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Abstract

Diffusion tensor imaging (DTI) has recently been added to several large-scale studies of 

Alzheimer’s disease (AD), such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), to 

investigate white matter (WM) abnormalities not detectable on standard anatomical MRI. Disease 

effects can be widespread, and the profile of WM abnormalities across tracts is still not fully 

understood. Here we analyzed image-wide measures from DTI fractional anisotropy (FA) maps to 

classify AD patients (n=43), mild cognitive impairment (n=114) and cognitively healthy elderly 

controls (n=70). We used voxelwise maps of FA along with averages in WM regions of interest 

(ROI) to drive a Support Vector Machine. We further used the ReliefF algorithm to select the most 

discriminative WM voxels for classification. This improved accuracy for all classification tasks by 

up to 15%. We found several clusters formed by the ReliefF algorithm, highlighting specific 

pathways affected in AD but not always captured when analyzing ROIs.
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1. INTRODUCTION

Alzheimer’s disease (AD), a debilitating neurodegenerative disorder that affects the elderly, 

is the most common type of dementia worldwide. Pathological changes related to AD may 

begin decades before clinical symptoms are detected, and methods are needed to help 

predict who will ultimately be diagnosed with AD and who is most likely to show imminent 

cognitive decline. Mild cognitive impairment (MCI) is a state of abnormal cognitive 
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function intermediate between healthy aging and AD, and around 10–15% of people with 

MCI convert to dementia every year [1, 2].

Diffusion tensor imaging (DTI) of the brain may help in distinguishing stages of AD by 

evaluating white matter (WM) alterations, including myelin breakdown and axonal loss [3–

6]. DTI measures water diffusion in brain tissue and provides various measures of 

microstructural integrity and pathology [4]. Numerous DTI studies show white matter 

differences between AD and normal control (NC) [3–11]. Even with healthy aging, DTI 

changes over time are detectable in the frontal WM, anterior cingulum and the genu of the 

corpus callosum. In AD, abnormalities tend to be more severe, primarily in posterior 

regions; the parahippocampal gyrus, temporal WM, splenium of corpus callosum and 

posterior cingulum. In MCI, changes resemble those in AD, with similar but lesser 

abnormalities in posterior regions [3].

Patients with AD can be differentiated, with varying degrees of accuracy, from people with 

MCI and NC using machine learning techniques. Support vector machines (SVM) have been 

used successfully in AD and MCI studies. Dyrba et al. [9] used DTI indices FA and mean 

diffusivity (MD) with SVM to classify 137 people as AD or NC. They selected voxels to 

improve classification performance, using Plant’s approach [10] and an “information gain” 

criterion. They achieved an accuracy of 80% for classifications based on FA, and 83% for 

MD. Haller et al. [11] measured FA, axial, radial, and mean diffusivity in 35 NC and 67 

MCI subjects using Tract Based Spatial Statistics. They performed classification of MCI 

cases versus controls, using SVM and obtained up to 91.4% accuracy. Nir et al. [12] 

performed a SVM based classification of AD using DTI measures interpolated along the 

maximum density paths based on whole-brain tractography. They obtained 74.5% accuracy 

for AD vs NC using FA and 80.6% using MD; of course, these results depend on the age 

and scan quality of the cohort assessed, and whether patients have other co-morbid 

conditions. Even so, they suggest the utility of DTI for AD research.

Here we took an unbiased brain-wide approach to identify voxels and regions in FA images 

that best discriminate between AD, MCI and NC in both voxelwise and ROI analyses. We 

compared the classification accuracy between averaged ROI features, voxels throughout the 

WM, and voxels selected by the ReliefF algorithm by applying SVM to data from 221 

ADNI participants. We applied 10 times 10-fold cross validation for feature selection and 

classification, to assess the generalizability of the performance.

2. MATERIALS AND METHODS

2.1. Demographics and DTI Scans

DWI scans, clinical, and neuropsychological data were downloaded from the ADNI 

database (http://adni.loni.usc.edu) and we performed a cross-sectional analysis of 211 

participants scanned at 14 data acquisition sites (70 NC, 114 MCI and 37 AD patients). 

Cognitive evaluations of each subject included the Mini-Mental State Examination 

(MMSE), the “sum-of-boxes” Clinical Dementia Rating (CDR-sob) and the Alzheimer's 

Disease Assessment Scale-Cognitive (ADAS-cog) [4]. Demographics and mean test scores 
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for the participants are given in Table 1. As expected, diagnostic groups differed 

significantly in cognitive test scores.

Diffusion weighted images (DWI) were collected with a 128 × 128 matrix, 2.7 × 2.7 × 2.7 

mm3 voxel size, TR = 9000 ms, scan time, 9 min. 5 T2-weighted images with no diffusion 

sensitization (b=0 images) and 41 diffusion-weighted images (b=1000 s/mm2) were 

acquired for each DTI slice on 3-Tesla GE Medical Systems scanners at 14 acquisition sites 

across North America.

2.2. Image Processing

Images were processed as in [12]. Briefly, DWI volumes were corrected for eddy current 

distortions and echo-planar imaging (EPI) induced susceptibility artifacts by mapping to the 

high-resolution T1-weighted image. Gradient directions were corrected, before tensor 

calculations.

FSL’s dtifit was used to model a diffusion tensor at each voxel from the corrected DWI 

scans. Diffusion tensor eigenvalues (λ1, λ2, λ3) were used to obtain scalar anisotropy and 

diffusivity maps. Once eigenvalues are calculated in each voxel several diffusion metrics 

can be calculated. The most widely used metric of diffusion anisotropy is fractional 

anisotropy (FA). FA is scaled from 0-isotropic to 1-anisotropic. FA is calculated using Eq. 1 

and Eq. 2 (which is the equation for mean diffusivity or MD).

(1)

(2)

To extract regions of interest (ROIs), the FA image from the Johns Hopkins University 

(JHU) DTI atlas was registered linearly then elastically to the FA image of each individual 

subject, using mutual information-based registration. We used nearest neighbor interpolation 

to apply that deformation to the stereotaxic JHU “Eve” atlas WM labels. We then 

superimposed the atlas ROIs into the same coordinate space as our results. This process is 

detailed in [4]. We removed 10 ROIs from the analyses as they often fell partially or 

completely out of the field-of-view (FOV) of the images. We also excluded the body of the 

fornix as it is small and prone to misregistration and partial voluming. We included the crus 

of the fornix/stria terminalis and bilateral genu, body, and splenium of the corpus callosum 

as well as the entire corpus callosum, and a large “TOTAL” WM ROI made up of all the 

other ROIs, to obtain total summary measures of these regions in addition to the JHU labels. 

We then calculated average FA within the boundaries of ROIs for each subject. Visual 

quality control ensured all ROIs were suitably overlaid on the FA image and adequate for 

statistical analysis. All our ROI summary measures from the JHU template are available at 

the ADNI website (adni.ini.usc.edu).
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For our voxelwise analysis, we first made a population atlas from the FA maps and 

registered all subjects to it, so that voxels corresponded as far as possible across all scans. 

First, a minimal deformation template (MDT) was created using spatially aligned FA maps 

from 29 healthy controls then registering all the individual scans to that template using a 

fluid registration while regularizing the Jacobians [13]. A new mean was created from the 

registered scans; this process was iterated several times. Each subject's initial FA map was 

elastically registered to the final MDT using a mutual information driven algorithm. To 

ensure further WM alignment across subjects, registered FA maps were thresholded at FA > 

0.2 to include only highly anisotropic anatomy and the thresholded maps were once again 

registered to the thresholded MDT (FA > 0.2).

2.3. Feature Selection

Without using a priori information on the regions known to relate to disease, we first aimed 

to select a subset of WM voxels that would be most helpful for classification of AD, MCI 

and NC groups, for dimensionality reduction. Feature selection may boost the accuracy of a 

classifier by excluding voxels that do not contribute to distinguishing between groups. It 

also decreases the computation time.

The spatially aligned FA maps contain 110 × 110 × 110 voxels. However, of the 12,100 

voxels per slice and 1,331,000 voxels overall, only 49,034 fell within the WM and were 

therefore appropriate to use as features from DTI images. We used three different types of 

input for classification; 115 features that correspond to FA averages in ROIs described in 

section 2.2, all 49,034 WM voxels of the FA maps, and features selected among the WM 

voxels using the ReliefF algorithm [14–16]. The ReliefF algorithm estimates the quality of 

inputs by using k-nearest neighbors per class. It uses the L1 norm to find the neighbors from 

the same class (near-hit) and from the other class (near-miss) and updates the weight vector 

of each feature to find the feature’s contribution to the classification. For all three 

classification tasks, we selected gradually 500, 1000, 1500, 2000 and 2500 voxels that have 

the most power to differentiate the diagnostic groups, using the ReliefF algorithm.

2.4. Support Vector Machines

A support vector machine (SVM) is a binary classification algorithm used widely in 

neuroimaging, as well as for many other classification tasks [2, 9, 11, 12]. SVM is a 

supervised classifier that takes into account labeled training samples to learn class 

differences [17, 18]. SVM maps input vectors to a very high-dimensional feature space in a 

nonlinear fashion. A decision surface is constructed in this feature space to separate the 

training data in to two classes by using a separating hyperplane. A hyperplane for a linear 

classifier can be expressed as wTx + b = 0, where w is the weight vector and b is the bias for 

the input vector x. The decision surface is determined by the support vectors that are 

informative subsets of the training data. SVM maximizes the margin between support 

vectors by minimizing ‖w‖. Two subspaces obtained after training then correspond to the 

two classes (Fig. 1).
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We used a sequential minimal optimization (SMO) learning algorithm with a Gaussian 

radial basis function (RBF) kernel to train the SVM. The Gaussian RBF kernel can be 

expressed as Eq. 3 [17, 18].

(3)

SVM with an RBF kernel has two primary parameters to be set: σ, the width of the RBF 

function; and C, the regularization parameter for soft-margin SVM. Small C values tend to 

produce a large margin, while C=∞ leads to a hard margin [19, 20].

3. RESULTS AND DISCUSSION

We performed classification between AD vs NC, AD vs MCI and MCI vs NC groups using 

FA images from 221 subjects in ADNI. We used 115 average ROI values, whole WM 

voxels (49,034 in total) and a subset of these WM voxels selected by the ReliefF algorithm. 

Using the ReliefF algorithm, we selected 500, 1000, 1500, 2000 and 2500 most important 

WM voxels for classification to show the effect of selecting different numbers of features. 

Fig. 2 shows the most important voxels selected for AD vs NC classification. Colors 

indicate the importance of the selected voxels. Selected voxels are in regions that typically 

show differences between healthy aging and AD: the anterior and posterior cingulum, genu 

and splenium of the corpus callosum and frontal and temporal WM. Fig. 3 and Fig. 4 show 

the selected WM voxels for AD vs MCI, and MCI vs NC classification, respectively. The 

most important voxel for classifying AD vs MCI was similar to those for classifying AD vs 

NC. 1/3 of the selected WM voxels for AD vs MCI and AD vs NC classification tasks 

overlapped (Fig. 5). Overlapping voxels were at the same locations where AD-related WM 

abnormalities tend to occur. However, the voxels selected for MCI vs NC classification were 

more scattered across the WM voxels.

We employed the Gaussian RBF kernel and SMO learning function for SVM. A parameter 

search for the two parameters of the RBF kernel, C and σ, should be performed to ensure the 

prediction strength of the SVM. We selected the best parameter set by applying a grid search 

with 10 times 10-fold cross validation to reduce the selection-related bias. We first tried 

exponentially growing values of C=[2−9,2−8, …, 215] and σ=[2−5,2−4, …, 215] to generate a 

coarse grid. We then performed a finer grid search after identifying a better region on the 

coarse grid [21]. The best σ and C values obtained from grid search were applied to the 

whole training data. Training and test data points are centered at their mean, and scaled to 

have unit standard deviation before training. Mean-centering was performed by subtracting 

the mean value of each variable from the data, so that all features are centered at zero. Then 

the data is divided by the standard deviation of features to scale it. This is a necessary 

preprocessing step because otherwise the objective function of SVM might be dominated by 

features with have larger variances.

We evaluated our results in terms of their accuracy, sensitivity and specificity. Average 

classification accuracies for all three tasks for different input types are given in Table 2. We 
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reached 92.9% specificity and 79.5% sensitivity for AD vs NC, 89.4% specificity and 77.0% 

sensitivity for AD vs MCI classification. Sensitivity and specificity for MCI vs NC 

classification were 86.2% and 65.7%, respectively. Using all the WM voxels instead of the 

“average ROI” features increased classification accuracies for AD vs NC and AD vs MCI 

classifications but had no detectable effect on MCI vs NC classification. Selecting the most 

important WM voxels using the ReliefF algorithm improved classification accuracies for all 

tasks up to 14.9%.

Receiver Operating Characteristic (ROC) curves for the classification tasks are shown in 

Fig. 6. The area under the curve (AUC) was 86.0%, 78.3% and 75.8% for AD vs NC, AD vs 

MCI and MCI vs NC, respectively.

4. CONCLUSION

Interestingly, our analysis found that after AD is diagnosed, there is no detectable difference 

between selecting a subset of features or the entire WM, perhaps because so many voxels 

show a difference. However, when individually comparing NC or AD to the intermediate 

stage of MCI, detection is greatly improved when there is a focus on selected regions of the 

brain.
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Fig. 1. 
Support vectors and decision surface.
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Fig. 2. 
Selected WM voxels for AD vs NC classification.
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Fig. 3. 
Selected WM voxels for AD vs MCI classification.
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Fig. 4. 
Selected WM voxels for MCI vs NC classification.
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Fig. 5. 
Overlapping voxels that were selected for both AD vs NC and AD vs MCI classification.
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Fig. 6. 
ROC curves for (a) AD vs NC, (b) AD vs MCI and (c) MCI vs NC classification.
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Table 1

Demographics and mean test scores.

AD MCI Normal

Size 37 114 70

Female/Male 17/20 45/69 39/31

Age (Mean±SD) 75.1±8.7 71.9±7.7 72.3±5.6

MMSE (Mean±SD) 23.4±1.9 27.8±1.7 28.9±1.4

CDR-sob 4.6±1.5 1.4±0.8 0.0±0.1

ADAS-cog 29.3±9.6 15.7±7.2 9.8±5.3
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Table 2

Average classification accuracies with different features

Features/Classes AD vs NC AD vs MCI MCI vs NC

Average ROI 75.45% 72.66% 63.57%

Whole WM 80.76% 73.89% 63.57%

Relieff500 84.24% 82.75% 78.42%

Relieff1000 85.98% 85.26% 77.89%

Relieff1500 87.80% 85.34% 78.48%

Relieff2000 86.89% 85.93% 77.40%

Relieff2500 86.06% 82.63% 75.23%
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