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Abstract  
Advances in machine learning and growing computational power are enabling large scale data 

analysis experiments. To facilitate these experiments, data must be cleaned from its raw form 

into one suitable for analysis. Automatic data pipelines are able to facilitate the creation of large-

scale experiments by automating the transformation and cleaning of data into a form amenable to 

analysis. In this thesis an automatic data pipeline is developed for two separate projects: 

“Machine Learning Assisted Sampling of SERS Substrates Improves Data Collection 

Efficiency” and “The Multiscale Atomic Zeolite Simulation Environment (MAZE): A Python 

Package for Improved Zeolite Structural Manipulations”. These two projects are related in that 

both automate key sections of the experimental data analysis, building the groundwork for future 

autonomous experiments.  

Machine Learning Assisted Sampling of SERS Substrates Improves Data Collection 

Efficiency: Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive 

label-free analysis of chemical and biological samples. While much recent work has established 

sophisticated automation routines via machine learning (ML) and related artificial intelligence 

(AI) methods, these efforts have largely focused on downstream processing (e.g., classification 

tasks) of previously collected data. While fully automated analysis pipelines are desirable, 

current progress is limited by cumbersome and manually-intensive sample preparation and data 

collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate 

the quality and reliability of the measurement (i.e., the spectra) as the data is being collected. 

This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based 
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diagnostics for point-of-care clinical applications, where trained spectroscopists are likely 

unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding) 

are useful, there is an urgent need to develop algorithms that leverage expert user intuition and 

domain knowledge to simplify and accelerate data collection steps. To address this challenge, in 

this work, we introduce an ML-assisted method at the acquisition stage. We tested six common 

algorithms to measure best performance in the context of spectral quality judgement. For 

adoption into future automation platforms, we developed an open-source python package tailored 

for rapid expert user annotation to train ML algorithms. We expect that this new approach to use 

ML to assist in data acquisition can serve as a useful building block for point-of-care SERS 

diagnostic platforms. 

The Multiscale Atomic Zeolite Simulation Environment (MAZE): A Python Package for 

Improved Zeolite Structural Manipulations: Zeolites are nanoporous materials with 

widespread industrial applications as catalysts and gas separators. Due to the enormity of the 

zeolite chemical space and structural complexity, computational experiments are needed to 

identify high-performing zeolites and interpret zeolite characterization data. These computational 

experiments are enabled by software packages, most notably the Atomic Simulation 

Environment (ASE) which provides an easy-to-use Python interface to drive low level simulation 

code. ASE has some limitations that make certain zeolite simulation workflows challenging and 

labor intensive. These limitations motivated the creation of the Multiscale Atomistic Zeolite 

Simulation Environment (MAZE) package which builds on-top of ASE to facilitate common 

zeolite structural manipulations that are challenging with the base ASE package. The improved 

interface of MAZE, compared to ASE, is demonstrated by applying application programing 

interface (API) design heuristics and showcasing the ability of MAZE to facilitate common 
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zeolite workflows. It is demonstrated that the MAZE package has an improved API for zeolite 

workflows and that this can facilitate the creation of large databases of zeolite structural 

derivatives.  
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Chapter 1 

Introduction 

1.1 Overview 

The two separate projects described in this thesis are the development of a machine learning 

assisted sampling technique for surface enhanced Raman spectroscopy (SERS) substrates and the 

creation of the Multiscale Atomic Zeolite Simulation Environment (MAZE) Python package. 

These seemingly unrelated projects share the common thread of removing bottlenecks in a 

scientific workflow, through the creation of an automated data pipeline. A data pipeline, in a 

research context, is a process that transforms the raw data generated from an experiment into a 

form amenable to analysis. In the SERS project the preprocessing of spectra and categorization 

of spectra as positive or negative is automated. The MAZE package simplifies common 

structural manipulations in simulated zeolite structures removing the key roadblock in the 

generation of zeolite structural derivative databases. By removing repetitive steps in scientific 

workflows, both of these projects speed up data generation allowing for more large-scale 

experiments to be conducted.   

This thesis is divided into four chapters. The first chapter, the introduction, provides an overview 

of the structure of the thesis and the unifying themes of the two separate projects are discussed. 
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The remaining introduction section provides a broad overview of machine learning and data 

engineering and how it relates to the two discussed projects. Specifically, it focuses on the 

importance of cleaning data through the use of data pipelines.  

The second chapter of this thesis covers the project “machine learning assisted sampling of 

SERS”. This chapter focuses on the use of a supervised machine learning algorithm to 

automatically remove bad spectra from a dataset, which sets the groundwork for future 

autonomous experiments. These sections and the abstract of this thesis are based off of a 

manuscript submitted to Applied Spectroscopy in which I am co-first author. Permission was 

granted from the other primary author, Dr. Tatu Rojalin, to include the contents of this 

manuscript in my thesis. This inclusion was also approved by my senior academic adviser 

(SAA), Wallace Woods and the current Chemical Engineering department chair, Prof. Tonya 

Kuhl. This manuscript was written with the substantial help of the other two secondary authors 

Dr. Ambarish Kulkarni and Dr. Randy Carney. The work was supported by the UC Davis Center 

for Data Science and Artificial Intelligence Research (CeDAR) Innovative Data Science Seed 

Funding Program.  

The next chapter (Chapter 3) of this thesis focuses on the development of the MAZE Python 

software package. This project extends the Atomic Simulation Environment (ASE)[1] to more 

naturally represent zeolites and facilitate the calculations required to determine their properties. 

The most notable aspect of this project is that it allows for the creation of large-scale databases 

of zeolite structures. This package was based off of the extensive scripts in the Kulkarni group 

and since its release has been downloaded over 100 times through PyIP [2], and cloned an 

unknown number of times directly from the GitHub repo.  
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The brief final chapter (Chapter 4) concludes the thesis by reiterating the main points and briefly 

discussing how data pipelines make autonomous experiments possible.  

1.2 Data Cleaning 

The availability of data, exponentially increasing computing power, and developments in 

machine learning are revolutionizing materials science and making the generation, interpretation 

and analysis of experiments easier than ever before [3][4]. These advances are actively being 

combined by training machine learning algorithms on the data generated from data-heavy 

simulation and laboratory experiments, producing systems which can outperform traditional, 

first-principal, parameterized models [3], [4]. In order to develop high performing models, the 

data the model is trained on must be large enough, clean and representative of the sample space 

[5]. Surveys of practicing data scientists concluded that the largest barrier to successful data 

science projects is low quality or low quantity of training data [5]. In a research setting barriers 

to producing an abundance of high-quality data, must be overcome to utilize the advances in 

machine learning.    

Data quality can be improved by performing higher quality experiments and by refining the pre-

processing that the data undergoes prior to the analysis [6]. In the field of data science this pre-

processing is referred to as “data cleaning”, and it is often stated that around 80% of a data 

science practitioner’s time is devoted to this task [7]. In general, data cleaning takes an 

experimental data set and turns it into a form that is amenable to analysis either by a machine 

learning algorithm or a human expert [7][8].  Although its name conjures images of an 

unpleasant chore, proper data cleaning is an integral component of producing high performing 
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models and the process incorporates the extensive domain knowledge of the researcher into the 

resulting dataset [8]. Through data cleaning the important components from an experimental 

result are selected, extracted and reformed producing a clean dataset.  

Two concrete examples of data cleaning in the scientific domain are the extraction of carbon 

dioxide adsorption data from GCMC computational experiment output files and the baseline 

correction and smoothing of surface enhanced Raman spectroscopy (SERS) spectra (Figure 1).  

 
Figure 1:  Example of data generation and data cleaning in a computational experiment (A) and a laboratory 
experiment (B). Figure 1B, presents simulation input files (left), a section of the raw output files of a GCMC 
simulation (middle) and the cleaned data matrix (right).  Figure 1B shows the raw spectra generated by the 
instrument (middle) and the cleaned baseline corrected and normalized spectra (right).  

In these two examples, the raw data is not amenable to analysis either because it contains noise 

(case B) or superfluous information in an unusable data structure (Case A). The noise in data can 

be removed through expert judgement or through the application of an algorithm. The structure 

of the data also has to be amenable to analysis, requiring data to be de-nested into a data matrix. 

In a research setting, these transformations are often performed in a sub-optimal, semi-manual 
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way, such as extracting the data manually from an output files or manually deleting negative 

spectra from a data file. When performed in such a way, the drudgery invoked by the cleaning 

term is accurate and large-scale experiments are hindered by the labor-intensive post-collection 

steps.  

1.3 Data Engineering 

Data engineering is the field focused on developing data pipelines which automatically clean raw 

data into a form suitable for downstream analysis [9]. This emerging field is typically focused on 

large scale systems, yet the principles and ideas of the field are widely applicable to a research 

setting. The key component of data engineering is the data pipelines [9]. These pipelines 

automatically clean and transform the data, meaning that aside from supplying a raw file to the 

pipeline, no user intervention is required. In a research setting, the data generated is often under 

the control of a researcher, thus the data engineering also encompasses the additional aspect of 

selective data generation. The development of automated data engineering pipelines allows for 

the rapid processing of raw, experimental (laboratory or simulation) data into a useful form. A 

diagram for a general scientific experiment is shown in Figure 2, with a comparison between the 

manual steps and the steps of a data pipeline. 
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Figure 2: Comparison of a traditional experimental workflow and an automated experimental workflow. The top 
figure shows the involvement of a scientist in the data cleaning and data fitting portions, where in the second figure 
those sections are automated via an automatic data pipeline 

In Figure 1, the data pipeline replaces the need to manually clean the data after the experiment. 

Another component automated by the data pipeline is the fitting of a model to the data. In 

traditional experimental workflows, notably spectroscopy, this process is done manually, yet can 

be automated, drastically reducing the time required. The model selection and hyperparameter 

tuning also take place prior to the pipeline being deployed, and is not included in the flow chart.  
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Chapter 2 

Machine Learning Assisted 
Sampling of SERS 

Substrates Improves Data 
Collection Efficiency 

2.1 Acknowledgements  

These sections and the abstract of this thesis are based off of a manuscript submitted to Applied 

Spectroscopy in which I am co-first author. Permission was granted from the other primary 

author, Dr. Tatu Rojalin, to include the contents of this manuscript in my thesis. This inclusion 

was also approved by my senior academic adviser (SAA), Wallace Woods and the current 

Chemical Engineering department chair, Prof. Tonya Kuhl. This manuscript was written with the 

substantial help of the other two secondary authors Dr. Ambarish Kulkarni and Dr. Randy 

Carney. The work was supported by the UC Davis Center for Data Science and Artificial 

Intelligence Research (CeDAR) Innovative Data Science Seed Funding Program.  
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2.2 Abstract 

Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive label-free 

analysis of chemical and biological samples. While much recent work has established 

sophisticated automation routines via machine learning (ML) and related artificial intelligence 

(AI) methods, these efforts have largely focused on downstream processing (e.g., classification 

tasks) of previously collected data. While fully automated analysis pipelines are desirable, 

current progress is limited by cumbersome and manually-intensive sample preparation and data 

collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate 

the quality and reliability of the measurement (i.e., the spectra) as the data is being collected. 

This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based 

diagnostics for point-of-care clinical applications, where trained spectroscopists are likely 

unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding) 

are useful, there is an urgent need to develop algorithms that leverage expert user intuition and 

domain knowledge to simplify and accelerate data collection steps. To address this challenge, in 

this work, we introduce an ML-assisted method at the acquisition stage. We tested six common 

algorithms to measure best performance in the context of spectral quality judgement. For 

adoption into future automation platforms, we developed an open-source Python package 

tailored for rapid expert user annotation to train ML algorithms. We expect that this new 

approach to use ML to assist in data acquisition can serve as a useful building block for point-of-

care SERS diagnostic platforms.  
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2.3 Introduction 

Surface-enhanced Raman scattering (SERS) is a powerful label-free detection and analysis 

technique that exploits the near field enhancement of inelastically scattered Raman signal via 

nanostructured plasmonic surfaces[10]. SERS is highly sensitive, capable of even single 

molecule detection, with broad applicability in detection and monitoring of disease, particularly 

for cancer. While many proof-of-concept SERS studies emerge annually, and technologies to 

enable point-of-use and even wearable devices are now a reality, widespread adoption of the 

technique to replace or supplement existing sensing platforms has not come to fruition. A major 

bottleneck of this goal is that application of SERS currently requires expert users to collect and 

interpret data.  

In a typical SERS data acquisition process – whether it is a clinical diagnostic platform or a 

characterization of an unknown chemical entity – hundreds to thousands of spectra are typically 

collected, preprocessed, and subjected to downstream analyses, e.g., principal component 

analysis (PCA), hierarchical clustering, or other types of classification routines. Much literature 

has been devoted to the preprocessing considerations[11]–[13], including de-noising, smoothing, 

baseline correction algorithms, background subtraction methods, and cosmic ray removal.  

Machine learning (ML) and artificial intelligence (AI) methods (e.g., convolutional neural 

networks, or CNNs, deep neural networks, random forest classifiers, etc.) have been widely 

applied to various classification tasks following preprocessing. For instance, such methods have 

enabled classification of small molecules[14] and their mixtures[15], various minerals[16], 

bacteria[17], [18] and viruses[19]. Discrimination of esophageal cancer[20], non-small-cell lung 
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cancer [21], and nasopharyngeal and liver cancer[22], have also been demonstrated. CNNs have 

been applied to Raman/SERS spectra of circulating biomarkers as well, such as extracellular 

vesicles (EVs) in prostate[23], lung[24], and pancreatic cancer[25], as well as general cancer 

biomarker identification[26]. Diabetes mellitus detection[27], applications in cytopathology[16], 

AI-based discrimination of tumor suppressor genes[28], nitroxoline quantification[29], and 

caffeine and associated metabolites detection[30] have also been proposed. Overall, many ML 

algorithms have emerged to complement or replace traditional methods (e.g., multivariate 

classification) for data analysis in vibrational spectroscopy.  

While it is apparent that ML greatly improves prediction accuracy, and automated spectral 

processing improves the efficiency of SERS platforms in general, we posit that progress in 

developing SERS-based diagnostics is not limited by the lack of state-of-the-art ML algorithms, 

but instead by the absence of automated data collection and sampling protocols. For example, 

following spectral preprocessing steps, the user has to decide which spectra are adequate for 

further downstream analyses (e.g., biological sample classification for diagnostic purposes). A 

question remains at this stage, whether the analyte of interest and the SERS substrate have been 

sampled exhaustively enough to produce meaningful and statistically representative data. This 

step arguably creates the largest barriers to automation of SERS platforms as (1) it requires 

significant user expertise and domain knowledge, (2) assumes minimal user bias, and (3) relies 

on several related, but not identical measurements. Recognizing the ability of ML algorithms to 

translate user intuition to diverse classification problems[31], [32], it is clear that ML methods 

will provide high value to aid in such expert-driven sampling decisions, even during 

measurement. To the best of our knowledge, such approaches for SERS data collections have not 

yet been reported in the field.  
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SERS data are highly dynamic in nature[10], [33]–[35], manifesting in the heterogeneous 

fluctuation of spectra – even for a single analyte measured on a high-quality, geometrically 

ordered substrate [22], [36] For typical measurements, multiple spots need to be sampled many 

times to account for heterogeneity, arising from pre-measurement parameters (sample exposure 

time, data collection frequency, laser power, etc.), spatial differences in analyte concentration 

and orientation, ionic composition of the solution, osmotic and elastic potentials and material-

related heterogeneities of the SERS substrate itself, impurities present on the surface[37]–[39] 

etc. These issues, unfortunately, have led to doubt in the ability to perform truly quantitative 

SERS [10], [36], [40]–[44].  

In light of the above discussion, the main objective of this work is to develop a robust and 

automated ML-SERS approach to “sufficiently” sample the substrate, i.e., to automatically 

collect statistically representative quantity of high-quality spectra for a given substrate and the 

analyte(s). Such an approach offers minimal operator intervention for SERS spectra acquisition, 

increasing the efficiency of measurement and reproducibility of the downstream analyses.  

The hierarchical data sampling scheme currently used in SERS experiments (Figure 3) is 

designed to collect representative spectra with high signal-to-noise ratios. For a given sample, 

spectra are collected at separate spots (e.g., x, y coordinates) to capture the spectral diversity of 

the sample. To increase the signal to noise ratio and reduce variance, multiple spectra at each 

spot are typically collected and averaged. By excluding negative spectra from the averaging, the 

signal-to-noise ratio can be increased. Manual exclusion of negative spectra can be accomplished 

by an expert, but is cumbersome due to the thousands of spectra generated in a typical SERS 

experiment. Automatic “bad” (i.e. negative) spectra identification is thus a significant objective 
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to improving SERS experimental data. As a valuable step towards this goal, in this study, we 

develop a suite of ML algorithms to classify spectra as either “good” or “bad” (i.e., negative) and 

critically assess their performance. The highest performing XGBoost model was identified and 

utilized to characterize both in-sample and out-of-sample datasets. This model was then utilized 

to characterize an out-of-sample dataset and offer the potential for automated data collection, 

removing the need to monitor the collection procedure completely.  

 

Figure 3: Hierarchical data structure for label-free SERS experiments. A single experiment consists of different 
samples, each of which is analyzed with a separate substrate. For each sample, different x, y positions (spots) are 
analyzed by collecting a series of SERS spectra one-after-another. The number of spectra collected per spot and spot 
collected per substrate can vary depending on signal quality. 

2.4 Methods  

2.4.1 Sample Preparation 

Two commercial plasmonic substrates were chosen for this study, from Moxtek (Moxtek Inc., 

UT, USA) and Plasmore (Plasmore S.R.L, Pavia, Italy). A well-characterized SERS standard 

reporter, Rhodamine 6G (R6G), was selected as a model compound for surface scanning. Two 
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different concentrations were prepared in ultrapure water to demonstrate a high (3 mM) and low 

(10 nM) R6G concentration. The plasmonic substrates were characterized by scanning electron 

microscope (SEM), using a ThermoFisher Quattro S (ThermoFisher Scientific, Waltham, MA, 

USA). For SEM measurement, substrates were mounted on metal studs using two-sided black 

carbon tape, and the following imaging parameters were applied: working distance 11.4−12.0 

mm, spot size 2.5, accelerating voltage 10.0 kV, and chamber pressure 100 Pa. 

2.4.2 SERS Spectra Acquisition 

SERS spectra were acquired using a custom-built inverted Raman scanning confocal microscope 

with an excitation wavelength of 785 nm and a 60×, 1.2 NA water immersion objective on an 

inverted IX73 Olympus microscope. Raman spectra were captured via an Andor Kymera3281-C 

spectrophotometer and Newton DU920P-BR-DD CCD camera. Initial in situ data processing and 

cosmic ray removal was carried out using Solis v4.31.30005.0 software. All SERS measurements 

were acquired using exposure time 1 s per scan with a laser power of ∼10-20 mW. Moxtek or 

Plasmore substrates were scanned on a 20 × 20 pixels area thus yielding total 400 spectra per one 

scanned area. The step size was adjusted to 400 nm, resulting in the total scanned area of 8 µm × 

8 µm. To simulate a real scanning procedure performed by a non-trained operator, the scanned 

areas were selected randomly without any pre-search for “good” signals. Unless elsewhere 

otherwise described SERS spectra preprocessing was performed using custom scripts written in 

MATLAB v2020a (MathWorks, MA, USA). Spectral preprocessing included penalized least-

squares (PLS) background correction, smoothing, and normalization. Where stated throughout 

the study, these preprocessed spectral sets were further subjected to principal component analysis 

(PCA) based on the corresponding MATLAB built-in functions.  
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2.4.3 Spectra Labeling 

To train a supervised machine learning algorithm to identify “good” and “bad” spectra and assess 

the trained model performance a dataset of labeled spectra must be created. To create this dataset 

a SERS spectra expert must assign labels to all spectra. To facilitate this task, a custom Python 

based GUI was created, which allows for the rapid labeling of a collection of spectra. A 

screenshot of the labeling program is shown in Figure 4. The program allows for keyboard 

labeling and control facilitating rapid labeling of spectra. 

 
Figure 4: Image of Python-based Labeler app for manually assigning labels to spectra. The interface displays a 
spectrum to SERS expert, who can assign a label to the spectra with the “good”, “bad” or “maybe” buttons. The spot 
number, spectra number, sample name, and current label is displayed in the bottom of the window. The save labels 
buttons saves the labels to a NetCDF file for later use in model training and testing. 

2.4.4 Performance Measures  

There are a variety of metrics that can be used to assess the performance of a binary classifier. 

Most of them center around four different possible outcomes of a classification on an unknown 

sample: a true positive (TP), false positive (FP), false negative (FN) and true negative (TN). 
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From these four metrics the precision, recall (true positive rate), false positive rate, and accuracy 

can be calculated (Table 1).  The binary prediction of a classifier is typically based on an 

underlying score of the classifier, and can be adjusted depending on the classifier use case. If the 

cutoff is increased, then the precision will increase while the recall will decrease. This related 

increase and decrease is known as the precision-recall tradeoff. To visualize the tradeoff, it is 

common to make a receiver operator characteristic (ROC) plot, which plots the true positive rate 

versus false positive rate at various cutoffs. In an ROC plot random guessing is represented by a 

y=x line and higher performing models are closer to the plot edges. The ROC plot can be 

collapsed into a single metric by calculating the area under the ROC curve to give the AUC 

value. The AUC value varies between 0 and 1, with 0.5 being the score of random guessing. The 

AUC metric is useful because it is independent of the classification cutoff, and thus can give a 

better overall picture of a model’s performance.  

Table 1: Metrics useful in assessing the performance of a binary classifier 

Name Formula  Description 

Precision  𝑇𝑃
𝑇𝑃 + 𝐹𝑃 The number of true positives to the number of 

positive predictions 

Recall/True 
Positive Rate 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 The number of true positives to total number of 

positives  

False Positive 
Rate 

𝐹𝑃
𝑇𝑁 + 𝐹𝑃 The number of false positives to number of total 

negatives  

Accuracy 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 Total Number of correct predictions over total 

number of predictions  

F1 2
1

𝑟𝑒𝑐𝑎𝑙𝑙 +
1

𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛
 Harmonic mean of precision and recall scores  

ROC Curve plot(x = Recall, y = FP Rate)  Recall operator characteristics curve, which shows 
the relationship between the true and false positive 
rate 
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AUC ROC Integral(ROC curve, 0, 1)  Area under ROC Curve 

 

Another important way for assessing model performance is through calibration plots. The 

calibration plots assess how well a binary classifier’s probability predictions match the frequency 

of class occurrences. Constructing a calibration plot involves predicting the probability that each 

element of the validation/test set belongs to a positive class, ordering the elements by the 

predicted probability, assigning each element to a bin, calculating the fraction of positive classes 

in each bin and comparing that fraction to the mean predicted probability in that bin. If the model 

is well calibrated then the fraction of positives classes should match the mean predicted 

probability of the classes in the bin. Scikit-learn’s “calibration_curve” function automatically 

performs this process and generates the calibration plots.   

2.5 Results  

2.5.1 Sample Collection  

High and low concentrations of a common SERS-active reporter molecule, R6G, were dried out 

on to two high-quality, lithographically-formed commercial SERS substrates (Moxtek and 

Plasmore), as schematized in Figure 5. SEM micrographs displaying the plasmonic 

nanostructures on either surface are shown in Figure 5b. In total, five samples were prepared. 

Two different concentrations of high and low 10nM R6G concentrations were prepared on both 

Moxtek or Plasmore substrates. Substrates were either scanned using 10 mW laser power for 

high concentration or 20 mW laser power for low concentration. A fifth sample was created to 

investigate the effect of laser power on the recorded SERS signals, therefore a “low” 
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concentration Plasmore was also scanned using lower 10mW power. Prepared substrates were 

subjected to SERS measurements using a custom confocal scanning Raman microscope to yield 

several random 20 × 20-pixel areas (total scanned area of 8 µm × 8 µm). Figure 5c shows a 

representative spectra average and standard for high concentration of R6G deposited on a 

Moxtek substrate. 

 
Figure 5: Experimental workflow of the ML-SERS platform. a) Rhodamine 6G was used as a SERS reported 
molecule on plasmonic Moxtek (1) or Plasmore (2) substrates. Varying solutions of R6G were pipetted (~ 20 µL 
total) onto the surface and 20 × 20 pixels surface areas were scanned. b) SEM micrographs illustrate the structure of 
the Moxtek and Plasmore substrates. c) Representative SERS spectrum of R6G; the highlighted peaks at 620, 780, 
1198, 1367 and 1513 cm-1 are characteristic spectral features of R6G. 

A conventional approach to classify spectral data is to carry out PCA following manual selection 

of quality spectra (and/or via iterative use of PCA to screen out low quality or outlier data). An 

example of this process is illustrated in Supplemental Figure 6. Use of thresholds or intuitive 

interpretation using PC score plot and principal component loading spectra are relatively 

systematic methods to guide the spectra selection procedure. However, for more complex 

datasets featuring mixtures of chemicals, where the PCs do not cleanly correspond to single 

entities, it is tedious and time-consuming to apply such manual selection routines for hundreds or 

thousands of spectra, and further adds a notable source of inter-operator bias. Therefore, we 

endeavored to explore application of ML algorithms to recognize quality spectra following 

expert user training. 
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An example PCA-based conventional spectra selection procedure is illustrated in Figure 6 

showing the PCA score plot (Figure 6a) for the complete dataset (2000 spectra). Figure 6b 

displays the corresponding PC1 loading spectrum, containing 33.5% of the total variation in the 

dataset. Each marker in the score plot represents a single spectrum, and each colored group 

demonstrates a 20 × 20 raster scan acquired from one substrate and one condition as described. 

The score plot and loading spectrum provide intuitive information on the directions where the 

“good” or “bad” spectra can be presumably found. In this example PC1 loading spectrum 

contains positive peaks and bands that can be associated with R6G (numbered peaks in Figure 

6b). Correspondingly, the red shaded area in the PC score plot (Fig. S2a) shows the positive 

score values on different sample groups. Thus, the spectra residing in this area contain more R6G 

features than the ones located on the negative side of the PC score plot. Fig. S2c shows 

representative examples of “good”, “maybe” and “bad” spectra selected from the extreme ends 

of respective sample groups; red star denoting a “good”, yellow “maybe”, and blue “bad” 

spectrum. This is a relatively systematic method to find various representative spectra types 

within the measured data set, and can be used to guide the spectra selection procedure. However, 

typically it is notably tedious to select hundreds or thousands of spectra manually, especially if 

the data set comprises a complex mixture of chemicals and not a single entity as tested here. It is 

also worthwhile stressing that this phase comprises a notable source for user-driven bias.  
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Figure 6: PCA analysis to guide SERS spectra selection. a) PC score plot demonstrating each measured sample 
group (400 spectra per group, total 2000 spectra in the data set), each marker represents a single SERS spectrum. b) 
PC1 loading spectrum displaying the positive features at 620, 780, 1198, 1367, and 1513 cm-1 that can be associated 
to the SERS reporter molecule R6G used in the study. c) Examples of “good”, “maybe” and “bad” spectra 
pinpointed with corresponding star markers (red, yellow, blue, respectively) at the PC score plot. 

2.5.2 Data Organization and Parsing for ML Input 

To utilize the spectra data for ML, we established a python-based data pipeline that converts 

plaintext Raman spectrum files as input, preprocesses the spectra, and converts them into a 

binary format that can be utilized for visualization, data labeling, and model training. The three 

stages of the data pipeline are shown in Figure 7. All code utilized for this data pipeline is 

available under the open-source MIT license on GitHub (See Data Accessibility Statement) 
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Figure 7: Open-source data pipeline developed for this study. The first stage of the pipeline converts and processes 
raw spectra files into a binary NetCDF file format. The second data labeling stage employs a custom Python 
“Labeler” app, allowing an expert Raman user to quickly assign labels (e.g., “good”, “bad”, or “maybe”) to the 
spectra serialized in the netCDF files. After labels have been assigned, the last stage of the pipeline is model 
training, where the binary files are loaded into NumPy arrays to train and test various ML models. 

The first stage converts plaintext Raman spectrum files into a binary NetCDF file. The NetCDF 

format (short for network common data form) is a machine independent data storage scheme 

designed for efficiently saving multi-dimensional scientific data, and well suited for storing 

spectral datasets[45]. An essential part of this stage is the baseline correction and smoothing, 

which was performed with the airPLS baseline correction algorithm and Whittaker smoothing 

function, respectively, via code ported to Python 3[46], [47]. This modified code is available on 

GitHub in compliance with the LGPL license.   
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The second stage of the pipeline utilizes expert data labeling to train the ML models in the third 

stage. To implement a supervised learning algorithm for “good” and “bad” spectra classification, 

labels need to be associated with each spectrum. Given the need to quickly and easily label 

thousands of spectra for training (2000 different individual spectra needed to be labeled for this 

study) a Python-based labeling program was created. This program takes a series of netCDF files 

as input, displays each spectrum to the user and allows for rapid labeling, and then saves the 

dataset with the applied labels. A screenshot of the Labeler program interface is shown in Figure 

4. The premise is to establish three different bins for the classification purposes: a) “good” and 

chemically representative R6G spectrum (also termed as “positive” in this context), b) “maybe” 

adequate R6G spectrum where a clear decision could not be made by an expert user, and c) 

“bad” (also termed as “negative” in this context), unrepresentative R6G spectrum (e.g., very low 

SNR). Labeling was based on expert user intuition and experience, focusing on feature rich 

spectra with clear sharp peaks and minimal noise. For this study, the Labeler program was used 

to tag a total of 1995 spectra (940 good, 936 bad, rest 119).  

2.5.3 Model Selection and Performance Analysis 

Following the labeling task, the acquired spectra were evaluated using an assortment of popular 

ML-assisted classification routines. The labeled datasets were shuffled and split into train, 

validation, and test sets (72.25%, 12.75%, and 15% respectively). The percent positive and 

negative in each subset was calculated and found to be within +/- 5% of 50% for both classes. 

Building on the hypothesis that existing ML classifiers are well-suited to distinguish between 

good and bad spectra, we evaluated six distinct methods: logistic regression stochastic gradient 

descent (LR-SGD), support vector machines stochastic gradient descent (SVM-SGD), decision 
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trees (DT), linear discriminate analysis (LDA), random forest (RF) and XGBoost (XGB). The 

first five models are implemented within the Scikit-learn package[48], whereas a custom 

package for XGBoost is used[49]. For each model, performance is assessed by calculating 

resulting receiver operator characteristics (ROC) curve and associated area of the curve (AUC). 

The ROC curve quantifies the diagnostic ability of a classifier for different discrimination 

thresholds, while the AUC is independent of the classification cutoff, and thus can give a better 

overall picture of a model’s performance [50].  

After hyperparameter tuning using the AUC score (walkthrough can be found in our Jupyter 

notebooks on GitHub) all six models were assessed by training on the training dataset and their 

performance validated using the validation set. The ROC plots and associated classification 

metrics for these six models are shown in Figure 9. A full description of the calculation for these 

classification metrics can be found in Table 1 Associated calibration plots are shown in 

Supplemental Figure 8.  

The LDA model was the worst performing in all categories, likely due to the large number of 

features and lack of regularization. The next worst performing model (by AUC) was the DT 

model, which consisted of a series of Boolean decisions arranged into a tree structure. This was 

followed by a LR-SGD and SVM-SGD. Unlike the default logistic regression and SVM solvers, 

the SGD classifier was not affected by the high correlation between adjacent features (inherent to 

spectral data, adjacent wavenumber shifts are correlated) and was able to provide stable 

solutions. Despite their simplicity, the SGD based models performed well, with the SVM-SGD 

providing the highest precision of all tested models. The final two tree-based models tested were 

RF and XGB. The RF model outperformed XGB by 0.0006 AUC units, yet the XGB model was 
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better correlated and scored higher in the accuracy, recall and F1 categories (Supplemental 

Figure 8). The confusion matrix for the XGB model is shown as an inset in Figure 9a.  These 

results are consistent with other studies[51] which identify XGBoost as a top performing 

algorithm for binary classification tasks. Therefore, we focus on the XGBoost algorithm in the 

remainder of this work. 

 
Figure 8: a) Calibration plots for four tested machine learning algorithms LR-SGD, SVG-SGD, DT, LDA, RF, and 
XGB on validation set. The x axis represents the mean predicted probability of the events occurring in the bin. The y 
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axis represents the fraction of positive (i.e., “good”) spectra in the in the bin. b) The total number of probabilities in 
each decile, for each classifier. 

 
Figure 9: a) ROC curves for six tested models, logistic regression (LR-SGD), support vector machines (SVG-SGD), 
decision trees (DT), linear discriminate analysis (LDA), random forest (RF) and XGBoost (XGB). Random guessing 
is represented by the y=x line whereas higher performing models lie closer to the left corners of the plot. Inset: 
Confusion matrix for XGBoost algorithm trained on train and validation set and tested on the test set. The trace of 
the matrix indicates correct predictions, while the offset values indicate incorrect predictions. b) Comparison of 
hyperparameter-tuned model performance on validation data set. The highest value for each category is bolded and 
the lowest value for each category is italicized. 

2.5.4 Testing Model Performance  

Recognizing the favorable performance of XGB on the validation set, we proceed to 

investigating the efficacy for in-sample and out-of-sample tests sets. The in-sample test sets, 

which involve intermixing the spectra from all samples into the test, train and validation sets, 

give a better overall picture of the model performance by capturing the spot-to-spot 

heterogeneity of the spectra. The true in-sample performance of XGB is estimated by training it 

on the combined train and validation set, and assessing its ability to predict the labels of the 282 

spectra in the test set. The metrics derived for the performance of the XGB model are shown in 
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Table 2. Representative classifications for the XGB model on specific spectra are shown Figure 

10. Overall, we observe good performance of the model with 95% accuracy. 

 
Figure 10: Representative spectra classifications for XGBoost on in-sample test dataset. Text overlaid on each 
spectra indicate the expert user label trained model’s performance in accurately predicting the label. 

Table 2: Model performance parameters for the XGBoost algorithm trained on the training set and validation set 
and tested on the test set.   

Accuracy Precision Recall F1 AUC 

0.95 0.93 0.97 0.95 0.99 

2.5.5 Variable importance 

In this experiment no feature engineering or variable selection was attempted, such that the entire 

1024 features of the spectra (i.e., 1024 data points, arising from the CCD dimensions collecting 

the photons following dispersion) were used to train the XGB algorithm. We note that this 

feature makes the ML approaches for analytical spectroscopy methods like SERS notably 
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powerful as there is no need to perform a priori dimensionality reduction (e.g. PCA) but rather 

the full feature space can be used in the training phase. To determine what features were most 

important in predicting the label of the spectra the importance score for different regions were 

aggregated together and plotted together. These bar charts give the overall importance of a 

certain region to the prediction (Figure 11). Unsurprisingly, the region 1510-1350 cm-1 has the 

highest importance, as the peaks present in positive spectra tend to cluster around that region. 

Interestingly the region 200-400 cm-1 also has some high importance. It is likely that the 

intensities of these variables give an indication of the overall noise of the spectra, and act as a 

proxy for estimating the signal to noise ratio.  

 
Figure 11: Relative importance of different wavenumber regions for the XGBoost model trained on the in-sample 
train and validation data. Each bin contains the sum of the importance scores of the wavenumbers in the range [start 
wavenumber, end wavenumber). An R6G spectrum is overlaid for reference, where it is apparent that relative 
importance correlate with spectral features of R6G. 

2.5.6 Out of Sample Testing  

To test the out-of-sample performance of XGB, the model was trained on four out of the five 

substrates and then used to predict the labels of the left-out test substrate (Table 3). The 

hyperparameters were previously tuned using data from the test substrates, but the data was 
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otherwise unseen by the model. This process was repeated for all five samples. The predictions 

were assessed with standard metrics (Table 3).  

Table 3: Out-of-sample performance for XGBoost model on five substrates 

Test 
Sample 

Substrate Dye Concentration 
(M) 

Power 
(mW) 

Accuracy Precision Recall F1 AUC Fraction 
Positive 

11 Moxtek R6G 1.00E-08 20 0.90 NA NA NA 0.96 0.10 

2 Moxtek R6G 3.00 E-03 10 0.77 0.78 0.98 0.87 0.83 0.75 

3 Plasmore R6G 1.00E-08 20 0.95 0.91 0.64 0.75 0.99 0.12 

4 Plasmore R6G 3.00 E-03 10 0.72 0.78 0.73 0.75 0.80 0.60 

5 Plasmore R6G 1.00E-08 10 0.98 0.98 1.00 0.99 0.69 0.98 

1For sample 1, no false positives or true negatives were generated making the precision, recall and F1 formula 
inapplicable.   

To further evaluate out-of-sample performance, we overlay the labeled data onto their spatial 

coordinates in Figure 12a, given that these datasets were collected by scanning over a 20 by 20-

pixel grid (8 µm × 8 µm) in even increments (400 nm pixel width, approximately diffraction 

limited). Green represents a “good” spectrum label, while red represents a “bad” spectrum label 

and purple represents an ambiguous “maybe” spectrum where a label could not be accurately 

assigned by the expert user. For each of these labeled samples, the model was used to predict the 

corresponding labels, with colors again plotted in Figure 12b. Ambiguous spectra were excluded 

from training the model and were not predicted by the model, but are still shown in purple. 

Incorrect predictions of false negatives and false positives are coded by warm colors, light red 

and pink, respectively. Similarly, the true negative was represented by a cool color, i.e., light 

blue and the true positive by a dark blue. More generally, a perfect prediction would correspond 

to all true positives and/or true negatives, which corresponds to blue shades.  
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Figure 12: a) Visualization of the sampled region from the five substrates used in experiment along with the 
corresponding labels. Red squares represent a negative spectrum, green squares represent a positive spectrum, and 
purple squares represent spectra with ambiguous labels, which were excluded from fitting and prediction. b) 
Comparison of actual and predicted labels for five test samples. The comparison is represented by the color.  False 
positive (red), false negative (pink), true positive (light blue), true negative (dark blue), and ambiguous, maybe 
labeled, spectra (purple) pixels are shown. 

The performance of the XGB model on the in-sample and out-of-sample test set demonstrate that 

the categorization of spectra can be automated. With the in-sample test set, the XGBoost model 

achieves an AUC score of 0.99 similar to its performance on the in-sample validation set, 

indicating minimal overfitting. The 95% accuracy and similarly high precision and recall score 

prove that the majority of the predictions are correct. The out-of-sample performance is lower 

and more variable, yet still high. The average out-of-sample AUC score is 0.85 +/- 0.12 and an 

average accuracy is 0.87 +/- 0.12 demonstrating that the model is still highly successful at 

classifying spectra in unseen substrates in different conditions. After learning the labeled spectra 

from four R6G samples collected at various concentrations, substrates and power, the model is 

able to correctly predict the label for spectra 87% of the time. This feat unambiguously shows 

the potential of ML-assisted sampling to automate spectra categorization.   
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2.6 Discussion  

Here we introduced ML-assisted SERS spectra classification methodology to streamline 

acquisition and efficiently classify recorded spectra. The exclusion of negative signals from the 

SERS analysis already takes place during normal experimentation. When scanning a substrate, 

the majority of signals are negative (e.g., noisy, not representative of the typical sampled areas, 

out of focus, capture cosmic rays). Typically, a trained experimentalist makes the determination 

of when a “good” signal is collected. Although subjective, this strategy utilizes our impressive 

pattern matching ability, which is challenging to replicate with structured algorithms. This 

technique excludes the majority of negative spectra by avoiding their initial collection, but it is 

not perfect and negative spectra occasionally creep into the recorded dataset. Although 

experimentalists can easily distinguish between good and bad spectra, the large datasets collected 

by typical SERS experiments make manual excluding the negative spectra post-collection 

onerous. In addition to presenting a barrier to large data set collection, these expert user-driven 

decisions also limit the application of SERS in a clinical setting. For SERS technology to transfer 

from the research laboratory to the clinic these subjective, labor intensive steps must be 

eliminated. 

The scholarly literature encompassing automatization endeavors of Raman and SERS 

measurements predominantly demonstrates approaches to automate either (i) the collection or (ii) 

the data preprocessing phase, e.g., baseline correction, cosmic ray-induced spike removal, noise 

reduction, scaling and normalization, background subtraction, including various thresholding 

techniques to harness signal-to-noise ratio for spectra selection[11]–[13]. The main limitations of 
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the current preprocessing techniques are that they either rely on tuning the processing parameters 

(e.g., fitting parameters) or require calculating and thresholding the signal to noise (SNR) ratio, 

which is not possible if the underlying analyte signal is not known or highly fluctuating. 

Therefore, there exists a clear niche to design robust workflows to select spectra for the 

downstream analyses. In essence, our strategy is independent of the spectral preprocessing 

approaches and SNR thresholding, rendering it a promising means to be applied in a wide variety 

of different platforms.  

ML algorithms are able to codify human intuition by learning from labeled training data and are 

well-suited to identify noisy, feature-poor spectra. The use of a ML algorithm has several 

advantages over a traditional structured algorithm. A trained ML model requires no parameter 

tuning once trained and can learn from the extensive experience of trained experimentalists. With 

the availability of open-source ML packages[48] training and integration are straightforward. 

A plethora of different classes of ML algorithms exist and new ones are frequently being 

invented. Of the existing classes, they can roughly be divided into two domains, classical ML 

algorithms and deep learning algorithms. Classical ML algorithms include tree-based algorithms 

such as random forest and XGBoost, as well as more established classifiers like support vector 

machines. Deep learning algorithms encompass the tremendous diversity of multilayered neural 

network models, such as CNNs. Both classical and deep learning models can achieve similarly 

high performance, but classic ML algorithms can perform well on smaller datasets whereas deep 

learning architectures typically require tens of thousands of data points to converge. In this 

current work the complete dataset consisted of only 2000 different spectra, thus the tested 
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models were confined to classical models, yet the methods presented here are easily extendable 

to deep learning models when working with larger datasets. 

Amongst all the models tested here, the XGBoost model performed best across both the in-

sample and out-of-sample datasets. Its performance in this dataset matches our expectation that it 

is performing akin to a user expert making an intuitive decision. To detail this, consider the is 

major inter-sample variation in the fraction of expert assigned positive labels, likely due to the 

inhomogeneous covering of dried R6G on the SERS substrates. In sample one, 90% of the 

spectra are negatively labeled and the classifier predicts a negative label for all of them. In 

sample five the reverse situation occurs; 98% of the spectra are positively labeled and the XGB 

model assigns a positive label to all the spectra. In these extreme cases, XGB is essentially 

learning from the out-of-sample labels and not taking into consideration the unique 

characteristics of the substrate. In this case, an expert experimentalist would adjust their own 

threshold of classification based on the observed signal to noise in a specified sample. For 

example, if many weak signals were observed, the threshold for collecting a spectrum would be 

lower than in the case where the majority of spectra had an apparent high signal to noise ratio. In 

the intermediate case of sample 4 with a 60% positive rate, the algorithm performs well (AUC = 

0.80), although lower than in the test case (AUC = 0.99). Nevertheless, the algorithm is still 

successful in categorizing samples with a range of positivity rates.  

Future work using this approach will involve automatically tuning the classification threshold 

based on the number of positively classified spectra in a sample. We also will explore the 

feedback of this trained algorithm to control stage movement and automate measurement of full 

datasets.  
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2.7 Conclusion 

This work describes application of an ML algorithm to address a central challenge for adapting 

SERS to automated platforms: the current dependency of expert user-driven endpoints for 

sampling. The elimination of bad spectra from a collected dataset can increase the signal to noise 

ratio by reducing the variance. Especially in SERS applications it is desired to collect and 

analyze as homogeneous sets of spectra as possible, which is accomplished by the ML assisted 

spectra selection. By applying this algorithm to the acquisition stage, the labor required to collect 

many spectra can be reduced making collecting larger and more comprehensive datasets feasible. 

Furthermore, by automating the acquisition stage of the SERS experiment another barrier to the 

clinical application of this technology can be broken down. Given the exponential growth of 

acquired data (e.g., spectra, images, or videos), there is an immense demand for integrating 

reliable, automated and fast analysis methods to the experimental procedures for SERS 

instrumentation. We envision that the workflow described here will allow for more robust 

automated SERS analyses. We foresee that the introduced platform can be further expanded to 

quantitative analyses of chemicals as well as complex biological and clinical samples such as 

patient-derived EVs or crude serum for modern diagnostic purposes.  

2.8 Data Accessibility Statement 

All data collected for this study, including SERS datasets and the Labeler program files, can be 

downloaded from the following open repository: https://github.com/kul-group/ramanbox/. All 

open-source Python code will be maintained at: https://www.github.com/kul-group/ramanbox 
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Chapter 3 

The Multiscale Atomic 
Zeolite Simulation 

Environment (MAZE): A 
Python Package for 

Improved Zeolite Structural 
Manipulations 
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3.2 Abstract:  

Zeolites are nanoporous materials with widespread industrial applications as catalysts and gas 

separators. Due to the enormity of the zeolite chemical space and structural complexity, 

computational experiments are needed to identify high-performing zeolites and interpret zeolite 

characterization data. These computational experiments are enabled by software packages, most 

notably the Atomic Simulation Environment (ASE) which provides an easy-to-use Python 

interface to drive low level simulation code. ASE has some limitations that make certain zeolite 

simulation workflows challenging and labor intensive. These limitations motivated the creation 

of the Multiscale Atomistic Zeolite Simulation Environment (MAZE) package which builds on-

top of ASE to facilitate common zeolite structural manipulations that are challenging with the 

base ASE package. The improved interface of MAZE, compared to ASE, is demonstrated by 

applying application programing interface (API) design heuristics and showcasing the ability of 

MAZE to facilitate common zeolite workflows. It is demonstrated that the MAZE package has 

an improved API for zeolite workflows and that this can facilitate the creation of large databases 

of zeolite structural derivatives 

3.3 Introduction  

Zeolites, a broad class of silica-based nanoporous materials, are widely used for various 

industrial applications including gas separation and catalysis [52]–[54]. The properties of these 

materials depend on various factors including the framework topology, Si/Al ratio and presence 

of extra-framework species. Specifically, transition metal (TM) exchanged zeolites, which 
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combine the desirable characteristics of heterogenous catalysts (high thermal stability and 

simpler separations) with those of enzymes (high selectivity and reactivity under mild 

conditions) [54] have received considerable attention as catalysts for NOx abatement and 

methane valorization. In these applications, the zeolite framework provides a thermally-stable 

scaffold for the formation of catalytically active species [55], [56]. As the precise identification 

of the active site is complicated by the presence of multiple TM species, computational modeling 

is often used to provide valuable insights (e.g., thermodynamic stabilities, reaction barriers etc.) 

into the reaction mechanisms [57][56]. Given the various length- and time-scale associated with 

the relevant molecular processes (e.g., adsorption, diffusion, reaction), multiscale approaches 

that combine wave function theory, periodic density functional theory and classical force fields 

are often necessary. While a number of broadly-applicable software packages are available for 

performing these calculations, there is a need to develop a software toolkit for zeolite-specific 

tasks. In this work, we describe the philosophy behind and the capabilities of a new python-

based open-source software package –Multiscale Atomistic Zeolite Simulation Environment 

(MAZE).  

The increasing availability of open-source software packages [58] that run, analyze and offer an 

user-friendly interfaces has greatly simplified the process of performing computational chemistry 

calculations. A classic example is the Atomic Simulation Environment (ASE), provides 

interfaces to various computational chemistry codes (e.g., VASP[59], LAMMPS[60], 

GPAW[61] etc). [1] ASE provides python-based wrappers to the underlying quantum chemical 

simulation code and offers an intuitive application programing interface (API) for setting up, 

starting, and analyzing calculations [1], [62].  By automating the cumbersome computational 

setups and subsequent data analysis, ASE simplifies the process of performing and analyzing 
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complex calculations [1], [63]. Furthermore, by allowing manipulation through Python scripts, 

rather than a GUI, these calculations become self-documenting, reproducible and easy to 

streamline into complex workflows [1], [58].  

3.4 Current Limitations with Tracking Atoms 

Within the ASE Interface 

Despite the continued developments with the ASE codebase and the active user community, we 

note that a few specific structure manipulation tasks currently challenging to implement within 

ASE. Often a variety of structure manipulations (e.g., extracting and reinserting clusters, adding 

terminal H atoms etc.) are necessary to address a zeolite-specific scientific question – the current 

ASE interface is not-suited for “tracking” the changes in the atom indices. This is illustrated 

using a simple example below.  

In ASE groups of atoms are represented in memory by Atoms Python objects. In an Atoms object, 

the properties of all of the atoms are stored in NumPy arrays. When a specific atom in an Atoms 

object is accessed using the get_item method (e.g., my_atoms[index]) an Atom object is created, 

which has (among others) the attributes ‘tag’, ‘position’, ‘symbol’ and ‘index’. The properties of 

an individual atom in an Atoms object can be altered by directly changing an atoms property with 

the set_item method. For example, to set the tag of the first atom in an Atoms object to 3, the 

command my_atoms[3].tag = 3 can be used. A subset of atoms can also be accessed by passing 

in an iterable collection of indices (e.g., my_atoms[indices_list]), which returns a new Atoms 

object containing the selected subset of atoms. The underlying data structure for storing the 
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atoms properties is highly efficient, since it doesn’t require storing an individual Python object 

for each atom represented by an Atoms object. Unfortunately, it also means that the indices of 

each atom can change with each addition or deletion. Figure 1 shows the structures and atom 

indices for various glyoxal derivatives, demonstrating how structural manipulations can alter the 

indices of atoms.   
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Structure Indices of the NumPy array 

 

0 1 2 3 4 5 None None 

Add two H atoms to #1 

 

0 1 2 3 4 5 6 7 

Replace the O atom by the S 

 

0 1 2 3 4 5 None None 

Delete the O and H on C1 

 

0 1 None None 2 3 None None 

Figure 13: Relationship between indices in Atoms objects derived from glyoxal.  The indices of the elements 
carbon, oxygen, hydrogen, and sulfur are colored black, red, purple and yellow respectively. The columns relate the 
indices of different Atoms objects to each other. The indices shifting issue becomes more pronounced when multiple 
structural operations are performed in series. For example, if the O and H atoms are added back to the #3 to recover 
#1, their indices (4 and 5) would differ from the initial structure.   

Figure 1 shows how the indices of the individual atoms can change when additions and deletions 

are performed. The most pronounced difference is in the fourth structure, where the deletion of 

two atoms causes the decrement of the index 4 and 5 to 2 and 3 respectively.  The addition of 

atoms simply extends the arrays and are thus added to the end. There is no inherit ordering in the 

indices thus the order in which atoms are added to a structure effects the resulting order. If a 

substitution is made, by changing the identity of a given atom, then the indices remain 

unchanged.  

The changing indices with structural manipulations can make certain zeolite workflows difficult 

since it is not possible to automatically match the indices between related structures. Although it 
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is possible to manually tag individual atoms, this process is cumbersome and the integer tags 

cannot be guaranteed to be globally unique. Furthermore, not all output formats preserve these 

tags, meaning that the tagging information can be lost throughout a workflow. The mutability of 

Atoms objects, and subsequent index shifting, introduces significant complexity in tracking the 

relationship and identity of atoms.  

3.5 MAZE Design Philosophy 

Recognizing the challenges outlined above, the MAZE package puts the atom relationship 

tracking at the center of its design, while maintaining compatibility with all of ASE features. As 

demonstrated in the following sections, it greatly simplifies zeolite workflows, and allows 

materials informatics experiments to be easily performed. The key innovation of the MAZE 

python package is the development of an IndexMapper class to track the relationship between the 

indices of different Atoms-like objects. The IndexMapper class records the mapping between all 

of the indices of all of the Zeolite objects derived from a parent structure and the changes in 

indices associated with each structural manipulation. Accompanying this tracking is an improved 

API for the structural manipulation of zeolite structures. 

To gauge this improvement, it is necessary to develop criteria to assess the API usability. Human 

computer interaction researchers have studied how programmers interact with APIs, noting that 

“programmers are users too”[64]. In this field many different metrics have been developed to 

assess usability [62], [65], [66]. The most comprehensive review of this heterogenous research 

field is provided by Mosqueira-Rey et al [62]. In their paper, they distill the variety of metrics 

used to quantify usability into six categories:  knowability, operability, efficiency, robustness, 
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safety, and subjective satisfaction. Descriptions of these categories, and subcategories are 

provided in the method section.  

Here, we examine how well MAZE meets API usability criteria by completing several complex 

computational zeolite workflows. The workflows range from simple tasks like identifying the 

unique T sites to optimizing a collection of zeolite structural derivatives with VASP all while 

preserving the relationship between atoms. For the final optimization step, the workflow 

management tool Fireworks [67] was utilized, which is specifically designed for high throughput 

simulations. Along with introducing the MAZE package and its capabilities, this paper aims to 

demonstrate how custom software can be built on top of ASE to improve specialized chemical 

simulation workflows.  

3.6 Assessing the Usability of the MAZE 

Package 

3.6.1 Design principles  

The overarching goals of the MAZE project are to ease the structural manipulations commonly 

encountered in zeolite workflows, while maintaining the functionality of ASE. This goal was 

achieved by creating design goals that guided the development of the MAZE software package. 

The following design goals were developed:  

1. Allow the identity and relationships between atoms to easily be determined   

2. Make the end-to-end zeolite workflows straightforward  
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3. Maintain complete compatibility with ASE’s extensive functionality  

To achieve these design goals, the MAZE package built upon ASE’s features surrounding 

generating structures and reading and writing structures. 

3.6.2 API Usability Assessment  

The API usability assessment criteria assembled by Mosqueira-Rey et al. [62] was utilized for a 

comparison between the MAZE API and the ASE API for zeolite structural manipulations. The 

six distinct usability criteria presented in their article are shown in Table 4 along with a 

corresponding description.  

Table 4: Usability criteria for API design 

Criteria 
Name Criteria Description 

Knowability How well the user can learn, understand and know how to use the API 

Operability How well the user can use the API to perform different operations 

Efficiency The computational time and number of steps required to perform an operation 

Robustness The ability of the system to withstand misuse and incorrect usage 

Safety The capacity to avoid damaging the system or external systems 

Subjective 
Satisfaction The joy which users derive from using the system 

 

For simplicity only the knowability, operability and efficiency criteria were used to assess the 

MAZE API. Computational efficiency was not a critical factor in the MAZE project, and the 

steps required to perform a certain operation overlap with the operability and knowability 

criteria. Safety was also not directly relevant to the API design since the MAZE package is 

intended to be used by a single user on their own personal machine, with a memory-safe 
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programing language. We believe that the subjective satisfaction of using MAZE is high, yet 

being a subjective criterion that required human subjects to assess, it was excluded from further 

discussion.  

The relevant sub-criteria of each major criteria were chosen to further refine the evaluation 

(Table 5). Irrelevant sub-criteria (e.g., third party abuse), were not included in the table.  

Table 5: Criteria and sub-criteria used to assess the MAZE API’s usability 

Criteria Sub-Criteria  Sub-Criteria Description 

Knowability Clarity Understandability of existing code  

Knowability Consistency Consistent function signatures and usage across package  

Knowability Memorability Easy to remember functionality due to familiar API design  

Knowability Helpfulness Complete documentation, useful docstrings and informative error messages  

Operability Completeness Can perform all required operations.  

Operability Precision Can perform specific operations without unintended side-effects 

Robustness Internal Error Few bugs in the code, and bugs and errors are handled properly  

Robustness Improper use Able to withstand improper use through proper error handling 

 

3.6.3 MAZE Software Structure  

A complete, detailed description of the code functionality and design decisions is presented in 

the online documentation and supplementary material. An overview of the key design decisions 

and code structure are presented here.  

The MAZE project aims to include all of the functionality of the base ASE package while 

including additional functionality related to the tracking of atoms. This was incorporated by 

using inheritance. A zeolite is a group of atoms, so it is appropriate to create a Zeolite class that 
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inherits from ASE’s Atoms class. The Zeolite class represents a zeolite and includes additional 

methods and properties for identifying the unique crystallographic sites. Polymorphism ensures 

that the Zeolite class has all of the attributes and methods of the parent Atoms class and thus all 

of ASE’s methods and classes also work well with it.  

The additional functionality of the Zeolite class is divided between two classes, the parent 

PerfectZeolite class and its subclass Zeolite. The PerfectZeolite class includes the functionality 

for building from a labeled CIF file and preserving the site labels. It also includes additional 

attributes for storing a name, GUID, index mapper, additions and parent zeotype (the zeolite 

from which the current structure is derived). The methods included in the PerfectZeolite are all 

of those related to site identification, and serialization.  In a group of zeolites there can be only 

one perfect zeolite, from which all the derivatives are made. A simplified unified modeling 

language (UML) class diagram for the Zeolite object is presented in figure 14.   

 
Figure 14: Simplified unified modeling language (UML) class diagram for the Zeolite object. Inheritance 
relationships are denoted by an open arrow. The Zeolite class inherits from the PerfectZeolite class, which inherits 
from the Atoms class 

Users of the MAZE package will interact primarily with Zeolite objects. The main additional 

features of the Zeolite class versus the PerfectZeolite class are related to atom manipulation, such 

as adding atoms, deleting atoms, extracting clusters and capping clusters. By dividing the 
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functionality between two classes, the attributes that make a Zeolite and those involved in 

structural manipulation can be separated, greatly simplifying the underlying code. The 

underpinning of the Zeolite functionality is an internal IndexMapper object, which tracks the 

relationship between the indices of the atoms in the zeolites derived from the same parent 

structure.  

3.6.4 The Index Mapper Class 

The instances of the IndexMapper class are responsible for tracking the relationship between 

atom indices. A reference to an IndexMapper object is an attribute of each Zeolite class and 

related Zeolites share the same IndexMapper. The IndexMapper does not directly encounter 

Atoms objects, only working with their indices. The core data structure of the IndexMapper is the 

main_index, which consists of a collection of nested dictionaries. The key of the outer dictionary 

is the unique id of each row of atoms in the object (Figure 15).  The inner dictionary consists of 

each zeolites name attribute followed by the index of an Atom or a None object.  

 

Figure 15: Dictionary representation of the main index mapper for a collection of related Zeolites. The keys of the 
outer dictionary represent the unique IDs, where the inner dictionaries map the relationship between indices for the 
same shared atom across different Atoms-like objects. 

The index mapper can also be represented in table form, to more naturally represent the Atoms 

relationships to each other (Table 6).  

{0: {"parent": 0, "Zeolite_1": 0, "Cluster_3": None, "Open Defect_5": 0},
 1: {"parent": 1, "Zeolite_1": 1, "Cluster_3": None, "Open Defect_5": 1},
 2: {"parent": 2, "Zeolite_1": 2, "Cluster_3": 0, "Open Defect_5": None},
 3: {"parent": 3, "Zeolite_1": 3, "Cluster_3": None, "Open Defect_5": 0},
 4: {"parent": 4, "Zeolite_1": 4, "Cluster_3": None, "Open Defect_5": 0},
 # ...
 188: {"parent": 188, "Zeolite_1": 188, "Cluster_3": None, "Open Defect_5": 167},
 189: {"parent": 189, "Zeolite_1": 189, "Cluster_3": None, "Open Defect_5": 168},
 190: {"parent": 190, "Zeolite_1": 190, "Cluster_3": None, "Open Defect_5": 169},
 191: {"parent": 191, "Zeolite_1": 191, "Cluster_3": None, "Open Defect_5": 170}}
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Table 6: Representation of the main_index of an IndexMapper object. The column headers denote either the 
unique_id or the name of the zeolite. The parent column corresponds to the indices of the PerfectZeolite from which 
the other zeolite structures were derived. Each row of the table shows the relationship between the different indices 
across different zeolites.  

unique_id parent Zeolite_1 Cluster_3 Open Defect_5 

0 0 0 NaN 0 

1 1 1 NaN 1 

2 2 2 0 NaN 

3 3 3 NaN 2 

4 4 4 NaN 3 

… … … … … 

188 188 188 NaN 167 

189 189 189 NaN 168 

190 190 190 NaN 169 

191 191 191 NaN 170 

 

The main_index in the IndexMapper object records the relationship indices of different Atoms 

objects. The unique_id assigns a unique identifier (ID) to each atom. This ID does not depend on 

the atom species and if an atoms type is changed from silicon to tin, for example, the ID remains 

unchanged. The row shows the relationship between the indices across different Atoms objects. 

For example, in row four, the ID equals 3 and the indices of the parent, Zeolite_1 and Open 

Defect_5 are all equal to 3. The equivalent atom index in Cluster_3, which consists of an 

extracted cluster from Zeolite_1 is 0. Cluster_3 consists of 21 atoms, and the Open Defect_5 

object consists of all of the atoms in Zeolite_1 with the exception of the atoms in Cluster_3. 

Thus, Open Defect_5 final indices are offset by 21 as can be seen in the final rows of the table.  
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The main_index is automatically updated when each atom manipulation operation is performed 

and does not require additional intervention from the user. The index mapper class can be used to 

directly map between two related zeolites with the get_index function, yet its core benefit comes 

about by enabling the structural manipulation functions such as cap_atoms and integrate.   

Complimenting this index mapper are the add_atoms and delete_atoms methods in the Zeolite 

class, which return a copy of the original Zeolite object with the applied modifications and 

append a new column to the IndexMapper’s main index. This new column contains the indices of 

the newly created Zeolite object and each row indicates the relationship between the atoms in 

other zeolites. If a Zeolite object is deleted, then the deconstructor will remove its corresponding 

entry from the IndexMapper, preventing the main index from being cluttered with deleted Zeolite 

object indices.  

3.7 Results and Discussion  

3.7.1 Results and Discussion Introduction 

To demonstrate the capability of the MAZE code and assess its API four distinct tasks were 

performed. These tasks include building a Zeolite object from a labeled CIF file, adding and 

removing atoms, and a complete workflow involving removing a cluster, changing some of its 

atoms and reinserting it back into the original zeolite. Finally, a complete optimization workflow 

involving Fireworks and the VASP calculator was demonstrated, which shows MAZE’s capacity 

to facilitate high-throughput computational workflows.   



 48 

3.7.2 Building a Zeolite from a CIF File  

T-sites are Silicon, Aluminum or metal atoms, which have a tetrahedral shape. Zeolites often 

contain multiple distinct T-sites, each of which has unique chemistries. To screen Zeolites for 

certain properties, the chemistries at each T site need to be assessed.  

Experiments of this type start with downloading a CIF file from the IZA database, placing the 

file in the project folder and reading the CIF file into an Atoms object with the ase.io.read 

function. One challenge with this approach is that CIF files downloaded from the IZA database 

contain extra information about the identity of unique atoms, which is not preserved when the 

CIF file is loaded with ASE’s read function. Thus, various “hacks” are needed to align the Atoms 

object built from the CIF file with their labels. One hack is changing a unique site from a silicon 

to an unused atom such as xenon, and when the Atoms object is loaded reverting it back to a 

silicon, but noting the indices. This manual tagging mechanism is slow, opaque because the code 

is no longer self-documenting, and error prone, since it involves manually editing a critical data 

file.  

The MAZE package significantly improves this process by introducing the make method. The 

make method takes a zeolite IZA code as input, looks for the corresponding CIF file, and if it is 

not found attempts to download the zeolite CIF file from the IZA database. After locating or 

downloading the correct CIF file, the make function then builds a Zeolite from a IZA CIF file, 

and stores the mapping between the indices and their identities in two of the Zeolite objects 

internal dictionaries. The identities of the sites can then be determined by using the get_site_type 

method or by accessing the dictionaries directly (Figure 16).  



 49 

 
Figure 16: Comparison between MAZE and ASE code for generating a BEA zeolite structure with the Silicon T2 
sites replaced by aluminum atoms. The MAZE code uses the built-in make function to read the unmodified CIF file 
and store the mapping in the site_to_atom_indices dictionary. The longer ASE code requires a modified CIF file as 
input, and the element mapping to be manually defined. Both codes generate and visualize the same BEA T2 Si®Al 
structure.   

Figure 16 shows that the MAZE package is simpler to use than the base ASE package for this 

specified workflow. To objectively assess the MAZE package usability for constructing Atoms-

like objects from labeled CIF files the usability criteria described in the methods section were 

applied to this specific use case. The results of these applied criteria are shown in table 7. 

Table 7: Assessment of usability for both the ASE and MAZE package for loading a labeled CIF file 

Usability Criteria ASE Description MAZE Description 

Knowability Requires manually implementing 
a complex, time consuming 
workflow  

Only requires calling a 
single function  

Operability  For each labeled site the CIF file 
must be modified 

Labeling performed 
automatically when reading 
a standard CIF file  

Robustness Prone to silent errors due to 
improper CIF file modification 

Labeling automatic, 
preventing human error 

import ase 
from ase.io import read
from ase.visualize import view 
from collections import defaultdict

site_to_index_map = defaultdict(list)
element_to_site_map = {'He': 'T1', # define map 
                       'Ne': 'T2',
                       'Ar': 'T3',
                       'Kr': 'T4',
                       'Xe': 'T5',
                       'Rn': 'T6',
                       'F' : 'T7',
                       'Cl': 'T8',
                       'Br': 'T9'}

bea = read('modified_BEA.cif') # read in modified cif file 
for atom in bea:
    if atom.symbol in element_to_site_map:
        site_idenity = element_to_site_map[atom.symbol]
        site_to_index_map[site_idenity].append(atom.index)
        print(site_idenity)
        bea[atom.index].symbol = 'Si'
# replace T2 sites with Al
for index in site_to_index_map['T2']:
    bea[index].symbol = 'Al'

view(bea) # view bea 

from maze import Zeolite
from ase.visualize import view 

bea = Zeolite.make('BEA')  # load in bea and note sites 
# replace T2 sites with Al
for index in bea.site_to_atom_indices['T2']:
        bea[index].symbol = 'Al'  

view(bea)
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In the knowability category, the MAZE package outperforms the ASE read function, since only a 

single, easy to remember function is needed to construct a labeled Zeolite from a CIF file. When 

using the ASE package an entire, convoluted workflow must be performed. This workflow is 

prone to human error, since it involves manually downloading and modifying the CIF file, thus 

the robustness is also worse. The operability of the ASE package is also limited since tagging all 

the sites requires more effort than tagging a single site. Overall, the MAZE package offers a 

significant improvement over the ASE package and meets the key categories of API usability.  

3.7.3 Structural Manipulations  

The Atoms class’ structural manipulation features allow atoms to be added and removed from the 

collection and the properties of individual atoms to be altered. The API by which these 

manipulations are performed is inspired by Python’s list manipulation methods. Although 

familiar to Python users, these manipulations are not self-consistent as some have side effects 

(e.g. the pop method) while others are side effect free such as the __add__ method. In zeolite 

workflows it is common for many derivatives of a single parent zeolite to be generated, and this 

is complicated by methods with side-effects, due to the need for explicit copying prior to each 

modification.  

In alignment with the goal of the MAZE project, new methods for atomic manipulation were 

designed, which do not mutate the underlying object, and instead return a copy with the applied 

modifications. These methods (add_atoms and delete_atoms) simplify the computational 

workflows and also allow for method chaining improving code readability. A list of the available 

methods for the ASE Atoms object and the MAZE Zeolite object are shown in Table 8 below.   



 51 

Table 8: ASE Atoms object and MAZE Zeolite object’s structure manipulation methods  

Method Name  Classes with Method   Modifies Object 

__add__  

(overloads +) 

Atoms, PerfectZeolite, Zeolite No  

__iadd__ 

(overloads +=) 

Atoms, PerfectZeolite, Zeolite Yes  

extend Atoms, PerfectZeolite, Zeolite Yes 

append Atoms, PerfectZeolite, Zeolite Yes 

len Atoms, PerfectZeolite, Zeolite No 

__delete__ 
overloads del  

Atoms, PerfectZeolite, Zeolite Yes 

pop Atoms, PerfectZeolite, Zeolite Yes 

add_atoms Zeolite No 

delete_atoms Zeolite No 

cap_atoms Zeolite No 

Integrate_zeotype Zeolite No 

get_cluster Zeolite No 

apply Zeolite No 

 

The structural manipulation features of the Zeolite class include those of the Atoms class and 

additional methods for structural manipulation built around the add_atoms and delete_atoms 

methods. For compatibility with the plethora of functions in ASE all of the Atom’s classes 

methods must be preserved. Although their use is not recommended, the list manipulation 

functions in the ASE atoms class are still compatible with MAZE. In comparing the APIs, the 

new methods in Zeolite are compared to the existing methods in Atoms.  The usability of the 

structural manipulation features can be assessed based on the criteria described in the methods 
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section. A table summarizing the comparison is shown in Table 9, with a “winner” given for 

each criterion along with a justification for the assignment.  

Table 9: Usability of structural manipulation methods for the Atoms objects and Zeolite Objects  

Criteria Sub-Criteria  Winner 
(MAZE, 
ASE, Tied) 

Justification  

Knowability Clarity Tied Both ASE and MAZE methods clearly described the modification 

Knowability Consistency MAZE All MAZE structural manipulation methods return new Zeolites 

Knowability Memorability ASE ASEs functions are consistent with Python’s list manipulation 
methods and thus are more memorable   

Knowability Helpfulness Tied   Both ASE and MAZE have complete documentation  

Operability Completeness MAZE  MAZE can perform more advanced structural manipulations such 
as capping atoms and integrating clusters 

Operability Precision MAZE Precise structural manipulations can be performed such as 
removing specific T sites  

Robustness Internal Error MAZE MAZE manipulation methods’ side-effects are confined to the 
IndexMapper object reducing errors 

Robustness Improper use MAZE The side effects of the ASE methods can produce hidden errors that 
are challenging to detect  

 

The usability assessment shows that the MAZE Zeolite methods outperforms the ASE in all 

categories except for the memorability category. The Atoms manipulation features have high 

memorability since they are the same as the list manipulation methods found in Python’s base 

package, yet the inconsistency in return type among the operations makes performing certain 

operations challenging. The MAZE structural manipulation features are consistent, increasing the 

knowability, allow for chained, structural manipulations, increasing the operability and have 

increased efficiency since the manipulations can be confined to a single line and are more robust 

due to the consistent interface and side-effect free methods.   
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3.7.4 Cluster Extraction, Atom Capping and Integration  

The power of these additional structural manipulation features can be demonstrated by 

performing a complex workflow. A typical zeolite unit cell contains over one-hundred atoms, but 

the areas of chemical interest are frequently confined to the atoms adjacent to a single T-site. To 

reduce the computational expense of quantum chemical calculations, the calculations are 

typically performed on a smaller subset of atoms adjacent to the active sites of interest. This 

subset of atoms is referred to as a cluster [68]. To ensure convergence, capping atoms are added 

to the terminal cluster atoms, guaranteeing that they have an octet. The optimal position for the 

capping atoms is based on the parent zeotype’s structure. After the capped cluster’s structure has 

been optimized, the cluster can be integrated back into the initial zeolite with the integration 

method.  

This workflow is extraordinarily difficult to perform with the ASE base package due to the 

challenge associated with tracking the relationship between atom indices. The Zeolite class’s 

built-in index mapper ensures that the relationship between atoms can easily be determined and 

forms the basis for the simple functions that perform this workflow. In Figure 17 a pictorial 

representation of stages in the workflow is shown along with the methods needed to perform the 

transformation from one stage to the next.  
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Figure 17: Workflow for cluster integration. A blue arrow shows the workflow direction, starting with a BEA 
zeolite constructed using the make method. The functions or operations required to transfer from one structure to 
another are shown between the structures on the blue line.  

The overall workflow has six distinct structures bridged by functions which take the previous 

structure as an input and output the new structure. The cluster structures (B, C, D, E) have 

different indices than the BEA frameworks (A, F), yet the indices can easily be mapped to each 

other using the built-in IndexMapper’s get_index method.  Since the functions do not alter the 

Zeolite to which they are applied, and instead return a new zeolite object, they can be chained 

together. The chained methods required to transform structure A into structure F is shown in 

Figure 1.  

 
Figure 18: Code required to generate structure F from structure A  

The code presented in figure 1 demonstrates how a complex workflow can be achieved with the 

chaining of several functions together. This simplicity allows for knowability of the operations, 

from maze import Zeolite
def change_atoms(atoms):
    for atom in atoms:
        if atom.symbol == 'Si' and atom.tag != 154:
            atoms[atom.index].symbol = 'Sn'

bea = Zeolite.make('BEA')
cluster = bea.get_cluster(154)[0].cap_atoms().apply(change_atoms).remove_caps()
bea_sn = bea.integrate(cluster)
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precise and complete operability, and robustness due to high readability. The scrambling of the 

indices with the cluster extraction does not allow for consistent code using the base ASE 

package. Instead, the indices of each atom must be matched manually at each stage of the 

process. Thus, the MAZE package interface has increased the knowability, operability and 

robustness compared to the cumbersome manual workflow required when using the base ASE 

package  

3.7.5 Creation and Optimization of a Database of Zeolite Structures  

MAZE’s structural manipulation enhancements can be utilized to construct thousands of Zeolite 

derivatives in a systematic way. These structures can then be optimized with the aid of the 

workflow management tool Fireworks [67] and a custom-build python package VASP-FW, 

which combines ASE’s VASP interface with Fireworks’. To demonstrate this capacity, a 

database of open framework copper containing zeolites was created with the MAZE package. 

The Python class utilized for this process was written by the current PhD student Jiawei Guo, 

whose research focuses on copper containing zeolite catalysts. As of the writing of this thesis, 

optimization has not been complete, yet the pipeline and workflow has been constructed and the 

individual components tested. A diagram of this automatic data pipeline for structural 

optimization is shown below (Figure 19). 
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Figure 19: Data pipeline for the construction of optimized zeolite derivatives. The MAZE package allows for key 
optimization steps to be automated through a single python script. 

The MAZE package facilitates these structural manipulations by removing the need to manually 

match indices between derived structures. This allows for the automatic creation of large-scale 

databases of zeolite derivatives, producing large datasets amenable for complex analysis.  

In the previous examples all structural manipulations took place on Zeolite objects loaded into 

memory. Quantum chemical optimizations typically take place on remote servers separate from 

the structural manipulation code. The computations are also expensive, thus preserving the 

resulting optimized structure on non-volatile memory is essential. The MAZE package 

incorporates read-write capabilities that allow groups of related zeolites to be saved in a single 

file while preserving the mapping between the zeolites. The read-write capabilities also allow for 

a properly tagged structure to be reincorporated back into a group of zeolites by registering it 

with an existing index mapper. This read-write capacity allows for the development of complex, 

distributed workflows.  

The Vienna Ab initio Simulation Package (VASP) was utilized with ASE and MAZE for 

structural optimization [59]. The open-source workflow management software Fireworks [67] 

was utilized to manage jobs, while a remote AWS PostgreSQL database was used to store the 
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Atom object data. To ensure code modularity, this VASP fireworks workflow was built into as 

separate python package (vasp-fw), which facilitated the workflow needed for optimizing 

trajectory files. An overview of the data system for the optimization and an example workflow is 

shown in Figure 20 below.  

 

Figure 20: Workflow diagram for the optimization of a collection of trajectory files. The workflow is divided into 
optimization (blue), save (gray) and analyze (green) stages. 

The diagram (Figure 20) shows the steps for optimizing trajectory with Firework and ASE’s 

VASP calculator. This process will be repeated for each trajectory file in the zeolite database 

shown in Figure 19, allowing for a comprehensive study of open framework, copper containing 

zeolites.  

3.8 Conclusions  

The improved API of the MAZE package was presented here by demonstrating how to perform 

representative tasks. Several other features of the MAZE package include database integration 
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and adsorbate additions. A complete description can be found in the documentation, which is 

referenced in the supplementary material.  

MAZE’s improved API builds on-top of the Atomic Simulation Environment. This new interface 

facilitates computational zeolite calculations by greatly simplifying the steps needed to perform 

common zeolite workflows. The API usability was assessed with the criteria knowability, 

operability and robustness and by demonstrating example workflows. Computational 

experiments are less labor intensive than wet lab experiments, but lack of optimal APIs for 

scientific software and complex workflows can incur a significant time commitment from 

researchers to setup and run. By creating custom software tailored to the specific task, research 

can be simplified and larger scale experiments can be conducted. 
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Chapter 4  

Conclusions 

4.1 Project Summaries  

In this work, two separate projects were untaken. The first project focused on constructing a data 

pipeline to pre-process SERS spectra. A novel component of this pipeline was the utilization of a 

supervised machine learning algorithm to identify negative spectra. The second project, the 

development of the MAZE Python package, allowed for common structural manipulations of 

simulated zeolite structures to be simplified. As demonstrated, this allowed for the construction 

of libraries of zeolite derivatives and their optimization through integration with VASP and 

Fireworks. Both of these projects share the common characteristic of automating a key 

component of an experimental workflow, reducing the labor required to conduct large scale 

experiments.  

4.2 Future work  

In addition to simplifying existing workflows, this work sets the groundwork for future 

autonomous experiments. Autonomous experiments involve using an agent, rather than a 
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researcher, to choose which sample to collect and a controller to automatically collect the chosen 

sample [69] (Figure 21).  

 

Figure 21: A general diagram for an autonomous experiment. The sample criteria are selected by an agent and are 
collected by the experimental apparatus and controller. An automatic data pipeline processes the raw data output by 
the experiment and feeds the data back to the agent.  

Autonomous experiments could extend the work described in this thesis. In the case of zeolite 

studies, the automated workflow could be combined with an autonomous agent that explores the 

vast zeolite space in search of structures with high selectivity for CO2 over water. In the SERS 

situation an autonomous experiment would involve automatically sampling spots on the sample 

that produced positive spectra at higher rate than those that produced negative signals, freeing 

the researcher from overseeing the collection process. The automation of the SERS sampling is 

close to fruition as it is straightforward to integrate Python based ML algorithm with the SERS 

spectrometer instrument using LabVIEW.  

The agent utilized for experiment selection be simple, such as a grid search algorithm [69] or 

employ more sophisticated reinforced learning algorithms [69], [70]. Reinforce learning 

algorithms are responsible for the superhuman feats achieved by AI in games most notably in 

Go[71] and StarCraft II[70] and have been applied to optimize chemical reactions[72], and 

beamline data collection[69]. To harness these advances an automatic data pipeline must be 
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created. Thus, the deployment of data pipelines can significantly reduce the labor required for 

large scale experiments.  
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