (A.15)

The operators at the 1.h.s. ofv(A.14)v;re to be ordered'according to the
time—arguménts from a'contour in the complex time plane. The contour may be
arbitrafi]y deformed a]oﬁg the real axis (but not a]opg the imaginary axis),
running back and forth, as is in fact in geﬁera] occﬁring with an evolution
cdntour appropriate for the 1.h.s. of Ed: (A.l)f When‘é{T‘operators have real
time-arguments, then Eqs. (A.14) and (A.15) reduce to Eqs. (A.1) and (A.2). ~
"Expectation values in (A.1) énd (A.2) are to be taken with respect to the

density operator

. Iy N A )
~ —t}(-o:, -T,M.o
D =€ o €

: : L (Aa6)

where'ﬁp is the generator and T the duration of the imaginary evolution, and
5 specifies the initial state of thé ihag%nary evo]utioh.’ The real-evolution
part of an operétor ao'fromi(A}14) and (A.lS), remaining upon extraction of '
the imaginary part into (A.16), corresponds to the interaction”pictufe‘ofithe
operators in (A.1) and (A.2).

The 1.h.s. of Eq. (A.14) will satisfy the same differential evolution .
equations on a contour, in every field-operator argument as the r.h.s. A

consideration of the factorisation may therefore be limited to one set of

times, and we shall take for convenience all operators at an initial time of



-54-

the real evolution to. From the previous discussion it follows that the
density matrix (A.16) must be of the form (A.3) with (A.4).
Equation (A.16) and the Baker-Campbell-Hausdorff (BCH) formula 227, imply

then that % must also be of the form (A.3); With (A.16) and (A.3) for A, the

"
r

BCH formula will express the density operator o as an exponential of an
infinite series of commutators of f and ¥°. With -4 and if being

l-particle operators, the series will consist of 1-particle operators. Let

A

 beew@) . b -ep
with

A z ata
C=9 C]c]c]v 3

o A
and in a basis that diagonalizes %°

~ AT A 0 ATA

\/q=%;1ﬁ’mnbmbn > A ‘%'hmbmbm ’
and

ot T

&y =Zaq, by

Then, on studying matrix elements of » between l-particle states, one finds
' that the matrix }t equals .
-T(h_+ h) . G
m n 1
A f log(e R )
The logarithm of a matrix in the bracket is well-defined, because the matrix

is hermitian and positive definite.
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Appendix B. Variational défiVatioﬁ of the pekturbation“expansion

We introduce a Green's function in the presence of an external potential

A AT A
. T, (1), (1')S,]
i6(1,1') = C M PR (8.1)
<T[SH]>
where
C S, = ep(-ifdl iamB L) (8.2)

Here 15(51,t1), fdls{dti-[dgl. When a givenzéxpression will be varied
wjth:respect to the potentiai U, we shall aséumé that U is different on each
branch of the contour. in the final results the-potentié] U is to be put equal
to 0. “

If tdﬁJBe shown*(see'Eqs. (§.14), (3.15), (3.35), and (3.36)) that the

Green's function (B.1) satisfies the equation

3 Vf , ; . TR
(13fz * o= U(1))6(1,10) ) = 8(1,1') F 1fd2 V(1,2)6,(1,2:1%,2.), .,
(B.3)
with the 2-particle Green's function
P | ¢ 0 O3 HED A SRS
i 62(1,2;1',2')U»= = (B.4)
, - <T[SH]>
Here &§(1,1') = 5(?&1 - 51'.)6(t1’t1')’ v(1,1') =.V(51 - 511)
X G(tl’tl‘)' |
Next we introduce a noninteracting Green's function
o <TIV¥)S 05
-~ 16 (1,1‘)U = — : - (B.5)

<T[§I]>_
where

S, = exp(~ifa1® u(re W, (VI (88
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The noninteracting Green's function satisfies the equation

Vi -
.9 1 0 . N '
(13‘{:—1"" 2—"7— U(].))G (1,1 )U = 6(1,1 ) . (8.7)
Equations (B.3), (B.7), and the identity

) ' | v oot 1 +

imply an equation for the Green's function

8(1,11), = 6%(1,11), + ifdl" fa2 6%(1,1")V(1",2)
I x(g—u(ﬁ'e(l";l')ur 6(17,11),6(2,27)) .  (B.9)

From (B.9) a perturbation expansion for G may be obtained. The
first-order terms arise from replacement of G on r.h.s. with G°. The
secdnd-order terms emerge from insertion of the first-order terms into the
r.h.s., and the procedure may be continued. In the first step a knowledge of
§G%/sU fs necessary. Commonly one would conclude, from an equation
following from (B.7)

2

(2 W u(1)) 3 60(1,1'), = 6(1,2)6%(2,1'),, : (8.10)
ey Tam U oray By = et EBHE Ly '

and Eq. (B.7), that

[ 0 ' 0 0 '
SUT2T G (1,1 )U =G (1,2)UG (2,1 )U . ' (8.11)

The subsequent insertions into Eq. (B.9) and use of Eq. (B.11) yield the
perturbation expansion known from Sect. 2.

Since we never referred to the properties of an initial state, the abové
would indicate that the perturbation expansion relies always on the
noninteracting l-particle Green's functions G°, independent of the

properties. In fact an eventual error arises when one concludes Eq. (B.11)
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from Eq; (3.10), and one'ignoreé the possibility of adding a solution of the
homogenous’differentiaT equation. The presehce of a homogenous equation
solution is set by the initial conditions at to' From the definition (B.5)

it follows that
qurzy & (L11)y = F(6,(1L,2:10,27) - GU(L1)81(2,20)) o (B.12)

and the higher variational derivatives of G° introduce the higher
noninteracting many-particle Green's functions into the expansion. The
adoption of (B.11), instead,of‘thé,more-géneral'(B.12), correéponds to the
assumption of the faétorisation,of all initial many-particle Green's functions.

(The reading of Appendix H may clarify this aspect of the problem.)
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Appendix C. Perturbation theory fu]es upon separation of the contour into

iG<,

of a

"same interaction line, there corresponds a function i

For fermions attribute to a diagram a factor (-1)

branches
The rules serve for the evaluation of a specific Green's function type:
i6>, 16, or i6G2. (The rules may also be employed in evaluation
specific type of seif-energy or other funct1ons.)
Draw a line dividing the plane into two parts that will correspond to the
two time-branches - chronological and antichronological.. Place the
points, corresponding to the function arguments, at one branch or the
opposite branChes; according to the type of the evaluated function. Draw
all topologica11y—dis£inct connected and directed diagréms. The diagrams,
which are differently cut by the division line, are distinct. The
division line may not pass through the potential.
A particle line represents 1G°<, iG°>,'iG°c,-or iGda, depending on
the line start and end positions. |
To an interaction line there corresponds a factor -iV(x; - x,)
x 8(t; - t,). |
To an interaction line at the antichronological branch there corresponds a
factor (-1).
To a single particle-line, that forms a closed loop or is linked by the
| | 6O<.
F. where F is the
number of particle loops.
Integrate all internal Verticesvover a whole space, and in time from t0
to the maximum argument of the evaluated function.

To every antichronological-side time-integration there corresponds a

factor (-1).

Jointly the rules 4 and 8 give a factor (-1) for every antichronological-branch

interaction which gets .both vertices integrated. The rule 7 necessitates a
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cohp]ement. Let the diyisiQn line into branches be a.dashed line and let us
introduce a vertical tiﬁe—axis; see Fig. 8. Thén fhe dfagrams from Fig. 8
give expfessions'that differ only with a'sign. Generally it is sufficient to
carry the intErna} time-integrations in a given part of a diagram up to the

maximum external time, because jointly the integrations above that time cancel

out.
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Appendix D. Fuhctions on a contour

Let us take a contour with a tbp at a time tmax’ see Fig. 9. Thé
Green's function on a contour poséesses the following symmetry property: when

LT, T
tl > t2 then G(él’tl’ﬁz’tz) = G(51’t1’52’t2)’ where t1 has the same time-axis

value as tl, but lies at the opposite side of the contour ((t{)Ts: tl). The

same occurs for the second argument of the Green's function, when t7 > tl'

T

We shall use below the fo]Towing notation: 1 = (51,t1), 1" T

(358, Jdr=

m

{dt1@5l, §(1,1') 555(51 - §J,)s(t1,t1,). If the functions F and C, that have

no singu]aritiesvfdr equal time-variables on the contour, possess the above
symmetry, then the function

E(1,1') = §d2 F(1,2)c(2,1") (D.1)
also possesses the symmetry; Only the timé-integration is releVant here. Let
e.g. t, > t,, then for t, > t; F(1,2)C(2,1') = F(1,2N)c(27,1"),
and the sides of this equality enter the integral with opposité signs. The
integration above_t1 cancels oUt. With F'having no singu]arity, only the )
values of F for t2 < t] enter the integral, and from the symmetry of F
follows the symmetry of E in'tl. The va1ue.of E depends only on values of F
and C for t < tl' Let us consider a possibility of singularities in F or C
vfor equal time-variables on the contour. In order that E possesses the
symmetry, the effect of a singularity must not depend on the side of the

contour at which the singularity is placed. Generally such singularities are

of the form

(%t—l)" s(ty,t,) . (0.2)

If both F and C possess singularities of this type, then the singularity of E
is also the type (D.2). " From the symmetry property of the functions, it

follows that the considered functions are of the form



CUF(L2) = FR1,2) # a(ty,t,))F7(1,2) * (ty,ty)FC(1,2) , (0.3)

with F® the singular part of the function (of the type (D.2)), and with the

functiors F} defined on the time—akis.

/ The space of the functions having.ﬁhe symmetry property, and‘supplemented
‘with the form (D.2) of singularities, is clesed with respect to the operaéfoﬁ
‘ée%}red by (D.1). We assume that G has an iﬁrerse in that space

i

ﬁze 12NN21 hze:tzm‘(zg')=s(LiQ . ' (D.4)

From (D.4) and the symmetry of the functions, it follows, thath‘1 does not

depend on ‘the choice of contour (i.e: tmax’ F1g 9) and that G~ -1 with
?t1me arguments <t depends only on G with time- arguments <t.
The inverse of G°, Eq. (2.30), is
CL 2 e e s y _
¢ 1(1,2) = (14— + N )8(1,2) | . (0.9)
9 t 1 2m ® ¢ . . . ¢

wh1ch fo]]ows from the equat1ons of mot1on of the interaction- p1cture
'f1e1d-operators, and Eqs (2.29) and (2.12). The (proper) self-energy will be
defined by | - h

2(1,2) = 6> t(1,2) - 67l(1,2) - (D.6)

From-Eq.- (2.27), it follows that under complex conjugation we‘have
[i6(1,2)1"16(27,17), and further

[i6(1,2)1" 72T

= i6(1',2 (D.7)

X Egs. (2.3) and (2.10), we have [i6%(1,2)] =i6% (1,2),

X3 1

For the functions iG
i.e. the functions iG are hermitian. Let us study the properties of G~
under conjugatien. Upon taking hermitian conjugates of the sides of Eq.

(D.4), we find, with (D.7),

a2 0”26 (2,107 = s(10,1)
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We change the sequence of integration of the sides of the contour, i.e. in the

fUnctions we change the argument 2 into ZT, and simultaneously we change the

overall sign,
faz s(1T,2)1671 (2T,1)1" = s(17,1)
Changing 1 and 1' into 17 and 1'T and using
L) = s - SIIUSTL I | (D.8)
we find

{dz_e(l,z)[-e"l(zT,l'T)]T = 8(1,1')

which implies
. .t. i '
riec l1,2)1 =6 tal,2hy , | © (D.9)

comp. (D.7).

We shall consider functions of the form (D.3), for which

AR CLIPION | | (D.10).

[iF(l,Z)
To this class belong the functions G°, G, Go'l, G'I,Z, and other
functions with which we shall deal in this series. From Eqs. (D.10), (D.3),

(D.2), (D.8), and the equality e(t,,t;) = o(t],t}), it follows

that

1 1

[F8(1,2)1 = F%(1,2) , [iF%(1,2)1' = iF%(1,2) . (D.11)

We shall define, on the time-axis, the retarded and advanced functions
+
(

F (1,2)

F8(1,2) + (F>(1,2) - F<(1,2))9(t1—t2) , © (D.12a)

F (1,2}

F8(1,2) - (F>(1,2) - F<(1,2))9(t2-t1) , (D.12b)

where the'singular part is taken such as on the chronb]ogica] branch. We have
the relations v v

F'(1,2) - F7(1,2) = F>(1,2) - F¢(1,2) , (0.13)
and |

P2’ = FL2) . | (D.14)
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We may def1ne the herm1t1an funct1ons

27 w -

ReF ™ (1, 2) - FFT(L,2) + F(1,2)) )
F$(1,2) +-;_-e( ) (F(1,2) - FL,2)) | (D.15)
COIET(1,2) = 5(FT(L,2) - FT(1,2) = 2(F(1,2) - FS(1,2) ,  (D.16)
where e(tl-tz) = °(t1‘t2)‘°(t2‘ti)' We have
ReF'(1,2) = FO(1,2) + ie(ty-t,)InF"(1,2) . (D.17)
We shall show that a Fourier-transform in relative variablés, of a
“hermitian fUnction; is real (see Egs. (2.5); (2.8), (2.11)). We use a
4-d1men$iona1 notationv_ 7
H(p:X) = fd“x e PXu(x4x/2,%-x/2) . | (D.18)
We have
H (p:x) = fax e~ TPXY* (Xex/2,X-x/2) = Jd4x e~ Pty %12, X+x/2)
- fo*x P (Xox/2,X0x12) = H(p:X) . - (0.19)
For the further purposes of the paper, we shall define the hermitian
functions
| A(1,2) = -2Im6"(1,2) = i(6>(1,2) - 6(1,2)) , - (D.20)
fai, 2) = -2mmI'(1,2) = 1(2>(1,2) - 2¢(1,2)) . (D.21)
From (2 12) fo]]ows N
dw ‘ :
(AT =1L (0.22)
Accord1ng to (D.15), upon 1dent1f1cat1on of the singular part of the
se]f-energy (Sect 3),
Rel" (p,w R,T) = = Tye(RRT) de' 'L,'w'=§;T) . (D.23)
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"Appendix E. Thermodynamic equilibrium
We shall discuss a system that has achieved a uniform equilibrium. The
functions G and Z will depend only on differences of the arguments, and we may

introduce Fourier transforms

Flx-x',t-t") =S-%E-%% e IRE-X Tt ey (E.1)
2n

We write the Fourier-transformed functions(;>< jn the following way
Ti6%(p,w) = f(p,w)A(p,w) - (E.2a)
i6>(p,w) = (13 f(p,0))A(p,0) .. (E.2b)

with A = (6> - 6%) (Eq. (D.20)), and we define with Eqs. (E.2) the

function f. For a freely eyo]ving system
A(p,u). = 2né(w - pPjom) . | (E.3)

From the Fourier-fransformed Eq; (3.11) (to > —oo) we obtain

1
o - pPjam - = (p,u)

6 (p,w) = Co | (E.4)

and we find that A has a Lorentzian shape

- M) 7
Alp,n) = 2 (E.5)
> (0 - pPram - ReZ (p,w))? + (M(p,u)/2)?
(see the end of Appx. D). We have 2
f%% AlRsw) =1 (E.6)

2 In connection with convergence problems encountered in a nuclear
application of the Green's function method in Ref. [231, we would like to
mention that there exists a normalization condition for the function I'. The
condition can be deduced from Egs. (3.19) and (3.20), and the form of the
current. The condition, re]atihé the width-function I' to the bare interaction

" and the particle-hole fluctuation-function, has a form
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and

.Ref(pv,w)' =2, (p) +,?4(9£-r—(3—’1"—'l D (E.7)

27 @ =o'
The function A(g,w),vthe §d4ca11ed spectral function, may be interpreted as a
function weighting the frequencies w for a given momentum p. The total weight
of A is equal to 1. With $i6<(p,w) and fG’(Q,w) respectively
distributfons-of‘pdrtic]eé and holes in momenta and energies, the function
f(p,w) obtains an 1nfefpretation of the occupation of states (p,w).
.A sum of the Born diagrams for the se]f—energy, Eqs; (3.33) and (3.34),
gives in a staiionary Uniform:system
e - [ (RS [
‘ (2n) (27) (2w)

(20)%s(p + gy - B - B)

X 8o + wld— o' ;,”1') %(V(a,—gj) T V(Q—El'))ZA(El,wl)A(B",Q'l)

X A(E,iawi)(l ¥ f(Ql,wl))f(R_",u)‘)f(R_i,mi) s ! L _ (E.8a)

o> L e ety — erer - '

]ZB(E)N) = e f(Rl,wl)(l Ff(p'se"))(1 % f(Ql,wl)) . (E.8b)
In (E.8b) we do not Write explicity that part of the r,h.s; which is the same
as in Eq. (E:8a), The expression (E.8a) accounts for scattering of particles

(p',w') and (g'l,wﬂl) into states (p,w) and (gl,ml), with a

f?d_‘: Mp,0) = Py 7 Pelp)

We shall quote here only the direct term, which may be written as

dn' V ,,. ZD ] = ._d_g_'__ ‘dwl (V ! ZD I,w'v) )

Py

where D(1,2) = <h, (1)f,(2)>, and A(1) = n(1)- <n(1)>. (Comp. Eq. (2.11)

of Ref. [24].)
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Born—approximatidn scattering cross-section. The function ?iZE(E,m) is
seen as a scattering-in rate into (g,w) due to these ﬁrocessés. Equation
(E.8b) accounts for the inverse processes, and describes the scattering—out‘
~rate from (p,w). See also the forms oflse1f-energies in the T-matrix
approximation, Eq. (F.22).

On Fourier-transforming Egqs. (3.9) and (3:10), and_subtragting the .

resulting equatiqns from one another, one finds the.detai1ed balance equation

Z(p,0)67(p,0) = Z7(R,0)6%(p,w) . 4 (E.9)
Equation (E.9) ekpresses the equilibrium betwéen the scattering-in of
particles into (p,w) and the scattering-out from (p,w). The detailed balance
equation will allow us to find a form of the funcfion f(E;m). We shall
present below an:argumehtation which generalizes an argumentation given
sometimes in consi&erat%ons of thé Boltzmann equation.

The self-energy Z may bé expressed solely in terms of the Green's -
functions G, on qsing skeleton (irreducible) diagﬁams,rsee Ref. [25].
Examples of such diagrams are the Hartree-Fock and Born diagrams. Diagrams
for -12% , obtained acébfding to Appx. C in the space-time representation,
possess the following, important for the subsequent discussion, properties in -
the Fourier—transformed.variab]es (the top of the contour is pulled to + o
before introducing the transforms): energy and momentum are conserved in the
vertices, an interaction line corresponds to -iV(p), at an antichronological
branch we have for a pértic]e line iGa(g,m), for every interaction a factor
(-1), for every internal interaction-vertex a factor (-15 (jointly a factor
(-1) for every internal interaction), at a chronological branch a particle
line corresponds to iGC(Q,m), partic1e’1ines crossing the division line
correSpond to iG% (Q)m), all independent momenta and energies are‘to be
integrated over. From the relation [iGC(l,l')11=16a(1,1'), follows

[1GC(B,m)1*=iGa(p,w), according to Appx. D.
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Let us take‘a certain diagram that gives a contribution to -i%<. From
‘the fact that —iZ< is real (Appx. D), it follows that some other diagram
gives to -iZ< a conjugate contribdtion, which differs from the previous in a
replacement of all 6% with i6C, i6C with 6%, and —iV with iV,
without affecting i6< and i6”. Let us amalyze a conversion of -iZ into
"._iZ>.. In a given contribution the conversion consists in rep]acemént of all
i62 with ig® and iGC with 162, in change of s1gns in potentials (in
pr1nc1p1e exclud1ng the extreme potent1als, but there are exactly two of those
in every d1agram ofv-1§:<), and in rep]acement of all i6< with iG>, and
iG> with iG<.

In'everyvterm of -iZ<, the numbér of iG6< ié larger by one than the
;,_number of iG>, and an opposite holds in -i€>. The total momentum and>

.energy'carried through the division line are equal t0’(g,m)’in every term of

—'izi(pv,w). Let us assume that \we,insert the expressions for the | .
self-energies into the microscopic-balance equation. We shall have terms
orfginating fromivarious diagrams, differing in structure. However, it
follows from the above diScussion, that for each 1.h.§. term we shall have ‘a
~-respective r.h.s. term, that will differ only in the replacement of Gi with
Gs . It seems natural that the'equality should hold separately in every
corresponding pair, .and that a certain relation between G> and G< should
be responsible for the equality. Upon separating-out integrations and factors

-‘containing 63, 6%, and v, the postulated equalities have the forms

L4

67(2,0)67(Ry o) +++ G(Ry 0 )6 (R 50" )6 (R s01) o 65(Rs0))

= 6°(R,0)6°(Rs0y) ++- B°(Ryo0) )6 (R 50" )67 (R b00) - G%(Eﬁ?m') :

while



R___Q'+Bi+ +Brl\_(9v1+ +Bn) .
B T S TR R I
1.€.
B'+Ei+ +BrI1=E+E +°"+-E)n ,
o' tul Lt se et e B (€.11)

From (£.10) it follows that G” and G< should be related by a factor, and
with the Consefvation laws (E.11) the most general form of the factor is

eBlo —¥p - w)

where we readily use a conventional notation. From

G>(E$m) = eB(w.; ,Y,p,v" U)G<(R,w) | v (E.]Z)
we-find for ‘the occupation | |

1

exp(Blw - ¥p - u)) = 1 (E.13)

f(R,w) =

Results of the presént AppendiX“refer to a system whose noncorrelated
initial state has been specified at to > —o. For an equilibrium system,
specified with a density operator o = exp(—s(ﬁ - xé - uﬁ)), the form (E.13) of
the f function fo]]ows»dirett]y from the Green's function definitions. The
remaining results of the Appendix may be obtained for such a system with an
evolution-contour method in the complex time plane (Sect. 5).

At the end, we would like to mention that a uniform equilibrium may not
exist within the constraints put on the system. One encounters such a
situat{on-when one finds singularities in the retarded or advanced functions
in regions where the functions should be analytic according to their

definitions.
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Appendix F. T-matrix approximation
We shall formulate the T-matrix approximation to the self-energy starting
from Eqs. (3.35), (3.36). On comparing (3.35) with (3.1), we find a relation

2,

- -iZ(1,1 jﬁz fd1" (=1)v(1,2)1 6,(1,2:1,2%) (<1)e7  (1",1) , (F.1)

where V(1,2) = V(x 1-X0)8 (t1 t,).
The rules for eva]uat1ng 12G2 are essent1a11y the same as the rules
for 1G One needs on1y to make a sign change of the diagram in cases when the
11nes runn1ng between the end-points of a d1agram cross. In the T-matrix
- approximation we sum for 1262 the ladder diagrams which correspond to |
repeated intehactions.between particles, Fig. 10. We define the T-matrix with
tﬁe diagrams bresented in Fig. 11 | _
icl,2]T|1", 2" = ~iV(1,2)8(1,1')5(2,2") + fd1" fd2"(-i)V(1,2)
x iG(1,1")i6(2,2") (-7 )<1",2"|T[1',2'> = —19(1,2)5(1;1')6(2,2') |
fdl" §d2" -1)<1,2]T|1",2">iG(1",1')iG(2",2"') (- ) (1,2')y , (F.2)

where we use the notation as in [21. Then
i G (1,2;1',2') = i6(1,1')iG(2,2') ¥ iG(1,2')iG(2,1")

+ fdl" fa2v fa1" fdz” iG(1, 1")1G(2 2") % i6(1,2")i6(2,1"))

x (-i)<1",20|7[1",2">i6(1" ,11)i6(2",2") . - (F.3)
and from (F.1) we find 1
2(1,10) = fd2 fazria(e,2)(<1,2lTl20, 10 0,2 T1,25) , (F.8)
comp. (3.18). | '
The time afguments of the scattering matrix pairwise coincide for a
potential 1nferection |

<d,21Tl1',2'> = s(t,,t.)8(t

1ot 8ty oty Dyl Thyy 1oty >

With the notation

Xl §Et )X X 0> = TB(L,106(%,5t %500t (F.6)
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we have from (F.2)

XX Tt gy %05 = V0% =x,) T8ty 5t ) 8(%0-%1 ) 8(%5-%54 )

+

,§d1" jd)‘SZ" <§1952l3(t1>t1n) 51u5%2u><§1u352u 'T(tllntll)‘&]’lsﬁzl>]

[G(tl,tl,)ﬁ(')\(‘l—xl,)6(52—)£2.) + jdl" ‘déz"<§1’%ZIT(tl’tl")i&1"’52'&

~

x

<).‘('1usl(2n|%(t1natll)l ),(,11,2(_2|>]V(>,<_1|"52|) o V (F-7)
With the definition

we have from (F.6) and (D.7)

Fi<51.52!%(t1,t1.)]51.,52.>] 1<51,5213(t1,t1.)151.,52.> . (FL9)

and fromgLF.?)

g R T T, )
T X Tt O 56X 0010 = x| T(E Lt ) X2 0>« (FL10)

"‘vgrom“(F.4) and (F.5) fo]]ows.
J(1,1') = Sd52 gdzz.iG(ﬁz.,tl.,ﬁz,tl)
X (<51,52]T(t1,t1,)!52.,51.> ¥ <§1,§2[T(t1,t1.))51.,52.>) ,  (F.11)
and further o ” |
T = g, fa,165 (00t xp0ty)

p - y |
X (<51,52‘TL (tl’tl')'!§2"5l'> + <,)\('132'(2|T ((tl’t].')lil"‘)\(—Z')) ZF 12)

Proceeding similarly as in the case of the 1—partic1e Green's function

equationslof motion (Subsect. 3.1), dne finds from (F.7) the equations
oo .
<.’§,1’52{T>4(t]~t] -)|51.,52.> = V(Er.’,‘z) (d]»" gd\Y)ZH
1 > "] : t
0

X T<§1,52t (3+(t1,t1u)! )\Sl_"’*)\('2"><?~(/]."")\(-?_"IT)<(‘t1"’t1 ' )! ?\(‘1 ! 92,(2l>
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e | ¥ 13)

+ <¥.1’1¥.2\3<(t1’t1" ,x]"9x2"><x1n9 Z'I’T (tln 1 )]51|!52|>1 ] (F°13)
schematically T% = Vg+Tll + Vﬁk'T', and

. + ; .
<§1,52|T (t19t1l)léll?£2i?

oo .
0 .

X <51’52'8*(t1’t1")l51"’52"5<§1"’52"]T#(tl"?tl;)[xl"é2'>]’ , (F.14)

schematically T° = V + VG'T®. From (F.13) and (F.14) it follows that TX
may-bé 'written in the form of a generalized opt1ca1 theorem T% T QQ'T

i.e.

- o : o .
<X1 le 13 1I)‘¥1l952!? = t[dln [dxzn t{dlm jdxzm

0 Ov
S ;J;£: ;‘1T+(f 'fnm’fx .  ;<x'. X, , a{f t i X-V Xom>
S fl,~2 v l’ 1q I*l"’~2* ~1u,~2u 3 1u, 1m_|~r"a~2m )
X <5fu,x2m‘T:(t1:,ti,)‘gl,,52,> L ' fA . (F.15)

If we 1nserted (F 15) 1nto (F 12) then with (F76) we would obtain an
express1on for :T" s1m11ar to the sum of Egs. (3.33) and (3.34) with the .
matrices T instead of the respectjve potept1a1§ V.

In below we sha]T use thevFoﬁrier;fransformed 2-particle functions, which
we introduce in the following way

<q|F(pwR.T)|g'"> = {d(t_t-)e‘w(t -t

-12 ((~ ) - (X ,+X l))
x [dl7((y%5,) = (%9 7x5.0) e VR AR

19'(),,(, =X n)

X <51,52\F(t,t')|51.,§2.> : | (F.16)

190 %)

where R = (51 * Xt Xpa t X2')/4 , and T = (t+t')/2 . From (F.10)
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it follows for thé Fourier-transfdrmed T-matrices that

MieglT? (P,w:R, Mg >1" = icq' [T (P,0:R,T)g> (F.17)
~and also v
[<gIT" (PR, T g'>]" = <'|T7(P,0:R,T) ) 0> . (F.18)

~ L~ ~

Let us see what form the T-matrix approximation results take in a uniform

equilibrium. For the self-energies, Eq. (F.12), we find

dp,dw, p-p p-p,
T¥(pyw) = 7 |2t 6% (pys0q )i (< [T% (p¥p; sutay )| >
L : ] ~1°"1 ~ 21T
. (2m)" 2 2
_ E_B : . E _B . . . . ’ v .
t <3 1|T>< (Qfgl,w+w1)| 12 >) . (F.19)

From (F.17) and the symmetry under the interchange of barticles, it follows

that the symmetrized matrices iTk in (F.16) are real. Equation (F.19) may be

understood in the following way. In the 2-particle Green's function equation,
the function T plays a somewhat similar role to Z in the l-particle Green's
fuhctfon equation. We may expect that iT>< in (F.19) constitute
scatterfng—out and -in rates into.noncprre1ated 2-particle states. Then the
integral and a Green's function in (F.19) are the summation over initial or
final states of a remaining particle. The generalized optical theorem, Eq.
(F.15), takes in the momentum-energy representation a form |

dpy [ dp
(2n)3 [(2n)3

1.9 +
<B|T‘(E,w)!g'> ={ <plT (P,u)l py>

~

X <Q1lﬁi(ﬁ,w)|Ei><gi‘T-(E,w)lp‘> . - (F.20)

For the symmetrized matrices T occuring in (F.19), one finds from the optical

theorem, with (F.6),

"
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p"El
<<
2

% , R-R p-p P, -P
lT‘(ETEJ’“+“1)r,2 }’ LA llT%(RfEl’”+”1)|‘l;‘>

dg' dw' dp]' dwi 4

=1 J 7 |- (2n) s(p + p; - p' - pplele * 0 - w' - wg)
(2n) (27)"
T p-p

e R e

2, v
G (BIQM')G"(R]TA’N].:) s ' (F-Zl) »

which confirms the conjecture concerning'iT%-. From (F.21) and (F.19), with .-
(E.2), |

B dp,dw, (d dw dp. dw!
TiZ8(p,0) 5 . IJE 3”1 COMICRS:

D. _‘pl - |)
(z> (2n)* (20 1TE TR
. _ 1 R .1
X G(w + wq —:_w -y ) Vi <—2—'T p"‘Ql,m*wl)l
~ ~1 p 2 v
lT (p+Bl’“’+w1 l—2—> (p].;wl)A(E",W')A(Ri,Wi)
x (1% f(m,wl))f(.g',w')f(gj_,wi) . o o (F.222)
AZ(pyu) = flRLe ) (1T F(Re ) (LF flpfawi)) . (F.22b)

comp. (E.8).

The T* matrices satisfy in an'equi1ibfium system the equafions, from
(F.14), ' |

<p|T (E,w)l‘e"> =.V(E—-p')' + | —= V(p )
i ol
X <El|3*(3’”)|Ei><2i‘T*‘E’“)|Q'> _— . (F.23)

Upon omitting the se]f;ehergies in the 1-particle Green's functions in i, Egs.
(F.23) become
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. dBl
<P|T ’B > = V(p-p') +f V(p-p;)

3 F(R/2+p)) T F(R/2-)
X s U 1750 p'> . - (F.24)
w - P/4m - P /m = e "1

Let us now discuss the T-matrix approximation in connection with the
Boltzmann equation. In the T-matrix approximation, the scattering-in rate in

the Boltzmann equation would have a form

dgl dB"' dgi 1
(2r)"s(p +py - 0' - By)
21)° j(zﬂ)j’_ fm)3 18 1

?‘iz<( ,wIO:B',T) =
g = |-

R-Ry

: T o 1) PR |
xsed + W0 <0, - wgi) 7[ SR (g Rysuoted iR T)S

Py Y

E B1

R
|T (g pl,w; 81 R.T)| 1 : \ (13 flp,:R T))f(p R TIE(R]R.T)

(F.25)
and the scattering-out rate an ana]ogous form to (F. 25) In the Boltzmann
equation limit, ‘we would demand that the scatter1ng matr1x Tt satisffes Eq.
(F.24), with all functions in the equation referring to an (R,T) location 1n
macroscopic variables Let us see what must be the properties of the |
T-matri§1_1n order that the Kadanoff Baym equations can be approx1mated w1th
the Boltzmann equation. We take for simplicity a homogenous system, and
proceed in an ana]ogous manner to Subsect. 4.3. Eq. (4.1), and Egs. (F.12),

(F.15) (t0 > -o00), yield an equation for the distribution function

| i
-i0f(p:0) j Gvap i - s=ap

do' (dg" (do® (doM C e
Vzw 2w Szn, 7, 2ns(-0' -0" - p" -av)

dp; [ dp’ (dgi 3 .
= (2¢) s(p + py - p' - p1) , :
X [(2")3 }(2'")3 ( g em) iR TP -0 -P
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(deo' B TRy .+ N R R
X j?‘:— .<——2——_1_|T (g+gl,w'+(n"+n'")/2:ﬂ') —2—l>

R -y e ol BT BT BT R
| X <——?——1'lT (E+lew'-(ﬂ"fﬂm)/2;_(2~)|(| 5 1) 1 l 1 5 >) -

X (F (R, 0v0' 10! JFE(R! Ry o' +(27-0)/2:0")

- F<(P;é1,,°’f‘w';m)ﬁ(a',Ri,w'+(n'“-n"‘)/2:m)) . (F.26)

with the auxiliary functions’

% (p,pﬁln,t:ﬂ')

~

. e . % ) .- "
G (E',t!T)G (R,l’tQT) s
for which we .shall use

F)‘(g_,gl,m':-T)

F% (Q’Q]_:‘T)Z"s(“’ - mg - wgl) s

with

FP(g.pg:T) = (13 Fg;T)(1 7 f(py:T)

F<(EfQ1:T) f(p:T)f(p:T)

The Bo1tzménn équatioh>f01]GW§ from (Ff?ﬁ), when one ignores ‘all the.
macroscopic-frequency contributions to the microscopic fréquencies. The
similar occurs for Eq. (F.24) and Ed..(F.14) written in fhe Fourier-transformed
variables. The approximations are possible when pap/m >>I" holds both for Ap
being a-scéle of vériations of parfic]e distribution :in momentum, and for ap
being a scale of variation of T jn a momentum transfer.- Also aw >>I" must
hold, where aw - é.scale of variationiof a T matrix in ffequency; fo]]dwing
from Eq. (F.24). These are the conditions for the Boltzmann equation, within
the T-matrix approximation. |

On deriving the kinetic equations, we have cbnsidered the cases Rel' ~
Iml" and ReY 5> Im3'. We shall now examine Re¥' and ImZ" in the

T-matrix approximétion, in the low-density limit. From Eq. (F.16) written’
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schematically as 7% zied X , follows ReZ* = 7iG<ReT” % iRe6 TS,
and Imf" = i6<ImT =+ iImG+Tk. Injthe low-density limit G< ~ n,
T< ~ n2, and the T+—matrix becbmes a free—scattéring matrix. We sha]i
discard the exchange term of fhé scattering matrix. On evaluating2, we take
a forward element of the T-matrix, which we shall denote in a simplified way
as TkO). Taking the scattering matrix for a certainréharacteristic relative
mbmentum p, we get the estimates in the low-density limit Re3 = nReT+(O)*
and Imif'% nImT+(O). Parametrizing the scattering matrix with a gaussién
in the momentum transfer q

| 1 2 2

+, + "T n g
T (g) =T (0)e ° ,

we find from the optical theorem a condition for IReT*(0)l > [ImT*(0)] in
the form

2.2 | ' ,
1» 2 o] -e P C(F.27)

8w n2p

The parameter n has a meaning of an interaction range, and |T+(Q)] of a full
interaction strength. Forua weak long-range interaction satisfying (F.27), .

ReZ" >> Imst.
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Appendix G. Thermodynamic equilibrium analysis of conditions for the Boltzmann
equation |

The conditions for passing from the Kadanoff- Baym equations to the
‘”Bo]tzmann equat1on can be ana]yzed in some detail in a state of equilibrium,
~in the Boltzmann-statistics limit. As in Subsect. 4.1 we sha]] assume |
we]]-defined free energies for'part1c1es - We shall exam1ne the values of the
m1croscop1c var1ab1es entering the 1ntegra1s of the self-energies 2”‘ w1th the
Green s funct1ons 1n Eq. (4.1) (see also (4.17)). ~The values of the |
microscopic variables, as compared wtth the sca1e§ of.macroscopic variations
in a system determine the order .of maghitude of the terms negleeted in the  ‘
* Boltzmann equat1on | - | |

' The equ111br1um d1str1but1on funct1on is of the form f(g)‘

'exp( B(D /2m - u)), whe;e u-is the chem1ca1 potent1a1, and g = T~ 1, with T
the temperature (kB = 1)._ The conditions for the Bothmann'equation wﬁich
we sha]] find w111 .be valid for d1str1but1ons whose behav1our w1th moment um
does not depart much from that of the equilibrium d1str1but1on We shall use
the direct Born approximation to the self-energies, in which approximation it

is possib]evto obtain analytic expression for the self-energies. We have

#i6%(p,t) = e_B(pZ/Zm - ) - (e /am)t , B (6.1)
> _i(p?/2m)t o , |

i67(p,t) = e ' 'P - S (62)

' For a gaussian potential V(g):VOexp(-rzan), one finds ih the direct Born
approximation |
| 2.4

< 2 m°n 3/2

Figg(Ret) = Vol ]

2"2 2 2 2 2 .2
xexpf?su—g—?t+an?+1t£8m"2_8+t)] , (6.3)

- BmMp- + 8" + t
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2.4 .

Zaq(pt) = Vl—y ™0y P
4(gmn~ + t~ + 2itg)
p2 Bt (an2 + tz) + 1't(2r32t2 + (r:xmn2 + t2)2
x explBu - i 5 > 5 1 . (G.4)
: ' (Bmn~ + t°)° + 4p°t° .

Let us at first assume that the integrations over space coordinates are
already completed in tne’integrals of the self-energies with Green's functions
in (4'1) and only the 1ntegrat1ons over the microscopic t1mes t' remain. Our
task will be the determ1nat1on of the values of t' that enter the t' |
1ntegrat1ons of Z"(p,—t )G ( t'). The values of t' entermg “the
1ntegrations correspond to the frequency dependence of the se]f-energies,'
close to the enerqy shell, and simultaneously the values of t' define the time
in which the energy conservat1on is being realized in particle interactions.

We have

Zg4(p-t6 (p,t")

o 1 exér_ sp’ t'2(amn? + t'2) + '2ist'3.' .(G 5)
2 V2 e 1,13/2 -2m -2 1242 2,,2 2 AU
(Bmn~ + t'° - 2it's) (Bmn~ + t'7)° + 4g°t
Z54(Rs-t")67(p,t")
2 012 4 o 2 e
@ gy Pl T (6.6)
(Bmn= + 8~ + t'7) gmn~ + g + t'° .

For momenta p £ (m/B)I/Z, the main contribution to the t' integrals, both of

(6.5) and (G.6), will come from the times Jt'l £ (emn2 + 32)1/2. The

1/2

quantity n(gm) corresponds to an average interaction time defined as a

time of flight through an interaction range. The mean momentum in the system

)1/2. (The mean kinetic energy. equals 3/28.)

In the high-temperature limit defined with smn2 >> 82, for momenta p 2

equals approximately (3/2)(m/s

(m/s)1/2 (in case of (G.6) p << ﬁm/s),vthe main contribution to the t'

integrals will come from the times |t'| £ nm/p. In the bpposite limit of
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temperatures, the analys1s of the t' integrations of (G 5) and (G.6) is

hindered for 1arge momenta by the osc11atory factors in (G.5) and (G.6). Upon

2

putting smn® = 0, the author has performed an analysis of the integrals in

the complex t1me plane. One can estimate that for momenta 2/n >> p >>

(m/B)ll2 the main contr1but1on to the t' integral of (G.5) wi]l come from
the times |t* | ¢ 2m/p , and for momenta p > 2n from the times |t'l £ om/p.
~In the case of (G 6), for momenta p > (m/s)l/z, one finds that the times

[t'] £ B will always contribute to the integral. The analysis of the integrals
of (G.S) and (G.6) may be‘Summarized wifhje‘statement that the condition for
the Boltzmann equation is a slow variatibn of»the functions in macroscopic
fif{mes, as compared with n(8m)/2 and @ (more épecifica11y as compared with
(8mn +B2)1/2) . _

We may next"étudy the values of microscopic spatia] coordinates that

enter the integrals of se]f;energjes with Green's functions. It is necessary

to find the values df r='r' and ' that enter the integrals
o : . o ? : ‘ .
fdn e B fapt Zp(rr' -t 6™ (n,tY) | (6.7)

for the times t', which we have determined earlier. The variables r - r'
entering the integral correspond to the momentem dependence of the
self-energies, and the variebles define the range in which the momentum
conservation {s.being rea]izediin particle interactions. The variables r!
*entering:the:fntegraié correspond’to the dependence of disttibutﬁon functjons
on -momentum, and indirectly also correspond to the dependence of se]f energ1es
-on frequency. (To the variables r' a meaning can be attributed, of a range in
which a particle feels interaction.) The analysis of (G.7)_1s_s1mp11f1ed by
the fact that Green's functions and self-energies, possesing.gaussian:fofms in

‘momentum,  (6.1)-(G.4), posses also gaussian forms in spatial coordinates
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iG(({,t) ='[§;(§m:—Tfy]3lzeXD[Bﬁ'— éTEEE_TfTJ s © (6.8)
> * m 3/2 mr2 .
iG (Y;st‘) = rm.‘ expl - '2-1"{] ’ ' , (G.9)
Ti2g(rat) = VI '
8x(28t° + g"mn" + it(gmn” - 8" + t7))
2 2, .2, .2 A ‘
x expl[2Bu - m; > zﬁm; 8 ; =1 » . (6.10)
28t + g"mn" + it(gmn" - 8"~ + t ) ‘
| 34
123, (r,t) = V2L Tl 32
' 8n(-gt" + it(smn~ + t%))
2 2 . 2. .. | o -
X explgy - Mp— Bmn_ *t* gnet?)] Co (6.11)
+

-t® + it(gmn

In the Timit smn? >> 82, one finds that for momenta p 2 (m/s)1/24the

main contribution to the,integré]s.(G.7) comes from variables £n, while for

small momenta (m/B)I/ZZf p Z,n—l from variables é,np(za/m)ll2

2 2

. In the

-~ Timit 8% >> gmn", the main contribution to the integrals, for momenta p £

(m/e)llz, will come from variables $(e/m)112. For large momenta p >>

)1/2

(m/g , the main contribution to the integral (G.7) of functions < and

G> will come from the variables £pg/m. In case of the integka] of T and

1/2

G< . the-main contribution for momenta p > (m/g) will come from values

_1.

of the variables lg'] £ pg/m and Ir —'Q'l $p From the above analysis it

fbl]ows that condition for the Boltzmann equation is the slow variation of the
functions iﬁ macroscopic spatial coordinates, as compared with.n and pam,
where p corresponds to particle momenta in consideration (for b -’z,-(m/(:’s)ll2 a
quantity (B/m)ll2 shdujd be taken for comparison).

The conditions, of small n(em)ll2

and n in comparison with macroscopic
variations in a system, are classical, because these conditions do not involve

h. The conditions will determine the possibility of describing the dynamics
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of a system with:tﬂe Bo]tzmann equgtion in the limit émn2 > ezyiwhich is

the 1imit of sméll fnteraction time and range inverses. in comparison.with '
variation of a particle gistributjon in momentum. The conditions, of sma11 B
and ps/h inﬁéamparison wffh macrqécopic variations in a syétem, are purely
quantum: The quantities sfanq;pslm are related solely to the particle
distribufion.‘ | |

i3

The conditions of small g and ps/m would have emerged independently of

| the approximation used for the self-energy. The value 8 of a macroscopic time

must appear in thermodynamic equilibrium for an arbitrary momentum, -

- irrespective. of the particle statistit§, irrespective whether a problem is

nonrelativistic or relativistic, whether particle-productioniand‘anihi1ation
is taken into tonsideration. This is a consequence of the relations between
self-energies and eren'g,fun¢tions{in'a'stategof thermodynahic‘equilibrium
(seé‘AppehEix Es a1so.adthird b@pef-ofAthe series). Due to these relations
thezéxpreSSions corresponding tdlscattering—in and -out from a given momentum
(such as (G.5) and (G.6)) are shifted in the complex time p1§ne by ig. The
first moments of the expreésions would differ by ig. The statement cdncerning
the value oflh_macrOsCOpic:fime is subject to the fact that one of the
processes can be ignofed: e.qg. 5cattering-{n for large momenté, for fermions
close to zero-temperature - the scattering-out below the Fermi surface, and

scattering-in above the surface.
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Appendix. H.: Perturbatioh_expansionyanthreen:s function equatfons of motion
. for a general initial state

- Perturbation theory rules for a general initial state have been ouf]ined,
whitout a full derivation, by Fujita in Refs. [14,15]. vIn the opinion of the
present author, the rules given by Fujita are errorous.

About the initial state we shall only assume that its density

operator commutes with a particle number operator. For the Green's function on
a contour we have an equality (2.28). We define a tjmefordered éontraction of
two operators A and § by

A'B" = T(AB) - N(AB) | (H.1)

where a normal operator-product-N( - ) is defined with respect to the vacuum. .
Upon writing an exponential in (2.28) in a form of a series, we apply the Wick
theorem-to everydterm of the series.

We have

rAAA aan A AN A ANA AAA

_‘
—
b
w
Oy -
»
><
<
~N
p”
]

N(ABC...XYZ) + N(A"B*C...XYZ) + N(A*BC"...XYZ)
A N(ATBICTT L X YT) + L
+ N(ATB " C " . XYY Fa. . (H.2)

If we were taking a vacuum expectation value of the time-ordered product, then
only a sum over 611 combinatidns of contractions, of the fully contracted
pfoducts, would remain at the r.h.s. of (H.2). Ef we take an expectation
value with respect to a certain initial state, then the expectation values of
noncontracted operatofs in the normal prbducts may be expressed through

many-particle Green's functions
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L3

A A ? » .
= GDRV) o bk L b)s (H.3)
For. a k-particle Green's function we adopt a decomposition into products of
1-particle Green's functions and correlation matrices -

60¢ = S(TTEOC + BIME+ ... + &) . | (H.4)

S is an operator symmetrizing Green's function arguments according to particle
statistics, and Eq: (H.4) defines a k-particle correlation matrix ﬁk. :

For a 2-particle Green's function, Eq. (H.4) has e.g. a form

v 82%(1,2:10,24) = 629(1,11)6%¢(2,2") 7 69¢(1,2")6%¢(1",2)
+8(1,2:11,2") . . | (H.5):

Upon. applying.the Wick's theorem to every term of the seriés from (2.28), we
expréss expectation values of nonconfracted operators through functions
ing<, and. to the functions we apply (H.4)1 In the reguiting

decomposition, to-every .term in which a pair of operators QI and @; is
contracted according to (H.1), there corresponds a term, in which a function
i6%¢ with this pair of operators rep1éces_the-contractioh,\ulf we sum the
cbrresponding terms with one another, we get a function iGO, Eq. (2.30), for .
- the pair of operators. Upon conséquent application of the brocedure to all
terms of the series, the only l-particle functions remainfhg in the

decomposition are the functionsviGQ. We may say that we dress the vacuum

functions with a medium. The Feynman rules that follow are such as in Sect. 2
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- an additional rule reads:

Each k vertices (k2 2), into which previously particle Tines were
running in, may be connected with k vertices, from which particle lines were
running out, through a k-particle corre]étion matrix. i Ek' For
fermions, upon assigning specifi¢ correlation-matrix arguments to interaction’
vertices in a diagram, assign to the diagram a factor (-l)F, where F - a -
number of particle loops in the diagram. The number of loops evaluate by
joining the correlation-matrix argumehts with'fUhctfons iGO, i.e. on having

ikEk(l,Z,...,k;l',2',...,k') join 1' with 1, 2' with 2, ..., k' with k.

The c0nhected 1-order diagrams for iG(1,1') are now of fhe form presented
in Fig. 12. The function 12§g is denoted by a bubble with directed
lines. Let us mention, that correlation matrices may not be directly
connected with one another. From a way in which correlation matrices were
defined, a value of a matrix does not depend on an assignment‘of the
time-arguments to the branches of a contour. Due tolthis,‘when determining a
max imum time for internal time-integrations in a subdiagram, there is no neéd'
to take into account:arguments of correlations matrices connected to a
subdiagram. Further if certain subdiagram is connected so1e1y to correlation:
matrices, as in Fig. 12e or 12f, then ;he whole diagram vanishes, bacause
internal time-integrations in a subdiagram may be reduced to t6.3 If a

diagram may be cut between the end-points in such a way that the cut passes

only through correlation matrices, then the diagram does not depend upon

3'Let us mention, that for that reason, on reffering to "l-particle

correlation-matrices” iG%¢, a cancellation occurs for the £% terms in the
Boltzmann collision integral. Analogous cancellations occur in collision® "

integrals for emission and absorption of bosons - third paper of this series.
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assignment of the end-points to the.branches of a contour.
In the above expansion we need to know the correlation matrices for all
times larger than to. There holds ,
A A A whs At N . .
Y (xt) = de-"V»(g').(‘PI (x40 (y) = Yy (xt) .. - (H.6)

~

which follows from the fact that the r.h.s. satisfies the same differential’

eqqation as the 1.h.s.,‘with the same boundary condition at t =’to. Equation
(H.6) may bé_wriften as | i |
Y06t = Jay Yy (167 (x5t ty) —_iG°<(>,g,t,x,to)) C (H.7)
The hermitian conjugation of (H.7) yields
ST LPTHRNNIE SRR - 0>, Caa0% ' | .
V) = fay Wiyt L t) - 6%yt K1) (H.8)
Fro&w(H{S),:(H.7)yand'(H.8), there follows
'2’“ . ] 1 ] i 3 | ( '
1'62(1,2:1 ,2') = 5q5 Sq¥ sd5 jqx (6% - G°<)(1,5,t0)
L a0>  A0< .2%0 g '
x (677 - G )2,y,t,) 176 (X,to,y,t ixt sty st,)
x (6% - 6%)(x',t,1') (6% - 6%)(y',t,2) (H.9)

and analogous identities hold for higher correlation matrices. The
correlation matrices in the existing rules may be replaced by the correlation
Amaffices ét t0 and the 160% lines running fo the.correlation-matrfx

arguments at to. A rule referring to correlation matrices may be now |
modified in the following way:

Draw two horizontal marginal lines t; and t;, which correspond

to the two ends of a time contour. At this Tines mark the correlation
“matrices occuring in a diagram. Eéch matrix occursvsimu1taneously at tg

and at t;. To particle lines running to t; and from t; there

correspond functions i6%<, and to lines running in the opposite direction
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GO<.

functions iG°>. To a line running downward, iG°¢, there corresponds an

extra factor»(—l).

A diagram from Fig. 12d decomppses now into 24'diagrams, some of which are
D"bkesented in Fig. 13. Changing the order of summation of diagrams we may
dress the lines iGo ruqniqg to gnd from tg. We have a possibility of
introducing a se]feenergy;

“ A self-energy wf]] be defined diagrammatically as.an_jrreducib]e part of
the Green's function. We single out a self energy'Zt, which begin; with a

" correlation matrix and ends with a.potential. The function.ZC bégins with a
potential and ends with a correlation, while z begins and ends with-a
potential. There exists no self-energy that would begin and end with a
correlation, because respective diagrams vanish. A Dyson equation for the

Green's function is of the form
6 =6+ 6% + 6%6 + 626 | - (H.10)
and we have on a contour

2c(1,2) = Zo(1,x,)(8(13,t5) - 8(t5,ty))
="ZC(1’£2)5(t0 - ty) (H.11)

and



Upon applying %! to both §ides of (H.10) and exploiting Go"lGo?'= 0, ..

we get
0le-1+2Z6+36 . S (HA3)

On restricting, at the 1.h.s. of (H.13), the.variation of the function
arguments to opposite -branches of a contour, we obtain the following

generalized Kadanoff-Baym equations

+V9)6(1,10) = [dx, 2

)
a_‘l“ 2 Tyr (%5253 81064 (xy,1,1")

tl > <y % tl' > | > <
+ )22 - 39(1,2)6%(2,1') - Jd2(8* + 2.)(1,2)(8” - 6%)(2,1")
0 0 (H.14)
Let us mention, that from the Greén's functions in the last terms of Eqs.
(H.10), (H.13), and (H.14), one should in principle exclude the parts of the
functions that end with a correlation. However respective contributions from
the functions at t; and tg cancel out. A procedure analogous to the

above leads to a second pair of equations

' % N 2
(‘igtp * i 8L = (B (L5t T (. 13ty
t _ ot
+ t&d2(6> 6,2 (2 + 3% 02,1 - t§c12(;’<(].,2)(z z<)(7 1Y)

° - © (H.15)

In the Kadanoff-Baym equations (3.6) ahd (3.7), for ti =t = to»

the Hartree-Fock energy yields a sole contribution to the Green's function



-88-

evolution. The correlations (scattering) built up only with time. In Egs.
(H.14) and (H.15), at t1 =t = t,, the extra r.h.s. contributions come

respectiQely from‘?c and 2C. At an initial moment, from diagrams,

~

zc(&lato,ﬁll) = ;iv(2\(’1—52)63(%’1,13091(‘2,1:0:51|,t0,),£2,to) ] (H-]6)

which inserted into (H.14) yields a result that agrees with (3.35), as it
should. |
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Figure Captions

CFig. 1.- .

Fig. 2.~

Fig.

3.

Fig. 4.

Fig.

Fig.

Fig.

Fig.

Fig.

Contour along the time axis for an evaluation of the operator

expectation value.

-liowest-order diagrams for the self-energy.

Born diagrams for the self-energy.

Contour in the complex time plane corresponding to the
evaluation of an operator expectation value with respect to a

state of a lowest €

Contour corresponding to the evaluation of an expectation value

of a Heisenberg picture operator at ty > tg-

Contours corresponding to the evaluation of expectation values

with respect to the equilibrium density operator,
Contours corresponding to the evaluation of the operator
expectation values, for a finite time of the imaginary
evolution.

Diagrams that yield expressions which cancel with one another.

Contour along the time axjis.
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Fig.

Fig.

Fig.
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12.

13.
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Ladder diagrams for the 2-particle Green's function.

. Diagrams defining the T-matrix.

First-order diagrams for a l-particle Green's function.

Some of the diagrams corresponding to the diagram from
Fig. l2d, upon modification of the additional pérturbation

theory rule.
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Fig. 2
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