
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Removing Bottlenecks in Research Workflows: Improving SERS Sampling and Computational
Zeolite Experiments Through the Application of Machine Learning and the Construction of
Custom Data Pipelines

Permalink
https://escholarship.org/uc/item/7531788r

Author
Antonio, Dexter Dante

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7531788r
https://escholarship.org
http://www.cdlib.org/

 i

Removing Bottlenecks in Research Workflows:
Improving SERS Sampling and Computational Zeolite Experiments Through the Application of

Machine Learning and the Construction of Custom Data Pipelines

By

DEXTER ANTONIO
 THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Chemical Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Ambarish Kulkarni, Chair

Adam Moule

Roland Faller

Committee in Charge

2021

 ii

Table of Contents
Table of Contents .. ii

List of Figures ... v

List of Tables .. x

Acknowledgements .. xi

Abstract ... xii

Chapter 1 ... 1

Introduction ... 1

1.1 Overview ... 1

1.2 Data Cleaning .. 3

1.3 Data Engineering .. 5

Chapter 2 ... 7

Machine Learning Assisted Sampling of SERS Substrates Improves Data Collection

Efficiency .. 7

2.1 Acknowledgements ... 7

2.2 Abstract ... 8

2.3 Introduction ... 9

2.4 Methods... 12

2.4.1 Sample Preparation .. 12

i

 iii

2.4.2 SERS Spectra Acquisition ... 13

2.4.3 Spectra Labeling .. 14

2.4.4 Performance Measures ... 14

2.5 Results ... 16

2.5.1 Sample Collection .. 16

2.5.2 Data Organization and Parsing for ML Input .. 19

2.5.3 Model Selection and Performance Analysis .. 21

2.5.4 Testing Model Performance ... 24

2.5.5 Variable importance ... 25

2.5.6 Out of Sample Testing ... 26

2.6 Discussion ... 29

2.7 Conclusion .. 32

2.8 Data Accessibility Statement .. 32

2.9 Funding ... 33

Chapter 3 ... 34

The Multiscale Atomic Zeolite Simulation Environment (MAZE): A Python Package for

Improved Zeolite Structural Manipulations .. 34

3.1 Acknowledgements ... 34

3.2 Abstract: .. 35

3.3 Introduction ... 35

 iv

3.4 Current Limitations with Tracking Atoms Within the ASE Interface 37

3.5 MAZE Design Philosophy .. 40

3.6 Assessing the Usability of the MAZE Package .. 41

3.6.1 Design principles ... 41

3.6.2 API Usability Assessment.. 42

3.6.3 MAZE Software Structure ... 43

3.6.4 The Index Mapper Class .. 45

3.7 Results and Discussion ... 47

3.7.1 Results and Discussion Introduction .. 47

3.7.2 Building a Zeolite from a CIF File .. 48

3.7.3 Structural Manipulations .. 50

3.7.4 Cluster Extraction, Atom Capping and Integration ... 53

3.7.5 Creation and Optimization of a Database of Zeolite Structures 55

3.8 Conclusions ... 57

Chapter 4 ... 59

Conclusions ... 59

4.1 Project Summaries .. 59

4.2 Future work ... 59

5.1 Bibliography ... 62

 v

List of Figures
Figure 1: Example of data generation and data cleaning in a computational experiment (A) and a

laboratory experiment (B). Figure 1B, presents simulation input files (left), a section of the raw

output files of a GCMC simulation (middle) and the cleaned data matrix (right). Figure 1B

shows the raw spectra generated by the instrument (middle) and the cleaned baseline corrected

and normalized spectra (right). ... 4

Figure 2: Comparison of a traditional experimental workflow and an automated experimental

workflow. The top figure shows the involvement of a scientist in the data cleaning and data

fitting portions, where in the second figure those sections are automated via an automatic data

pipeline .. 6

Figure 3: Hierarchical data structure for label-free SERS experiments. A single experiment

consists of different samples, each of which is analyzed with a separate substrate. For each

sample, different x, y positions (spots) are analyzed by collecting a series of SERS spectra one-

after-another. The number of spectra collected per spot and spot collected per substrate can vary

depending on signal quality. ... 12

Figure 4: Image of Python-based Labeler app for manually assigning labels to spectra. The

interface displays a spectrum to SERS expert, who can assign a label to the spectra with the

“good”, “bad” or “maybe” buttons. The spot number, spectra number, sample name, and current

label is displayed in the bottom of the window. The save labels buttons saves the labels to a

NetCDF file for later use in model training and testing. ... 14

Figure 5: Experimental workflow of the ML-SERS platform. a) Rhodamine 6G was used as a

SERS reported molecule on plasmonic Moxtek (1) or Plasmore (2) substrates. Varying solutions

 vi

of R6G were pipetted (~ 20 µL total) onto the surface and 20 × 20 pixels surface areas were

scanned. b) SEM micrographs illustrate the structure of the Moxtek and Plasmore substrates. c)

Representative SERS spectrum of R6G; the highlighted peaks at 620, 780, 1198, 1367 and 1513

cm-1 are characteristic spectral features of R6G. ... 17

Figure 6: PCA analysis to guide SERS spectra selection. a) PC score plot demonstrating each

measured sample group (400 spectra per group, total 2000 spectra in the data set), each marker

represents a single SERS spectrum. b) PC1 loading spectrum displaying the positive features at

620, 780, 1198, 1367, and 1513 cm-1 that can be associated to the SERS reporter molecule R6G

used in the study. c) Examples of “good”, “maybe” and “bad” spectra pinpointed with

corresponding star markers (red, yellow, blue, respectively) at the PC score plot. 19

Figure 7: Open-source data pipeline developed for this study. The first stage of the pipeline

converts and processes raw spectra files into a binary NetCDF file format. The second data

labeling stage employs a custom Python “Labeler” app, allowing an expert Raman user to

quickly assign labels (e.g., “good”, “bad”, or “maybe”) to the spectra serialized in the netCDF

files. After labels have been assigned, the last stage of the pipeline is model training, where the

binary files are loaded into NumPy arrays to train and test various ML models. 20

Figure 8: a) Calibration plots for four tested machine learning algorithms LR-SGD, SVG-SGD,

DT, LDA, RF, and XGB on validation set. The x axis represents the mean predicted probability

of the events occurring in the bin. The y axis represents the fraction of positive (i.e., “good”)

spectra in the in the bin. b) The total number of probabilities in each decile, for each classifier. 23

Figure 9: a) ROC curves for six tested models, logistic regression (LR-SGD), support vector

machines (SVG-SGD), decision trees (DT), linear discriminate analysis (LDA), random forest

(RF) and XGBoost (XGB). Random guessing is represented by the y=x line whereas higher

 vii

performing models lie closer to the left corners of the plot. Inset: Confusion matrix for XGBoost

algorithm trained on train and validation set and tested on the test set. The trace of the matrix

indicates correct predictions, while the offset values indicate incorrect predictions. b)

Comparison of hyperparameter-tuned model performance on validation data set. The highest

value for each category is bolded and the lowest value for each category is italicized. 24

Figure 10: Representative spectra classifications for XGBoost on in-sample test dataset. Text

overlaid on each spectra indicate the expert user label trained model’s performance in accurately

predicting the label. ... 25

Figure 11: Relative importance of different wavenumber regions for the XGBoost model trained

on the in-sample train and validation data. Each bin contains the sum of the importance scores of

the wavenumbers in the range [start wavenumber, end wavenumber). An R6G spectrum is

overlaid for reference, where it is apparent that relative importance correlate with spectral

features of R6G. .. 26

Figure 12: a) Visualization of the sampled region from the five substrates used in experiment

along with the corresponding labels. Red squares represent a negative spectrum, green squares

represent a positive spectrum, and purple squares represent spectra with ambiguous labels, which

were excluded from fitting and prediction. b) Comparison of actual and predicted labels for five

test samples. The comparison is represented by the color. False positive (red), false negative

(pink), true positive (light blue), true negative (dark blue), and ambiguous, maybe labeled,

spectra (purple) pixels are shown. .. 28

Figure 13: Relationship between indices in Atoms objects derived from glyoxal. The indices of

the elements carbon, oxygen, hydrogen, and sulfur are colored black, red, purple and yellow

respectively. The columns relate the indices of different Atoms objects to each other. The indices

 viii

shifting issue becomes more pronounced when multiple structural operations are performed in

series. For example, if the O and H atoms are added back to the #3 to recover #1, their indices (4

and 5) would differ from the initial structure. ... 39

Figure 14: Simplified unified modeling language (UML) class diagram for the Zeolite object.

Inheritance relationships are denoted by an open arrow. The Zeolite class inherits from the

PerfectZeolite class, which inherits from the Atoms class .. 44

Figure 15: Dictionary representation of the main index mapper for a collection of related

Zeolites. The keys of the outer dictionary represent the unique IDs, where the inner dictionaries

map the relationship between indices for the same shared atom across different Atoms-like

objects. .. 45

Figure 16: Comparison between MAZE and ASE code for generating a BEA zeolite structure

with the Silicon T2 sites replaced by aluminum atoms. The MAZE code uses the built-in make

function to read the unmodified CIF file and store the mapping in the site_to_atom_indices

dictionary. The longer ASE code requires a modified CIF file as input, and the element mapping

to be manually defined. Both codes generate and visualize the same BEA T2 Si®Al structure. 49

Figure 17: Workflow for cluster integration. A blue arrow shows the workflow direction, starting

with a BEA zeolite constructed using the make method. The functions or operations required to

transfer from one structure to another are shown between the structures on the blue line. 54

Figure 18: Code required to generate structure F from structure A .. 54

Figure 19: Data pipeline for the construction of optimized zeolite derivatives. The MAZE

package allows for key optimization steps to be automated through a single python script. 56

Figure 20: Workflow diagram for the optimization of a collection of trajectory files. The

workflow is divided into optimization (blue), save (gray) and analyze (green) stages. 57

 ix

Figure 21: A general diagram for an autonomous experiment. The sample criteria are selected by

an agent and are collected by the experimental apparatus and controller. An automatic data

pipeline processes the raw data output by the experiment and feeds the data back to the agent. . 60

 x

List of Tables
Table 1: Metrics useful in assessing the performance of a binary classifier 15

Table 2: Model performance parameters for the XGBoost algorithm trained on the training set

and validation set and tested on the test set. ... 25

Table 3: Out-of-sample performance for XGBoost model on five substrates 27

Table 4: Usability criteria for API design ... 42

Table 5: Criteria and sub-criteria used to assess the MAZE API’s usability 43

Table 6: Representation of the main_index of an IndexMapper object. The column headers

denote either the unique_id or the name of the zeolite. The parent column corresponds to the

indices of the PerfectZeolite from which the other zeolite structures were derived. Each row of

the table shows the relationship between the different indices across different zeolites. 46

Table 7: Assessment of usability for both the ASE and MAZE package for loading a labeled CIF

file ... 49

Table 8: ASE Atoms object and MAZE Zeolite object’s structure manipulation methods 51

Table 9: Usability of structural manipulation methods for the Atoms objects and Zeolite Objects

... 52

 xi

Acknowledgements
I would like to acknowledge everyone who helped me complete my Master’s thesis and

supported me throughout graduate school. I would like to directly thank Prof. Ambarish Kulkarni

whose guidance, support and flexibility allowed me to direct my research in a way that aligned

with my career goals. I also want to acknowledge Prof. Randy Carney and Dr. Tatu Rojalin for

working with Prof. Kulkarni and me on the SERS project, leading to the creation of a truly novel

SERS sampling solution.

I would also like to acknowledge all members of the Kulkarni group for their feedback during

group meeting and taking the time to try out the MAZE package.

I would also like to thank the University of California, Davis for providing tuition abatement, a

small salary and healthcare in return for teaching assistance. Without this financial support,

completing this thesis would not have been possible.

Finally, I would like to thank my family and Maggie Riley, who provided support and guidance

in navigating graduate school.

 xii

Abstract
Advances in machine learning and growing computational power are enabling large scale data

analysis experiments. To facilitate these experiments, data must be cleaned from its raw form

into one suitable for analysis. Automatic data pipelines are able to facilitate the creation of large-

scale experiments by automating the transformation and cleaning of data into a form amenable to

analysis. In this thesis an automatic data pipeline is developed for two separate projects:

“Machine Learning Assisted Sampling of SERS Substrates Improves Data Collection

Efficiency” and “The Multiscale Atomic Zeolite Simulation Environment (MAZE): A Python

Package for Improved Zeolite Structural Manipulations”. These two projects are related in that

both automate key sections of the experimental data analysis, building the groundwork for future

autonomous experiments.

Machine Learning Assisted Sampling of SERS Substrates Improves Data Collection

Efficiency: Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive

label-free analysis of chemical and biological samples. While much recent work has established

sophisticated automation routines via machine learning (ML) and related artificial intelligence

(AI) methods, these efforts have largely focused on downstream processing (e.g., classification

tasks) of previously collected data. While fully automated analysis pipelines are desirable,

current progress is limited by cumbersome and manually-intensive sample preparation and data

collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate

the quality and reliability of the measurement (i.e., the spectra) as the data is being collected.

This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based

 xiii

diagnostics for point-of-care clinical applications, where trained spectroscopists are likely

unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding)

are useful, there is an urgent need to develop algorithms that leverage expert user intuition and

domain knowledge to simplify and accelerate data collection steps. To address this challenge, in

this work, we introduce an ML-assisted method at the acquisition stage. We tested six common

algorithms to measure best performance in the context of spectral quality judgement. For

adoption into future automation platforms, we developed an open-source python package tailored

for rapid expert user annotation to train ML algorithms. We expect that this new approach to use

ML to assist in data acquisition can serve as a useful building block for point-of-care SERS

diagnostic platforms.

The Multiscale Atomic Zeolite Simulation Environment (MAZE): A Python Package for

Improved Zeolite Structural Manipulations: Zeolites are nanoporous materials with

widespread industrial applications as catalysts and gas separators. Due to the enormity of the

zeolite chemical space and structural complexity, computational experiments are needed to

identify high-performing zeolites and interpret zeolite characterization data. These computational

experiments are enabled by software packages, most notably the Atomic Simulation

Environment (ASE) which provides an easy-to-use Python interface to drive low level simulation

code. ASE has some limitations that make certain zeolite simulation workflows challenging and

labor intensive. These limitations motivated the creation of the Multiscale Atomistic Zeolite

Simulation Environment (MAZE) package which builds on-top of ASE to facilitate common

zeolite structural manipulations that are challenging with the base ASE package. The improved

interface of MAZE, compared to ASE, is demonstrated by applying application programing

interface (API) design heuristics and showcasing the ability of MAZE to facilitate common

 xiv

zeolite workflows. It is demonstrated that the MAZE package has an improved API for zeolite

workflows and that this can facilitate the creation of large databases of zeolite structural

derivatives.

 1

Chapter 1

Introduction

1.1 Overview

The two separate projects described in this thesis are the development of a machine learning

assisted sampling technique for surface enhanced Raman spectroscopy (SERS) substrates and the

creation of the Multiscale Atomic Zeolite Simulation Environment (MAZE) Python package.

These seemingly unrelated projects share the common thread of removing bottlenecks in a

scientific workflow, through the creation of an automated data pipeline. A data pipeline, in a

research context, is a process that transforms the raw data generated from an experiment into a

form amenable to analysis. In the SERS project the preprocessing of spectra and categorization

of spectra as positive or negative is automated. The MAZE package simplifies common

structural manipulations in simulated zeolite structures removing the key roadblock in the

generation of zeolite structural derivative databases. By removing repetitive steps in scientific

workflows, both of these projects speed up data generation allowing for more large-scale

experiments to be conducted.

This thesis is divided into four chapters. The first chapter, the introduction, provides an overview

of the structure of the thesis and the unifying themes of the two separate projects are discussed.

 2

The remaining introduction section provides a broad overview of machine learning and data

engineering and how it relates to the two discussed projects. Specifically, it focuses on the

importance of cleaning data through the use of data pipelines.

The second chapter of this thesis covers the project “machine learning assisted sampling of

SERS”. This chapter focuses on the use of a supervised machine learning algorithm to

automatically remove bad spectra from a dataset, which sets the groundwork for future

autonomous experiments. These sections and the abstract of this thesis are based off of a

manuscript submitted to Applied Spectroscopy in which I am co-first author. Permission was

granted from the other primary author, Dr. Tatu Rojalin, to include the contents of this

manuscript in my thesis. This inclusion was also approved by my senior academic adviser

(SAA), Wallace Woods and the current Chemical Engineering department chair, Prof. Tonya

Kuhl. This manuscript was written with the substantial help of the other two secondary authors

Dr. Ambarish Kulkarni and Dr. Randy Carney. The work was supported by the UC Davis Center

for Data Science and Artificial Intelligence Research (CeDAR) Innovative Data Science Seed

Funding Program.

The next chapter (Chapter 3) of this thesis focuses on the development of the MAZE Python

software package. This project extends the Atomic Simulation Environment (ASE)[1] to more

naturally represent zeolites and facilitate the calculations required to determine their properties.

The most notable aspect of this project is that it allows for the creation of large-scale databases

of zeolite structures. This package was based off of the extensive scripts in the Kulkarni group

and since its release has been downloaded over 100 times through PyIP [2], and cloned an

unknown number of times directly from the GitHub repo.

 3

The brief final chapter (Chapter 4) concludes the thesis by reiterating the main points and briefly

discussing how data pipelines make autonomous experiments possible.

1.2 Data Cleaning

The availability of data, exponentially increasing computing power, and developments in

machine learning are revolutionizing materials science and making the generation, interpretation

and analysis of experiments easier than ever before [3][4]. These advances are actively being

combined by training machine learning algorithms on the data generated from data-heavy

simulation and laboratory experiments, producing systems which can outperform traditional,

first-principal, parameterized models [3], [4]. In order to develop high performing models, the

data the model is trained on must be large enough, clean and representative of the sample space

[5]. Surveys of practicing data scientists concluded that the largest barrier to successful data

science projects is low quality or low quantity of training data [5]. In a research setting barriers

to producing an abundance of high-quality data, must be overcome to utilize the advances in

machine learning.

Data quality can be improved by performing higher quality experiments and by refining the pre-

processing that the data undergoes prior to the analysis [6]. In the field of data science this pre-

processing is referred to as “data cleaning”, and it is often stated that around 80% of a data

science practitioner’s time is devoted to this task [7]. In general, data cleaning takes an

experimental data set and turns it into a form that is amenable to analysis either by a machine

learning algorithm or a human expert [7][8]. Although its name conjures images of an

unpleasant chore, proper data cleaning is an integral component of producing high performing

 4

models and the process incorporates the extensive domain knowledge of the researcher into the

resulting dataset [8]. Through data cleaning the important components from an experimental

result are selected, extracted and reformed producing a clean dataset.

Two concrete examples of data cleaning in the scientific domain are the extraction of carbon

dioxide adsorption data from GCMC computational experiment output files and the baseline

correction and smoothing of surface enhanced Raman spectroscopy (SERS) spectra (Figure 1).

Figure 1: Example of data generation and data cleaning in a computational experiment (A) and a laboratory
experiment (B). Figure 1B, presents simulation input files (left), a section of the raw output files of a GCMC
simulation (middle) and the cleaned data matrix (right). Figure 1B shows the raw spectra generated by the
instrument (middle) and the cleaned baseline corrected and normalized spectra (right).

In these two examples, the raw data is not amenable to analysis either because it contains noise

(case B) or superfluous information in an unusable data structure (Case A). The noise in data can

be removed through expert judgement or through the application of an algorithm. The structure

of the data also has to be amenable to analysis, requiring data to be de-nested into a data matrix.

In a research setting, these transformations are often performed in a sub-optimal, semi-manual

 5

way, such as extracting the data manually from an output files or manually deleting negative

spectra from a data file. When performed in such a way, the drudgery invoked by the cleaning

term is accurate and large-scale experiments are hindered by the labor-intensive post-collection

steps.

1.3 Data Engineering

Data engineering is the field focused on developing data pipelines which automatically clean raw

data into a form suitable for downstream analysis [9]. This emerging field is typically focused on

large scale systems, yet the principles and ideas of the field are widely applicable to a research

setting. The key component of data engineering is the data pipelines [9]. These pipelines

automatically clean and transform the data, meaning that aside from supplying a raw file to the

pipeline, no user intervention is required. In a research setting, the data generated is often under

the control of a researcher, thus the data engineering also encompasses the additional aspect of

selective data generation. The development of automated data engineering pipelines allows for

the rapid processing of raw, experimental (laboratory or simulation) data into a useful form. A

diagram for a general scientific experiment is shown in Figure 2, with a comparison between the

manual steps and the steps of a data pipeline.

 6

Figure 2: Comparison of a traditional experimental workflow and an automated experimental workflow. The top
figure shows the involvement of a scientist in the data cleaning and data fitting portions, where in the second figure
those sections are automated via an automatic data pipeline

In Figure 1, the data pipeline replaces the need to manually clean the data after the experiment.

Another component automated by the data pipeline is the fitting of a model to the data. In

traditional experimental workflows, notably spectroscopy, this process is done manually, yet can

be automated, drastically reducing the time required. The model selection and hyperparameter

tuning also take place prior to the pipeline being deployed, and is not included in the flow chart.

 7

Chapter 2

Machine Learning Assisted
Sampling of SERS

Substrates Improves Data
Collection Efficiency

2.1 Acknowledgements

These sections and the abstract of this thesis are based off of a manuscript submitted to Applied

Spectroscopy in which I am co-first author. Permission was granted from the other primary

author, Dr. Tatu Rojalin, to include the contents of this manuscript in my thesis. This inclusion

was also approved by my senior academic adviser (SAA), Wallace Woods and the current

Chemical Engineering department chair, Prof. Tonya Kuhl. This manuscript was written with the

substantial help of the other two secondary authors Dr. Ambarish Kulkarni and Dr. Randy

Carney. The work was supported by the UC Davis Center for Data Science and Artificial

Intelligence Research (CeDAR) Innovative Data Science Seed Funding Program.

 8

2.2 Abstract

Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive label-free

analysis of chemical and biological samples. While much recent work has established

sophisticated automation routines via machine learning (ML) and related artificial intelligence

(AI) methods, these efforts have largely focused on downstream processing (e.g., classification

tasks) of previously collected data. While fully automated analysis pipelines are desirable,

current progress is limited by cumbersome and manually-intensive sample preparation and data

collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate

the quality and reliability of the measurement (i.e., the spectra) as the data is being collected.

This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based

diagnostics for point-of-care clinical applications, where trained spectroscopists are likely

unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding)

are useful, there is an urgent need to develop algorithms that leverage expert user intuition and

domain knowledge to simplify and accelerate data collection steps. To address this challenge, in

this work, we introduce an ML-assisted method at the acquisition stage. We tested six common

algorithms to measure best performance in the context of spectral quality judgement. For

adoption into future automation platforms, we developed an open-source Python package

tailored for rapid expert user annotation to train ML algorithms. We expect that this new

approach to use ML to assist in data acquisition can serve as a useful building block for point-of-

care SERS diagnostic platforms.

 9

2.3 Introduction

Surface-enhanced Raman scattering (SERS) is a powerful label-free detection and analysis

technique that exploits the near field enhancement of inelastically scattered Raman signal via

nanostructured plasmonic surfaces[10]. SERS is highly sensitive, capable of even single

molecule detection, with broad applicability in detection and monitoring of disease, particularly

for cancer. While many proof-of-concept SERS studies emerge annually, and technologies to

enable point-of-use and even wearable devices are now a reality, widespread adoption of the

technique to replace or supplement existing sensing platforms has not come to fruition. A major

bottleneck of this goal is that application of SERS currently requires expert users to collect and

interpret data.

In a typical SERS data acquisition process – whether it is a clinical diagnostic platform or a

characterization of an unknown chemical entity – hundreds to thousands of spectra are typically

collected, preprocessed, and subjected to downstream analyses, e.g., principal component

analysis (PCA), hierarchical clustering, or other types of classification routines. Much literature

has been devoted to the preprocessing considerations[11]–[13], including de-noising, smoothing,

baseline correction algorithms, background subtraction methods, and cosmic ray removal.

Machine learning (ML) and artificial intelligence (AI) methods (e.g., convolutional neural

networks, or CNNs, deep neural networks, random forest classifiers, etc.) have been widely

applied to various classification tasks following preprocessing. For instance, such methods have

enabled classification of small molecules[14] and their mixtures[15], various minerals[16],

bacteria[17], [18] and viruses[19]. Discrimination of esophageal cancer[20], non-small-cell lung

 10

cancer [21], and nasopharyngeal and liver cancer[22], have also been demonstrated. CNNs have

been applied to Raman/SERS spectra of circulating biomarkers as well, such as extracellular

vesicles (EVs) in prostate[23], lung[24], and pancreatic cancer[25], as well as general cancer

biomarker identification[26]. Diabetes mellitus detection[27], applications in cytopathology[16],

AI-based discrimination of tumor suppressor genes[28], nitroxoline quantification[29], and

caffeine and associated metabolites detection[30] have also been proposed. Overall, many ML

algorithms have emerged to complement or replace traditional methods (e.g., multivariate

classification) for data analysis in vibrational spectroscopy.

While it is apparent that ML greatly improves prediction accuracy, and automated spectral

processing improves the efficiency of SERS platforms in general, we posit that progress in

developing SERS-based diagnostics is not limited by the lack of state-of-the-art ML algorithms,

but instead by the absence of automated data collection and sampling protocols. For example,

following spectral preprocessing steps, the user has to decide which spectra are adequate for

further downstream analyses (e.g., biological sample classification for diagnostic purposes). A

question remains at this stage, whether the analyte of interest and the SERS substrate have been

sampled exhaustively enough to produce meaningful and statistically representative data. This

step arguably creates the largest barriers to automation of SERS platforms as (1) it requires

significant user expertise and domain knowledge, (2) assumes minimal user bias, and (3) relies

on several related, but not identical measurements. Recognizing the ability of ML algorithms to

translate user intuition to diverse classification problems[31], [32], it is clear that ML methods

will provide high value to aid in such expert-driven sampling decisions, even during

measurement. To the best of our knowledge, such approaches for SERS data collections have not

yet been reported in the field.

 11

SERS data are highly dynamic in nature[10], [33]–[35], manifesting in the heterogeneous

fluctuation of spectra – even for a single analyte measured on a high-quality, geometrically

ordered substrate [22], [36] For typical measurements, multiple spots need to be sampled many

times to account for heterogeneity, arising from pre-measurement parameters (sample exposure

time, data collection frequency, laser power, etc.), spatial differences in analyte concentration

and orientation, ionic composition of the solution, osmotic and elastic potentials and material-

related heterogeneities of the SERS substrate itself, impurities present on the surface[37]–[39]

etc. These issues, unfortunately, have led to doubt in the ability to perform truly quantitative

SERS [10], [36], [40]–[44].

In light of the above discussion, the main objective of this work is to develop a robust and

automated ML-SERS approach to “sufficiently” sample the substrate, i.e., to automatically

collect statistically representative quantity of high-quality spectra for a given substrate and the

analyte(s). Such an approach offers minimal operator intervention for SERS spectra acquisition,

increasing the efficiency of measurement and reproducibility of the downstream analyses.

The hierarchical data sampling scheme currently used in SERS experiments (Figure 3) is

designed to collect representative spectra with high signal-to-noise ratios. For a given sample,

spectra are collected at separate spots (e.g., x, y coordinates) to capture the spectral diversity of

the sample. To increase the signal to noise ratio and reduce variance, multiple spectra at each

spot are typically collected and averaged. By excluding negative spectra from the averaging, the

signal-to-noise ratio can be increased. Manual exclusion of negative spectra can be accomplished

by an expert, but is cumbersome due to the thousands of spectra generated in a typical SERS

experiment. Automatic “bad” (i.e. negative) spectra identification is thus a significant objective

 12

to improving SERS experimental data. As a valuable step towards this goal, in this study, we

develop a suite of ML algorithms to classify spectra as either “good” or “bad” (i.e., negative) and

critically assess their performance. The highest performing XGBoost model was identified and

utilized to characterize both in-sample and out-of-sample datasets. This model was then utilized

to characterize an out-of-sample dataset and offer the potential for automated data collection,

removing the need to monitor the collection procedure completely.

Figure 3: Hierarchical data structure for label-free SERS experiments. A single experiment consists of different
samples, each of which is analyzed with a separate substrate. For each sample, different x, y positions (spots) are
analyzed by collecting a series of SERS spectra one-after-another. The number of spectra collected per spot and spot
collected per substrate can vary depending on signal quality.

2.4 Methods

2.4.1 Sample Preparation

Two commercial plasmonic substrates were chosen for this study, from Moxtek (Moxtek Inc.,

UT, USA) and Plasmore (Plasmore S.R.L, Pavia, Italy). A well-characterized SERS standard

reporter, Rhodamine 6G (R6G), was selected as a model compound for surface scanning. Two

 13

different concentrations were prepared in ultrapure water to demonstrate a high (3 mM) and low

(10 nM) R6G concentration. The plasmonic substrates were characterized by scanning electron

microscope (SEM), using a ThermoFisher Quattro S (ThermoFisher Scientific, Waltham, MA,

USA). For SEM measurement, substrates were mounted on metal studs using two-sided black

carbon tape, and the following imaging parameters were applied: working distance 11.4−12.0

mm, spot size 2.5, accelerating voltage 10.0 kV, and chamber pressure 100 Pa.

2.4.2 SERS Spectra Acquisition

SERS spectra were acquired using a custom-built inverted Raman scanning confocal microscope

with an excitation wavelength of 785 nm and a 60×, 1.2 NA water immersion objective on an

inverted IX73 Olympus microscope. Raman spectra were captured via an Andor Kymera3281-C

spectrophotometer and Newton DU920P-BR-DD CCD camera. Initial in situ data processing and

cosmic ray removal was carried out using Solis v4.31.30005.0 software. All SERS measurements

were acquired using exposure time 1 s per scan with a laser power of ∼10-20 mW. Moxtek or

Plasmore substrates were scanned on a 20 × 20 pixels area thus yielding total 400 spectra per one

scanned area. The step size was adjusted to 400 nm, resulting in the total scanned area of 8 µm ×

8 µm. To simulate a real scanning procedure performed by a non-trained operator, the scanned

areas were selected randomly without any pre-search for “good” signals. Unless elsewhere

otherwise described SERS spectra preprocessing was performed using custom scripts written in

MATLAB v2020a (MathWorks, MA, USA). Spectral preprocessing included penalized least-

squares (PLS) background correction, smoothing, and normalization. Where stated throughout

the study, these preprocessed spectral sets were further subjected to principal component analysis

(PCA) based on the corresponding MATLAB built-in functions.

 14

2.4.3 Spectra Labeling

To train a supervised machine learning algorithm to identify “good” and “bad” spectra and assess

the trained model performance a dataset of labeled spectra must be created. To create this dataset

a SERS spectra expert must assign labels to all spectra. To facilitate this task, a custom Python

based GUI was created, which allows for the rapid labeling of a collection of spectra. A

screenshot of the labeling program is shown in Figure 4. The program allows for keyboard

labeling and control facilitating rapid labeling of spectra.

Figure 4: Image of Python-based Labeler app for manually assigning labels to spectra. The interface displays a
spectrum to SERS expert, who can assign a label to the spectra with the “good”, “bad” or “maybe” buttons. The spot
number, spectra number, sample name, and current label is displayed in the bottom of the window. The save labels
buttons saves the labels to a NetCDF file for later use in model training and testing.

2.4.4 Performance Measures

There are a variety of metrics that can be used to assess the performance of a binary classifier.

Most of them center around four different possible outcomes of a classification on an unknown

sample: a true positive (TP), false positive (FP), false negative (FN) and true negative (TN).

 15

From these four metrics the precision, recall (true positive rate), false positive rate, and accuracy

can be calculated (Table 1). The binary prediction of a classifier is typically based on an

underlying score of the classifier, and can be adjusted depending on the classifier use case. If the

cutoff is increased, then the precision will increase while the recall will decrease. This related

increase and decrease is known as the precision-recall tradeoff. To visualize the tradeoff, it is

common to make a receiver operator characteristic (ROC) plot, which plots the true positive rate

versus false positive rate at various cutoffs. In an ROC plot random guessing is represented by a

y=x line and higher performing models are closer to the plot edges. The ROC plot can be

collapsed into a single metric by calculating the area under the ROC curve to give the AUC

value. The AUC value varies between 0 and 1, with 0.5 being the score of random guessing. The

AUC metric is useful because it is independent of the classification cutoff, and thus can give a

better overall picture of a model’s performance.

Table 1: Metrics useful in assessing the performance of a binary classifier

Name Formula Description

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 The number of true positives to the number of

positive predictions

Recall/True
Positive Rate

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 The number of true positives to total number of

positives

False Positive
Rate

𝐹𝑃
𝑇𝑁 + 𝐹𝑃 The number of false positives to number of total

negatives

Accuracy 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 Total Number of correct predictions over total

number of predictions

F1 2
1

𝑟𝑒𝑐𝑎𝑙𝑙 +
1

𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛
 Harmonic mean of precision and recall scores

ROC Curve plot(x = Recall, y = FP Rate) Recall operator characteristics curve, which shows
the relationship between the true and false positive
rate

 16

AUC ROC Integral(ROC curve, 0, 1) Area under ROC Curve

Another important way for assessing model performance is through calibration plots. The

calibration plots assess how well a binary classifier’s probability predictions match the frequency

of class occurrences. Constructing a calibration plot involves predicting the probability that each

element of the validation/test set belongs to a positive class, ordering the elements by the

predicted probability, assigning each element to a bin, calculating the fraction of positive classes

in each bin and comparing that fraction to the mean predicted probability in that bin. If the model

is well calibrated then the fraction of positives classes should match the mean predicted

probability of the classes in the bin. Scikit-learn’s “calibration_curve” function automatically

performs this process and generates the calibration plots.

2.5 Results

2.5.1 Sample Collection

High and low concentrations of a common SERS-active reporter molecule, R6G, were dried out

on to two high-quality, lithographically-formed commercial SERS substrates (Moxtek and

Plasmore), as schematized in Figure 5. SEM micrographs displaying the plasmonic

nanostructures on either surface are shown in Figure 5b. In total, five samples were prepared.

Two different concentrations of high and low 10nM R6G concentrations were prepared on both

Moxtek or Plasmore substrates. Substrates were either scanned using 10 mW laser power for

high concentration or 20 mW laser power for low concentration. A fifth sample was created to

investigate the effect of laser power on the recorded SERS signals, therefore a “low”

 17

concentration Plasmore was also scanned using lower 10mW power. Prepared substrates were

subjected to SERS measurements using a custom confocal scanning Raman microscope to yield

several random 20 × 20-pixel areas (total scanned area of 8 µm × 8 µm). Figure 5c shows a

representative spectra average and standard for high concentration of R6G deposited on a

Moxtek substrate.

Figure 5: Experimental workflow of the ML-SERS platform. a) Rhodamine 6G was used as a SERS reported
molecule on plasmonic Moxtek (1) or Plasmore (2) substrates. Varying solutions of R6G were pipetted (~ 20 µL
total) onto the surface and 20 × 20 pixels surface areas were scanned. b) SEM micrographs illustrate the structure of
the Moxtek and Plasmore substrates. c) Representative SERS spectrum of R6G; the highlighted peaks at 620, 780,
1198, 1367 and 1513 cm-1 are characteristic spectral features of R6G.

A conventional approach to classify spectral data is to carry out PCA following manual selection

of quality spectra (and/or via iterative use of PCA to screen out low quality or outlier data). An

example of this process is illustrated in Supplemental Figure 6. Use of thresholds or intuitive

interpretation using PC score plot and principal component loading spectra are relatively

systematic methods to guide the spectra selection procedure. However, for more complex

datasets featuring mixtures of chemicals, where the PCs do not cleanly correspond to single

entities, it is tedious and time-consuming to apply such manual selection routines for hundreds or

thousands of spectra, and further adds a notable source of inter-operator bias. Therefore, we

endeavored to explore application of ML algorithms to recognize quality spectra following

expert user training.

 18

An example PCA-based conventional spectra selection procedure is illustrated in Figure 6

showing the PCA score plot (Figure 6a) for the complete dataset (2000 spectra). Figure 6b

displays the corresponding PC1 loading spectrum, containing 33.5% of the total variation in the

dataset. Each marker in the score plot represents a single spectrum, and each colored group

demonstrates a 20 × 20 raster scan acquired from one substrate and one condition as described.

The score plot and loading spectrum provide intuitive information on the directions where the

“good” or “bad” spectra can be presumably found. In this example PC1 loading spectrum

contains positive peaks and bands that can be associated with R6G (numbered peaks in Figure

6b). Correspondingly, the red shaded area in the PC score plot (Fig. S2a) shows the positive

score values on different sample groups. Thus, the spectra residing in this area contain more R6G

features than the ones located on the negative side of the PC score plot. Fig. S2c shows

representative examples of “good”, “maybe” and “bad” spectra selected from the extreme ends

of respective sample groups; red star denoting a “good”, yellow “maybe”, and blue “bad”

spectrum. This is a relatively systematic method to find various representative spectra types

within the measured data set, and can be used to guide the spectra selection procedure. However,

typically it is notably tedious to select hundreds or thousands of spectra manually, especially if

the data set comprises a complex mixture of chemicals and not a single entity as tested here. It is

also worthwhile stressing that this phase comprises a notable source for user-driven bias.

 19

Figure 6: PCA analysis to guide SERS spectra selection. a) PC score plot demonstrating each measured sample
group (400 spectra per group, total 2000 spectra in the data set), each marker represents a single SERS spectrum. b)
PC1 loading spectrum displaying the positive features at 620, 780, 1198, 1367, and 1513 cm-1 that can be associated
to the SERS reporter molecule R6G used in the study. c) Examples of “good”, “maybe” and “bad” spectra
pinpointed with corresponding star markers (red, yellow, blue, respectively) at the PC score plot.

2.5.2 Data Organization and Parsing for ML Input

To utilize the spectra data for ML, we established a python-based data pipeline that converts

plaintext Raman spectrum files as input, preprocesses the spectra, and converts them into a

binary format that can be utilized for visualization, data labeling, and model training. The three

stages of the data pipeline are shown in Figure 7. All code utilized for this data pipeline is

available under the open-source MIT license on GitHub (See Data Accessibility Statement)

 20

Figure 7: Open-source data pipeline developed for this study. The first stage of the pipeline converts and processes
raw spectra files into a binary NetCDF file format. The second data labeling stage employs a custom Python
“Labeler” app, allowing an expert Raman user to quickly assign labels (e.g., “good”, “bad”, or “maybe”) to the
spectra serialized in the netCDF files. After labels have been assigned, the last stage of the pipeline is model
training, where the binary files are loaded into NumPy arrays to train and test various ML models.

The first stage converts plaintext Raman spectrum files into a binary NetCDF file. The NetCDF

format (short for network common data form) is a machine independent data storage scheme

designed for efficiently saving multi-dimensional scientific data, and well suited for storing

spectral datasets[45]. An essential part of this stage is the baseline correction and smoothing,

which was performed with the airPLS baseline correction algorithm and Whittaker smoothing

function, respectively, via code ported to Python 3[46], [47]. This modified code is available on

GitHub in compliance with the LGPL license.

 21

The second stage of the pipeline utilizes expert data labeling to train the ML models in the third

stage. To implement a supervised learning algorithm for “good” and “bad” spectra classification,

labels need to be associated with each spectrum. Given the need to quickly and easily label

thousands of spectra for training (2000 different individual spectra needed to be labeled for this

study) a Python-based labeling program was created. This program takes a series of netCDF files

as input, displays each spectrum to the user and allows for rapid labeling, and then saves the

dataset with the applied labels. A screenshot of the Labeler program interface is shown in Figure

4. The premise is to establish three different bins for the classification purposes: a) “good” and

chemically representative R6G spectrum (also termed as “positive” in this context), b) “maybe”

adequate R6G spectrum where a clear decision could not be made by an expert user, and c)

“bad” (also termed as “negative” in this context), unrepresentative R6G spectrum (e.g., very low

SNR). Labeling was based on expert user intuition and experience, focusing on feature rich

spectra with clear sharp peaks and minimal noise. For this study, the Labeler program was used

to tag a total of 1995 spectra (940 good, 936 bad, rest 119).

2.5.3 Model Selection and Performance Analysis

Following the labeling task, the acquired spectra were evaluated using an assortment of popular

ML-assisted classification routines. The labeled datasets were shuffled and split into train,

validation, and test sets (72.25%, 12.75%, and 15% respectively). The percent positive and

negative in each subset was calculated and found to be within +/- 5% of 50% for both classes.

Building on the hypothesis that existing ML classifiers are well-suited to distinguish between

good and bad spectra, we evaluated six distinct methods: logistic regression stochastic gradient

descent (LR-SGD), support vector machines stochastic gradient descent (SVM-SGD), decision

 22

trees (DT), linear discriminate analysis (LDA), random forest (RF) and XGBoost (XGB). The

first five models are implemented within the Scikit-learn package[48], whereas a custom

package for XGBoost is used[49]. For each model, performance is assessed by calculating

resulting receiver operator characteristics (ROC) curve and associated area of the curve (AUC).

The ROC curve quantifies the diagnostic ability of a classifier for different discrimination

thresholds, while the AUC is independent of the classification cutoff, and thus can give a better

overall picture of a model’s performance [50].

After hyperparameter tuning using the AUC score (walkthrough can be found in our Jupyter

notebooks on GitHub) all six models were assessed by training on the training dataset and their

performance validated using the validation set. The ROC plots and associated classification

metrics for these six models are shown in Figure 9. A full description of the calculation for these

classification metrics can be found in Table 1 Associated calibration plots are shown in

Supplemental Figure 8.

The LDA model was the worst performing in all categories, likely due to the large number of

features and lack of regularization. The next worst performing model (by AUC) was the DT

model, which consisted of a series of Boolean decisions arranged into a tree structure. This was

followed by a LR-SGD and SVM-SGD. Unlike the default logistic regression and SVM solvers,

the SGD classifier was not affected by the high correlation between adjacent features (inherent to

spectral data, adjacent wavenumber shifts are correlated) and was able to provide stable

solutions. Despite their simplicity, the SGD based models performed well, with the SVM-SGD

providing the highest precision of all tested models. The final two tree-based models tested were

RF and XGB. The RF model outperformed XGB by 0.0006 AUC units, yet the XGB model was

 23

better correlated and scored higher in the accuracy, recall and F1 categories (Supplemental

Figure 8). The confusion matrix for the XGB model is shown as an inset in Figure 9a. These

results are consistent with other studies[51] which identify XGBoost as a top performing

algorithm for binary classification tasks. Therefore, we focus on the XGBoost algorithm in the

remainder of this work.

Figure 8: a) Calibration plots for four tested machine learning algorithms LR-SGD, SVG-SGD, DT, LDA, RF, and
XGB on validation set. The x axis represents the mean predicted probability of the events occurring in the bin. The y

 24

axis represents the fraction of positive (i.e., “good”) spectra in the in the bin. b) The total number of probabilities in
each decile, for each classifier.

Figure 9: a) ROC curves for six tested models, logistic regression (LR-SGD), support vector machines (SVG-SGD),
decision trees (DT), linear discriminate analysis (LDA), random forest (RF) and XGBoost (XGB). Random guessing
is represented by the y=x line whereas higher performing models lie closer to the left corners of the plot. Inset:
Confusion matrix for XGBoost algorithm trained on train and validation set and tested on the test set. The trace of
the matrix indicates correct predictions, while the offset values indicate incorrect predictions. b) Comparison of
hyperparameter-tuned model performance on validation data set. The highest value for each category is bolded and
the lowest value for each category is italicized.

2.5.4 Testing Model Performance

Recognizing the favorable performance of XGB on the validation set, we proceed to

investigating the efficacy for in-sample and out-of-sample tests sets. The in-sample test sets,

which involve intermixing the spectra from all samples into the test, train and validation sets,

give a better overall picture of the model performance by capturing the spot-to-spot

heterogeneity of the spectra. The true in-sample performance of XGB is estimated by training it

on the combined train and validation set, and assessing its ability to predict the labels of the 282

spectra in the test set. The metrics derived for the performance of the XGB model are shown in

 25

Table 2. Representative classifications for the XGB model on specific spectra are shown Figure

10. Overall, we observe good performance of the model with 95% accuracy.

Figure 10: Representative spectra classifications for XGBoost on in-sample test dataset. Text overlaid on each
spectra indicate the expert user label trained model’s performance in accurately predicting the label.

Table 2: Model performance parameters for the XGBoost algorithm trained on the training set and validation set
and tested on the test set.

Accuracy Precision Recall F1 AUC

0.95 0.93 0.97 0.95 0.99

2.5.5 Variable importance

In this experiment no feature engineering or variable selection was attempted, such that the entire

1024 features of the spectra (i.e., 1024 data points, arising from the CCD dimensions collecting

the photons following dispersion) were used to train the XGB algorithm. We note that this

feature makes the ML approaches for analytical spectroscopy methods like SERS notably

 26

powerful as there is no need to perform a priori dimensionality reduction (e.g. PCA) but rather

the full feature space can be used in the training phase. To determine what features were most

important in predicting the label of the spectra the importance score for different regions were

aggregated together and plotted together. These bar charts give the overall importance of a

certain region to the prediction (Figure 11). Unsurprisingly, the region 1510-1350 cm-1 has the

highest importance, as the peaks present in positive spectra tend to cluster around that region.

Interestingly the region 200-400 cm-1 also has some high importance. It is likely that the

intensities of these variables give an indication of the overall noise of the spectra, and act as a

proxy for estimating the signal to noise ratio.

Figure 11: Relative importance of different wavenumber regions for the XGBoost model trained on the in-sample
train and validation data. Each bin contains the sum of the importance scores of the wavenumbers in the range [start
wavenumber, end wavenumber). An R6G spectrum is overlaid for reference, where it is apparent that relative
importance correlate with spectral features of R6G.

2.5.6 Out of Sample Testing

To test the out-of-sample performance of XGB, the model was trained on four out of the five

substrates and then used to predict the labels of the left-out test substrate (Table 3). The

hyperparameters were previously tuned using data from the test substrates, but the data was

 27

otherwise unseen by the model. This process was repeated for all five samples. The predictions

were assessed with standard metrics (Table 3).

Table 3: Out-of-sample performance for XGBoost model on five substrates

Test
Sample

Substrate Dye Concentration
(M)

Power
(mW)

Accuracy Precision Recall F1 AUC Fraction
Positive

11 Moxtek R6G 1.00E-08 20 0.90 NA NA NA 0.96 0.10

2 Moxtek R6G 3.00 E-03 10 0.77 0.78 0.98 0.87 0.83 0.75

3 Plasmore R6G 1.00E-08 20 0.95 0.91 0.64 0.75 0.99 0.12

4 Plasmore R6G 3.00 E-03 10 0.72 0.78 0.73 0.75 0.80 0.60

5 Plasmore R6G 1.00E-08 10 0.98 0.98 1.00 0.99 0.69 0.98

1For sample 1, no false positives or true negatives were generated making the precision, recall and F1 formula
inapplicable.

To further evaluate out-of-sample performance, we overlay the labeled data onto their spatial

coordinates in Figure 12a, given that these datasets were collected by scanning over a 20 by 20-

pixel grid (8 µm × 8 µm) in even increments (400 nm pixel width, approximately diffraction

limited). Green represents a “good” spectrum label, while red represents a “bad” spectrum label

and purple represents an ambiguous “maybe” spectrum where a label could not be accurately

assigned by the expert user. For each of these labeled samples, the model was used to predict the

corresponding labels, with colors again plotted in Figure 12b. Ambiguous spectra were excluded

from training the model and were not predicted by the model, but are still shown in purple.

Incorrect predictions of false negatives and false positives are coded by warm colors, light red

and pink, respectively. Similarly, the true negative was represented by a cool color, i.e., light

blue and the true positive by a dark blue. More generally, a perfect prediction would correspond

to all true positives and/or true negatives, which corresponds to blue shades.

 28

Figure 12: a) Visualization of the sampled region from the five substrates used in experiment along with the
corresponding labels. Red squares represent a negative spectrum, green squares represent a positive spectrum, and
purple squares represent spectra with ambiguous labels, which were excluded from fitting and prediction. b)
Comparison of actual and predicted labels for five test samples. The comparison is represented by the color. False
positive (red), false negative (pink), true positive (light blue), true negative (dark blue), and ambiguous, maybe
labeled, spectra (purple) pixels are shown.

The performance of the XGB model on the in-sample and out-of-sample test set demonstrate that

the categorization of spectra can be automated. With the in-sample test set, the XGBoost model

achieves an AUC score of 0.99 similar to its performance on the in-sample validation set,

indicating minimal overfitting. The 95% accuracy and similarly high precision and recall score

prove that the majority of the predictions are correct. The out-of-sample performance is lower

and more variable, yet still high. The average out-of-sample AUC score is 0.85 +/- 0.12 and an

average accuracy is 0.87 +/- 0.12 demonstrating that the model is still highly successful at

classifying spectra in unseen substrates in different conditions. After learning the labeled spectra

from four R6G samples collected at various concentrations, substrates and power, the model is

able to correctly predict the label for spectra 87% of the time. This feat unambiguously shows

the potential of ML-assisted sampling to automate spectra categorization.

 29

2.6 Discussion

Here we introduced ML-assisted SERS spectra classification methodology to streamline

acquisition and efficiently classify recorded spectra. The exclusion of negative signals from the

SERS analysis already takes place during normal experimentation. When scanning a substrate,

the majority of signals are negative (e.g., noisy, not representative of the typical sampled areas,

out of focus, capture cosmic rays). Typically, a trained experimentalist makes the determination

of when a “good” signal is collected. Although subjective, this strategy utilizes our impressive

pattern matching ability, which is challenging to replicate with structured algorithms. This

technique excludes the majority of negative spectra by avoiding their initial collection, but it is

not perfect and negative spectra occasionally creep into the recorded dataset. Although

experimentalists can easily distinguish between good and bad spectra, the large datasets collected

by typical SERS experiments make manual excluding the negative spectra post-collection

onerous. In addition to presenting a barrier to large data set collection, these expert user-driven

decisions also limit the application of SERS in a clinical setting. For SERS technology to transfer

from the research laboratory to the clinic these subjective, labor intensive steps must be

eliminated.

The scholarly literature encompassing automatization endeavors of Raman and SERS

measurements predominantly demonstrates approaches to automate either (i) the collection or (ii)

the data preprocessing phase, e.g., baseline correction, cosmic ray-induced spike removal, noise

reduction, scaling and normalization, background subtraction, including various thresholding

techniques to harness signal-to-noise ratio for spectra selection[11]–[13]. The main limitations of

 30

the current preprocessing techniques are that they either rely on tuning the processing parameters

(e.g., fitting parameters) or require calculating and thresholding the signal to noise (SNR) ratio,

which is not possible if the underlying analyte signal is not known or highly fluctuating.

Therefore, there exists a clear niche to design robust workflows to select spectra for the

downstream analyses. In essence, our strategy is independent of the spectral preprocessing

approaches and SNR thresholding, rendering it a promising means to be applied in a wide variety

of different platforms.

ML algorithms are able to codify human intuition by learning from labeled training data and are

well-suited to identify noisy, feature-poor spectra. The use of a ML algorithm has several

advantages over a traditional structured algorithm. A trained ML model requires no parameter

tuning once trained and can learn from the extensive experience of trained experimentalists. With

the availability of open-source ML packages[48] training and integration are straightforward.

A plethora of different classes of ML algorithms exist and new ones are frequently being

invented. Of the existing classes, they can roughly be divided into two domains, classical ML

algorithms and deep learning algorithms. Classical ML algorithms include tree-based algorithms

such as random forest and XGBoost, as well as more established classifiers like support vector

machines. Deep learning algorithms encompass the tremendous diversity of multilayered neural

network models, such as CNNs. Both classical and deep learning models can achieve similarly

high performance, but classic ML algorithms can perform well on smaller datasets whereas deep

learning architectures typically require tens of thousands of data points to converge. In this

current work the complete dataset consisted of only 2000 different spectra, thus the tested

 31

models were confined to classical models, yet the methods presented here are easily extendable

to deep learning models when working with larger datasets.

Amongst all the models tested here, the XGBoost model performed best across both the in-

sample and out-of-sample datasets. Its performance in this dataset matches our expectation that it

is performing akin to a user expert making an intuitive decision. To detail this, consider the is

major inter-sample variation in the fraction of expert assigned positive labels, likely due to the

inhomogeneous covering of dried R6G on the SERS substrates. In sample one, 90% of the

spectra are negatively labeled and the classifier predicts a negative label for all of them. In

sample five the reverse situation occurs; 98% of the spectra are positively labeled and the XGB

model assigns a positive label to all the spectra. In these extreme cases, XGB is essentially

learning from the out-of-sample labels and not taking into consideration the unique

characteristics of the substrate. In this case, an expert experimentalist would adjust their own

threshold of classification based on the observed signal to noise in a specified sample. For

example, if many weak signals were observed, the threshold for collecting a spectrum would be

lower than in the case where the majority of spectra had an apparent high signal to noise ratio. In

the intermediate case of sample 4 with a 60% positive rate, the algorithm performs well (AUC =

0.80), although lower than in the test case (AUC = 0.99). Nevertheless, the algorithm is still

successful in categorizing samples with a range of positivity rates.

Future work using this approach will involve automatically tuning the classification threshold

based on the number of positively classified spectra in a sample. We also will explore the

feedback of this trained algorithm to control stage movement and automate measurement of full

datasets.

 32

2.7 Conclusion

This work describes application of an ML algorithm to address a central challenge for adapting

SERS to automated platforms: the current dependency of expert user-driven endpoints for

sampling. The elimination of bad spectra from a collected dataset can increase the signal to noise

ratio by reducing the variance. Especially in SERS applications it is desired to collect and

analyze as homogeneous sets of spectra as possible, which is accomplished by the ML assisted

spectra selection. By applying this algorithm to the acquisition stage, the labor required to collect

many spectra can be reduced making collecting larger and more comprehensive datasets feasible.

Furthermore, by automating the acquisition stage of the SERS experiment another barrier to the

clinical application of this technology can be broken down. Given the exponential growth of

acquired data (e.g., spectra, images, or videos), there is an immense demand for integrating

reliable, automated and fast analysis methods to the experimental procedures for SERS

instrumentation. We envision that the workflow described here will allow for more robust

automated SERS analyses. We foresee that the introduced platform can be further expanded to

quantitative analyses of chemicals as well as complex biological and clinical samples such as

patient-derived EVs or crude serum for modern diagnostic purposes.

2.8 Data Accessibility Statement

All data collected for this study, including SERS datasets and the Labeler program files, can be

downloaded from the following open repository: https://github.com/kul-group/ramanbox/. All

open-source Python code will be maintained at: https://www.github.com/kul-group/ramanbox

 33

2.9 Funding

This work was supported by the UC Davis Center for Data Science and Artificial Intelligence

Research (CeDAR) Innovative Data Science Seed Funding Program; the Ovarian Cancer

Education and Research Network, Inc. (OCERN); the NIH [grant number 1R01CA241666].

 34

Chapter 3

The Multiscale Atomic
Zeolite Simulation

Environment (MAZE): A
Python Package for

Improved Zeolite Structural
Manipulations

3.1 Acknowledgements

The MAZE package involved combining the extensive scripting library of other students, most

notably those of the PhD students Sam Holton and Jiawei Gao. This work was also made

possible by the extraordinary support of Prof. Ambarish Kulkarni who advocated for the project

and provided guidance on the API design and provided his extensive library of zeolite scripts.

 35

3.2 Abstract:

Zeolites are nanoporous materials with widespread industrial applications as catalysts and gas

separators. Due to the enormity of the zeolite chemical space and structural complexity,

computational experiments are needed to identify high-performing zeolites and interpret zeolite

characterization data. These computational experiments are enabled by software packages, most

notably the Atomic Simulation Environment (ASE) which provides an easy-to-use Python

interface to drive low level simulation code. ASE has some limitations that make certain zeolite

simulation workflows challenging and labor intensive. These limitations motivated the creation

of the Multiscale Atomistic Zeolite Simulation Environment (MAZE) package which builds on-

top of ASE to facilitate common zeolite structural manipulations that are challenging with the

base ASE package. The improved interface of MAZE, compared to ASE, is demonstrated by

applying application programing interface (API) design heuristics and showcasing the ability of

MAZE to facilitate common zeolite workflows. It is demonstrated that the MAZE package has

an improved API for zeolite workflows and that this can facilitate the creation of large databases

of zeolite structural derivatives

3.3 Introduction

Zeolites, a broad class of silica-based nanoporous materials, are widely used for various

industrial applications including gas separation and catalysis [52]–[54]. The properties of these

materials depend on various factors including the framework topology, Si/Al ratio and presence

of extra-framework species. Specifically, transition metal (TM) exchanged zeolites, which

 36

combine the desirable characteristics of heterogenous catalysts (high thermal stability and

simpler separations) with those of enzymes (high selectivity and reactivity under mild

conditions) [54] have received considerable attention as catalysts for NOx abatement and

methane valorization. In these applications, the zeolite framework provides a thermally-stable

scaffold for the formation of catalytically active species [55], [56]. As the precise identification

of the active site is complicated by the presence of multiple TM species, computational modeling

is often used to provide valuable insights (e.g., thermodynamic stabilities, reaction barriers etc.)

into the reaction mechanisms [57][56]. Given the various length- and time-scale associated with

the relevant molecular processes (e.g., adsorption, diffusion, reaction), multiscale approaches

that combine wave function theory, periodic density functional theory and classical force fields

are often necessary. While a number of broadly-applicable software packages are available for

performing these calculations, there is a need to develop a software toolkit for zeolite-specific

tasks. In this work, we describe the philosophy behind and the capabilities of a new python-

based open-source software package –Multiscale Atomistic Zeolite Simulation Environment

(MAZE).

The increasing availability of open-source software packages [58] that run, analyze and offer an

user-friendly interfaces has greatly simplified the process of performing computational chemistry

calculations. A classic example is the Atomic Simulation Environment (ASE), provides

interfaces to various computational chemistry codes (e.g., VASP[59], LAMMPS[60],

GPAW[61] etc). [1] ASE provides python-based wrappers to the underlying quantum chemical

simulation code and offers an intuitive application programing interface (API) for setting up,

starting, and analyzing calculations [1], [62]. By automating the cumbersome computational

setups and subsequent data analysis, ASE simplifies the process of performing and analyzing

 37

complex calculations [1], [63]. Furthermore, by allowing manipulation through Python scripts,

rather than a GUI, these calculations become self-documenting, reproducible and easy to

streamline into complex workflows [1], [58].

3.4 Current Limitations with Tracking Atoms

Within the ASE Interface

Despite the continued developments with the ASE codebase and the active user community, we

note that a few specific structure manipulation tasks currently challenging to implement within

ASE. Often a variety of structure manipulations (e.g., extracting and reinserting clusters, adding

terminal H atoms etc.) are necessary to address a zeolite-specific scientific question – the current

ASE interface is not-suited for “tracking” the changes in the atom indices. This is illustrated

using a simple example below.

In ASE groups of atoms are represented in memory by Atoms Python objects. In an Atoms object,

the properties of all of the atoms are stored in NumPy arrays. When a specific atom in an Atoms

object is accessed using the get_item method (e.g., my_atoms[index]) an Atom object is created,

which has (among others) the attributes ‘tag’, ‘position’, ‘symbol’ and ‘index’. The properties of

an individual atom in an Atoms object can be altered by directly changing an atoms property with

the set_item method. For example, to set the tag of the first atom in an Atoms object to 3, the

command my_atoms[3].tag = 3 can be used. A subset of atoms can also be accessed by passing

in an iterable collection of indices (e.g., my_atoms[indices_list]), which returns a new Atoms

object containing the selected subset of atoms. The underlying data structure for storing the

 38

atoms properties is highly efficient, since it doesn’t require storing an individual Python object

for each atom represented by an Atoms object. Unfortunately, it also means that the indices of

each atom can change with each addition or deletion. Figure 1 shows the structures and atom

indices for various glyoxal derivatives, demonstrating how structural manipulations can alter the

indices of atoms.

 39

Structure Indices of the NumPy array

0 1 2 3 4 5 None None

Add two H atoms to #1

0 1 2 3 4 5 6 7

Replace the O atom by the S

0 1 2 3 4 5 None None

Delete the O and H on C1

0 1 None None 2 3 None None

Figure 13: Relationship between indices in Atoms objects derived from glyoxal. The indices of the elements
carbon, oxygen, hydrogen, and sulfur are colored black, red, purple and yellow respectively. The columns relate the
indices of different Atoms objects to each other. The indices shifting issue becomes more pronounced when multiple
structural operations are performed in series. For example, if the O and H atoms are added back to the #3 to recover
#1, their indices (4 and 5) would differ from the initial structure.

Figure 1 shows how the indices of the individual atoms can change when additions and deletions

are performed. The most pronounced difference is in the fourth structure, where the deletion of

two atoms causes the decrement of the index 4 and 5 to 2 and 3 respectively. The addition of

atoms simply extends the arrays and are thus added to the end. There is no inherit ordering in the

indices thus the order in which atoms are added to a structure effects the resulting order. If a

substitution is made, by changing the identity of a given atom, then the indices remain

unchanged.

The changing indices with structural manipulations can make certain zeolite workflows difficult

since it is not possible to automatically match the indices between related structures. Although it

 40

is possible to manually tag individual atoms, this process is cumbersome and the integer tags

cannot be guaranteed to be globally unique. Furthermore, not all output formats preserve these

tags, meaning that the tagging information can be lost throughout a workflow. The mutability of

Atoms objects, and subsequent index shifting, introduces significant complexity in tracking the

relationship and identity of atoms.

3.5 MAZE Design Philosophy

Recognizing the challenges outlined above, the MAZE package puts the atom relationship

tracking at the center of its design, while maintaining compatibility with all of ASE features. As

demonstrated in the following sections, it greatly simplifies zeolite workflows, and allows

materials informatics experiments to be easily performed. The key innovation of the MAZE

python package is the development of an IndexMapper class to track the relationship between the

indices of different Atoms-like objects. The IndexMapper class records the mapping between all

of the indices of all of the Zeolite objects derived from a parent structure and the changes in

indices associated with each structural manipulation. Accompanying this tracking is an improved

API for the structural manipulation of zeolite structures.

To gauge this improvement, it is necessary to develop criteria to assess the API usability. Human

computer interaction researchers have studied how programmers interact with APIs, noting that

“programmers are users too”[64]. In this field many different metrics have been developed to

assess usability [62], [65], [66]. The most comprehensive review of this heterogenous research

field is provided by Mosqueira-Rey et al [62]. In their paper, they distill the variety of metrics

used to quantify usability into six categories: knowability, operability, efficiency, robustness,

 41

safety, and subjective satisfaction. Descriptions of these categories, and subcategories are

provided in the method section.

Here, we examine how well MAZE meets API usability criteria by completing several complex

computational zeolite workflows. The workflows range from simple tasks like identifying the

unique T sites to optimizing a collection of zeolite structural derivatives with VASP all while

preserving the relationship between atoms. For the final optimization step, the workflow

management tool Fireworks [67] was utilized, which is specifically designed for high throughput

simulations. Along with introducing the MAZE package and its capabilities, this paper aims to

demonstrate how custom software can be built on top of ASE to improve specialized chemical

simulation workflows.

3.6 Assessing the Usability of the MAZE

Package

3.6.1 Design principles

The overarching goals of the MAZE project are to ease the structural manipulations commonly

encountered in zeolite workflows, while maintaining the functionality of ASE. This goal was

achieved by creating design goals that guided the development of the MAZE software package.

The following design goals were developed:

1. Allow the identity and relationships between atoms to easily be determined

2. Make the end-to-end zeolite workflows straightforward

 42

3. Maintain complete compatibility with ASE’s extensive functionality

To achieve these design goals, the MAZE package built upon ASE’s features surrounding

generating structures and reading and writing structures.

3.6.2 API Usability Assessment

The API usability assessment criteria assembled by Mosqueira-Rey et al. [62] was utilized for a

comparison between the MAZE API and the ASE API for zeolite structural manipulations. The

six distinct usability criteria presented in their article are shown in Table 4 along with a

corresponding description.

Table 4: Usability criteria for API design

Criteria
Name Criteria Description

Knowability How well the user can learn, understand and know how to use the API

Operability How well the user can use the API to perform different operations

Efficiency The computational time and number of steps required to perform an operation

Robustness The ability of the system to withstand misuse and incorrect usage

Safety The capacity to avoid damaging the system or external systems

Subjective
Satisfaction The joy which users derive from using the system

For simplicity only the knowability, operability and efficiency criteria were used to assess the

MAZE API. Computational efficiency was not a critical factor in the MAZE project, and the

steps required to perform a certain operation overlap with the operability and knowability

criteria. Safety was also not directly relevant to the API design since the MAZE package is

intended to be used by a single user on their own personal machine, with a memory-safe

 43

programing language. We believe that the subjective satisfaction of using MAZE is high, yet

being a subjective criterion that required human subjects to assess, it was excluded from further

discussion.

The relevant sub-criteria of each major criteria were chosen to further refine the evaluation

(Table 5). Irrelevant sub-criteria (e.g., third party abuse), were not included in the table.

Table 5: Criteria and sub-criteria used to assess the MAZE API’s usability

Criteria Sub-Criteria Sub-Criteria Description

Knowability Clarity Understandability of existing code

Knowability Consistency Consistent function signatures and usage across package

Knowability Memorability Easy to remember functionality due to familiar API design

Knowability Helpfulness Complete documentation, useful docstrings and informative error messages

Operability Completeness Can perform all required operations.

Operability Precision Can perform specific operations without unintended side-effects

Robustness Internal Error Few bugs in the code, and bugs and errors are handled properly

Robustness Improper use Able to withstand improper use through proper error handling

3.6.3 MAZE Software Structure

A complete, detailed description of the code functionality and design decisions is presented in

the online documentation and supplementary material. An overview of the key design decisions

and code structure are presented here.

The MAZE project aims to include all of the functionality of the base ASE package while

including additional functionality related to the tracking of atoms. This was incorporated by

using inheritance. A zeolite is a group of atoms, so it is appropriate to create a Zeolite class that

 44

inherits from ASE’s Atoms class. The Zeolite class represents a zeolite and includes additional

methods and properties for identifying the unique crystallographic sites. Polymorphism ensures

that the Zeolite class has all of the attributes and methods of the parent Atoms class and thus all

of ASE’s methods and classes also work well with it.

The additional functionality of the Zeolite class is divided between two classes, the parent

PerfectZeolite class and its subclass Zeolite. The PerfectZeolite class includes the functionality

for building from a labeled CIF file and preserving the site labels. It also includes additional

attributes for storing a name, GUID, index mapper, additions and parent zeotype (the zeolite

from which the current structure is derived). The methods included in the PerfectZeolite are all

of those related to site identification, and serialization. In a group of zeolites there can be only

one perfect zeolite, from which all the derivatives are made. A simplified unified modeling

language (UML) class diagram for the Zeolite object is presented in figure 14.

Figure 14: Simplified unified modeling language (UML) class diagram for the Zeolite object. Inheritance
relationships are denoted by an open arrow. The Zeolite class inherits from the PerfectZeolite class, which inherits
from the Atoms class

Users of the MAZE package will interact primarily with Zeolite objects. The main additional

features of the Zeolite class versus the PerfectZeolite class are related to atom manipulation, such

as adding atoms, deleting atoms, extracting clusters and capping clusters. By dividing the

 45

functionality between two classes, the attributes that make a Zeolite and those involved in

structural manipulation can be separated, greatly simplifying the underlying code. The

underpinning of the Zeolite functionality is an internal IndexMapper object, which tracks the

relationship between the indices of the atoms in the zeolites derived from the same parent

structure.

3.6.4 The Index Mapper Class

The instances of the IndexMapper class are responsible for tracking the relationship between

atom indices. A reference to an IndexMapper object is an attribute of each Zeolite class and

related Zeolites share the same IndexMapper. The IndexMapper does not directly encounter

Atoms objects, only working with their indices. The core data structure of the IndexMapper is the

main_index, which consists of a collection of nested dictionaries. The key of the outer dictionary

is the unique id of each row of atoms in the object (Figure 15). The inner dictionary consists of

each zeolites name attribute followed by the index of an Atom or a None object.

Figure 15: Dictionary representation of the main index mapper for a collection of related Zeolites. The keys of the
outer dictionary represent the unique IDs, where the inner dictionaries map the relationship between indices for the
same shared atom across different Atoms-like objects.

The index mapper can also be represented in table form, to more naturally represent the Atoms

relationships to each other (Table 6).

{0: {"parent": 0, "Zeolite_1": 0, "Cluster_3": None, "Open Defect_5": 0},
 1: {"parent": 1, "Zeolite_1": 1, "Cluster_3": None, "Open Defect_5": 1},
 2: {"parent": 2, "Zeolite_1": 2, "Cluster_3": 0, "Open Defect_5": None},
 3: {"parent": 3, "Zeolite_1": 3, "Cluster_3": None, "Open Defect_5": 0},
 4: {"parent": 4, "Zeolite_1": 4, "Cluster_3": None, "Open Defect_5": 0},
 # ...
 188: {"parent": 188, "Zeolite_1": 188, "Cluster_3": None, "Open Defect_5": 167},
 189: {"parent": 189, "Zeolite_1": 189, "Cluster_3": None, "Open Defect_5": 168},
 190: {"parent": 190, "Zeolite_1": 190, "Cluster_3": None, "Open Defect_5": 169},
 191: {"parent": 191, "Zeolite_1": 191, "Cluster_3": None, "Open Defect_5": 170}}

 46

Table 6: Representation of the main_index of an IndexMapper object. The column headers denote either the
unique_id or the name of the zeolite. The parent column corresponds to the indices of the PerfectZeolite from which
the other zeolite structures were derived. Each row of the table shows the relationship between the different indices
across different zeolites.

unique_id parent Zeolite_1 Cluster_3 Open Defect_5

0 0 0 NaN 0

1 1 1 NaN 1

2 2 2 0 NaN

3 3 3 NaN 2

4 4 4 NaN 3

… … … … …

188 188 188 NaN 167

189 189 189 NaN 168

190 190 190 NaN 169

191 191 191 NaN 170

The main_index in the IndexMapper object records the relationship indices of different Atoms

objects. The unique_id assigns a unique identifier (ID) to each atom. This ID does not depend on

the atom species and if an atoms type is changed from silicon to tin, for example, the ID remains

unchanged. The row shows the relationship between the indices across different Atoms objects.

For example, in row four, the ID equals 3 and the indices of the parent, Zeolite_1 and Open

Defect_5 are all equal to 3. The equivalent atom index in Cluster_3, which consists of an

extracted cluster from Zeolite_1 is 0. Cluster_3 consists of 21 atoms, and the Open Defect_5

object consists of all of the atoms in Zeolite_1 with the exception of the atoms in Cluster_3.

Thus, Open Defect_5 final indices are offset by 21 as can be seen in the final rows of the table.

 47

The main_index is automatically updated when each atom manipulation operation is performed

and does not require additional intervention from the user. The index mapper class can be used to

directly map between two related zeolites with the get_index function, yet its core benefit comes

about by enabling the structural manipulation functions such as cap_atoms and integrate.

Complimenting this index mapper are the add_atoms and delete_atoms methods in the Zeolite

class, which return a copy of the original Zeolite object with the applied modifications and

append a new column to the IndexMapper’s main index. This new column contains the indices of

the newly created Zeolite object and each row indicates the relationship between the atoms in

other zeolites. If a Zeolite object is deleted, then the deconstructor will remove its corresponding

entry from the IndexMapper, preventing the main index from being cluttered with deleted Zeolite

object indices.

3.7 Results and Discussion

3.7.1 Results and Discussion Introduction

To demonstrate the capability of the MAZE code and assess its API four distinct tasks were

performed. These tasks include building a Zeolite object from a labeled CIF file, adding and

removing atoms, and a complete workflow involving removing a cluster, changing some of its

atoms and reinserting it back into the original zeolite. Finally, a complete optimization workflow

involving Fireworks and the VASP calculator was demonstrated, which shows MAZE’s capacity

to facilitate high-throughput computational workflows.

 48

3.7.2 Building a Zeolite from a CIF File

T-sites are Silicon, Aluminum or metal atoms, which have a tetrahedral shape. Zeolites often

contain multiple distinct T-sites, each of which has unique chemistries. To screen Zeolites for

certain properties, the chemistries at each T site need to be assessed.

Experiments of this type start with downloading a CIF file from the IZA database, placing the

file in the project folder and reading the CIF file into an Atoms object with the ase.io.read

function. One challenge with this approach is that CIF files downloaded from the IZA database

contain extra information about the identity of unique atoms, which is not preserved when the

CIF file is loaded with ASE’s read function. Thus, various “hacks” are needed to align the Atoms

object built from the CIF file with their labels. One hack is changing a unique site from a silicon

to an unused atom such as xenon, and when the Atoms object is loaded reverting it back to a

silicon, but noting the indices. This manual tagging mechanism is slow, opaque because the code

is no longer self-documenting, and error prone, since it involves manually editing a critical data

file.

The MAZE package significantly improves this process by introducing the make method. The

make method takes a zeolite IZA code as input, looks for the corresponding CIF file, and if it is

not found attempts to download the zeolite CIF file from the IZA database. After locating or

downloading the correct CIF file, the make function then builds a Zeolite from a IZA CIF file,

and stores the mapping between the indices and their identities in two of the Zeolite objects

internal dictionaries. The identities of the sites can then be determined by using the get_site_type

method or by accessing the dictionaries directly (Figure 16).

 49

Figure 16: Comparison between MAZE and ASE code for generating a BEA zeolite structure with the Silicon T2
sites replaced by aluminum atoms. The MAZE code uses the built-in make function to read the unmodified CIF file
and store the mapping in the site_to_atom_indices dictionary. The longer ASE code requires a modified CIF file as
input, and the element mapping to be manually defined. Both codes generate and visualize the same BEA T2 Si®Al
structure.

Figure 16 shows that the MAZE package is simpler to use than the base ASE package for this

specified workflow. To objectively assess the MAZE package usability for constructing Atoms-

like objects from labeled CIF files the usability criteria described in the methods section were

applied to this specific use case. The results of these applied criteria are shown in table 7.

Table 7: Assessment of usability for both the ASE and MAZE package for loading a labeled CIF file

Usability Criteria ASE Description MAZE Description

Knowability Requires manually implementing
a complex, time consuming
workflow

Only requires calling a
single function

Operability For each labeled site the CIF file
must be modified

Labeling performed
automatically when reading
a standard CIF file

Robustness Prone to silent errors due to
improper CIF file modification

Labeling automatic,
preventing human error

import ase
from ase.io import read
from ase.visualize import view
from collections import defaultdict

site_to_index_map = defaultdict(list)
element_to_site_map = {'He': 'T1', # define map
 'Ne': 'T2',
 'Ar': 'T3',
 'Kr': 'T4',
 'Xe': 'T5',
 'Rn': 'T6',
 'F' : 'T7',
 'Cl': 'T8',
 'Br': 'T9'}

bea = read('modified_BEA.cif') # read in modified cif file
for atom in bea:
 if atom.symbol in element_to_site_map:
 site_idenity = element_to_site_map[atom.symbol]
 site_to_index_map[site_idenity].append(atom.index)
 print(site_idenity)
 bea[atom.index].symbol = 'Si'
replace T2 sites with Al
for index in site_to_index_map['T2']:
 bea[index].symbol = 'Al'

view(bea) # view bea

from maze import Zeolite
from ase.visualize import view

bea = Zeolite.make('BEA') # load in bea and note sites
replace T2 sites with Al
for index in bea.site_to_atom_indices['T2']:
 bea[index].symbol = 'Al'

view(bea)

 50

In the knowability category, the MAZE package outperforms the ASE read function, since only a

single, easy to remember function is needed to construct a labeled Zeolite from a CIF file. When

using the ASE package an entire, convoluted workflow must be performed. This workflow is

prone to human error, since it involves manually downloading and modifying the CIF file, thus

the robustness is also worse. The operability of the ASE package is also limited since tagging all

the sites requires more effort than tagging a single site. Overall, the MAZE package offers a

significant improvement over the ASE package and meets the key categories of API usability.

3.7.3 Structural Manipulations

The Atoms class’ structural manipulation features allow atoms to be added and removed from the

collection and the properties of individual atoms to be altered. The API by which these

manipulations are performed is inspired by Python’s list manipulation methods. Although

familiar to Python users, these manipulations are not self-consistent as some have side effects

(e.g. the pop method) while others are side effect free such as the __add__ method. In zeolite

workflows it is common for many derivatives of a single parent zeolite to be generated, and this

is complicated by methods with side-effects, due to the need for explicit copying prior to each

modification.

In alignment with the goal of the MAZE project, new methods for atomic manipulation were

designed, which do not mutate the underlying object, and instead return a copy with the applied

modifications. These methods (add_atoms and delete_atoms) simplify the computational

workflows and also allow for method chaining improving code readability. A list of the available

methods for the ASE Atoms object and the MAZE Zeolite object are shown in Table 8 below.

 51

Table 8: ASE Atoms object and MAZE Zeolite object’s structure manipulation methods

Method Name Classes with Method Modifies Object

__add__

(overloads +)

Atoms, PerfectZeolite, Zeolite No

__iadd__

(overloads +=)

Atoms, PerfectZeolite, Zeolite Yes

extend Atoms, PerfectZeolite, Zeolite Yes

append Atoms, PerfectZeolite, Zeolite Yes

len Atoms, PerfectZeolite, Zeolite No

__delete__
overloads del

Atoms, PerfectZeolite, Zeolite Yes

pop Atoms, PerfectZeolite, Zeolite Yes

add_atoms Zeolite No

delete_atoms Zeolite No

cap_atoms Zeolite No

Integrate_zeotype Zeolite No

get_cluster Zeolite No

apply Zeolite No

The structural manipulation features of the Zeolite class include those of the Atoms class and

additional methods for structural manipulation built around the add_atoms and delete_atoms

methods. For compatibility with the plethora of functions in ASE all of the Atom’s classes

methods must be preserved. Although their use is not recommended, the list manipulation

functions in the ASE atoms class are still compatible with MAZE. In comparing the APIs, the

new methods in Zeolite are compared to the existing methods in Atoms. The usability of the

structural manipulation features can be assessed based on the criteria described in the methods

 52

section. A table summarizing the comparison is shown in Table 9, with a “winner” given for

each criterion along with a justification for the assignment.

Table 9: Usability of structural manipulation methods for the Atoms objects and Zeolite Objects

Criteria Sub-Criteria Winner
(MAZE,
ASE, Tied)

Justification

Knowability Clarity Tied Both ASE and MAZE methods clearly described the modification

Knowability Consistency MAZE All MAZE structural manipulation methods return new Zeolites

Knowability Memorability ASE ASEs functions are consistent with Python’s list manipulation
methods and thus are more memorable

Knowability Helpfulness Tied Both ASE and MAZE have complete documentation

Operability Completeness MAZE MAZE can perform more advanced structural manipulations such
as capping atoms and integrating clusters

Operability Precision MAZE Precise structural manipulations can be performed such as
removing specific T sites

Robustness Internal Error MAZE MAZE manipulation methods’ side-effects are confined to the
IndexMapper object reducing errors

Robustness Improper use MAZE The side effects of the ASE methods can produce hidden errors that
are challenging to detect

The usability assessment shows that the MAZE Zeolite methods outperforms the ASE in all

categories except for the memorability category. The Atoms manipulation features have high

memorability since they are the same as the list manipulation methods found in Python’s base

package, yet the inconsistency in return type among the operations makes performing certain

operations challenging. The MAZE structural manipulation features are consistent, increasing the

knowability, allow for chained, structural manipulations, increasing the operability and have

increased efficiency since the manipulations can be confined to a single line and are more robust

due to the consistent interface and side-effect free methods.

 53

3.7.4 Cluster Extraction, Atom Capping and Integration

The power of these additional structural manipulation features can be demonstrated by

performing a complex workflow. A typical zeolite unit cell contains over one-hundred atoms, but

the areas of chemical interest are frequently confined to the atoms adjacent to a single T-site. To

reduce the computational expense of quantum chemical calculations, the calculations are

typically performed on a smaller subset of atoms adjacent to the active sites of interest. This

subset of atoms is referred to as a cluster [68]. To ensure convergence, capping atoms are added

to the terminal cluster atoms, guaranteeing that they have an octet. The optimal position for the

capping atoms is based on the parent zeotype’s structure. After the capped cluster’s structure has

been optimized, the cluster can be integrated back into the initial zeolite with the integration

method.

This workflow is extraordinarily difficult to perform with the ASE base package due to the

challenge associated with tracking the relationship between atom indices. The Zeolite class’s

built-in index mapper ensures that the relationship between atoms can easily be determined and

forms the basis for the simple functions that perform this workflow. In Figure 17 a pictorial

representation of stages in the workflow is shown along with the methods needed to perform the

transformation from one stage to the next.

 54

Figure 17: Workflow for cluster integration. A blue arrow shows the workflow direction, starting with a BEA
zeolite constructed using the make method. The functions or operations required to transfer from one structure to
another are shown between the structures on the blue line.

The overall workflow has six distinct structures bridged by functions which take the previous

structure as an input and output the new structure. The cluster structures (B, C, D, E) have

different indices than the BEA frameworks (A, F), yet the indices can easily be mapped to each

other using the built-in IndexMapper’s get_index method. Since the functions do not alter the

Zeolite to which they are applied, and instead return a new zeolite object, they can be chained

together. The chained methods required to transform structure A into structure F is shown in

Figure 1.

Figure 18: Code required to generate structure F from structure A

The code presented in figure 1 demonstrates how a complex workflow can be achieved with the

chaining of several functions together. This simplicity allows for knowability of the operations,

from maze import Zeolite
def change_atoms(atoms):
 for atom in atoms:
 if atom.symbol == 'Si' and atom.tag != 154:
 atoms[atom.index].symbol = 'Sn'

bea = Zeolite.make('BEA')
cluster = bea.get_cluster(154)[0].cap_atoms().apply(change_atoms).remove_caps()
bea_sn = bea.integrate(cluster)

 55

precise and complete operability, and robustness due to high readability. The scrambling of the

indices with the cluster extraction does not allow for consistent code using the base ASE

package. Instead, the indices of each atom must be matched manually at each stage of the

process. Thus, the MAZE package interface has increased the knowability, operability and

robustness compared to the cumbersome manual workflow required when using the base ASE

package

3.7.5 Creation and Optimization of a Database of Zeolite Structures

MAZE’s structural manipulation enhancements can be utilized to construct thousands of Zeolite

derivatives in a systematic way. These structures can then be optimized with the aid of the

workflow management tool Fireworks [67] and a custom-build python package VASP-FW,

which combines ASE’s VASP interface with Fireworks’. To demonstrate this capacity, a

database of open framework copper containing zeolites was created with the MAZE package.

The Python class utilized for this process was written by the current PhD student Jiawei Guo,

whose research focuses on copper containing zeolite catalysts. As of the writing of this thesis,

optimization has not been complete, yet the pipeline and workflow has been constructed and the

individual components tested. A diagram of this automatic data pipeline for structural

optimization is shown below (Figure 19).

 56

Figure 19: Data pipeline for the construction of optimized zeolite derivatives. The MAZE package allows for key
optimization steps to be automated through a single python script.

The MAZE package facilitates these structural manipulations by removing the need to manually

match indices between derived structures. This allows for the automatic creation of large-scale

databases of zeolite derivatives, producing large datasets amenable for complex analysis.

In the previous examples all structural manipulations took place on Zeolite objects loaded into

memory. Quantum chemical optimizations typically take place on remote servers separate from

the structural manipulation code. The computations are also expensive, thus preserving the

resulting optimized structure on non-volatile memory is essential. The MAZE package

incorporates read-write capabilities that allow groups of related zeolites to be saved in a single

file while preserving the mapping between the zeolites. The read-write capabilities also allow for

a properly tagged structure to be reincorporated back into a group of zeolites by registering it

with an existing index mapper. This read-write capacity allows for the development of complex,

distributed workflows.

The Vienna Ab initio Simulation Package (VASP) was utilized with ASE and MAZE for

structural optimization [59]. The open-source workflow management software Fireworks [67]

was utilized to manage jobs, while a remote AWS PostgreSQL database was used to store the

 57

Atom object data. To ensure code modularity, this VASP fireworks workflow was built into as

separate python package (vasp-fw), which facilitated the workflow needed for optimizing

trajectory files. An overview of the data system for the optimization and an example workflow is

shown in Figure 20 below.

Figure 20: Workflow diagram for the optimization of a collection of trajectory files. The workflow is divided into
optimization (blue), save (gray) and analyze (green) stages.

The diagram (Figure 20) shows the steps for optimizing trajectory with Firework and ASE’s

VASP calculator. This process will be repeated for each trajectory file in the zeolite database

shown in Figure 19, allowing for a comprehensive study of open framework, copper containing

zeolites.

3.8 Conclusions

The improved API of the MAZE package was presented here by demonstrating how to perform

representative tasks. Several other features of the MAZE package include database integration

 58

and adsorbate additions. A complete description can be found in the documentation, which is

referenced in the supplementary material.

MAZE’s improved API builds on-top of the Atomic Simulation Environment. This new interface

facilitates computational zeolite calculations by greatly simplifying the steps needed to perform

common zeolite workflows. The API usability was assessed with the criteria knowability,

operability and robustness and by demonstrating example workflows. Computational

experiments are less labor intensive than wet lab experiments, but lack of optimal APIs for

scientific software and complex workflows can incur a significant time commitment from

researchers to setup and run. By creating custom software tailored to the specific task, research

can be simplified and larger scale experiments can be conducted.

 59

Chapter 4

Conclusions

4.1 Project Summaries

In this work, two separate projects were untaken. The first project focused on constructing a data

pipeline to pre-process SERS spectra. A novel component of this pipeline was the utilization of a

supervised machine learning algorithm to identify negative spectra. The second project, the

development of the MAZE Python package, allowed for common structural manipulations of

simulated zeolite structures to be simplified. As demonstrated, this allowed for the construction

of libraries of zeolite derivatives and their optimization through integration with VASP and

Fireworks. Both of these projects share the common characteristic of automating a key

component of an experimental workflow, reducing the labor required to conduct large scale

experiments.

4.2 Future work

In addition to simplifying existing workflows, this work sets the groundwork for future

autonomous experiments. Autonomous experiments involve using an agent, rather than a

 60

researcher, to choose which sample to collect and a controller to automatically collect the chosen

sample [69] (Figure 21).

Figure 21: A general diagram for an autonomous experiment. The sample criteria are selected by an agent and are
collected by the experimental apparatus and controller. An automatic data pipeline processes the raw data output by
the experiment and feeds the data back to the agent.

Autonomous experiments could extend the work described in this thesis. In the case of zeolite

studies, the automated workflow could be combined with an autonomous agent that explores the

vast zeolite space in search of structures with high selectivity for CO2 over water. In the SERS

situation an autonomous experiment would involve automatically sampling spots on the sample

that produced positive spectra at higher rate than those that produced negative signals, freeing

the researcher from overseeing the collection process. The automation of the SERS sampling is

close to fruition as it is straightforward to integrate Python based ML algorithm with the SERS

spectrometer instrument using LabVIEW.

The agent utilized for experiment selection be simple, such as a grid search algorithm [69] or

employ more sophisticated reinforced learning algorithms [69], [70]. Reinforce learning

algorithms are responsible for the superhuman feats achieved by AI in games most notably in

Go[71] and StarCraft II[70] and have been applied to optimize chemical reactions[72], and

beamline data collection[69]. To harness these advances an automatic data pipeline must be

 61

created. Thus, the deployment of data pipelines can significantly reduce the labor required for

large scale experiments.

 62

5.1 Bibliography

[1] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak,
J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. Bjerre
Jensen, J. Kermode, J. R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S.
Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C.
Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M.
Walter, Z. Zeng, and K. W. Jacobsen, “The atomic simulation environment—a Python
library for working with atoms,” J. Phys.: Condens. Matter, vol. 29, no. 27, p. 273002, Jul.
2017, doi: 10.1088/1361-648X/aa680e.

[2] “PyPI Download Stats for MAZE-sim.” https://pypistats.org/packages/maze-sim (accessed
May 05, 2021).

[3] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt, A.
Tkatchenko, and K.-R. Müller, “Machine Learning Force Fields,” Chem. Rev., p.
acs.chemrev.0c01111, Mar. 2021, doi: 10.1021/acs.chemrev.0c01111.

[4] C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, and S. P. Ong, “A Critical Review of Machine
Learning of Energy Materials,” Adv. Energy Mater., vol. 10, no. 8, p. 1903242, Feb. 2020,
doi: 10.1002/aenm.201903242.

[5] H. Atwal, Practical DataOps: Delivering Agile Data Science at Scale. Berkeley, CA: Apress
L.P., 2020. Accessed: May 03, 2021. [Online]. Available:
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&A
N=2327464

[6] M. Boumans and S. Leonelli, “From Dirty Data to Tidy Facts: Clustering Practices in Plant
Phenomics and Business Cycle Analysis,” in Data Journeys in the Sciences, S. Leonelli and
N. Tempini, Eds. Cham: Springer International Publishing, 2020, pp. 79–101. doi:
10.1007/978-3-030-37177-7_5.

[7] H. Wickham, “Tidy Data,” Journal of Statistical Software, Articles, vol. 59, no. 10, pp. 1–23,
2014, doi: 10.18637/jss.v059.i10.

[8] “‘PART III][Chapter 23’ in ‘Debates in the Digital Humanities 2019’ on Manifold,”
Debates in the Digital Humanities. https://dhdebates.gc.cuny.edu/read/untitled-f2acf72c-
a469-49d8-be35-67f9ac1e3a60/section/07154de9-4903-428e-9c61-7a92a6f22e51 (accessed
Apr. 30, 2021).

[9] J. Furbush, “Data engineering: A quick and simple definition,” O’Reilly Media, Jul. 16,
2018. https://www.oreilly.com/content/data-engineering-a-quick-and-simple-definition/
(accessed Apr. 30, 2021).

[10] J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, J. J.
Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V.
Deckert, L. Fabris, K. Faulds, F. J. García de Abajo, R. Goodacre, D. Graham, A. J. Haes,
C. L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H.
K. Lee, J.-F. Li, X. Y. Ling, S. A. Maier, T. Mayerhöfer, M. Moskovits, K. Murakoshi, J.-

 63

M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich,
B. Ren, G. C. Schatz, T. Shegai, S. Schlücker, L.-L. Tay, K. G. Thomas, Z.-Q. Tian, R. P.
Van Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto,
B. Zhao, and L. M. Liz-Marzán, “Present and Future of Surface-Enhanced Raman
Scattering,” ACS Nano, vol. 14, no. 1, pp. 28–117, Jan. 2020, doi:
10.1021/acsnano.9b04224.

[11] F. W. L. Esmonde-White, M. V. Schulmerich, K. A. Esmonde-White, and M. D. Morris,
“Automated Raman spectral preprocessing of bone and other musculoskeletal tissues,” San
Jose, CA, Feb. 2009, p. 716605. doi: 10.1117/12.809436.

[12] G. Lopez-Reyes and F. Rull Pérez, “A method for the automated Raman spectra
acquisition: Automated Raman spectra acquisition,” J. Raman Spectrosc., vol. 48, no. 11,
pp. 1654–1664, Nov. 2017, doi: 10.1002/jrs.5185.

[13] H. G. Schulze, S. Rangan, J. M. Piret, M. W. Blades, and R. F. B. Turner, “Developing
Fully Automated Quality Control Methods for Preprocessing Raman Spectra of Biomedical
and Biological Samples,” Appl Spectrosc, vol. 72, no. 9, pp. 1322–1340, Sep. 2018, doi:
10.1177/0003702818778031.

[14] W. Hu, S. Ye, Y. Zhang, T. Li, G. Zhang, Y. Luo, S. Mukamel, and J. Jiang, “Machine
Learning Protocol for Surface-Enhanced Raman Spectroscopy,” J. Phys. Chem. Lett., vol.
10, no. 20, pp. 6026–6031, Oct. 2019, doi: 10.1021/acs.jpclett.9b02517.

[15] X. Fan, W. Ming, H. Zeng, Z. Zhang, and H. Lu, “Deep learning-based component
identification for the Raman spectra of mixtures,” Analyst, vol. 144, no. 5, pp. 1789–1798,
2019, doi: 10.1039/C8AN02212G.

[16] S. D. Krauß, R. Roy, H. K. Yosef, T. Lechtonen, S. F. El-Mashtoly, K. Gerwert, and A.
Mosig, “Hierarchical deep convolutional neural networks combine spectral and spatial
information for highly accurate Raman-microscopy-based cytopathology,” J. Biophotonics,
vol. 11, no. 10, p. e201800022, Oct. 2018, doi: 10.1002/jbio.201800022.

[17] A. A. Moawad, A. Silge, T. Bocklitz, K. Fischer, P. Rösch, U. Roesler, M. C. Elschner, J.
Popp, and H. Neubauer, “A Machine Learning-Based Raman Spectroscopic Assay for the
Identification of Burkholderia mallei and Related Species,” Molecules, vol. 24, no. 24, p.
4516, Dec. 2019, doi: 10.3390/molecules24244516.

[18] R. M. Jarvis and R. Goodacre, “Discrimination of Bacteria Using Surface-Enhanced Raman
Spectroscopy,” Anal. Chem., vol. 76, no. 1, pp. 40–47, Jan. 2004, doi: 10.1021/ac034689c.

[19] B. Deng, X. Luo, M. Zhang, L. Ye, and Y. Chen, “Quantitative detection of acyclovir by
surface enhanced Raman spectroscopy using a portable Raman spectrometer coupled with
multivariate data analysis,” Colloids and Surfaces B: Biointerfaces, vol. 173, pp. 286–294,
Jan. 2019, doi: 10.1016/j.colsurfb.2018.09.058.

[20] S.-X. Li, Q.-Y. Zeng, L.-F. Li, Y.-J. Zhang, M.-M. Wan, Z.-M. Liu, H.-L. Xiong, Z.-Y.
Guo, and S.-H. Liu, “Study of support vector machine and serum surface-enhanced Raman
spectroscopy for noninvasive esophageal cancer detection,” J. Biomed. Opt, vol. 18, no. 2,
p. 027008, Feb. 2013, doi: 10.1117/1.JBO.18.2.027008.

[21] Y. Zhang, X. Ye, G. Xu, X. Jin, M. Luan, J. Lou, L. Wang, C. Huang, and J. Ye,
“Identification and distinction of non-small-cell lung cancer cells by intracellular SERS
nanoprobes,” RSC Adv., vol. 6, no. 7, pp. 5401–5407, 2016, doi: 10.1039/C5RA21758J.

[22] X. Xu, K. Kim, H. Li, and D. L. Fan, “Ordered Arrays of Raman Nanosensors for
Ultrasensitive and Location Predictable Biochemical Detection,” Adv. Mater., vol. 24, no.
40, pp. 5457–5463, Oct. 2012, doi: 10.1002/adma.201201820.

 64

[23] W. Lee, A. T. M. Lenferink, C. Otto, and H. L. Offerhaus, “Classifying Raman spectra of
extracellular vesicles based on convolutional neural networks for prostate cancer
detection,” J Raman Spectrosc, vol. 51, no. 2, pp. 293–300, Feb. 2020, doi:
10.1002/jrs.5770.

[24] J. Park, M. Hwang, B. Choi, H. Jeong, J. Jung, H. K. Kim, S. Hong, J. Park, and Y. Choi,
“Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy
Data for Lung Cancer Diagnosis,” Anal. Chem., vol. 89, no. 12, pp. 6695–6701, Jun. 2017,
doi: 10.1021/acs.analchem.7b00911.

[25] J. Carmicheal, C. Hayashi, X. Huang, L. Liu, Y. Lu, A. Krasnoslobodtsev, A. Lushnikov, P.
G. Kshirsagar, A. Patel, M. Jain, Y. L. Lyubchenko, Y. Lu, S. K. Batra, and S. Kaur,
“Label-free characterization of exosome via surface enhanced Raman spectroscopy for the
early detection of pancreatic cancer,” Nanomedicine: Nanotechnology, Biology and
Medicine, vol. 16, pp. 88–96, Feb. 2019, doi: 10.1016/j.nano.2018.11.008.

[26] N. Banaei, J. Moshfegh, A. Mohseni-Kabir, J. M. Houghton, Y. Sun, and B. Kim, “Machine
learning algorithms enhance the specificity of cancer biomarker detection using SERS-
based immunoassays in microfluidic chips,” RSC Adv., vol. 9, no. 4, pp. 1859–1868, 2019,
doi: 10.1039/C8RA08930B.

[27] E. Guevara, J. C. Torres-Galván, M. G. Ramírez-Elías, C. Luevano-Contreras, and F. J.
González, “Use of Raman spectroscopy to screen diabetes mellitus with machine learning
tools,” Biomed. Opt. Express, vol. 9, no. 10, p. 4998, Oct. 2018, doi:
10.1364/BOE.9.004998.

[28] H. Shi, H. Wang, X. Meng, R. Chen, Y. Zhang, Y. Su, and Y. He, “Setting Up a Surface-
Enhanced Raman Scattering Database for Artificial-Intelligence-Based Label-Free
Discrimination of Tumor Suppressor Genes,” Anal. Chem., vol. 90, no. 24, pp. 14216–
14221, Dec. 2018, doi: 10.1021/acs.analchem.8b03080.

[29] I. J. Hidi, M. Jahn, K. Weber, T. Bocklitz, M. W. Pletz, D. Cialla-May, and J. Popp, “Lab-
on-a-Chip-Surface Enhanced Raman Scattering Combined with the Standard Addition
Method: Toward the Quantification of Nitroxoline in Spiked Human Urine Samples,” Anal.
Chem., vol. 88, no. 18, pp. 9173–9180, Sep. 2016, doi: 10.1021/acs.analchem.6b02316.

[30] O. Alharbi, Y. Xu, and R. Goodacre, “Simultaneous multiplexed quantification of caffeine
and its major metabolites theobromine and paraxanthine using surface-enhanced Raman
scattering,” Anal Bioanal Chem, vol. 407, no. 27, pp. 8253–8261, Nov. 2015, doi:
10.1007/s00216-015-9004-8.

[31] S. M. Moosavi, A. Chidambaram, L. Talirz, M. Haranczyk, K. C. Stylianou, and B. Smit,
“Capturing chemical intuition in synthesis of metal-organic frameworks,” Nat Commun,
vol. 10, no. 1, p. 539, Dec. 2019, doi: 10.1038/s41467-019-08483-9.

[32] D. Shen, G. Wu, and H.-I. Suk, “Deep Learning in Medical Image Analysis,” Annu. Rev.
Biomed. Eng., vol. 19, no. 1, pp. 221–248, Jun. 2017, doi: 10.1146/annurev-bioeng-071516-
044442.

[33] D. L. Jeanmaire and R. P. V. Duyne, “SURFACE RAMAN
SPECTROELECTROCHEMISTRY,” p. 20.

[34] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I.
Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,”
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, no. 1, pp.
1–20, Nov. 1977, doi: 10.1016/S0022-0728(77)80224-6.

 65

[35] M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a
silver electrode,” J. Am. Chem. Soc., vol. 99, no. 15, pp. 5215–5217, Jun. 1977, doi:
10.1021/ja00457a071.

[36] A. M. Michaels, Jiang, and L. Brus, “Ag Nanocrystal Junctions as the Site for Surface-
Enhanced Raman Scattering of Single Rhodamine 6G Molecules,” J. Phys. Chem. B, vol.
104, no. 50, pp. 11965–11971, Dec. 2000, doi: 10.1021/jp0025476.

[37] B. Vincent, J. Edwards, S. Emmett, and A. Jones, “Depletion flocculation in dispersions of
sterically-stabilised particles (‘soft spheres’),” Colloids and Surfaces, vol. 18, no. 2–4, pp.
261–281, Jun. 1986, doi: 10.1016/0166-6622(86)80317-1.

[38] L. A. Wijenayaka, M. R. Ivanov, C. M. Cheatum, and A. J. Haes, “Improved
Parametrization for Extended Derjaguin, Landau, Verwey, and Overbeek Predictions of
Functionalized Gold Nanosphere Stability,” J. Phys. Chem. C, vol. 119, no. 18, pp. 10064–
10075, May 2015, doi: 10.1021/acs.jpcc.5b00483.

[39] S. R. Saunders, M. R. Eden, and C. B. Roberts, “Modeling the Precipitation of Polydisperse
Nanoparticles Using a Total Interaction Energy Model,” J. Phys. Chem. C, vol. 115, no. 11,
pp. 4603–4610, Mar. 2011, doi: 10.1021/jp200116a.

[40] L. M. Almehmadi, S. M. Curley, N. A. Tokranova, S. A. Tenenbaum, and I. K. Lednev,
“Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection,” Sci Rep,
vol. 9, no. 1, p. 12356, Dec. 2019, doi: 10.1038/s41598-019-48650-y.

[41] K. A. Bosnick, Jiang, and L. E. Brus, “Fluctuations and Local Symmetry in Single-
Molecule Rhodamine 6G Raman Scattering on Silver Nanocrystal Aggregates †,” J. Phys.
Chem. B, vol. 106, no. 33, pp. 8096–8099, Aug. 2002, doi: 10.1021/jp0256241.

[42] A. B. Zrimsek, N. Chiang, M. Mattei, S. Zaleski, M. O. McAnally, C. T. Chapman, A.-I.
Henry, G. C. Schatz, and R. P. Van Duyne, “Single-Molecule Chemistry with Surface- and
Tip-Enhanced Raman Spectroscopy,” Chem. Rev., vol. 117, no. 11, pp. 7583–7613, Jun.
2017, doi: 10.1021/acs.chemrev.6b00552.

[43] A. Szeghalmi, S. Kaminskyj, P. Rösch, J. Popp, and K. M. Gough, “Time Fluctuations and
Imaging in the SERS Spectra of Fungal Hypha Grown on Nanostructured Substrates,” J.
Phys. Chem. B, vol. 111, no. 44, pp. 12916–12924, Nov. 2007, doi: 10.1021/jp075422a.

[44] J. Taylor, A. Huefner, L. Li, J. Wingfield, and S. Mahajan, “Nanoparticles and intracellular
applications of surface-enhanced Raman spectroscopy,” Analyst, vol. 141, no. 17, pp.
5037–5055, 2016, doi: 10.1039/C6AN01003B.

[45] Unidata, Unidata, netCDF4 version 1.5.6. Boulder, CO: UCAR/Unidata, 2021.
[46] Z.-M. Zhang, S. Chen, and Y.-Z. Liang, “Baseline correction using adaptive iteratively

reweighted penalized least squares,” Analyst, vol. 135, no. 5, p. 1138, 2010, doi:
10.1039/b922045c.

[47] P. H. C. Eilers, “A Perfect Smoother,” Anal. Chem., vol. 75, no. 14, pp. 3631–3636, Jul.
2003, doi: 10.1021/ac034173t.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, and D. Cournapeau, “Scikit-
learn: Machine Learning in Python,” MACHINE LEARNING IN PYTHON, p. 6.

[49] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

 66

[50] T. A. Lasko, J. G. Bhagwat, K. H. Zou, and L. Ohno-Machado, “The use of receiver
operating characteristic curves in biomedical informatics,” Journal of Biomedical
Informatics, vol. 38, no. 5, pp. 404–415, Oct. 2005, doi: 10.1016/j.jbi.2005.02.008.

[51] S. M. Borstelmann, “Machine Learning Principles for Radiology Investigators,” Academic
Radiology, vol. 27, no. 1, pp. 13–25, Jan. 2020, doi: 10.1016/j.acra.2019.07.030.

[52] B. Smit and T. L. M. Maesen, “Towards a molecular understanding of shape selectivity,”
Nature, vol. 451, no. 7179, pp. 671–678, Feb. 2008, doi: 10.1038/nature06552.

[53] P. Xie, T. Pu, G. Aranovich, J. Guo, M. Donohue, A. Kulkarni, and C. Wang, “Bridging
adsorption analytics and catalytic kinetics for metal-exchanged zeolites,” Nat Catal, vol. 4,
no. 2, pp. 144–156, Feb. 2021, doi: 10.1038/s41929-020-00555-0.

[54] N. Kosinov, C. Liu, E. J. M. Hensen, and E. A. Pidko, “Engineering of Transition Metal
Catalysts Confined in Zeolites,” Chem. Mater., vol. 30, no. 10, pp. 3177–3198, May 2018,
doi: 10.1021/acs.chemmater.8b01311.

[55] R. Qin, P. Liu, G. Fu, and N. Zheng, “Strategies for Stabilizing Atomically Dispersed Metal
Catalysts,” Small Methods, vol. 2, no. 1, p. 1700286, Jan. 2018, doi:
10.1002/smtd.201700286.

[56] B. M. Weckhuysen and J. Yu, “Recent advances in zeolite chemistry and catalysis,” Chem.
Soc. Rev., vol. 44, no. 20, pp. 7022–7024, 2015, doi: 10.1039/C5CS90100F.

[57] C. R. A. Catlow, V. Van Speybroeck, and R. van Santen, Modelling and Simulation in the
Science of Micro- and Meso-Porous Materials. Saint Louis, UNITED STATES: Elsevier,
2017. [Online]. Available:
http://ebookcentral.proquest.com/lib/ucdavis/detail.action?docID=5051428

[58] S. Pirhadi, J. Sunseri, and D. R. Koes, “Open source molecular modeling,” Journal of
Molecular Graphics and Modelling, vol. 69, pp. 127–143, Sep. 2016, doi:
10.1016/j.jmgm.2016.07.008.

[59] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-
wave method,” Phys. Rev. B, vol. 59, no. 3, pp. 1758–1775, Jan. 1999, doi:
10.1103/PhysRevB.59.1758.

[60] S. Plimpton, “Fast Parallel Algorithms for Short–Range Molecular Dynamics,” p. 42.
[61] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation of the

projector augmented wave method,” Phys. Rev. B, vol. 71, no. 3, p. 035109, Jan. 2005, doi:
10.1103/PhysRevB.71.035109.

[62] E. Mosqueira-Rey, D. Alonso-Ríos, V. Moret-Bonillo, I. Fernández-Varela, and D.
Álvarez-Estévez, “A systematic approach to API usability: Taxonomy-derived criteria and
a case study,” Information and Software Technology, vol. 97, pp. 46–63, May 2018, doi:
10.1016/j.infsof.2017.12.010.

[63] S. R. Bahn and K. W. Jacobsen, “An object-oriented scripting interface to a legacy
electronic structure code,” Comput. Sci. Eng., vol. 4, no. 3, pp. 56–66, Jun. 2002, doi:
10.1109/5992.998641.

[64] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers Are Users Too: Human-
Centered Methods for Improving Programming Tools,” Computer, vol. 49, no. 7, pp. 44–
52, Jul. 2016, doi: 10.1109/MC.2016.200.

[65] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers, “API Designers in the
Field: Design Practices and Challenges for Creating Usable APIs,” in 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Lisbon, Oct.
2018, pp. 249–258. doi: 10.1109/VLHCC.2018.8506523.

 67

[66] B. A. Myers and J. Stylos, “Improving API usability,” Commun. ACM, vol. 59, no. 6, pp.
62–69, May 2016, doi: 10.1145/2896587.

[67] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-
M. Rignanese, G. Hautier, D. Gunter, and K. A. Persson, “FireWorks: a dynamic workflow
system designed for high-throughput applications: FireWorks: A Dynamic Workflow
System Designed for High-Throughput Applications,” Concurrency Computat.: Pract.
Exper., vol. 27, no. 17, pp. 5037–5059, Dec. 2015, doi: 10.1002/cpe.3505.

[68] C. Schroeder, C. Mück‐Lichtenfeld, L. Xu, N. A. Grosso‐Giordano, A. Okrut, C. Chen, S. I.
Zones, A. Katz, M. R. Hansen, and H. Koller, “A Stable Silanol Triad in the Zeolite
Catalyst SSZ‐70,” Angew. Chem. Int. Ed., vol. 59, no. 27, pp. 10939–10943, Jun. 2020, doi:
10.1002/anie.202001364.

[69] P. M. Maffettone, J. K. Lynch, T. A. Caswell, C. E. Cook, S. I. Campbell, and D. Olds,
“Gaming the beamlines—employing reinforcement learning to maximize scientific
outcomes at large-scale user facilities,” Mach. Learn.: Sci. Technol., vol. 2, no. 2, p.
025025, Jun. 2021, doi: 10.1088/2632-2153/abc9fc.

[70] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L.
Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V.
Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y.
Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K.
Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II using
multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019,
doi: 10.1038/s41586-019-1724-z.

[71] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play,”
Science, vol. 362, no. 6419, pp. 1140–1144, Dec. 2018, doi: 10.1126/science.aar6404.

[72] Z. Zhou, X. Li, and R. N. Zare, “Optimizing Chemical Reactions with Deep Reinforcement
Learning,” ACS Central Science, p. 8, 2017.

