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ABSTRACT: Finding the best material for a specific application is
the ultimate goal of materials discovery. However, there is also the
reverse problem: when experimental groups discover a new
material, they would like to know all the possible applications
this material would be promising for. Computational modeling can
aim to fulfill this expectation, thanks to the sustained growth of
computing power and the collective engagement of the scientific
community in developing more efficient and accurate workflows
for predicting materials’ performances. We discuss the impact that
reproducibility and automation of the modeling protocols have on
the field of gas adsorption in nanoporous crystals. We envision a
platform that combines these tools and enables effective matching
between promising materials and industrial applications.

■ INTRODUCTION

In this Outlook, we are indulging in a luxury problem: too
many materials with too many possible applications. In the
field of nanoporous materials, more than 100 000 metal−
organic frameworks (MOFs) have been reported (Figure 1),
with large design spaces also guaranteed for covalent organic
frameworks (COFs), zeolites, porous organic cages, etc. At the
same time, the range of applications of these materials is
expanding from gas separation1 and gas storage2 to fields such
as catalysis3,4 and sensing.5,6 A new material is often designed
and tested for one specific application; testing it for a wide
range of applications may exceed the expertise, time resources,
and/or infrastructure of the research group synthesizing the
material. Conversely, research groups focused on the
application side can no longer afford to test all materials of
possible interest.
Let us illustrate this point with a few examples. Al-PMOF

was first synthesized for its photocatalytic activity but was later
discovered to be promising for the separation of CO2 from wet
flue gases.13 MOF SBMOF-1 was synthesized to capture CO2
but turned out to be an excellent material for separating Xe
from Kr.14 UMCM-152 was first reported in 2010 and tested
for H2 adsorption

15 but was rediscovered as a record-breaking
material for oxygen storage eight years later.16 In these and
further examples,17 computational screening studies discovered
the potential of existing materials for new applications. Since
the number of available materials is so large (and becomes
even larger when including materials generated in silico18),
computational modeling is at present the only feasible
screening method.

A typical computational screening study aims to rank a set of
materials for a given application: the first step is to determine
key performance indicators (KPIs) and the ranking criteria for
the comparison of different materials. KPIs are typically related
to material properties, such as the electronic band structure
(for optical or electronic KPIs), or adsorption isotherms (for
KPIs related to gas storage or separations). While some
properties, such as stability, remain difficult to predict from
first-principles, density functional theory (DFT) calculations
provide access to a wide range of properties of MOFs,
including the band gap and band structure,19 mechanical
properties,20,21 and catalytic properties.22,23 DFT also allows us
to make accurate predictions of the interactions of guest
molecules inside the pores.24,25 In addition, classical molecular
simulations enable the computation of thermodynamic and
transport properties of these guest molecules.26,27

When screening studies involve large numbers of materials
and multiple steps, inspecting each simulation step manually is
no longer feasible. It becomes necessary to develop robust
workflows that provide automatic fallback routes for common
errors, signal potential issues to the user (e.g., related to the
atomic structures provided as input), manage calculations with
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a variety of software packages, and allow for easy retrieval of
the resulting data. The development of automated workflows is
a major effort, and the community would benefit enormously
from open-source projects that allow the sharing of such tools.

We can envision taking this approach even one step further:
What if the workflow infrastructure was made available for
experimental groups to use? They could upload the crystal
structure of a new nanoporous material (MOF, COF, or
zeolite) andwith close to zero effortobtain calculations of

thermodynamic and transport properties for a range of guest
molecules, as well as predictions of how this new material
would perform in screening studies previously published in the
literature (Figure 2), or if an experimental group develops a
novel separation process, having a database of thermodynamic
data would allow this group to identify top performing
materials for their applications. Finally, if a computational
group improves an existing force field or protocol for a specific
class of materials, the updated workflow could be available
whenever a material of that class is uploaded.
In this Outlook, we introduce the challenge of matching

nanoporous materials and applications and argue that an open-
science platform is a promising and practical approach to
address this need. Looking back at almost two decades of
progress in the study and modeling of MOFs and COFs, we
observe that it is often difficult to build upon and extend the
output of the computational community. While many authors
nowadays make the source code underlying their screening
studies openly available, the barrier to putting them into action

Figure 1. (a) Papers mentioning “Zeolite”, “Metal Organic Framework”, and “Covalent Organic Framework” in the title or the abstract, as parsed
from Scopus in July 2020.7 The right column collects histograms for the deposition of materials in publicly available databases. (b) Zeolite code
types by year of assignment, from the database of the International Zeolite Association (IZA).8 (c) MOF-subset of the Cambridge Structural
Database (CSD, May 20 update) by year of publication (orange).9 MOFs in the CoRE-2019 “All solvent Removed” (ASR) subset (purple) are
selected from the CSD release of November 2017 with criteria such as three-dimensionality of the framework and permeability to small
molecules.10 (d) COFs in the CURATED-COFs database (June 20 update), by year of publication.11,12

Figure 2. Scheme of exemplary workflow. The user starts by uploading the atomic structure of a crystalline materials in the CIF format, which
triggers the refinement of the atomic positions, the computation of pore geometry, and thermodynamic and transport properties. Finally, its
performance for specific applications is evaluated, and the material is ranked versus other candidates.

The development of automated
workflows is a major effort, and
the community would benefit
enormously from open-source

projects that allow the sharing of
such tools.
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remains high for anyone who is not a computational expert.
We suggest that most of the puzzle pieces are already there
and, if put together, they have the potential to dramatically
increase the impact of computational studies, both by
activating new classes of users and by encouraging collabo-
ration in the design of computational modules.

■ DATABASES OF NANOPOROUS MATERIALS
Curated Structures from Experimental Syntheses.

Computational screening studies rely on large databases of
materials. A first step is to collect all the reported structures in
a consistent format: today, the Crystallographic Information
File (CIF) format is the most common one. The minimal
information needed to proceed with a computational screening
study is the dimensions of the unit cell and the elements and
coordinates of the atoms that compose the framework. This
information is obtained ideally from single crystal X-ray
diffraction studies. When obtaining single crystals is not
possible, one can rely on powder X-ray diffraction or other
indirect measurements instead.28

In the MOF community, it is standard practice to publish
new structures in the Cambridge Structural Database (CSD)29

and to report the reference code assigned to the entry in the
article. With its more than one million entries (102 508 of
which were recognized as MOFs until May 2020),9 the CSD is
the oldest and largest data set of organic and metal−organic
crystals.30

Unfortunately, many of the reported structures in the CSD
are not suitable for a computational screening study out of the
box. From X-ray diffraction data, it is difficult to locate
hydrogen. If the material is charged, locating the counterions
can also be challenging. For porous MOFs, the crystal structure
is often determined with solvent molecules present inside the
framework, while many practical applications require activating
the material by removing the solvent molecules. In addition,
disorder in the material is often indicated via partial
occupancies, which need to be resolved to unique structures
(in most of the cases manually) before using the structures as
input for simulations.
The group around D. Sholl pioneered the extraction of

MOFs from the CSD for a computational screening purpose.
In two studies from 2012 (seeking materials for kinetic
separation of noble gases31 and CO2/N2

32) they distilled a set
of 3432 and 1163 MOFs, respectively, from which they
discarded entries with atomic disorder, and they algorithmi-
cally removed solvent molecules. One year later, Siegel et al.33

targeted hydrogen storage and identified ca. 38 800 crystals
from the CSD as MOFs but had to exclude ca. 16 000
problematic structures due to missing H, disorder, etc. For
these first studies, the final database of filtered and curated
CIFs was only accessible upon request to the authors. In 2014,
Chung et al. created a set of 5109 “Computation-Ready
Experimental” (CoRE) structures, selected to be three-
dimensional, porous (i.e., with a pore limiting diameter >2.4

Å), and fully desolvated, and made the database openly
available for download.34 Recently, this database was updated
to include 14 142 MOFs, 546 of which were collected from
sources other than the CSD.10 This update also included a
version of the database where solvent molecules coordinated to
metal sites were not removed (i.e., the MOFs were not
“computationally activated”). In two separate projects,
Nazarian et al. used DFT to provide partial charges35 and
geometry-optimized structures36 for the first set of CoRE-
MOFs. Only 502 (i.e., ca. 10%) passed both refinements. The
database with partial charges was used by other groups in
several screening studies,16,37−39 demonstrating the impact of
providing an open-access, curated, and extensive database of
structures to the computational community.
Ideally, for every new MOF structure deposited in the CSD,

a computation-ready structure would be generated as well. At
present, however, there is no standardized protocol for these
stepse.g., removal of solvents, addition of missing hydrogen
atoms, resolution of partial occupancies, correction of atomic
overlaps, and structural distortionand as a result, each group
may generate slightly different structures that make it difficult
to compare predicted properties.40,41 This cleaning procedure
can be seen as a continuous process where more and more
checks and fixes are added in a collaborative effort.42,43 For the
platform we envision, it would be highly desirable to eventually
arrive at an internally consistent and extensive database of
nanoporous structures that are “ready” for molecular
simulations or electronic structure calculations, and made
available in a way that satisfies the FAIR data principles:
Findable, Accessible, Interoperable, and Reusable.44,45

Extending this curation to different classes of materials, such
as COFs, inevitably results in new considerations and
challenges. For MOFs, the CSD imposes quality controls on
the accuracy of the crystal structure. COFs typically have short-
range crystallinity but long-range disorder, preventing the
refinement of the crystal structure directly from X-ray
diffraction data46 and thus inclusion in the CSD. As a
consequence, experimental groups develop their own protocols
to generate the crystal structures reported with their
publications. These difficulties motivated us to create a
database that combines the advantages of both the CoRE
and CSD protocols and provides a high level of transparency
and consistency in the refinements including cell optimization
and the calculation of partial charges. Branching off from the
second version of the CoRE-COF database by Tong et al.,47

we extended the database to 574 COFs in the June 2020
update. The relevant literature is monitored by the
@COF_Papers Twitter bot, and structures in CIF format are
collected in a public repository, where researchers can suggest
new additions or report errors.12 All modifications, corrections,
and additions are tracked by the Git version control system.
Moreover, an automated routine, orchestrated by the AiiDA
workflow manager,48,49 computes the DFT-optimized struc-
tures and partial charges following a published protocol.11 The
results are made available periodically in the CURATED COF
database hosted on the Materials Cloud open science
platform.50 A recent independent study compared the gas-
separation performances as computed from the structures of
this database and the original COF structures, highlighting the
importance of the curation process.51

Hypothetical Structures. In addition to the databases of
experimentally determined structures, there is an even larger
number of structures generated in silico, which are further

Most of the puzzle pieces are
already there and, if put together,
they have the potential to dra-
matically increase the impact of

computational studies.
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candidates for computational screenings. Replacing the
experimental synthesis of new materials with computational
algorithms increases the number of atomic structures that can
be assembled (zeolites, MOFs, and COFs) by orders of
magnitude. To give an idea of how large these databases can
get, we just mention two very recent works, which reported
325 000 hypothetical MOFs13 and 471 990 hypothetical
COFs.52

As the growth of the number of hypothetical structures even
outpaces the continued increase of computational power, brute
force screening will become increasingly unfeasible. A
promising alternative is to select only a modest subset of
most diverse structures to perform accurate calculations
(comparable to those on experimental structures), train
machine learning methods to capture the structure−perform-
ance relations, and use them to extend the screening to the
remaining materials.53 Indeed, the key to the success of this
approach is to find effective metrics for the “diversity” between
structures in the context of a particular application.54

■ COMPUTATION OF MATERIALS’ PROPERTIES
Gas Adsorption Properties. Once one has a set of

computation-ready structures, one can start computing the
properties that are relevant for the application(s) of interest
here, gas adsorption in nanoporous materials. If interested in
comparing properties and performances among many materials
(and updating this ranking over time), one needs to pay
particular attention to the consistency of results. Consistency
means, for example, applying the same protocol to curate the
crystals’ atomic structure, to estimate partial charges, to
exclude inaccessible pores, etc. in order to enable the
comparison of the final results. This includes both choices of
the model, such as the DFT functional or the force field (UFF,
DREIDING, TraPPE, etc.), as well as secondary parameters,
such as the choice of the DFT basis set or whether to use tail-
corrections in grand canonical Monte Carlo (GCMC)
adsorption calculations.55

A first step may involve a relaxation of the atomic positions
using force fields, semiempirical methods, or DFT in order to
ensure that the atomic structure is consistent with the
computational method employed. This step can also help
identify mistakes in input structures and take the effect of
solvent removal on the framework into account.
Gas−framework interactions are often evaluated using

GCMC insertion techniques with classical force fields.17 In
this approach, the Coulomb interaction is modeled by partial
charges, which are tabulated for popular gas molecules but
need to be computed for the framework. If DFT was used for
the geometry relaxation, partial charges can be computed at
negligible extra cost from the electrostatic potential, usually
preferring protocols that aim at reproducing the electrostatic
potential (e.g., REPEAT, DDEC) over the others (e.g.,
Mulliken, Hirshfeld, Bader).56,57 Alternatively, cheaper charge
equilibration methods can be used, but with extreme care (see
ref 37). The partial charges on the framework atoms need to
be combined with a force field to describe the interaction
between the gas molecule and the framework. Many studies
opt for off-the-shelf parameters for the dispersion interaction,
such as DREIDING58 or UFF59 for the framework and
TraPPE60 for the adsorbate. Steps outside the original design
space of existing force fields or modifications of their
parameters need to be carefully validated in order to ensure
that the behavior of the gas molecules in the pores is

reproduced with sufficient accuracy (e.g., adsorption isotherms,
heats of adsorption, etc.).
As one moves to larger numbers of structures and more

complex workflows, it becomes increasingly challenging to
manage the calculations and to provide all information
required to reproduce a particular result. This is where
workflow managers can come to the rescue, and numerous
open-source infrastructures are available for orchestrating
computational chemistry codes with advanced logic,61 such
as AiiDA,48,49 FireWorks,62 AFLOW,63 or signac.64

Open Challenges. Once we obtain a reliable force field for
molecule−framework interactions, we are still left with a
number of open challenges. One challenge is the modeling of
defects: as high-throughput computations typically assume
perfect crystals, they will not capture properties that are
dominated by crystal defects present in the experimental
material. Another challenge is the modeling of framework
mechanics upon adsorption: most screening studies assume a
rigid framework. For many structures, this approximation is
reasonable, but some materials are known to display structural
changes upon gas adsorption, which can affect performance in
relevant applications.65 Assuming the structure to be rigid may
lead to incorrect identification of pore accessibility for gas
molecules. Algorithms based on geometrical assessment of
channel diameters can easily recognize nonaccessible pores and
exclude them from the adsorption calculation.66 However, it is
less trivial to routinely identify those cases where a small
rotation of the ligands can allow the gas molecule to permeate
(such as in the well-studied case of ZIF-867,68).
There are other material properties relevant to the process

modeling of gas-related applications that can be evaluated from
the unit cell, such as gas diffusion,69 heat capacity,70,71

mechanical stability,72,73 and chemical stability. The studies
cited above propose computational protocols for investigating
these properties, which might be extended for high-throughput
screenings. Combining all these properties in the same
screening platform would allow the filtering out of structures
that are unstable or show poor thermal or molecular diffusion
and provide more information to the process model.
Moving beyond the field of gas adsorption brings yet more

properties into focus, such as more accurate electronic
properties for applications in sensing, semiconductors, and
photocatalysis,19,74 which put increased emphasis on the
choice of the electronic structure method and are beyond
the scope of this Outlook.

■ RANKING MATERIALS
Accurately predicting material properties is the aim of
molecular simulations, but it represents only half of the
story: our ultimate goal is to rank materials for a given
application, based on key performance indicators (KPIs). In
the following, we discuss the KPIs for two important
applications of nanoporous materials: hydrogen storage33,75−79

and CO2 separation from nitrogen.11,40,80−83

Our ultimate goal is to rank
materials for a given application,
based on key performance in-

dicators
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For H2 storage, the main KPI is the deliverable (or
“working”) capacity, i.e., the difference in gas uptake between
the loading conditions at higher pressure and/or lower
temperature, and the discharging conditions at lower pressure
and/or higher temperature. Therefore, the evaluation of
hydrogen storage performance requires calculations at only
these two conditions of temperature and pressure, and
molecular simulations have been shown to be feasible for
screening more than half a million structures.78,79 Similar
considerations are also valid for the evaluation of natural gas
deliverable capacity.34,47,84,85 Other important KPIs may focus
on the diffusion of gas and heat inside the framework, in order
to enable fast loading/discharge and heat dissipation.
For CO2 capture, finding KPIs for the ranking is more

complex. In 2012, our group developed a simplified
thermodynamic model for carbon capture and sequestration
(CCS) involving a temperature−pressure-swing adsorption
process, considering inlet gases from a coal-fired power plant
(14:86 ratio of CO2:N2), a natural-gas-fired power plant (4%
CO2), or air (400 ppm of CO2). This model was used to
evaluate different classes of nanoporous materials,82,86 and we
recently expanded the study to COFs.11 Two KPIs were
identified: The “parasitic energy” is defined as the energy
needed to separate 1 kg of CO2 and compress the purified gas
to 150 bar for underground storage. The parasitic energy can
be taken as a measure of the operating cost of the separation
(OPEX). The working capacity, on the other hand, determines
the amount of adsorbent material needed and thus the capital
cost (CAPEX). The study showed that the minimal parasitic
energy can be related to an optimal value for the Henry
coefficient of CO2 around 10−3 mol/(kg Pa) (at 300 K) for
power plantsstronger affinity between CO2 and the
framework would result in higher energy needed for the
regeneration of the adsorbent. For direct-air capture, the
optimal value lies above 10−1 mol/(kg Pa), and chemisorption
appears to be a more promising solution. Recently, simulations
have been coupled with more advanced models of the
pressure-swing process,87−89 indicating subtle relations be-
tween the properties of the material and their performance in
the process. In particular, the often overlooked nitrogen
isotherm was identified as a key indicator.
The case of CO2 separation highlights the importance of

connecting materials’ properties to process modeling: on one
hand, the process modelers need to be aware of the
uncertainties in material property predictions and how they
propagate through their model. If small perturbations in the
inputs alter the outcome significantly, this “butterfly effect” will
compromise the reliability of the final ranking. On the other
hand, the molecular simulation community should focus its
efforts on improving the predictive accuracy for those
properties that are shown to have the largest influence on
the process models. In this context, modular workflows and
automated provenance tracking can simplify investigations of
individual workflow components and help trace their impact
on the final rankings.

■ TOWARD BEST PRACTICES
While the vision of a common platform with easily extendable
and fully interoperable workflows may appear somewhat
utopian today, there are a number of concrete practices that
researchers can adopt to move closer toward this goal.
Reproducibility. In order for a reader of a scientific

publication to be able to reproduce its results, the study should

reportamong the analysis and discussion of its scientific
resultsalso all the information needed to reproduce them.
However, for screening studies that involve large numbers of
materials and/or multistep workflows, achieving this “radical
transparency” is easier said than done: manually collecting all
necessary input files, postprocessing scripts, software versions,
etc. can be time-consuming, and completeness is difficult to
ensure. Here, workflow managers can help by tracking the
provenance automatically and providing ways to export and
share this information with peers.
For example, our recent work on parsing COFs from the

literature and assessing their performance for carbon capture
tries to follow this approach, publishing both the full
provenance graph of the study and the source code of the
workflow used to orchestrate the calculations.11,50,90 The
provenance graph gives any interested researcher the ability to
click on a data point and to inspect every step of the workflow
that was used to compute it, try to reproduce an individual
calculation themselves, or report mistakes they encounter.
Sharing the source code of the corresponding workflows on
collaborative platforms like GitHub further enables direct
suggestions of bug fixes or improvements to the protocols,
both in code and in narrative form.

Automation. Moving from the study of a few materials to
hundreds or thousands of them puts an emphasis on
automation. One needs an effective way not only to manage
the sequence of calculations but also to handle common errors
and perform preliminary data analysis. We illustrate this using
simple, practical examples from gas adsorption in nanoporous
materials: Before submitting a crystal structure to GCMC
simulations one has to detect and block the inaccessible pores
and expand the simulation cell to include twice the cutoff used
for the potential. These operations may need some external
packages or ad hoc scripts and can be fully automated using a
workflow manager. Another notable case is the handling of
DFT calculations in which the self-consistent field cycle fails to
converge. Depending on the system under study, remedies can
include automatic resubmission with slower, more conservative
minimization schemes (e.g., switching from orbital trans-
formation to diagonalization methods) or turning on electronic
smearing.11

When considering one’s own use cases, and realizing the
many intermediate steps that would need to be automated to
go from an input structure to the final result, one inevitably
arrives at the question whether the effort of full automation is
worth the time investment. While this determination needs to
be made case by case, it is easy to forget that each manual
operation makes results harder to reproduce and entails
substantial time investments when others (or even our future
self) go on to extend and build upon the work. At the same
time, modern workflow managers provide time-saving
convenience features, such as automatic translations of job
parameters to the language of various queuing systems,

The provenance graph gives any
interested researcher the ability
to click on a data point and to
inspect every step of the work-
flow that was used to compute it.
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automatic file transfers between the local workstation and the
cluster, and automatic record keeping.
The development of a robust workflow can be challenging,

but is a valuable outcome from a computational study on its
own: it ensures that when new sets of materials are released,
they can be included in the screening with minimal additional
effort.
Open Source. The idea of open science does not stop at

access to papers and data but extends naturally to the software
used to obtain the data: the use of free and open-source

software (FOSS) lowers the barriers to reusing, reproducing,
and building upon prior work. This is particularly true for
materials screening studies, where readers may want to
compare a new material to the set of the already screened
ones. When data, software, and workflows are made openly
accessible, the barrier for such checks reduces to the marginal
computational cost of screening just one more material.
Despite these obvious benefits, the demand for FOSS has

been notably missing from declarations in the open science
context.91 One of the reasons may be that developing and
maintaining high-quality scientific software takes years of
teamwork, and commercial licenses have proven to be a
successful model for funding such efforts in the past.92 Today,
however, FOSS alternatives exist for most applications in
computational materials science, and we do seem to observe a
trend of increasing adoption of these codes vs their commercial
competitors over the course of the past decade:92,93 CA-
STEP94,95 (restricted to academic use) and openMolcas96

being two recent examples of codes that have decided to switch
to a more open licensing model.
We believe that the question of sustainable software

development for open science needs to be on the table and
discussed by all stakeholders.

Setting the Stage for Machine Learning. In recent
years, machine learning (ML) has been rapidly mixing with
molecular simulations,97 and we expect the advent of
automated workflows in the field of nanoporous materials
modeling to amplify this trend.53 Among the first applications
of ML methods is the prediction of the Henry coefficient or a
full isotherm in a fraction of a second, from conventional
geometric properties of the crystal structure (such as pore
volume and atoms’ connectivity) and/or more advanced
descriptors.98−101 This massive speed up enables the screening

Figure 3. Performance of COF structures for CO2 capture: parasitic
energy required for the process versus gravimetric working capacity.
Markers of the 250 new COFs are color-coded based on their ranking
from high performance (low parasitic energy and high working
capacity, green) to low performance (red). Markers of materials
already included in ref 11 are shown in light gray.

Figure 4. Performance of CURATED-COFs for H2 storage at (a) cryogenic and (b) near-ambient conditions, (c) methane storage, (d) oxygen
storage, (e) Xe/Kr separation, and (f) (H2S)/water separation. The ranking is color-coded from high performance (green) to low performance
(red). Selectivities are computed as the ratio of the Henry coefficients of the two gases at 300 K. The coordinates of the markers for T-COF-2 and
JUC-509 are highlighted by dashed and solid lines, respectively.
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of even millions of materials at affordable computational cost,
shifting the role of molecular simulation to providing sufficient
training data for the ML. The main question for a new material
then becomes is this structure different enough from the others
already included in the training set to justify the use of
expensive molecular simulations over ML predictions?54

However, at present, ML studies trained on data published
by other groups are rare in the field. In many cases, data are
recomputed specifically for the training, even when similar (but
not identical and consistent!) data are available. In this context,
moving as a community from delivering just a final set of
results to including also the infrastructure needed to obtain
them could allow ML experts to easily extend the training set
with new consistent data. Reusing the same data sets in
multiple ML studies would also enable effective assessments of
the models themselves, which is less trivial when the training
data differ. Finally, the training routines should be automated
and made reproducible as well.53

■ TOWARD A PROTOTYPE OF A MATERIALS
MATCHING PLATFORM

As a first step toward realizing the ideas put forward in this
Outlook, we have extended our work of curating COFs and
screening these materials for carbon capture11 to six new
applications and 250 new COFs.50 The new structures include
mostly COFs published after the original work (as tracked by
the @COF_PAPERS Twitter bot), and the applications are
based on previous screening studies focused on gas storage
(methane,85 hydrogen,78,79,102 and oxygen16) and gas separa-
tions (Xe/Kr,14 H2S removal in wet gases).
Provided that the input structure is chemically sound (e.g.,

no missing hydrogens or overlapping atoms) and is charge-
neutral (no counterbalancing ions), the workflow CURATED
99% of the structures without human intervention. For all
CURATED structures, we automatically computed the
adsorption isotherms and/or Henry coefficients of CO2, N2,
H2, CH4, O2, H2S, H2O, Xe, and Kr. From these isotherms, the
KPIs were computed automatically and used to rank the
materials as shown in Figure 3 for the extension of our
previous study on CO2 capture

11 and in Figure 4 for the other
new applications included. The full workflow typically takes 2−
5 days from start to finish, using ≈1000 core hours. In other
words, it costs about the price of three cups of coffee: two cups
for the curation of the structure and one for all KPIs.103 The
full provenance graph of each workflow, shown in Figure 5, is
tracked automatically by the AiiDA workflow manager.
It is interesting to discuss two examples of recently reported

structures that were included in the update. T-COF-2 (Figure
6a) was synthesized in 2020 and tested for a photocatalysis
application.108 The simulations do not predict this material to
be among the top performers for any of the gas adsorption
applications implemented so far. While this is the most likely
outcome, as the screening studies are extended to more
applications, the probability of discovering unexpected hits
should increase.
The other COF, JUC-509 (Figure 6b), seems more

promising. This material was synthesized in 2019 for
catalysis.109 Based on the atomic structure of the material,
our screening predicts it to be among the top performing
materials for the storage of H2, CH4, and O2 (Figure 4). We
acknowledge that there are other factors that may play a role in
deciding whether it is worth testing JUC-509 for these Fi
gu
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applications, but it is our hope that cases like this one will lead
to interesting, unexpected discoveries going forward.
Many things remain to be done in order to transform this

prototype into a platform of broad impact. We have limited
ourselves to COFs, and it is essential to extend it to MOFs and
other porous materials. We have used relatively elementary
KPIs to illustrate the concept, which we hope to replace with
more advanced ones, and so far, the predictions rely on generic
force fields which may not always be the optimal choice.
Finally, we would like to extend the range of applications
beyond the current scope of gas storage and separation. The
results of this screening are updated periodically and can be
accessed from materialscloud.org/discover/curated-cofs. Both
the data and the source code of the underlying workflows are
made available online.110

Over time, we hope to inspire other research groups to build
upon the existing open infrastructure and develop their own
modules for new applications, resulting in “living” screening
studies that are regularly updated with new materials.
Infrastructure projects like these require long-term commit-
ments, which are notoriously difficult to make in today’s
research funding landscape. Thanks to support from the
MARVEL National Centre of Competence for Research, we
feel ready to accept the challenge and, given the enormous
potential impact for the field, hope to be able to convince other
funding agencies and possibly commercial partners to join.
In summary, the idea of this Outlook is to illustrate a

dormant potential in the computational materials science
community that can be unlocked by moving toward a more
open, collaborative way of doing sciencenot necessarily
inventing something spectacularly new, but simply putting
together the pieces of a large puzzle. While we have made the
case for the field of nanoporous materials for gas adsorption
applications, the basic concept would seem extensible to
further classes of materials and applications.

■ AUTHOR INFORMATION

Corresponding Author
Berend Smit − Laboratory of Molecular Simulation (LSMO),
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